JP4853737B2 - Exhaust gas treatment method and apparatus - Google Patents

Exhaust gas treatment method and apparatus Download PDF

Info

Publication number
JP4853737B2
JP4853737B2 JP2008042181A JP2008042181A JP4853737B2 JP 4853737 B2 JP4853737 B2 JP 4853737B2 JP 2008042181 A JP2008042181 A JP 2008042181A JP 2008042181 A JP2008042181 A JP 2008042181A JP 4853737 B2 JP4853737 B2 JP 4853737B2
Authority
JP
Japan
Prior art keywords
exhaust gas
electrostatic precipitator
cooling
wet
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008042181A
Other languages
Japanese (ja)
Other versions
JP2009195860A (en
Inventor
進一 川畑
光昭 柳田
昌樹 早津
祥生 前川
啓吾 織田
和樹 小林
良晃 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2008042181A priority Critical patent/JP4853737B2/en
Publication of JP2009195860A publication Critical patent/JP2009195860A/en
Application granted granted Critical
Publication of JP4853737B2 publication Critical patent/JP4853737B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Electrostatic Separation (AREA)

Description

本発明は排ガス処理方法及び装置に係り、特にボイラから排出される硫黄酸化物を含んだ排ガスを乾式電気集塵装置、冷却装置、湿式脱硫装置、湿式電気集塵装置の順に導いて処理する排ガス処理方法及び装置に関する。   TECHNICAL FIELD The present invention relates to an exhaust gas treatment method and apparatus, and in particular, exhaust gas containing exhaust gas containing sulfur oxides discharged from a boiler in the order of a dry electrostatic precipitator, a cooling device, a wet desulfurizer, and a wet electrostatic precipitator. The present invention relates to a processing method and apparatus.

重油や石炭などを燃料とするボイラから排出される排ガスには、燃料中の硫黄分から生成した硫黄酸化物が含まれている。したがって、火力発電所用ボイラなどから排出されるこの種の排ガスに対しては、先ず乾式電気集塵装置で除塵した後、湿式脱硫装置で脱硫し、最後に排ガスを湿式電気集塵装置に導いてミストなどを除去し大気へ放出している。   The exhaust gas discharged from boilers that use heavy oil or coal as fuel contains sulfur oxides generated from the sulfur content in the fuel. Therefore, for this type of exhaust gas discharged from boilers for thermal power plants, etc., first dust is removed by a dry electrostatic precipitator, then desulfurized by a wet desulfurizer, and finally the exhaust gas is led to a wet electrostatic precipitator. Mist is removed and released to the atmosphere.

この種の排ガスに含まれる硫黄酸化物は主に二酸化硫黄であるが、数十ppmレベルの三酸化硫黄が存在している。この三酸化硫黄は水分と反応して硫酸になり易く、ガス温度が硫酸の露点(酸露点)以下になると凝縮して硫酸ミストになる。硫酸ミストは腐食性が強いので、湿式脱硫装置よりも前段では排ガスを酸露点よりも高い温度(例えば170℃前後)に維持している。しかしながら、この排ガスを湿式脱硫装置に導いて水分の露点である60℃前後にまで急冷すると、微細な硫酸ミストが生成する。この微細な硫酸ミストは湿式脱硫装置では除去が困難であり、後段の湿式電気集塵装置で除去することになる。   Sulfur oxides contained in this type of exhaust gas are mainly sulfur dioxide, but there are several tens of ppm of sulfur trioxide. This sulfur trioxide easily reacts with moisture to become sulfuric acid. When the gas temperature falls below the dew point (acid dew point) of sulfuric acid, it condenses and becomes sulfuric acid mist. Since sulfuric acid mist is highly corrosive, the exhaust gas is maintained at a temperature higher than the acid dew point (for example, around 170 ° C.) before the wet desulfurization apparatus. However, when this exhaust gas is led to a wet desulfurization apparatus and rapidly cooled to around 60 ° C., which is the dew point of moisture, fine sulfuric acid mist is generated. This fine sulfuric acid mist is difficult to remove with a wet desulfurization apparatus, and is removed with a subsequent wet electrostatic precipitator.

しかしながら、湿式電気集塵装置では捕集対象である硫酸ミストなどの粒径によって捕集性能が大きく影響され、ミスト径が小さくなると捕集効率が低下する。湿式脱硫装置で生成した硫酸ミストにサブミクロンレベルのものが多く含まれる場合には、湿式電気集塵装置では空間電荷効果によって捕集性能が著しく低下し、湿式電気集塵装置から排出される排ガス中の硫酸ミスト濃度が高くなって、大気汚染を招く恐れがある。このため、湿式電気集塵装置の容量を大きくしなければならず、その設備費と運転費が高騰する欠点がある。   However, in the wet type electrostatic precipitator, the collection performance is greatly influenced by the particle size of the sulfuric acid mist or the like that is the collection target, and the collection efficiency is lowered when the mist diameter is reduced. If the sulfuric acid mist produced by the wet desulfurizer contains a lot of sub-micron level, the collection performance of the wet electrostatic precipitator is significantly reduced due to the space charge effect, and the exhaust gas discharged from the wet electrostatic precipitator. The concentration of sulfuric acid mist in the inside may increase, leading to air pollution. For this reason, the capacity | capacitance of a wet electrostatic precipitator must be enlarged, and there exists a fault that the installation cost and operating cost rise.

特許文献1にはこの種の排ガス処理方法の欠点を改善するために、湿式脱硫装置に導入する排ガスを予備的に冷却する方法が開示されている。この特許文献1に開示された方法によれば、湿式脱硫装置を出て湿式電気集塵装置に導入される排ガス中の硫酸ミストの径を大きくすることができ、湿式電気集塵装置での硫酸ミストの捕集効率を高めることができる。
特開2002−45643号公報
Patent Document 1 discloses a method of preliminarily cooling the exhaust gas introduced into the wet desulfurization apparatus in order to improve the disadvantages of this type of exhaust gas treatment method. According to the method disclosed in Patent Document 1, the diameter of sulfuric acid mist in the exhaust gas leaving the wet desulfurization apparatus and introduced into the wet electrostatic precipitator can be increased. Mist collection efficiency can be increased.
JP 2002-45643 A

しかしながら、本発明者の知見によれば、上記特許文献1に開示された方法を採用した場合、排ガス中の三酸化硫黄の濃度によって、冷却装置において冷却する排ガスの最適温度が変化することが判明した。すなわち、排ガス中の三酸化硫黄の濃度が低い時には、冷却装置において冷却する排ガスの温度を低めにすると湿式脱硫装置の出口排ガス中の硫酸ミスト径が大きくなり、湿式電気集塵装置での硫酸ミストの除去率が向上する。一方、排ガス中の三酸化硫黄の濃度が高い時には、冷却装置において冷却する排ガスの温度を高めにすると湿式脱硫装置の出口排ガス中の硫酸ミスト径が大きくなり、湿式電気集塵装置での硫酸ミストの除去率が向上する。したがって、湿式電気集塵装置での硫酸ミストの除去率を高めるためには、排ガスを湿式脱硫装置に導入させる前に予備的に冷却する際の冷却温度を排ガス中の三酸化硫黄の濃度に基づいて変化させることが最も望ましいことが判明した。しかしながら、現状の技術では排ガス中の三酸化硫黄の濃度をリアルタイムで検出可能な実用的な計測手段が存在しない。このため、本発明者が得た上記知見を現実の排ガス処理に応用することが困難であった。   However, according to the knowledge of the present inventor, when the method disclosed in Patent Document 1 is adopted, it has been found that the optimum temperature of the exhaust gas cooled in the cooling device varies depending on the concentration of sulfur trioxide in the exhaust gas. did. That is, when the concentration of sulfur trioxide in the exhaust gas is low, if the temperature of the exhaust gas cooled in the cooling device is lowered, the sulfuric acid mist diameter in the exhaust gas at the outlet of the wet desulfurization device increases, and the sulfuric acid mist in the wet electrostatic precipitator The removal rate is improved. On the other hand, when the concentration of sulfur trioxide in the exhaust gas is high, if the temperature of the exhaust gas cooled in the cooling device is increased, the sulfuric acid mist diameter in the exhaust gas at the outlet of the wet desulfurization device increases, and the sulfuric acid mist in the wet electric dust collector The removal rate is improved. Therefore, in order to increase the removal rate of sulfuric acid mist in the wet electrostatic precipitator, the cooling temperature when preliminarily cooling the exhaust gas before introducing it into the wet desulfurizer is based on the concentration of sulfur trioxide in the exhaust gas. It turned out to be most desirable to change. However, there is no practical measuring means that can detect the concentration of sulfur trioxide in the exhaust gas in real time with the current technology. For this reason, it has been difficult to apply the above knowledge obtained by the present inventors to actual exhaust gas treatment.

本発明は上記の技術背景のもとで創案されたものであり、本発明の目的は、排ガス中の三酸化硫黄の濃度を検出することなく、排ガスを湿式脱硫装置に導入させる前に予備的に冷却する際の排ガスの冷却温度を最適に制御し、もって湿式電気集塵装置での硫酸ミストの除去率を高めることができる排ガス処理方法及び装置を提供することにある。   The present invention was devised based on the above technical background, and the object of the present invention is to perform preliminary measurement before introducing exhaust gas into a wet desulfurization apparatus without detecting the concentration of sulfur trioxide in the exhaust gas. It is an object of the present invention to provide an exhaust gas treatment method and apparatus that can optimally control the cooling temperature of exhaust gas during cooling to increase the removal rate of sulfuric acid mist in a wet electrostatic precipitator.

前記目的を達成するために、本発明に係る排ガス処理方法は、ボイラから排出される硫黄酸化物を含んだ排ガスを乾式電気集塵装置、冷却装置、湿式脱硫装置、湿式電気集塵装置の順に導いて処理する排ガス処理方法において、前記冷却装置として前記排ガスを冷却空気によって間接的に冷却する熱交換器を用い、前記湿式電気集塵装置での電流密度が最大となるように、前記冷却装置における冷却空気の供給量を制御することを特徴とする。この場合、冷却装置に供給する冷却空気として温度が100℃以上のものを用いることが望ましい。   In order to achieve the above object, an exhaust gas treatment method according to the present invention is a dry electric dust collector, a cooling device, a wet desulfurization device, and a wet electric dust collector in order of exhaust gas containing sulfur oxides discharged from a boiler. In the exhaust gas treatment method for guiding and treating, the cooling device uses a heat exchanger that indirectly cools the exhaust gas with cooling air as the cooling device, so that the current density in the wet electrostatic precipitator is maximized. The supply amount of the cooling air in is controlled. In this case, it is desirable to use the cooling air supplied to the cooling device having a temperature of 100 ° C. or higher.

また、本発明に係る排ガス処理装置は、ボイラから排出される硫黄酸化物を含んだ排ガスを乾式電気集塵装置、冷却装置、湿式脱硫装置、湿式電気集塵装置の順に導いて処理する排ガス処理装置において、前記冷却装置は前記排ガスを間接的に冷却する熱交換器であり、該冷却装置における冷却量は前記湿式電気集塵装置の高圧電源に設けられた荷電電流計の指示値が最大となるように制御器によって制御されることを特徴とする。   Further, the exhaust gas treatment apparatus according to the present invention is an exhaust gas treatment for treating exhaust gas containing sulfur oxides discharged from a boiler in the order of a dry electric dust collector, a cooling device, a wet desulfurization device, and a wet electric dust collector. In the apparatus, the cooling device is a heat exchanger that indirectly cools the exhaust gas, and the cooling amount in the cooling device is the maximum value indicated by a charge ammeter provided in the high-voltage power supply of the wet electrostatic precipitator. It is characterized by being controlled by a controller.

上記構成の排ガス処理装置は、前記乾式電気集塵装置の前段には前記排ガスを冷却空気によって間接的に冷却するガスクーラが配設され、前記湿式電気集塵装置の後段には該湿式電気集塵装置から排出された排ガスを加熱空気によって間接的に加熱する加熱器が配設されたことが望ましい。そして、前記ガスクーラでの熱交換によって昇温した冷却空気を前記加熱器に供給する加熱空気として利用し、該加熱器での熱交換によって降温した加熱空気を前記冷却装置における排ガスを間接的に冷却するための冷熱源として利用可能にしたことが望ましい。   In the exhaust gas treatment apparatus having the above-described configuration, a gas cooler that indirectly cools the exhaust gas with cooling air is disposed in front of the dry electrostatic precipitator, and the wet electrostatic precipitator is disposed in the subsequent stage of the wet electrostatic precipitator. It is desirable that a heater for indirectly heating the exhaust gas discharged from the apparatus with heated air is provided. Then, the cooling air heated by the heat exchange in the gas cooler is used as the heated air supplied to the heater, and the heated air cooled by the heat exchange in the heater is used to indirectly cool the exhaust gas in the cooling device. It is desirable that it can be used as a cold heat source.

本発明の排ガス処理方法及び装置によれば、排ガス中の三酸化硫黄の濃度が変化しても、湿式電気集塵装置において排ガスが通過する電界空間の電流密度を常に最大に維持することができる。したがって、排ガス中の三酸化硫黄の濃度を検出することなく、排ガスを湿式脱硫装置に導入させる前に冷却装置で予備的に冷却する際の排ガスの冷却温度を最適に制御し、もって湿式電気集塵装置での硫酸ミストの除去率を高めることができる。   According to the exhaust gas treatment method and apparatus of the present invention, even when the concentration of sulfur trioxide in the exhaust gas changes, the current density in the electric field space through which the exhaust gas passes can be always kept at the maximum in the wet electrostatic precipitator. . Therefore, without detecting the concentration of sulfur trioxide in the exhaust gas, the cooling temperature of the exhaust gas when the exhaust gas is preliminarily cooled by the cooling device before being introduced into the wet desulfurization device is optimally controlled, so The removal rate of sulfuric acid mist in the dust device can be increased.

また、冷却装置として排ガスを冷却空気によって間接的に冷却する熱交換器を用いると、冷却装置での冷却過程において排ガス中の水分が変化せず、局部的な排ガスの急冷現象も起きにくいので、制御を安定に行うことができ、微細な硫酸ミストの発生を最小限に抑えることができる。また、冷却装置に供給する冷却空気として温度が100℃以上のものを用いると、冷却装置に供給される排ガスと冷却空気との温度差が小さいため、局部的な排ガスの急冷現象がより一層起きにくくなり、排ガスの酸露点付近での徐冷が硫酸ミストの粗大化に大きく寄与する。   In addition, if a heat exchanger that indirectly cools the exhaust gas with cooling air is used as a cooling device, the moisture in the exhaust gas does not change during the cooling process in the cooling device, and local exhaust gas quenching phenomenon does not easily occur. Control can be performed stably and generation of fine sulfuric acid mist can be minimized. In addition, if the cooling air supplied to the cooling device has a temperature of 100 ° C. or higher, the temperature difference between the exhaust gas supplied to the cooling device and the cooling air is small, so that the local exhaust gas quenching phenomenon further occurs. Slow cooling near the acid dew point of the exhaust gas greatly contributes to the coarsening of sulfuric acid mist.

図1は本発明に係る排ガス処理方法及び装置の実施形態を示す系統図である。重油や石炭などを燃料とするボイラ10の排ガス12は先ず脱硝装置14に送られ、排ガス12中の窒素酸化物が除去される。脱硝装置14を経た排ガス16はエアヒータ18に送られ、ボイラ10の燃焼用空気と熱交換する。エアヒータ18を経た排ガス20はガスクーラ22に送られる。ガスクーラ22には外気がファン24によって冷却空気26として供給され、この冷却空気26が排ガス20と間接的に熱交換する。熱交換によって170℃〜180℃程度にまで降温した排ガス28は乾式電気集塵装置30に送られ、排ガス28中の煤塵が除去される。   FIG. 1 is a system diagram showing an embodiment of an exhaust gas treatment method and apparatus according to the present invention. First, the exhaust gas 12 of the boiler 10 using heavy oil, coal, or the like as fuel is sent to the denitration device 14, and nitrogen oxides in the exhaust gas 12 are removed. The exhaust gas 16 that has passed through the denitration device 14 is sent to an air heater 18 to exchange heat with the combustion air of the boiler 10. The exhaust gas 20 that has passed through the air heater 18 is sent to a gas cooler 22. Outside air is supplied to the gas cooler 22 as cooling air 26 by a fan 24, and the cooling air 26 indirectly exchanges heat with the exhaust gas 20. The exhaust gas 28 cooled to about 170 ° C. to 180 ° C. by heat exchange is sent to the dry electrostatic precipitator 30, and the dust in the exhaust gas 28 is removed.

乾式電気集塵装置30を経た排ガス32は、温度が約170℃で硫黄酸化物を含んでいる。この排ガス32は先ず冷却装置34に送られ、冷却空気35と間接的に熱交換することによって120〜170℃の範囲内で予備的に冷却される。冷却装置34を経た排ガス36は湿式脱硫装置38に送られ、主に排ガス36中の二酸化硫黄が除去される。湿式脱硫装置38を経た排ガス40は温度が60℃程度の飽和状態であり、多数の微細なミストを含む。これらの微細なミストには硫酸ミストも多数、含まれている。したがって、このような硫酸ミストを含む排ガス40を湿式電気集塵装置42に導き、硫酸ミスト等のミストや残存している塵埃をこの湿式電気集塵装置42によって除去する。湿式電気集塵装置42を経た排ガス44は白煙防止を目的として加熱器46で加熱空気48と間接的に熱交換し、100℃以上に加熱された後に、図示しない煙突から大気に放出される。   The exhaust gas 32 that has passed through the dry electrostatic precipitator 30 has a temperature of about 170 ° C. and contains sulfur oxides. The exhaust gas 32 is first sent to a cooling device 34 and is preliminarily cooled within a range of 120 to 170 ° C. by indirectly exchanging heat with the cooling air 35. The exhaust gas 36 that has passed through the cooling device 34 is sent to a wet desulfurization device 38, and mainly sulfur dioxide in the exhaust gas 36 is removed. The exhaust gas 40 that has passed through the wet desulfurization apparatus 38 is in a saturated state at a temperature of about 60 ° C., and contains a large number of fine mists. These fine mists contain many sulfuric acid mists. Therefore, the exhaust gas 40 containing such sulfuric acid mist is guided to the wet electrostatic precipitator 42, and mist such as sulfuric acid mist and remaining dust are removed by the wet electrostatic precipitator 42. The exhaust gas 44 that has passed through the wet electrostatic precipitator 42 is indirectly heat-exchanged with the heated air 48 by a heater 46 for the purpose of preventing white smoke, heated to 100 ° C. or higher, and then released from a chimney (not shown) to the atmosphere. .

なお、加熱器46に供給する加熱空気48としては、ガスクーラ22での熱交換によって昇温した冷却空気26を利用することが望ましい。また、加熱器46での熱交換によって100〜120℃程度にまで降温した加熱空気46の一部を冷却装置34に供給する冷却空気35として利用し、残部は排気50として大気に放出する。   In addition, as the heating air 48 supplied to the heater 46, it is desirable to use the cooling air 26 that has been heated by heat exchange in the gas cooler 22. Further, a part of the heated air 46 cooled to about 100 to 120 ° C. by heat exchange in the heater 46 is used as the cooling air 35 supplied to the cooling device 34, and the remaining part is discharged as the exhaust 50 into the atmosphere.

湿式電気集塵装置42には高圧電源52が装備されており、この高圧電源52によって処理対象である排ガス40が通過する空間を高い電界に維持する。この電界空間における電流密度が大きいほど、集塵性能(ミスト捕集性能)が向上する。電界空間における電流密度は高圧電源52に付設した荷電電流計54によって換算することができる。したがって、本実施形態では荷電電流計54の指示値を制御器56に送信し、制御器56は送信される荷電電流計54の指示値が最大となるように、冷却装置34に供給する冷却空気35の流量を制御する。すなわち、冷却空気35のラインには流量調節弁58が配設されており、制御器56は流量調節弁58の開度を調節することによって、冷却空気35の流量を制御する。すると、湿式電気集塵装置42内で排ガス40が通過する電界空間の電流密度が最大になり、前記のように湿式電気集塵装置42の集塵性能(ミスト捕集性能)が向上する。   The wet electrostatic precipitator 42 is equipped with a high voltage power source 52, and the high voltage power source 52 maintains a high electric field in the space through which the exhaust gas 40 to be treated passes. As the current density in the electric field space increases, the dust collection performance (mist collection performance) improves. The current density in the electric field space can be converted by a charge ammeter 54 attached to the high voltage power source 52. Therefore, in this embodiment, the instruction value of the charge ammeter 54 is transmitted to the controller 56, and the controller 56 supplies the cooling air supplied to the cooling device 34 so that the instruction value of the transmitted charge ammeter 54 is maximized. The flow rate of 35 is controlled. That is, a flow rate adjustment valve 58 is provided in the line of the cooling air 35, and the controller 56 controls the flow rate of the cooling air 35 by adjusting the opening degree of the flow rate adjustment valve 58. Then, the current density of the electric field space through which the exhaust gas 40 passes in the wet electrostatic precipitator 42 is maximized, and the dust collecting performance (mist collecting performance) of the wet electrostatic precipitator 42 is improved as described above.

なお、湿式脱硫装置38に供給する排ガス36の温度は温度計60によって検出し、冷却装置34に供給する冷却空気35の流量は流量計62によって検出する。検出した排ガス36の温度や冷却空気35の流量は制御器56に送信され、制御器56では制御が正常に実行されているか否かを検証するためのバックデータとして、これらの検出値を利用する。   The temperature of the exhaust gas 36 supplied to the wet desulfurization device 38 is detected by a thermometer 60, and the flow rate of the cooling air 35 supplied to the cooling device 34 is detected by a flow meter 62. The detected temperature of the exhaust gas 36 and the flow rate of the cooling air 35 are transmitted to the controller 56, and the controller 56 uses these detected values as back data for verifying whether the control is normally executed. .

上記構成の排ガス処理装置の乾式電気集塵装置30を経た排ガス32について処理実験を行った。実験に用いた排ガス32の温度は170℃、ダスト濃度は6mg/mN、三酸化硫黄濃度は12ppmであった。図2〜図4は実験結果を示すグラフである。図2〜図4において横軸に表示した脱硫入口温度とは、図1における湿式脱硫装置38の入口(すなわち、冷却装置34の出口)の排ガス36の温度を示しており、上記170℃の排ガス32を冷却装置34の冷却条件を変えることによって、112℃、135℃、152℃に変化させたものである。図2における縦軸のミスト粒径とは、湿式脱硫装置38の出口(すなわち、湿式電気集塵装置42の入口)の排ガス44に含まれるミストの平均粒径を示している。図3における縦軸の電流密度とは、湿式電気集塵装置42での電流密度を意味している。図4における縦軸の三酸化硫黄除去率とは、図1において排ガス40と排ガス44を対比した時の湿式電気集塵装置42の三酸化硫黄除去率を意味している。 A treatment experiment was conducted on the exhaust gas 32 which passed through the dry electrostatic precipitator 30 of the exhaust gas processing apparatus having the above configuration. The temperature of the exhaust gas 32 used in the experiment was 170 ° C., the dust concentration was 6 mg / m 3 N, and the sulfur trioxide concentration was 12 ppm. 2 to 4 are graphs showing experimental results. The desulfurization inlet temperature indicated on the horizontal axis in FIGS. 2 to 4 indicates the temperature of the exhaust gas 36 at the inlet of the wet desulfurization apparatus 38 (that is, the outlet of the cooling apparatus 34) in FIG. 32 is changed to 112 ° C., 135 ° C., and 152 ° C. by changing the cooling conditions of the cooling device 34. The mist particle size on the vertical axis in FIG. 2 indicates the average particle size of mist contained in the exhaust gas 44 at the outlet of the wet desulfurization apparatus 38 (that is, the inlet of the wet electrostatic precipitator 42). The current density on the vertical axis in FIG. 3 means the current density in the wet electrostatic precipitator 42. The sulfur trioxide removal rate on the vertical axis in FIG. 4 means the sulfur trioxide removal rate of the wet electrostatic precipitator 42 when the exhaust gas 40 and the exhaust gas 44 are compared in FIG.

図2〜図4によれば、脱硫入口温度を135℃付近にするとミスト粒径、電流密度、三酸化硫黄除去率のいずれもが最大になることが判る。この135℃という温度は、本実験に用いた排ガス32(三酸化硫黄濃度が12ppm)の酸露点(139℃)よりも少し低い。図5は空気中の三酸化硫黄濃度と酸露点との関係を示すグラフであり、空気中の三酸化硫黄濃度と水分が高いほど酸露点が上昇する。   2 to 4, it can be seen that when the desulfurization inlet temperature is around 135 ° C., all of the mist particle size, current density, and sulfur trioxide removal rate are maximized. This temperature of 135 ° C. is slightly lower than the acid dew point (139 ° C.) of the exhaust gas 32 (sulfur trioxide concentration is 12 ppm) used in this experiment. FIG. 5 is a graph showing the relationship between the sulfur trioxide concentration in the air and the acid dew point. The higher the sulfur trioxide concentration in the air and the moisture, the higher the acid dew point.

このような知見に基づいて、三酸化硫黄濃度が異なる排ガス32についても同様の実験を実施したところ、脱硫入口温度を酸露点よりも少し低い温度にすると、ミスト粒径、電流密度、三酸化硫黄除去率のいずれもが最大になることが判明した。この結果、脱硫入口温度とミスト粒径と電流密度と三酸化硫黄除去率とは密接な相互関係があり、電流密度が最大となるように冷却装置の冷却条件を制御すれば、脱硫入口温度が排ガス中の三酸化硫黄濃度や水分に対応した酸露点よりも少し低い温度に自動的に調整され、ミスト粒径や三酸化硫黄除去率が最大になる最適処理を実現できることが判明した。   Based on such knowledge, the same experiment was conducted for the exhaust gas 32 having different sulfur trioxide concentrations. When the desulfurization inlet temperature was set to a temperature slightly lower than the acid dew point, the mist particle size, current density, sulfur trioxide It was found that both removal rates were maximized. As a result, the desulfurization inlet temperature, mist particle size, current density, and sulfur trioxide removal rate have a close correlation, and if the cooling conditions of the cooling device are controlled so that the current density is maximized, the desulfurization inlet temperature is reduced. It has been found that an optimum treatment can be realized that is automatically adjusted to a temperature slightly lower than the acid dew point corresponding to the sulfur trioxide concentration and moisture in the exhaust gas, and that maximizes the mist particle size and sulfur trioxide removal rate.

本実施形態ではこのような知見に基づいて、制御器56では送信される荷電電流計54の指示値が最大となるように、流量調節弁58の開度を調節し、冷却装置34に供給する冷却空気35の流量を制御する。その結果、排ガス32中の三酸化硫黄の濃度が変化した場合でも、湿式電気集塵装置42での電流密度が常に最大に維持され、三酸化硫黄除去率を最大にした最適処理を実現することできる。   In the present embodiment, based on such knowledge, the controller 56 adjusts the opening degree of the flow rate adjustment valve 58 so as to maximize the indicated value of the charge ammeter 54 transmitted to the cooling device 34. The flow rate of the cooling air 35 is controlled. As a result, even when the concentration of sulfur trioxide in the exhaust gas 32 changes, the current density in the wet electrostatic precipitator 42 is always maintained at the maximum, and the optimum treatment with the maximum sulfur trioxide removal rate is realized. it can.

図6は荷電電流計54の指示値を最大にするための制御方法を例示したタイムチャートである。図6の横軸は時間経過、縦軸は荷電電流計54の指示値を示している。時刻aを起点として、制御器56では冷却空気35の流量を増加して、排ガス36の温度を下げるように制御し、この冷却条件を次の時刻bまで継続する。その結果、時刻bでの電流指示値が時刻aよりも低下している場合には、時刻aでの冷却空気35の流量増加が逆制御であると判定し、制御器56では冷却空気35の流量を減少して、排ガス36の温度を上げるように制御し、この冷却条件を次の時刻cまで継続する。その結果、時刻cでの電流指示値が回復する。制御器56ではさらに冷却空気35の流量を減少して、排ガス36の温度を上げるように制御し、この冷却条件を次の時刻dまで継続する。   FIG. 6 is a time chart illustrating a control method for maximizing the indicated value of the charge ammeter 54. In FIG. 6, the horizontal axis indicates time, and the vertical axis indicates the instruction value of the charge ammeter 54. Starting from time a, the controller 56 increases the flow rate of the cooling air 35 to control the temperature of the exhaust gas 36 to be lowered, and continues this cooling condition until the next time b. As a result, when the current instruction value at time b is lower than time a, it is determined that the increase in the flow rate of the cooling air 35 at time a is reverse control, and the controller 56 The flow rate is decreased and control is performed to raise the temperature of the exhaust gas 36, and this cooling condition is continued until the next time c. As a result, the current instruction value at time c is restored. The controller 56 further reduces the flow rate of the cooling air 35 to control the temperature of the exhaust gas 36 so that the cooling condition is continued until the next time d.

以下、同様の制御によってd,e,f,g,hの順に排ガス36の温度を上げ続けるように制御すると、各時刻での電流指示値も徐々に上昇する。しかしながら、電流指示値が永続的に上昇することは有り得ず、例えば時刻iで電流指示値が時刻hの時よりも低下したとする。すると、制御器56では、冷却空気35の流量を増加して時刻gと同程度に戻す。その結果、時刻jでは電流指示値が回復する。そこで、制御器56ではこの付近の冷却空気35の流量が電流指示値を最大にすると判定して、時刻j以降は時刻gや時刻iで設定した冷却空気35の流量を維持する制御を行う。その結果、電流指示値を最大にした運転が時刻kまで行われることになり、排ガス36の温度が三酸化硫黄の濃度に対応した最適値に自動的に調整され、湿式電気集塵装置42での電流密度や三酸化硫黄除去率が最大になる最適処理を継続することができる。   Hereinafter, when the control is performed so that the temperature of the exhaust gas 36 is continuously increased in the order of d, e, f, g, and h by the same control, the current instruction value at each time also gradually increases. However, the current instruction value cannot increase permanently, and for example, it is assumed that the current instruction value is lower than that at time h at time i. Then, the controller 56 increases the flow rate of the cooling air 35 and returns it to the same level as the time g. As a result, the current instruction value is recovered at time j. Therefore, the controller 56 determines that the flow rate of the cooling air 35 in the vicinity maximizes the current instruction value, and performs control to maintain the flow rate of the cooling air 35 set at the time g and the time i after the time j. As a result, the operation in which the current instruction value is maximized is performed until time k, and the temperature of the exhaust gas 36 is automatically adjusted to the optimum value corresponding to the concentration of sulfur trioxide. The optimum treatment that maximizes the current density and sulfur trioxide removal rate can be continued.

ボイラ10の運転条件の変化などによって、排ガス32の三酸化硫黄の濃度が変化すると、時刻k以降に電流指示値が上昇又は下降する傾向がでる。このような傾向がでた時には、制御器56では上記と同様の考え方で冷却空気35の流量を増減する操作を繰り返すことによって、電流指示値が最大になる冷却条件を探り、実行する制御をすればよい。   When the concentration of sulfur trioxide in the exhaust gas 32 changes due to changes in the operating conditions of the boiler 10 and the like, the current indication value tends to increase or decrease after time k. When such a tendency appears, the controller 56 searches for a cooling condition that maximizes the current indication value by repeating the operation of increasing or decreasing the flow rate of the cooling air 35 in the same way as described above, and controls to execute it. That's fine.

制御器56での制御間隔(図6に示した時間t)は、1〜10分程度の長い間隔で十分である。すなわち、排ガス32が冷却装置34や湿式脱硫装置38を経て、湿式電気集塵装置42に流入するまでには、数秒から数十秒の滞留時間がかかるので、この滞留時間以下の制御間隔は無意味であり、却って制御に混乱が生じる。ボイラ10の運転条件が安定している場合には、状況に応じて制御間隔を1時間程度にすることも可能である。   As the control interval (time t shown in FIG. 6) in the controller 56, a long interval of about 1 to 10 minutes is sufficient. That is, since the residence time of several seconds to several tens of seconds is required until the exhaust gas 32 flows into the wet electrostatic precipitator 42 through the cooling device 34 and the wet desulfurization device 38, there is no control interval below this residence time. Meaning and confusion arises in control. When the operating conditions of the boiler 10 are stable, the control interval can be set to about 1 hour depending on the situation.

図7は排ガス36の経日温度変化をモデル化して示した説明図である。図7において、破線Aは冷却装置34入口の排ガス32の温度が170℃であることを示している。また、実線Bは冷却装置34出口(湿式脱硫装置38入口)の排ガス36の経日温度変化を示している。上記した制御器56による制御によって排ガス36は期間xでは130℃程度、期間yでは140℃程度、期間zでは150℃程度に自動的に調整される。この場合、排ガス32中の三酸化硫黄の濃度が期間x、期間y、期間zの順に徐々に上昇し、酸露点も三酸化硫黄の濃度に応じて上昇し、これに見合って排ガス36の温度が最適値に自動的に調整されと推定することができる。   FIG. 7 is an explanatory view showing a model of changes in daily temperature of the exhaust gas 36. In FIG. 7, a broken line A indicates that the temperature of the exhaust gas 32 at the inlet of the cooling device 34 is 170 ° C. Further, a solid line B indicates a change in temperature with time of the exhaust gas 36 at the outlet of the cooling device 34 (inlet of the wet desulfurization device 38). By the control by the controller 56 described above, the exhaust gas 36 is automatically adjusted to about 130 ° C. during the period x, about 140 ° C. during the period y, and about 150 ° C. during the period z. In this case, the concentration of sulfur trioxide in the exhaust gas 32 gradually increases in the order of the period x, the period y, and the period z, and the acid dew point also increases according to the concentration of sulfur trioxide. Can be assumed to be automatically adjusted to the optimum value.

なお、図5に示したように、酸露点は空気中の三酸化硫黄の濃度のみならず、水分によっても大きな影響を受ける。このため、例えば水分を直接に噴霧して排ガス32を冷却した場合には、排ガス32中の水分が増加することによって、酸露点が上昇し、制御が不安定になる恐れがある。さらに、水分の噴霧によって局部的な排ガスの急冷現象が無数に起き、微細な硫酸ミストを多量に発生させる。本実施形態の排ガス処理方法及び装置においては、冷却装置34として排ガス32を冷却空気35によって間接的に冷却する熱交換器を用いている。このため、冷却装置34での冷却過程において排ガス32中の水分が変化せず、局部的な排ガスの急冷現象も起きにくいので、制御を安定に行うことができ、微細な硫酸ミストの発生を最小限に抑えることができる。   As shown in FIG. 5, the acid dew point is greatly influenced not only by the concentration of sulfur trioxide in the air but also by moisture. For this reason, for example, when the exhaust gas 32 is cooled by spraying moisture directly, the moisture in the exhaust gas 32 increases, so that the acid dew point increases and the control may become unstable. In addition, innumerable local exhaust gas quenching occurs due to the spraying of water, and a large amount of fine sulfuric acid mist is generated. In the exhaust gas treatment method and apparatus of this embodiment, a heat exchanger that indirectly cools the exhaust gas 32 with the cooling air 35 is used as the cooling device 34. For this reason, the moisture in the exhaust gas 32 does not change during the cooling process in the cooling device 34, and the local exhaust gas quenching phenomenon hardly occurs, so that the control can be performed stably and the generation of fine sulfuric acid mist is minimized. To the limit.

また、本実施形態の排ガス処理方法及び装置においては、ガスクーラ22での熱交換によって昇温した冷却空気を加熱器46に供給する加熱空気48として利用するようにしたので、有効な熱回収を図ることができる。また、加熱器46での熱交換によって100〜120℃程度にまで降温した加熱空気を冷却装置34における排ガス32を間接的に冷却するための冷却空気35として利用するようにした。このため、冷却装置34に供給される排ガス32と冷却空気35との温度差が小さくなり、局部的な排ガスの急冷現象もより一層起きにくく、排ガスの徐冷が安定して進行する。この排ガスの酸露点付近での徐冷作用が硫酸ミストの粗大化に大きく寄与すると考えられる。   In the exhaust gas treatment method and apparatus of this embodiment, the cooling air heated by heat exchange in the gas cooler 22 is used as the heated air 48 supplied to the heater 46, so that effective heat recovery is achieved. be able to. Further, the heated air cooled to about 100 to 120 ° C. by heat exchange in the heater 46 is used as the cooling air 35 for indirectly cooling the exhaust gas 32 in the cooling device 34. For this reason, the temperature difference between the exhaust gas 32 supplied to the cooling device 34 and the cooling air 35 is reduced, the local exhaust gas quenching phenomenon is further less likely to occur, and the slow cooling of the exhaust gas proceeds stably. It is considered that the slow cooling action near the acid dew point of the exhaust gas greatly contributes to the coarsening of sulfuric acid mist.

上述のとおり、本実施形態の排ガス処理方法及び装置によれば、湿式電気集塵装置42の高圧電源52に設けられた荷電電流計54の指示値が最大となるように、制御器56によって冷却空気35の流量を調整し、排ガス36の温度が最適になるように制御するようにした。このため、排ガス32中の三酸化硫黄の濃度が変化しても、湿式電気集塵装置42において排ガス40が通過する電界空間の電流密度を常に最大に維持することができる。したがって、排ガス32中の三酸化硫黄の濃度を検出することなく、排ガス32を湿式脱硫装置38に導入させる前に冷却装置34で予備的に冷却する際の排ガス36の冷却温度を最適に制御し、もって湿式電気集塵装置42での硫酸ミストの除去率を高めることができる。   As described above, according to the exhaust gas treatment method and apparatus of the present embodiment, the controller 56 cools the indicated value of the charge ammeter 54 provided in the high-voltage power source 52 of the wet electrostatic precipitator 42 so as to be maximum. The flow rate of the air 35 was adjusted to control the temperature of the exhaust gas 36 to be optimum. For this reason, even if the concentration of sulfur trioxide in the exhaust gas 32 changes, the current density in the electric field space through which the exhaust gas 40 passes in the wet electrostatic precipitator 42 can always be maintained at the maximum. Therefore, the cooling temperature of the exhaust gas 36 when the exhaust gas 32 is preliminarily cooled by the cooling device 34 before being introduced into the wet desulfurization device 38 is optimally controlled without detecting the concentration of sulfur trioxide in the exhaust gas 32. Therefore, the removal rate of sulfuric acid mist in the wet electrostatic precipitator 42 can be increased.

また、冷却装置34として排ガス32を冷却空気35によって間接的に冷却する熱交換器を用いている。このため、冷却装置34での冷却過程において排ガス32中の水分が変化せず、局部的な排ガスの急冷現象も起きにくいので、制御を安定に行うことができ、微細な硫酸ミストの発生を最小限に抑えることができる。さらに、加熱器46での熱交換によって100〜120℃程度にまで降温した加熱空気を冷却装置34用の冷却空気35として利用するようにした。このため、冷却装置34に供給される排ガス32と冷却空気35との温度差が小さくなるので、局部的な排ガスの急冷現象もより一層起きにくくなり、排ガスの酸露点付近での徐冷が硫酸ミストの粗大化に大きく寄与する。   In addition, a heat exchanger that indirectly cools the exhaust gas 32 with the cooling air 35 is used as the cooling device 34. For this reason, the moisture in the exhaust gas 32 does not change during the cooling process in the cooling device 34, and the local exhaust gas quenching phenomenon hardly occurs, so that the control can be performed stably and the generation of fine sulfuric acid mist is minimized. To the limit. Furthermore, the heated air cooled to about 100 to 120 ° C. by heat exchange in the heater 46 is used as the cooling air 35 for the cooling device 34. For this reason, since the temperature difference between the exhaust gas 32 supplied to the cooling device 34 and the cooling air 35 becomes smaller, the local exhaust gas quenching phenomenon becomes even less likely to occur, and the slow cooling in the vicinity of the acid dew point of the exhaust gas becomes sulfuric acid. It greatly contributes to the coarsening of mist.

なお、湿式電気集塵装置42では排ガスの流路に沿って複数の高圧電源を備え、例えば上流、中間、下流側の高圧電源別に荷電制御を行うようにする場合がある。このような方式の湿式電気集塵装置42を備えた排ガス処理装置に本発明を適用する場合には、制御対象となる荷電電流計の指示値としては、各種の組み合わせを選択することができる。第1には複数の高圧電源にそれぞれ設けられる荷電電流計の各指示値のいずれか1つを代表に選んで本発明を適用する。第2には複数の高圧電源にそれぞれ設けられる荷電電流計の各指示値を合算し、この合算値に基づいて本発明を適用する。合算はすべての指示値を合算してもよく、又は選択した高圧電源のみの荷電電流計の各指示値を合算してもよい。   In addition, the wet electrostatic precipitator 42 includes a plurality of high-voltage power supplies along the exhaust gas flow path, and for example, charge control may be performed separately for the upstream, intermediate, and downstream high-voltage power supplies. When the present invention is applied to an exhaust gas treatment apparatus equipped with such a type of wet electrostatic precipitator 42, various combinations can be selected as the indicated value of the charge ammeter to be controlled. First, the present invention is applied by selecting one of the indicated values of the charge ammeters provided for each of the plurality of high-voltage power supplies as a representative. Secondly, the indication values of the charge ammeters respectively provided in a plurality of high-voltage power supplies are added together, and the present invention is applied based on the added values. In the summation, all indicated values may be summed, or the indicated values of the charging ammeters of only the selected high-voltage power supply may be summed.

本発明に係る排ガス処理方法及び装置の実施形態を示す系統図である。1 is a system diagram showing an embodiment of an exhaust gas treatment method and apparatus according to the present invention. 脱硫入口温度とミスト粒径の関係を示すグラフである。It is a graph which shows the relationship between desulfurization inlet temperature and a mist particle size. 脱硫入口温度と電流密度の関係を示すグラフである。It is a graph which shows the relationship between desulfurization inlet temperature and a current density. 脱硫入口温度と三酸化硫黄除去率の関係を示すグラフである。It is a graph which shows the relationship between desulfurization inlet temperature and sulfur trioxide removal rate. 空気中の三酸化硫黄濃度と酸露点との関係を示すグラフである。It is a graph which shows the relationship between the sulfur trioxide density | concentration in air, and an acid dew point. 荷電電流計54の指示値を最大にするための制御方法を例示したタイムチャートである。6 is a time chart illustrating a control method for maximizing the indicated value of the charge ammeter 54. 排ガス28の経日温度変化をモデル化して示した説明図である。It is explanatory drawing which modeled and showed the daily temperature change of the waste gas.

符号の説明Explanation of symbols

10………ボイラ、12,16,20,28,32,36,40,44,46………排ガス、14………脱硝装置、18………エアヒータ、22………ガスクーラ、24………ファン、26………冷却空気、30………乾式電気集塵装置、34………冷却装置、35………冷却空気、38………湿式脱硫装置、42………湿式電気集塵装置、46………加熱器、48………加熱空気、50………排気、52………高圧電源、54………荷電電流計、56………制御器、58………流量調節弁、60………温度計、62………流量計。   10 ......... Boiler, 12, 16, 20, 28, 32, 36, 40, 44, 46 ......... Exhaust gas, 14 ......... Denitration device, 18 ......... Air heater, 22 ......... Gas cooler, 24 ... ... Fan, 26 ......... Cooling air, 30 ......... Dry electrostatic precipitator, 34 ......... Cooling apparatus, 35 ......... Cooling air, 38 ......... Wet desulfurizer, 42 ......... Wet electric dust collector Equipment, 46 ......... heater, 48 ......... heated air, 50 ...... exhaust, 52 ......... high voltage power supply, 54 ......... charged ammeter, 56 ......... controller, 58 ......... flow control Valve, 60 ......... thermometer, 62 ......... flow meter.

Claims (5)

ボイラから排出される硫黄酸化物を含んだ排ガスを乾式電気集塵装置、冷却装置、湿式脱硫装置、湿式電気集塵装置の順に導いて処理する排ガス処理方法において、前記冷却装置として前記排ガスを冷却空気によって間接的に冷却する熱交換器を用い、前記湿式電気集塵装置での電流密度が最大となるように、前記冷却装置における冷却空気の供給量を制御することを特徴とする排ガス処理方法。   In an exhaust gas treatment method for treating exhaust gas containing sulfur oxide discharged from a boiler in the order of a dry electrostatic precipitator, a cooling device, a wet desulfurization device, and a wet electrostatic precipitator, the exhaust gas is cooled as the cooling device. An exhaust gas treatment method using a heat exchanger that is indirectly cooled by air and controlling a supply amount of cooling air in the cooling device so that a current density in the wet electrostatic precipitator is maximized . 前記冷却空気として温度が100℃以上のものを用いることを特徴とする請求項1に記載の排ガス処理方法。   The exhaust gas treatment method according to claim 1, wherein the cooling air has a temperature of 100 ° C or higher. ボイラから排出される硫黄酸化物を含んだ排ガスを乾式電気集塵装置、冷却装置、湿式脱硫装置、湿式電気集塵装置の順に導いて処理する排ガス処理装置において、前記冷却装置は前記排ガスを間接的に冷却する熱交換器であり、該冷却装置における冷却量は前記湿式電気集塵装置の高圧電源に設けられた荷電電流計の指示値が最大となるように制御器によって制御されることを特徴とする排ガス処理装置。   In an exhaust gas treatment apparatus that treats exhaust gas containing sulfur oxide discharged from a boiler in the order of a dry electrostatic precipitator, a cooling device, a wet desulfurization device, and a wet electrostatic precipitator, the cooling device indirectly processes the exhaust gas. The amount of cooling in the cooling device is controlled by the controller so that the indicated value of the charging ammeter provided in the high-voltage power supply of the wet electrostatic precipitator is maximized. A featured exhaust gas treatment device. 前記乾式電気集塵装置の前段には前記排ガスを冷却空気によって間接的に冷却するガスクーラが配設され、前記湿式電気集塵装置の後段には該湿式電気集塵装置から排出された排ガスを加熱空気によって間接的に加熱する加熱器が配設されたことを特徴とする請求項3に記載の排ガス処理装置。   A gas cooler that indirectly cools the exhaust gas with cooling air is disposed at the front stage of the dry electrostatic precipitator, and the exhaust gas discharged from the wet electrostatic precipitator is heated at the rear stage of the wet electrostatic precipitator. The exhaust gas treatment apparatus according to claim 3, wherein a heater for indirectly heating with air is disposed. 前記ガスクーラでの熱交換によって昇温した前記冷却空気を前記加熱器に供給する加熱空気として利用し、該加熱器での熱交換によって降温した加熱空気を前記冷却装置における前記排ガスを間接的に冷却するための冷熱源として利用可能にしたことを特徴とする請求項4に記載の排ガス処理装置。   The cooling air heated by the heat exchange in the gas cooler is used as the heated air supplied to the heater, and the heated air cooled by the heat exchange in the heater is used to indirectly cool the exhaust gas in the cooling device. The exhaust gas treatment apparatus according to claim 4, wherein the exhaust gas treatment apparatus can be used as a cold heat source.
JP2008042181A 2008-02-22 2008-02-22 Exhaust gas treatment method and apparatus Expired - Fee Related JP4853737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042181A JP4853737B2 (en) 2008-02-22 2008-02-22 Exhaust gas treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042181A JP4853737B2 (en) 2008-02-22 2008-02-22 Exhaust gas treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2009195860A JP2009195860A (en) 2009-09-03
JP4853737B2 true JP4853737B2 (en) 2012-01-11

Family

ID=41139995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042181A Expired - Fee Related JP4853737B2 (en) 2008-02-22 2008-02-22 Exhaust gas treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP4853737B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9381461B2 (en) 2010-05-31 2016-07-05 Mitsubishi Heavy Industries, Ltd. Air pollution control system and method
JPWO2011152550A1 (en) * 2010-05-31 2013-08-01 三菱重工業株式会社 Exhaust gas treatment system and method
JPWO2011152546A1 (en) * 2010-05-31 2013-08-01 三菱重工業株式会社 Exhaust gas treatment system and method
JPWO2011152548A1 (en) 2010-05-31 2013-08-01 三菱重工業株式会社 Exhaust gas treatment system and method
EP2578299B1 (en) 2010-05-31 2020-05-06 Mitsubishi Heavy Industries Engineering, Ltd. Exhaust gas treatment method
CN102313291A (en) * 2010-06-30 2012-01-11 中国电力工程顾问集团华东电力设计院 Two-stage smoke-gas-air heat-exchanger system applied to thermal power plant
US8025860B1 (en) 2010-07-08 2011-09-27 Air Products And Chemicals, Inc. Removal of acid mists
EP2583754B1 (en) * 2011-10-21 2015-05-13 Enefit Outotec Technology Oü Process and apparatus for winning oil from a vapor gas mixture
CN103697487B (en) * 2013-12-30 2016-05-11 上海克莱德贝尔格曼机械有限公司 A kind of flue gas processing device
JP6273990B2 (en) * 2014-04-16 2018-02-07 住友金属鉱山株式会社 Combustion exhaust gas treatment method
CN105344476B (en) * 2015-11-25 2017-11-14 上海电力学院 A kind of wet cottrell experimental system for combining removing multiple pollutant
JP6728875B2 (en) * 2016-03-29 2020-07-22 株式会社Ihi Carbon dioxide recovery device and natural gas combustion system
CN106801884A (en) * 2016-11-22 2017-06-06 浙江巨化热电有限公司 A kind of smoke comprehensive processing unit and its method
CN113735068B (en) * 2020-05-29 2023-06-09 上海梅山钢铁股份有限公司 Acid mist controller for preventing acid gas from flowing back
KR102382058B1 (en) * 2020-10-30 2022-04-04 두산중공업 주식회사 Hybrid power generation equipment and control method thereof
CN114923339A (en) * 2022-03-22 2022-08-19 昆明理工大学 Medium-low temperature flue gas de-whitening, waste heat and water resource recovery system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638926B2 (en) * 1986-02-07 1994-05-25 関西電力株式会社 Exhaust gas treatment method from coal-fired boiler
JPH0691968B2 (en) * 1986-02-27 1994-11-16 三菱重工業株式会社 Operating method of flue gas treatment equipment
JPH07155537A (en) * 1993-12-08 1995-06-20 Kansai Electric Power Co Inc:The High performance waste gas treating method and device therefor
JPH10216476A (en) * 1997-01-31 1998-08-18 Kawasaki Heavy Ind Ltd Waste gas treatment and apparatus therefor

Also Published As

Publication number Publication date
JP2009195860A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4853737B2 (en) Exhaust gas treatment method and apparatus
JP5039651B2 (en) Carbon dioxide recovery system in exhaust gas
JP2006308269A (en) Heat recovery equipment
CN104676620A (en) Flue gas processing system and flue gas processing method capable of enabling low-low temperature electrostatic precipitation to be combined with water pollination type GGH (Gas Gas Heater)
JP4318055B2 (en) Method and apparatus for treating exhaust gas containing sulfur oxide
US10471382B2 (en) Air pollution control system
CA2779535A1 (en) Exhaust gas treatment device for an oxygen combustion system
JP2014009877A (en) Flue gas treatment equipment and method
CN102284361A (en) Flue gas dust removal system and electric dust remover thereof
JP2012101158A (en) Exhaust gas treating method and apparatus
US9803853B2 (en) Heat recovery and utilization system
JP5976820B2 (en) Smoke exhaust processing method and smoke exhaust processing apparatus
JP2015073955A (en) Exhaust gas treatment method, and exhaust gas treatment device
JP5786816B2 (en) Waste acid treatment method and waste acid treatment equipment
JP2004125330A (en) Cleaning method and device for blast furnace gas
CN102597626A (en) Method and apparatus for treatment of exhaust gas
CN109499556B (en) Anti-scaling activated carbon desorption tower and desorption method thereof
JP5803891B2 (en) Dust removal water amount control method and dust removal water amount control device for shaft furnace exhaust gas
JP2004107473A (en) Method and apparatus for cleaning by-product gas
JP2011094962A (en) Heat recovery equipment
JP4251300B2 (en) Exhaust gas treatment method and apparatus
CN109876623B (en) Zero release of coal-fired steam power plant flue gas pollutant and filth recovery system
WO2008038348A1 (en) Treating apparatus for exhaust gas containing sulfuric acid mist and treating method therefor
JP2019100612A (en) Heat exchanger for boiler exhaust gas
JPS60227845A (en) Treating apparatus of exhaust gas

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4853737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees