JP4852946B2 - Vibration energy absorber - Google Patents

Vibration energy absorber Download PDF

Info

Publication number
JP4852946B2
JP4852946B2 JP2005266026A JP2005266026A JP4852946B2 JP 4852946 B2 JP4852946 B2 JP 4852946B2 JP 2005266026 A JP2005266026 A JP 2005266026A JP 2005266026 A JP2005266026 A JP 2005266026A JP 4852946 B2 JP4852946 B2 JP 4852946B2
Authority
JP
Japan
Prior art keywords
damping force
piston
negative
vibration
maximum displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005266026A
Other languages
Japanese (ja)
Other versions
JP2007078062A (en
Inventor
浩和 家村
郁夫 下田
修 河内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2005266026A priority Critical patent/JP4852946B2/en
Priority to US12/518,517 priority patent/US8087500B2/en
Priority to TW095147650A priority patent/TWI386565B/en
Publication of JP2007078062A publication Critical patent/JP2007078062A/en
Application granted granted Critical
Publication of JP4852946B2 publication Critical patent/JP4852946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Description

本発明は、マンション等の集合住宅、事務所ビル、戸建住宅、橋梁等の構造物又は免震化した構造物に生じる振動を早期に減衰させるべくその振動エネルギを吸収する振動エネルギ吸収装置及び斯かる装置を備えた構造物に関する。   The present invention relates to a vibration energy absorbing device that absorbs vibration energy in order to quickly attenuate vibration generated in a structure such as an apartment house such as an apartment, an office building, a detached house, a bridge, or a structure that has undergone seismic isolation, and The present invention relates to a structure provided with such a device.

この種の振動エネルギ吸収装置(ダンパ)としては、粘性ダンパ、摩擦ダンパ、鉛ダンパ、鋼棒ダンパ等が知られており、斯かる振動エネルギ吸収装置は、構造物を初期位置に復帰させる例えばばね装置と共に構造物に適用される。   As this type of vibration energy absorbing device (damper), a viscous damper, a friction damper, a lead damper, a steel rod damper, and the like are known. Such a vibration energy absorbing device is, for example, a spring for returning a structure to an initial position. Applied to structures with devices.

特開2003−287079号公報JP 2003-287079 A 中田、家村、五十嵐、「実大連結構造物の擬似負剛性付加型セミアクティブ震動制御実験」、土木学会第56回年次学術講演会論文集、社団法人土木学会、平成13年10月、p162−163Nakata, Iemura, Igarashi, “Pseudo negative stiffness added semi-active vibration control experiment of full-scale connected structure”, Proceedings of the 56th Annual Scientific Lecture Meeting, Japan Society of Civil Engineers, October 2001, p162 -163 家永、五十嵐、鈴木、「MRダンパーの疑似負剛性セミアクティブ制御への適用に関する実時間ハイブリッド実験」、日本地震工学会・大会−2003梗概集、p268−269Ionaga, Igarashi, Suzuki, “Real-time hybrid experiment on application of MR damper to quasi-negative stiffness semi-active control”, Japan Earthquake Engineering Society / Conference 2003 Summary, p268-269

ところで、ばね装置と共に粘性ダンパ、摩擦ダンパ等の振動エネルギ吸収装置を構造物、例えば免震化された構造物に適用すると、振動中、ばね装置の復元力に加えて振動エネルギ吸収装置の抵抗力が構造物に負荷されるために、構造物は、大きな力を受けることになる結果、振動エネルギ吸収装置の抵抗力とばね装置の復元力とを受ける部位の剛性を大きくせざるを得なくなる。   By the way, when a vibration energy absorbing device such as a viscous damper or a friction damper is applied to a structure, for example, a base-isolated structure, together with the spring device, the resistance force of the vibration energy absorbing device is added to the restoring force of the spring device during vibration. As a result, the structure receives a large force. As a result, the rigidity of the portion that receives the resistance force of the vibration energy absorbing device and the restoring force of the spring device must be increased.

本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、抵抗力と復帰手段の復元力とを受ける構造物の部位の剛性を特に大きくしなくてもよい振動エネルギ吸収装置及びそれを備えた構造物を提供することにある。   The present invention has been made in view of the above-described points, and an object of the present invention is to provide vibration energy that does not require a particularly large rigidity of a portion of the structure that receives the resistance force and the restoring force of the return means. An object of the present invention is to provide an absorption device and a structure including the same.

本発明の振動エネルギ吸収装置は、原点位置に対して正負の最大変位位置を往復動自在な往復動部材と、この往復動部材の往復動に対して減衰力を生じさせる減衰力発生手段と、往復動部材の往復動において正負の最大変位位置から原点位置までの夫々の移動では減衰力発生手段に減衰力を生じさせる一方、これらの移動に続く原点位置から正負の最大変位位置までの夫々の移動では減衰力発生手段に実質的に減衰力を生じさせないように減衰力発生手段を制御する制御手段とを具備している。   The vibration energy absorbing device of the present invention includes a reciprocating member capable of reciprocating positive and negative maximum displacement positions with respect to the origin position, a damping force generating means for generating a damping force with respect to the reciprocating motion of the reciprocating member, In the reciprocating movement of the reciprocating member, each movement from the positive / negative maximum displacement position to the origin position generates a damping force in the damping force generating means, while each of the movement from the origin position to the positive / negative maximum displacement position follows each movement. Control means for controlling the damping force generating means so that the damping force generating means does not substantially generate a damping force during movement.

本発明の振動エネルギ吸収装置によれば、制御手段により往復動部材の往復動において正負の最大変位位置から原点位置までの夫々の移動では減衰力発生手段に減衰力を生じさせる一方、これらの移動に続く原点位置から正負の最大変位位置までの夫々の移動では減衰力発生手段に実質的に減衰力を生じさせないようになっているために、構造物の制震化のために往復動部材を当該構造物に連結して本振動エネルギ吸収装置を構造物に設置しても、地震等による構造物の振動において原点位置から正負の最大変位位置までの夫々の移動では、往復動部材が連結される構造物の部位には振動エネルギ吸収装置の減衰力に基づく力が生じない結果、当該部位の剛性をそれ程大きくしなくてもよく、しかも、地震等による構造物の振動において正負の最大変位位置から原点位置までの夫々の移動では、並置される原点復帰装置の復帰力と振動エネルギ吸収装置の減衰力とが相殺される結果、これによっても往復動部材が連結される免震構造物の部位の剛性をそれ程大きくしなくてもよいことになる。   According to the vibration energy absorbing device of the present invention, the control means causes the damping force generating means to generate a damping force in each movement from the positive / negative maximum displacement position to the origin position in the reciprocating movement of the reciprocating member, while these movements are generated. In each movement from the origin position to the maximum positive and negative displacement position following the step, the damping force generating means is not substantially caused to generate a damping force. Even if the vibration energy absorber is connected to the structure, the reciprocating member is connected in each movement from the origin position to the maximum positive / negative displacement position in the vibration of the structure due to an earthquake or the like. As a result, no force based on the damping force of the vibration energy absorbing device is generated at the site of the structure, so that the rigidity of the site does not have to be increased so much. In each movement from the maximum displacement position to the origin position, the return force of the origin return device arranged in parallel and the damping force of the vibration energy absorbing device cancel each other. It is not necessary to increase the rigidity of the part of the object so much.

本発明における往復動部材の正負の最大変位位置は、構造物の振動の大きさにより変化し、構造物の振動が大きい場合には大きくなり、逆に構造物の振動が小さい場合には小さくなり、しかも、構造物の振動の減衰と共に小さくなる。   The maximum positive / negative displacement position of the reciprocating member according to the present invention varies depending on the magnitude of vibration of the structure, and increases when the vibration of the structure is large, and conversely decreases when the vibration of the structure is small. Moreover, it becomes smaller as the vibration of the structure is attenuated.

本発明における制御手段は、往復動部材の往復動において正負の最大変位位置から原点位置までの夫々の移動では減衰力発生手段に零でない略一定の減衰力を生じさせるべく、減衰力発生手段を制御するようになっていてもよいが、これに代えて、往復動部材の往復動において正負の最大変位位置から原点位置までの夫々の移動では減衰力発生手段に徐々に減少する減衰力を生じさせるべく、減衰力発生手段を制御するようになっていてもよい。   The control means according to the present invention includes a damping force generating means for generating a substantially constant damping force which is not zero in the damping force generating means in each movement from the positive / negative maximum displacement position to the origin position in the reciprocating motion of the reciprocating member. However, instead of this, in the reciprocating movement of the reciprocating member, a damping force that gradually decreases is generated in the damping force generating means in each movement from the positive / negative maximum displacement position to the origin position. In order to achieve this, the damping force generating means may be controlled.

減衰力発生手段としては、粘性抵抗、粘弾性抵抗、摩擦抵抗、弾塑性抵抗又はこれらの組み合わせ等を利用したものであればよい。   Any damping force generating means may be used as long as it uses viscous resistance, viscoelastic resistance, frictional resistance, elastoplastic resistance, or a combination thereof.

本発明における制御手段は、オリフィス通路、一方向弁並びにこのオリフィス通路及び一方向弁等で形成された流体回路の連通を制御する制御弁を用いて構成してもよい。   The control means in the present invention may be configured using an orifice passage, a one-way valve, and a control valve for controlling communication of a fluid circuit formed by the orifice passage and the one-way valve.

本発明における好ましい例では、往復動部材は、ピストンと、このピストンに連結されたピストンロッドとを具備しており、減衰力発生手段は、ピストンを往復動自在に収容すると共にピストンロッドが貫通したシリンダと、ピストンにより区画されたシリンダ内の一方の室に一方のポートで連通されていると共にピストンにより区画されたシリンダ内の他方の室に他方のポートで連通されている制御オリフィス弁と、シリンダ内に収容された流体とを具備しており、制御手段は、ピストンの往復動において正負の最大変位位置から原点位置までの夫々の移動では制御オリフィス弁における流体の通過で減衰力を生じさせる一方、これらの移動に続く原点位置から正負の最大変位位置までの夫々の移動では制御オリフィス弁における流体の通過で実質的に減衰力を生じさせないようにピストンの往復動に基づいて制御オリフィス弁を制御するようになっており、この場合、制御手段は、ピストンの往復動を検出する検出手段を具備しており、この検出手段に基づいて制御オリフィス弁を制御するようになっていてもよい。   In a preferred example of the present invention, the reciprocating member includes a piston and a piston rod connected to the piston, and the damping force generating means accommodates the piston so as to freely reciprocate and penetrates the piston rod. A cylinder, a control orifice valve communicated at one port to one chamber in the cylinder defined by the piston and communicated at the other port to the other chamber in the cylinder defined by the piston; The control means generates a damping force by passing the fluid through the control orifice valve in each movement from the positive / negative maximum displacement position to the origin position in the reciprocating movement of the piston. In each movement from the origin position to the maximum positive and negative displacement positions following these movements, fluid flow through the control orifice valve The control orifice valve is controlled based on the reciprocating motion of the piston so as not to substantially generate a damping force. In this case, the control means includes a detecting means for detecting the reciprocating motion of the piston. The control orifice valve may be controlled based on this detection means.

ピストンの往復動を検出する場合、検出手段は、ピストン自体の往復動を検出するようにしてもよいが、これに代えて、ピストンロッドの往復動又はピストンロッドが連結される構造物の振動等を検出するようにしてもよい。   When detecting the reciprocating motion of the piston, the detecting means may detect the reciprocating motion of the piston itself, but instead, the reciprocating motion of the piston rod or the vibration of the structure to which the piston rod is connected, etc. May be detected.

流体としては、シリコン系の流動体を好ましい例として挙げることができるが、その他の流体、例えばシリコン系以外のオイル等の液体であってもよい。   As the fluid, a silicon-based fluid can be cited as a preferred example, but other fluids, for example, liquids such as oils other than silicon-based fluids may be used.

本発明による構造物は、上記のいずれかの態様の振動エネルギ吸収装置に構造物の振動を往復動部材で受けるように連結されており、ここで、構造物は、積層ゴム、すべり部材、ローラ部材等で免震化されていてもよく、この場合、構造物は、振動後に構造物を初期位置に復帰させる復帰手段に連結されているとよく、斯かる復帰手段は、好ましくは構造物と構造物が設置される地盤との間に介在された弾性装置を具備しており、弾性装置は、積層ゴム支承及びコイルばねのうちの少なくとも一つを具備していてもよい。   The structure according to the present invention is connected to the vibration energy absorbing device according to any one of the above aspects so that the vibration of the structure is received by a reciprocating member. Here, the structure includes a laminated rubber, a sliding member, and a roller. The structure may be seismically isolated, and in this case, the structure may be connected to a return means for returning the structure to the initial position after vibration, and the return means is preferably a structure. An elastic device interposed between the ground where the structure is installed is provided, and the elastic device may include at least one of a laminated rubber support and a coil spring.

本発明によれば、抵抗力と復帰手段の復元力とを受ける構造物の部位の剛性を特に大きくしなくてもよい振動エネルギ吸収装置及びそれを備えた構造物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vibration energy absorption apparatus which does not need to enlarge especially the rigidity of the site | part of the structure which receives resistance force and the restoring force of a return means, and a structure provided with the same can be provided.

次に本発明及びその実施の形態を、図に示す好ましい例に基づいて更に詳細に説明する。なお、本発明はこれら例に何等限定されないのである。   Next, the present invention and its embodiments will be described in more detail based on preferred examples shown in the drawings. The present invention is not limited to these examples.

図1において、本例の振動エネルギ吸収装置1は、原点位置O(図1、図4及び図6に示す位置)に対して正負の最大変位位置D±max(図3及び図5に示す位置)をH方向に往復動自在な往復動部材2と、往復動部材2のH方向の往復動に対して減衰力Rを生じさせる減衰力発生手段3と、往復動部材2のH方向の往復動において正負の最大変位位置D±maxから原点位置Oまでの夫々のH方向の移動では減衰力発生手段3に一定の減衰力Rを生じさせる一方、これらのH方向の移動に続く原点位置Oから正負の最大変位位置D±maxまでの夫々のH方向の移動では減衰力発生手段3に実質的に減衰力Rを生じさせない、即ち実質的に零の減衰力Rを生じさせるように減衰力発生手段3を制御する制御手段4とを具備している。   In FIG. 1, the vibration energy absorbing device 1 of the present example has a positive / negative maximum displacement position D ± max (position shown in FIGS. 3 and 5) with respect to the origin position O (position shown in FIGS. 1, 4 and 6). ) In the H direction, a damping force generating means 3 for generating a damping force R for the reciprocating motion of the reciprocating member 2 in the H direction, and the reciprocating member 2 in the H direction. In the movement, each movement in the H direction from the maximum positive / negative displacement position D ± max to the origin position O causes the damping force generating means 3 to generate a constant damping force R, while the origin position O following the movement in the H direction. In each movement in the H direction from the positive to negative maximum displacement position D ± max, the damping force generating means 3 does not generate a damping force R substantially, that is, the damping force so as to generate a substantially zero damping force R. And control means 4 for controlling the generating means 3.

往復動部材2は、ピストン5と、ピストン5に固着して連結されたピストンロッド6と、ピストンロッド6の一端部に固着された取り付け部7とを具備している。   The reciprocating member 2 includes a piston 5, a piston rod 6 fixedly connected to the piston 5, and a mounting portion 7 fixed to one end of the piston rod 6.

減衰力発生手段3は、ピストン5をH方向に往復動自在に収容すると共にピストンロッド6が貫通したシリンダ10と、ピストン5により区画されたシリンダ10内の一方の室11に一方のポート12で連通されていると共にピストン5により区画されたシリンダ10内の他方の室13に他方のポート14で連通されている制御オリフィス弁15と、シリンダ10内に収容された流体、例えばシリコンオイル16とを具備している。   The damping force generating means 3 accommodates the piston 5 in a reciprocating manner in the H direction, and a cylinder 10 through which the piston rod 6 passes, and one chamber 11 in the cylinder 10 partitioned by the piston 5 at one port 12. A control orifice valve 15 communicated and communicated with the other chamber 13 in the cylinder 10 defined by the piston 5 through the other port 14, and a fluid accommodated in the cylinder 10, for example, silicon oil 16. It has.

制御オリフィス弁15は、ポート12から供給されてポート14に向かう又はポート14から供給されてポート12に向かうシリコンオイル16が流れると共に径が制御されるようになっているオリフィス通路を有しており、斯かるオリフィス通路をシリコンオイル16が流れることによる流動抵抗により減衰力Rを生じさせるようになっている。   The control orifice valve 15 has an orifice passage which is supplied from the port 12 toward the port 14 or the diameter of the orifice is controlled while silicon oil 16 supplied from the port 14 toward the port 12 flows. The damping force R is generated by the flow resistance caused by the silicon oil 16 flowing through the orifice passage.

制御手段4は、ピストン5のH方向の往復動を検出する検出手段21と、検出手段21からの検出結果に基づいて制御オリフィス弁15のオリフィス通路の径を制御するマイクロコンピュータ等を具備した制御部22とを具備している。   The control unit 4 includes a detection unit 21 that detects reciprocation of the piston 5 in the H direction, and a control that includes a microcomputer that controls the diameter of the orifice passage of the control orifice valve 15 based on the detection result from the detection unit 21. Part 22.

検出手段21は、ピストン5の位置を夫々検出すると共にH方向に並んで配された三個の検出器23、24及び25を具備しており、検出器23は、H方向においてシリンダ10の略中央位置に、検出器24は、H方向においてH1方向のピストン5の略最大移動可能位置に、検出器24は、H方向においてH1方向と反対の方向であるH2方向のピストン5の最大移動可能位置に夫々配されており、斯かる検出器23、24及び25としては、磁気センサ等の非接触形のセンサを用いることができる。   The detection means 21 includes three detectors 23, 24, and 25 that detect the position of the piston 5 and are arranged side by side in the H direction. The detector 23 is an abbreviation of the cylinder 10 in the H direction. In the center position, the detector 24 is at a position where the piston 5 in the H1 direction can be moved to the maximum position in the H direction, and the detector 24 is able to move the piston 5 in the H2 direction in the direction opposite to the H1 direction in the H direction. Each of the detectors 23, 24, and 25 can be a non-contact type sensor such as a magnetic sensor.

制御部22は、検出手段21の検出器23、24及び25からの検出結果に加算、減算、微分、積分等の処理を施してピストン5の正負の最大変位位置D±max及び原点位置Oへの到来並びにピストン5の移動方向を判断するようになっている。   The control unit 22 performs processing such as addition, subtraction, differentiation, integration and the like on the detection results from the detectors 23, 24, and 25 of the detection unit 21 to the positive and negative maximum displacement positions D ± max and the origin position O of the piston 5. And the moving direction of the piston 5 are determined.

制御手段4は、ピストン5のH方向の往復動において正負の最大変位位置D±maxから原点位置Oまでの夫々の移動では制御オリフィス弁15のオリフィス通路におけるシリコンオイル16の通過で所定の減衰力Rを生じさせる一方、これらの移動に続く原点位置Oから正負の最大変位位置±maxまでの夫々の移動では制御オリフィス弁15のオリフィス通路におけるシリコンオイル16の通過で実質的に減衰力Oを生じさせないようにピストン5のH方向の往復動に基づいて、本例では検出手段21からの検出結果に基づいて、制御オリフィス弁15を制御するようになっている。   In the reciprocating movement of the piston 5 in the H direction, the control means 4 has a predetermined damping force when the silicon oil 16 passes through the orifice passage of the control orifice valve 15 in each movement from the maximum positive / negative displacement position D ± max to the origin position O. On the other hand, each of the movements from the origin position O to the positive and negative maximum displacement positions ± max following these movements causes a damping force O substantially by passing the silicon oil 16 in the orifice passage of the control orifice valve 15. In this example, the control orifice valve 15 is controlled based on the detection result from the detection means 21 based on the reciprocation of the piston 5 in the H direction.

以上の振動エネルギ吸収装置1は、図2に示すように、基礎を含む地盤31に対してH方向(水平方向)に可動となるように転動自在なころ32を介して地盤31上に設置されて免震化された構造物33にピストンロッド6が取り付け部7を介して構造物33のH方向の振動を受けるように連結される一方、シリンダ10が地盤31に固定されて使用される。   As shown in FIG. 2, the vibration energy absorbing device 1 described above is installed on the ground 31 via a roller 32 that can roll so as to be movable in the H direction (horizontal direction) with respect to the ground 31 including the foundation. The piston rod 6 is connected to the structure 33 that has been made seismic isolation so as to receive vibration in the H direction of the structure 33 via the mounting portion 7, while the cylinder 10 is fixed to the ground 31 and used. .

構造物33を初期位置に復帰させる復帰手段は、構造物33と構造物33が設置される地盤31との間に介在されたコイルばね35からなる弾性装置を具備しており、弾性係数Kを有したコイルばね35は、地震による構造物33のH方向の振動において伸縮し、地震が収まると構造物33を振動前の初期位置(原点位置Oに相当)にその復元力(弾性力)により復帰させるようになっている。取り付け部7を介する往復動部材2のピストンロッド6の構造物33側への連結は、構造物33に振動が生じていなくコイルばね35により構造物33が初期位置に復帰されて静止されている状態で、図1に示すようにピストン5がH方向においてシリンダ10の略中央に位置、即ち原点位置Oに位置するようになされる。   The return means for returning the structure 33 to the initial position includes an elastic device including a coil spring 35 interposed between the structure 33 and the ground 31 on which the structure 33 is installed. The coil spring 35 is expanded and contracted in the vibration of the structure 33 in the H direction due to the earthquake. When the earthquake is stopped, the structure 33 is returned to the initial position before vibration (corresponding to the origin position O) by its restoring force (elastic force). It comes to return. When the piston rod 6 is connected to the structure 33 side of the reciprocating member 2 via the mounting portion 7, the structure 33 is not vibrated, and the structure 33 is returned to the initial position by the coil spring 35 and is stationary. In this state, as shown in FIG. 1, the piston 5 is positioned substantially at the center of the cylinder 10 in the H direction, that is, at the origin position O.

この状態で、ピストン5が原点位置O(D=0)に存在していることを示す検出手段21からの検出結果を受ける制御部22は、制御オリフィス弁15のオリフィス通路の径を最大にするように、換言すれば、制御オリフィス弁15のオリフィス通路にシリコンオイル16が流れても実質的に減衰力Rを生じさせない(R=0)ように、制御オリフィス弁15を制御する。構造物33が地震によりH方向に振動されてピストンロッド6を介してピストン5が最初に例えば図3に示すようにH方向においてH1方向に移動されると、室11側のシリコンオイル16が制御オリフィス弁15のオリフィス通路を介して室13側に流動し、而して、減衰力発生手段3は、略中央位置(原点位置O、D=0)からH1方向の正の最大変位位置(D=D+max)までのピストン5のH1方向の移動では、制御オリフィス弁15の最大径にされたオリフィス通路に基づく図7の直線41で示す零の反力(抵抗)Rを発生してこれをピストンロッド6に与えることになる。   In this state, the control unit 22 that receives the detection result from the detection means 21 indicating that the piston 5 exists at the origin position O (D = 0) maximizes the diameter of the orifice passage of the control orifice valve 15. In other words, the control orifice valve 15 is controlled so that the damping force R is not substantially generated (R = 0) even if the silicon oil 16 flows into the orifice passage of the control orifice valve 15. When the structure 33 is vibrated in the H direction by an earthquake and the piston 5 is first moved in the H1 direction in the H direction through the piston rod 6, for example, as shown in FIG. 3, the silicon oil 16 on the chamber 11 side is controlled. The damping force generating means 3 flows to the chamber 13 side through the orifice passage of the orifice valve 15, and the damping force generating means 3 is moved from the substantially central position (origin position O, D = 0) to the positive maximum displacement position (D = D + max), the piston 5 moves in the H1 direction to generate a zero reaction force (resistance) R indicated by a straight line 41 in FIG. It will be given to the rod 6.

更に、図3に示すようにH1方向の正の最大変位位置(D=D+max)にピストン5が移動された後に、ピストン5がH方向においてH1方向と反対の方向であるH2方向に移動され始めると、検出手段21からの検出結果を受ける制御部22は、ピストン5がH1方向の正の最大変位位置(D=D+max)に到達してH方向においてH1方向と反対の方向であるH2方向に移動され始めたということを判断して、直ちに、制御オリフィス弁15のオリフィス通路の径を小さくして制御オリフィス弁15のオリフィス通路にシリコンオイル16が流れると一定の減衰力Rを生じさせるように制御オリフィス弁15を制御する。この状態で、ピストン5がH2方向に移動されると、今度は、室13側のシリコンオイル16が制御オリフィス弁15のオリフィス通路を介して室11側に流動する結果、減衰力発生手段3は、正の最大変位位置(D=D+max)からH2方向の略中央位置(原点位置O、D=0)までのピストン5のH2方向の移動では、制御オリフィス弁15の縮小されたオリフィス通路に基づく図7の曲線42で示す一定の反力(抵抗)Rを発生してこれをピストンロッド6に与えることになる。   Further, as shown in FIG. 3, after the piston 5 is moved to the positive maximum displacement position (D = D + max) in the H1 direction, the piston 5 starts to move in the H2 direction which is the opposite direction to the H1 direction in the H direction. Then, the control unit 22 that receives the detection result from the detection means 21 reaches the positive maximum displacement position (D = D + max) in the H1 direction when the piston 5 reaches the H2 direction, which is the opposite direction to the H1 direction in the H direction. As soon as it is determined that the movement has started, the diameter of the orifice passage of the control orifice valve 15 is reduced, and when the silicon oil 16 flows through the orifice passage of the control orifice valve 15, a constant damping force R is generated. The control orifice valve 15 is controlled. In this state, when the piston 5 is moved in the H2 direction, this time, the silicone oil 16 on the chamber 13 side flows to the chamber 11 side through the orifice passage of the control orifice valve 15, so that the damping force generating means 3 is The movement of the piston 5 in the H2 direction from the positive maximum displacement position (D = D + max) to the substantially central position in the H2 direction (origin position O, D = 0) is based on the reduced orifice passage of the control orifice valve 15. A constant reaction force (resistance) R indicated by a curve 42 in FIG. 7 is generated and applied to the piston rod 6.

更に、図3に示すように正の最大変位位置(D=D+max)からH2方向にピストン5が移動された後に、図4に示すようにピストン5が略中央位置(原点位置O、D=0)に到達すると、検出手段21からの検出結果を受ける制御部22は、ピストン5が略中央位置(D=0)に到達したということを判断して、直ちに、制御オリフィス弁15のオリフィス通路の径を最大にするように、換言すれば、制御オリフィス弁15のオリフィス通路にシリコンオイル16が流れても実質的に減衰力Rを生じさせない(R=0)ように、制御オリフィス弁15を制御する。   Further, after the piston 5 is moved in the H2 direction from the positive maximum displacement position (D = D + max) as shown in FIG. 3, the piston 5 is moved to a substantially central position (origin position O, D = 0) as shown in FIG. ), The control unit 22 that receives the detection result from the detection means 21 determines that the piston 5 has reached the substantially central position (D = 0), and immediately determines the orifice passage of the control orifice valve 15. In other words, the control orifice valve 15 is controlled so that the damping force R is not substantially generated (R = 0) even if the silicon oil 16 flows into the orifice passage of the control orifice valve 15 so as to maximize the diameter. To do.

ピストン5がシリンダ10の略中央位置(D=0)から更にH2方向に継続して移動されると、減衰力発生手段3は、ピストン5のH2方向の略中央位置(D=0)からH2方向の移動では、制御オリフィス弁15の最大径にされたオリフィス通路に基づく図7の直線43で示す零の反力(抵抗)Rを発生してこれをピストンロッド6に与えることになる。   When the piston 5 is continuously moved in the H2 direction from the substantially central position (D = 0) of the cylinder 10, the damping force generating means 3 moves from the substantially central position (D = 0) of the piston 5 in the H2 direction to H2. In the direction movement, a zero reaction force (resistance) R indicated by a straight line 43 in FIG. 7 based on the orifice passage having the maximum diameter of the control orifice valve 15 is generated and applied to the piston rod 6.

図4に示すように略中央位置(D=0)からH2方向の移動でピストン5が図5に示すようにH2方向の負の最大変位位置(D=−max)に到達後に、ピストン5がH方向においてH2方向と反対の方向であるH1方向に再び移動され始めると、検出手段21からの検出結果を受ける制御部22は、ピストン5がH2方向の負の最大変位位置(D=D−max)に到達してH方向においてH2方向と反対の方向であるH1方向に移動され始めたということを判断して、直ちに、制御オリフィス弁15のオリフィス通路の径を小さくして制御オリフィス弁15のオリフィス通路にシリコンオイル16が流れると一定の減衰力Rを生じさせるように制御オリフィス弁15を制御する。この状態で、ピストン5がH1方向に移動されると、再び室11側のシリコンオイル16が制御オリフィス弁15のオリフィス通路を介して室13側に流動する結果、減衰力発生手段3は、負の最大変位位置(D=D−max)からH1方向の略中央位置(原点位置O、D=0)までのピストン5のH1方向の移動では、制御オリフィス弁15の縮小されたオリフィス通路に基づく図7の曲線44で示す一定の反力(抵抗)Rを発生してこれをピストンロッド6に与えることになる。   As shown in FIG. 4, after the piston 5 reaches the negative maximum displacement position (D = −max) in the H2 direction as shown in FIG. 5 by the movement in the H2 direction from the substantially central position (D = 0), the piston 5 When the control unit 22 that receives the detection result from the detection means 21 starts to move again in the H1 direction, which is the opposite direction to the H2 direction in the H direction, the piston 5 causes the negative maximum displacement position (D = D− max), and in the H direction, it is determined that the movement has started in the H1 direction opposite to the H2 direction, and immediately, the diameter of the orifice passage of the control orifice valve 15 is reduced to reduce the control orifice valve 15 The control orifice valve 15 is controlled so as to generate a constant damping force R when the silicon oil 16 flows through the orifice passage. In this state, when the piston 5 is moved in the H1 direction, the silicon oil 16 on the chamber 11 side again flows to the chamber 13 side through the orifice passage of the control orifice valve 15, so that the damping force generating means 3 is negative. In the movement of the piston 5 in the H1 direction from the maximum displacement position (D = D−max) of the piston 5 to the substantially central position (origin position O, D = 0) in the H1 direction, it is based on the reduced orifice passage of the control orifice valve 15. A constant reaction force (resistance) R indicated by a curve 44 in FIG. 7 is generated and applied to the piston rod 6.

更に、図5に示すように負の最大変位位置(D=D−max)からH1方向にピストン5が移動された後に、図6に示すようにピストン5が略中央位置(原点位置O、D=0)に到達すると、検出手段21からの検出結果を受ける制御部22は、ピストン5が略中央位置(D=0)に到達したということを判断して、直ちに、制御オリフィス弁15のオリフィス通路の径を最大にするように、換言すれば、制御オリフィス弁15のオリフィス通路にシリコンオイル16が流れても実質的に減衰力Rを生じさせない(R=0)ように、制御オリフィス弁15を制御し、而して、減衰力発生手段3は、略中央位置(原点位置O、D=0)からH1方向の正の最大変位位置(D=D+max)までのピストン5のH1方向の移動では、再び図7の直線41で示す零の反力(抵抗)Rを発生してこれをピストンロッド6に与えることになる。   Further, as shown in FIG. 5, after the piston 5 is moved in the H1 direction from the negative maximum displacement position (D = D−max), the piston 5 is moved to a substantially central position (origin positions O, D as shown in FIG. 6). = 0), the control unit 22 that receives the detection result from the detection means 21 determines that the piston 5 has reached the substantially central position (D = 0), and immediately determines the orifice of the control orifice valve 15 In order to maximize the diameter of the passage, in other words, the control orifice valve 15 does not substantially generate the damping force R (R = 0) even if the silicon oil 16 flows into the orifice passage of the control orifice valve 15. Therefore, the damping force generating means 3 moves the piston 5 in the H1 direction from the substantially central position (origin position O, D = 0) to the positive maximum displacement position (D = D + max) in the H1 direction. Then, again in FIG. Reaction force of zero indicated by 41 (resistance) to generate R would be provided to the piston rod 6.

以下、H1方向の正の最大変位位置(D=+max)まで再びピストン5が移動された以後は、ピストン5がH2方向及びH1方向に振動する限りにおいて上記の動作を繰り返して、振動エネルギ吸収装置1は、図7に示す直線41、曲線42、直線43及び曲線44で示す減衰ループからなる減衰力R(反力R)をピストンロッド6に与えることになる結果、構造物33の地震によるH方向の振動を減衰させる。そして振動エネルギ吸収装置1では、構造物33の地震によるH方向の振動の振幅及び速度の減少と共に直線41、曲線42、直線43及び曲線44で示される減衰ループが小さくなって、その減衰ループで示される減衰を構造物33の地震によるH方向の振動に対して与えることになり、構造物33の振動が収まると、コイルばね35の復元力によって構造物33は初期位置に配される。   Thereafter, after the piston 5 is moved again to the positive maximum displacement position (D = + max) in the H1 direction, the above-described operation is repeated as long as the piston 5 vibrates in the H2 direction and the H1 direction. 1 shows that the damping force R (reaction force R) composed of the damping loops indicated by the straight line 41, the curved line 42, the straight line 43, and the curved line 44 shown in FIG. Damping direction vibration. In the vibration energy absorbing device 1, the attenuation loop indicated by the straight line 41, the curve 42, the straight line 43, and the curve 44 becomes smaller as the amplitude and speed of the vibration in the H direction due to the earthquake of the structure 33 are reduced. The damping shown is applied to the vibration in the H direction due to the earthquake of the structure 33. When the vibration of the structure 33 is settled, the structure 33 is arranged at the initial position by the restoring force of the coil spring 35.

ところで、構造物33の振動中において構造物33には、ピストン5のH方向の各位置Dに対して図7に示す復元力直線45で表されるようなコイルばね35の復元力Rと振動エネルギ吸収装置1の減衰力R(反力R)とが負荷されることになるのであるが、振動エネルギ吸収装置1が構造物33の位置Dの変位に対して所謂負の剛性を有したものとなるために、構造物33に負荷される振動エネルギ吸収装置1の減衰力Rとコイルばねの復元力Rとの合力が比較的小さくなり、これら合力を受ける構造物33の剛性を特に大きくしなくてもよくなる。   By the way, during the vibration of the structure 33, the structure 33 receives the restoring force R and vibration of the coil spring 35 as represented by the restoring force straight line 45 shown in FIG. 7 for each position D in the H direction of the piston 5. The damping force R (reaction force R) of the energy absorbing device 1 is loaded, but the vibration energy absorbing device 1 has a so-called negative rigidity with respect to the displacement of the position D of the structure 33. Therefore, the resultant force of the damping force R of the vibration energy absorbing device 1 loaded on the structure 33 and the restoring force R of the coil spring becomes relatively small, and the rigidity of the structure 33 that receives the resultant force is particularly increased. You do n’t have to.

即ち、振動エネルギ吸収装置1によれば、制御手段4により往復動部材2のH方向の往復動において正負の最大変位位置D±maxから原点位置Oまでの夫々の移動では減衰力発生手段3に一定の減衰力を生じさせる一方、これらの移動に続く原点位置Oから正負の最大変位位置D±maxまでの夫々の移動では減衰力発生手段3に実質的に減衰力を生じさせないようになっているために、構造物33の制震化のために往復動部材2を当該構造物33に連結して振動エネルギ吸収装置1を構造物33に設置しても、地震等による構造物33の振動において原点位置Oから正負の最大変位位置D±maxまでの夫々の移動では、往復動部材2が連結される構造物33の部位には振動エネルギ吸収装置1の減衰力に基づく力が生じない結果、当該部位の剛性をそれ程大きくしなくてもよく、しかも、地震等による構造物33の振動において正負の最大変位位置D±maxから原点位置Oまでの夫々の移動では、並置されるコイルばね35の復帰力と振動エネルギ吸収装置1の減衰力とが相殺される結果、これによっても往復動部材2が連結される構造物33の部位の剛性をそれ程大きくしなくてもよいことになる。   That is, according to the vibration energy absorbing device 1, the control means 4 causes the damping force generating means 3 to move to the origin position O from the maximum positive / negative displacement position D ± max in the reciprocating movement of the reciprocating member 2 in the H direction. While a constant damping force is generated, each of the movements from the origin position O to the positive and negative maximum displacement positions D ± max following these movements does not substantially cause the damping force generating means 3 to generate a damping force. Therefore, even if the reciprocating member 2 is connected to the structure 33 and the vibration energy absorbing device 1 is installed in the structure 33 for damping the structure 33, the vibration of the structure 33 due to an earthquake or the like As a result, in each movement from the origin position O to the maximum positive / negative displacement position D ± max, a force based on the damping force of the vibration energy absorbing device 1 is not generated in the portion of the structure 33 to which the reciprocating member 2 is connected. , The part Further, the return force of the coil springs 35 arranged in parallel is not required for each movement from the maximum positive / negative displacement position D ± max to the origin position O in the vibration of the structure 33 due to an earthquake or the like. As a result, the damping force of the vibration energy absorbing device 1 is canceled out. As a result, the rigidity of the portion of the structure 33 to which the reciprocating member 2 is coupled does not have to be increased so much.

上記は、ころ32によって免震化された構造物33の例であるが、これに代えて、滑り部材等を介して構造物33を地盤31に対してH方向に可動となるように地盤31上に設置して免震化してもよく、更には、例えば積層ゴム支承でもって免震化された構造物でもよく、この場合には、コイルばね35を省いて、弾性装置としての積層ゴム支承に復帰機能を担わせてもよく、更には、構造物としては免震化されていない構造物であってもよく、この場合には、復帰手段を特に構造物とは別体に設けないで構造物自体に復帰機能を備えさせてもよい。また、制御オリフィス弁15のオリフィス通路の通路抵抗を調節して免震化された構造物又は免震化されていない構造物に図7の直線41、曲線52、直線43及び曲線54又は直線41、曲線62、直線43及び曲線64で表されるような最適な減衰ループが得られるようにしてもよい。なお、図7に示す曲線は、説明のための原理的な曲線であって、実際には例えば曲線42と直線43とは、原点(=0)を通ることなしに結ばれることになり、曲線44と直線41とについても同様である。   The above is an example of the structure 33 that has been seismically isolated by the rollers 32, but instead of this, the ground 31 so that the structure 33 can be moved in the H direction with respect to the ground 31 via a sliding member or the like. It may be installed on the base to make it seismically isolated, or, for example, it may be a structure that is made base-isolated by a laminated rubber bearing. In this case, the coil spring 35 is omitted, and the laminated rubber bearing as an elastic device is used. May have a return function, and the structure may be a structure that is not seismically isolated. In this case, the return means should not be provided separately from the structure. The structure itself may be provided with a return function. Further, the structure of the control orifice valve 15 is controlled by adjusting the passage resistance of the orifice passage, or the structure which has been made seismic isolation or the structure which has not been subjected to the seismic isolation, the straight line 41, the curve 52, the straight line 43 and the curved line 54 or the straight line 41 in FIG. An optimum attenuation loop represented by the curve 62, the straight line 43, and the curve 64 may be obtained. Note that the curve shown in FIG. 7 is a principle curve for explanation. Actually, for example, the curve 42 and the straight line 43 are connected without passing through the origin (= 0). The same applies to 44 and the straight line 41.

また、制御手段4は、正負の最大変位位置D±maxから原点位置Oまでは、制御オリフィス弁15のオリフィス通路を一定の縮小された径にするように、減衰力発生手段3の制御オリフィス弁15を制御したが、これに代えて、往復動部材2のH方向の往復動において正負の最大変位位置D±maxから原点位置Oまでの夫々の移動では減衰力発生手段3に徐々に減少する減衰力Rを生じさせるべく、制御オリフィス弁15のオリフィス通路の径を徐々に縮小するように減衰力発生手段3の制御オリフィス弁15を制御してもよく、更には、制御手段4及び減衰力発生手段3は、検出器23、24及び25、制御部22及び制御オリフィス弁15等の電気的に作動するものを含むことなしに、停電でも動作し得る機械的なもので構成してもよい。   Further, the control means 4 controls the control orifice valve of the damping force generating means 3 so that the orifice passage of the control orifice valve 15 has a constant reduced diameter from the positive / negative maximum displacement position D ± max to the origin position O. However, instead of this, in the reciprocating movement of the reciprocating member 2 in the H direction, the damping force generating means 3 gradually decreases in each movement from the positive / negative maximum displacement position D ± max to the origin position O. In order to generate the damping force R, the control orifice valve 15 of the damping force generating means 3 may be controlled so that the diameter of the orifice passage of the control orifice valve 15 is gradually reduced. The generating means 3 may be constituted by a mechanical device that can operate even in the event of a power failure without including electrically operating devices such as the detectors 23, 24 and 25, the control unit 22 and the control orifice valve 15. Yes.

本発明の実施の形態の好ましい一例の説明図である。It is explanatory drawing of a preferable example of embodiment of this invention. 図1に示す例を構造物に用いた例の説明図である。It is explanatory drawing of the example which used the example shown in FIG. 1 for a structure. 図2に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 図2に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 図2に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 図2に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 図2に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG.

符号の説明Explanation of symbols

1 振動エネルギ吸収装置
2 往復動部材
3 減衰力発生手段
4 制御手段
DESCRIPTION OF SYMBOLS 1 Vibration energy absorber 2 Reciprocating member 3 Damping force generation means 4 Control means

Claims (9)

弾性装置により振動後に初期位置に復帰される構造物からの振動を受けるようになっていると共に原点位置に対して正負の最大変位位置を往復動自在な往復動部材と、この往復動部材の往復動に対して減衰力を生じさせる減衰力発生手段と、往復動部材の往復動において正負の最大変位位置から原点位置までの当該原点位置に向かう夫々の移動では減衰力発生手段に当該移動に対して減衰力を生じさせる一方、これらの移動に続く原点位置から正負の最大変位位置までの当該正負の最大変位位置に向かう夫々の移動では減衰力発生手段に当該移動に対して実質的に減衰力を生じさせないように減衰力発生手段を制御する制御手段とを具備している振動エネルギ吸収装置。 A reciprocating member that receives vibration from a structure that is returned to an initial position after vibration by an elastic device, and that can reciprocate positive and negative maximum displacement positions with respect to the origin position, and reciprocation of the reciprocating member. a damping force generating means for generating a damping force against movement relative to the mobile on the damping force generating means is moved each towards the said origin position from the maximum displacement position of the negative to the home position in the reciprocating motion of the reciprocating member while generating a damping force Te, substantially damping force to the mobile in the damping force generating means in the respective movement toward the maximum displacement position of the positive and negative from the original position following these move to maximum displacement position of the positive and negative A vibration energy absorbing device comprising: control means for controlling the damping force generating means so as not to cause a vibration. 制御手段は、往復動部材の往復動において正負の最大変位位置から原点位置までの当該原点位置に向かう夫々の移動では減衰力発生手段に略一定の減衰力を生じさせるべく、減衰力発生手段を制御するようになっている請求項1に記載の振動エネルギ吸収装置。 Control means to produce a substantially constant damping force to the damping force generating means in the mobile respective toward the origin position from the maximum displacement position of the negative to the home position in the reciprocating motion of the reciprocating member, the damping force generating means 2. The vibration energy absorbing device according to claim 1, wherein the vibration energy absorbing device is controlled. 制御手段は、往復動部材の往復動において正負の最大変位位置から原点位置までの当該原点位置に向かう夫々の移動では減衰力発生手段に徐々に減少する減衰力を生じさせるべく、減衰力発生手段を制御するようになっている請求項1に記載の振動エネルギ吸収装置。 Control means to produce a damping force which gradually decreases the damping force generating means in the mobile respective toward the origin position from the maximum displacement position of the negative to the home position in the reciprocating motion of the reciprocating member, the damping force generating means The vibration energy absorbing device according to claim 1, wherein the vibration energy absorbing device is controlled. 往復動部材は、ピストンと、このピストンに連結されたピストンロッドとを具備しており、減衰力発生手段は、ピストンを往復動自在に収容すると共にピストンロッドが貫通したシリンダと、ピストンにより区画されたシリンダ内の一方の室に一方のポートで連通されていると共にピストンにより区画されたシリンダ内の他方の室に他方のポートで連通されている制御オリフィス弁と、シリンダ内に収容された流体とを具備しており、制御手段は、ピストンの往復動において正負の最大変位位置から原点位置までの当該原点位置に向かう夫々の移動では制御オリフィス弁における流体の通過で当該移動に対して減衰力を生じさせる一方、これらの移動に続く原点位置から正負の最大変位位置までの当該正負の最大変位位置に向かう夫々の移動では制御オリフィス弁における流体の通過で当該移動に対して実質的に減衰力を生じさせないようにピストンの往復動に基づいて制御オリフィス弁を制御するようになっている請求項1から3のいずれか一項に記載の振動エネルギ吸収装置。 The reciprocating member includes a piston and a piston rod coupled to the piston, and the damping force generating means is defined by the piston and the cylinder through which the piston rod penetrates while the piston is reciprocally received. A control orifice valve communicated with one chamber in the cylinder at one port and communicated at the other port with the other chamber in the cylinder defined by the piston; and a fluid contained in the cylinder; and comprising a control means, a damping force to the mobile in the home position movement of each towards the in reciprocating motion of the piston from the maximum displacement position of the negative to the home position in the passage of fluid in the control orifice valve while causing the movement of the husband toward the maximum displacement position of the positive and negative from the original position following these move to maximum displacement position of the positive and negative s Claim 1 which is adapted to control the control orifice valve on the basis of the reciprocating motion of the piston so as not to cause substantial damping force 3 to the mobile at the passage of the fluid at the control orifice valve The vibration energy absorbing device according to one item. 制御手段は、ピストンの往復動を検出する検出手段を具備しており、この検出手段に基づいて制御オリフィス弁を制御するようになっている請求項4に記載の振動エネルギ吸収装置。   5. The vibration energy absorbing device according to claim 4, wherein the control means includes detection means for detecting reciprocation of the piston, and controls the control orifice valve based on the detection means. 請求項1から5のいずれか一項に記載の振動エネルギ吸収装置に構造物の振動をその往復動部材で受けるように連結されている構造物。   A structure connected to the vibration energy absorbing device according to any one of claims 1 to 5 so that the vibration of the structure is received by the reciprocating member. 免震化された構造物であって、振動後に構造物を初期位置に復帰される復帰手段に連結されている請求項6に記載の構造物。   The structure according to claim 6, wherein the structure is seismically isolated and is connected to return means for returning the structure to its initial position after vibration. 復帰手段は、構造物と構造物が設置される地盤との間に介在された弾性装置を具備している請求項7に記載の構造物。   The structure according to claim 7, wherein the return means includes an elastic device interposed between the structure and the ground on which the structure is installed. 弾性装置は、積層ゴム支承及びコイルばねのうちの少なくとも一つを具備している請求項8に記載の構造物。
The structure according to claim 8, wherein the elastic device includes at least one of a laminated rubber support and a coil spring.
JP2005266026A 2005-09-13 2005-09-13 Vibration energy absorber Expired - Fee Related JP4852946B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005266026A JP4852946B2 (en) 2005-09-13 2005-09-13 Vibration energy absorber
US12/518,517 US8087500B2 (en) 2005-09-13 2006-12-13 Vibrational energy absorbing apparatus
TW095147650A TWI386565B (en) 2005-09-13 2006-12-19 Vibration absorption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005266026A JP4852946B2 (en) 2005-09-13 2005-09-13 Vibration energy absorber

Publications (2)

Publication Number Publication Date
JP2007078062A JP2007078062A (en) 2007-03-29
JP4852946B2 true JP4852946B2 (en) 2012-01-11

Family

ID=37938602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005266026A Expired - Fee Related JP4852946B2 (en) 2005-09-13 2005-09-13 Vibration energy absorber

Country Status (1)

Country Link
JP (1) JP4852946B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101307458B1 (en) * 2011-12-06 2013-09-11 건국대학교 산학협력단 Oil damper with displacement and velocity sensor for measuring and controling oscillation of structure
WO2014093867A2 (en) * 2012-12-14 2014-06-19 Ohio University Resetting semi-passive stiffness damper and methods of use thereof
JP6603113B2 (en) * 2015-03-03 2019-11-06 株式会社免制震ディバイス Vibration suppression device for structures
JP6815688B2 (en) * 2016-04-04 2021-01-20 株式会社免制震ディバイス Vibration suppression device for structures
CN107724762A (en) * 2017-11-10 2018-02-23 智性科技南通有限公司 The viscous and difunctional damper of friction energy-dissipating
JP7133974B2 (en) * 2018-05-10 2022-09-09 清水建設株式会社 damping mechanism

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226335A (en) * 1988-07-15 1990-01-29 Toyota Motor Corp Damping force control method for shock absorber
JP4258254B2 (en) * 2003-04-01 2009-04-30 浩和 家村 Vibration energy absorbing device having negative rigidity and structure including the same
JP3889723B2 (en) * 2003-05-20 2007-03-07 光陽精機株式会社 Oil damper for vibration control

Also Published As

Publication number Publication date
JP2007078062A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP4852946B2 (en) Vibration energy absorber
EP2093454B1 (en) Vibration energy absorber
JP4852552B2 (en) Negative rigid device and seismic isolation structure provided with the negative rigid device
CN110835886A (en) Pier damping device
JP2011158015A (en) Vibration reducing device
KR20110055213A (en) Integrated vibration control system and vibration control method using the system
JP2019183906A (en) Mass damper
JP6205229B2 (en) Vibration control method and device for base-isolated building
KR20090058430A (en) Semi active tuned mass damper with lead-rubber bearing and auto brake
JP4591242B2 (en) Vibration energy absorber
TWI386565B (en) Vibration absorption device
KR101867951B1 (en) A oil damper
KR20090043278A (en) Damper device
JP4258254B2 (en) Vibration energy absorbing device having negative rigidity and structure including the same
JP4543784B2 (en) Long stroke damper
JP2006258141A (en) Vibration absorber using coriolis force with respect to oscillating body
KR20180079845A (en) Lead rubber bearing using magnetorheological damper and toggle brace
CN107783382B (en) Damper, method for reducing interference vibration and photoetching machine
JP3463110B2 (en) Three-dimensional seismic isolation device for seismic isolation floor
JP6709646B2 (en) Vibration control device, vibration control system
CN116623822B (en) Tuned mass damping system for spherical hydrostatic bearing
RU2382254C1 (en) Vibration isolator
JP2019163799A (en) Displacement suppression device, base isolation system and negative restoring force mechanism
JP2007177864A (en) Damping device for base isolation system
JP2022183508A (en) Vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4852946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees