JP4852371B2 - Leakage current measuring device and measuring method - Google Patents
Leakage current measuring device and measuring method Download PDFInfo
- Publication number
- JP4852371B2 JP4852371B2 JP2006209268A JP2006209268A JP4852371B2 JP 4852371 B2 JP4852371 B2 JP 4852371B2 JP 2006209268 A JP2006209268 A JP 2006209268A JP 2006209268 A JP2006209268 A JP 2006209268A JP 4852371 B2 JP4852371 B2 JP 4852371B2
- Authority
- JP
- Japan
- Prior art keywords
- leakage current
- waveform
- circuit
- signal
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 14
- 230000010354 integration Effects 0.000 claims description 47
- 238000012545 processing Methods 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000003321 amplification Effects 0.000 claims description 8
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 description 11
- 239000002131 composite material Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 238000010616 electrical installation Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000005428 wave function Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Measurement Of Current Or Voltage (AREA)
Description
本発明は、特に高次の高調波成分を除去するだけでなく、低次の高調波成分をも確実に除去ないし低減して電気機器の漏洩電流をより正確かつ迅速に測定できる漏洩電流測定装置及び測定方法に関する。 The present invention not only removes high-order harmonic components in particular, but also reliably removes or reduces low-order harmonic components to more accurately and quickly measure the leakage current of electrical equipment. And a measuring method.
漏洩電流は、電路の絶縁劣化に起因して発生するほか、絶縁劣化に無関係に電路自体の静電容量に起因する場合や、電路にフィルターなどとしてコンデンサー成分が介在している場合にも、当該電路から流出することがある。この漏洩電流を測定するのに、活線状態にて電路の所定の位置にクランプメーターなどを設置する方法がある。 Leakage current occurs due to the insulation deterioration of the circuit, and also when the capacitor component is interposed in the circuit as a filter or the like regardless of the insulation deterioration May flow out of electrical circuit. In order to measure this leakage current, there is a method of installing a clamp meter or the like at a predetermined position on the electric circuit in a live line state.
絶縁劣化に起因する漏洩電流は、通常、電路電圧と同じ商用周波数(基本波の周波数)を示すが、これを実際にクランプメーターなどを用いて測定した場合、外乱の影響により高調波成分の電流が基本波成分の電流に重畳して、基本波成分の電流値よりも大きい値を示すことが知られている。なお、「高調波成分」とは、周期的な複合波の各成分中、基本波成分以外のものと定義され、一般的には基本波成分がもつ基本周波数の整数倍の周波数を有する波成分をいうが、本明細書では、以下、この用語「高調波成分」を、漏洩電流中にこのような一定の周波数を持たない不特定ノイズが含まれる場合、前記波成分にこの不特定ノイズを含めた意味で使用する。 Leakage current due to insulation deterioration usually shows the same commercial frequency (fundamental frequency) as the circuit voltage, but when this is actually measured using a clamp meter etc., the current of the harmonic component due to the influence of disturbance Is superposed on the current of the fundamental wave component and shows a value larger than the current value of the fundamental wave component. “Harmonic component” is defined as a component other than the fundamental component in each component of the periodic composite wave, and generally has a frequency that is an integral multiple of the fundamental frequency of the fundamental component. However, in the present specification, the term “harmonic component” is hereinafter referred to as “unspecified noise that does not have such a constant frequency in the leakage current”. Used in the meaning of including.
例えば、図5は、通常の電気設備について、また図6は一般的な銅鉄型安定器を備えた照明機器(蛍光灯)についての漏洩電流の波形(各図中、(a))及び高調波成分含有率(各図中(b))の実測値の一例を示す図である。各図(b)の高調波成分含有率のグラフにおいて、横軸は高調波成分の次数を、縦軸は各成分の含有率をそれぞれ示しており、基本波成分を次数1にて示している。これら各図(a)からは、これらの漏洩電流の波形は商用周波数と略同等であり、また、各図(b)からは、これらの漏洩電流の波形には、1次の基本波成分のほかに2次から測定範囲上限である40次までの高調波成分が微量ながら広範に含まれていることがわかる。また、基本波成分の電流値とクランプメーターの表示値との関係については、図5の例では、前者が3.67mAであるのに対し、後者は3.96mAであり、また図6の例では前者が0.024mAであるのに対し、後者は0.030mAであり、いずれのケースでも後者のクランプメーター表示値の方が大きくなっている。
For example, FIG. 5 shows a leakage current waveform (a) and harmonics of a normal electrical installation and FIG. 6 shows a lighting device (fluorescent lamp) equipped with a general copper-iron type ballast. It is a figure which shows an example of the actual value of a wave component content rate ((b) in each figure). In the graph of the harmonic component content rate in each figure (b), the horizontal axis indicates the order of the harmonic component, the vertical axis indicates the content rate of each component, and the fundamental wave component is indicated by the
このため、クランプメーターなどには、高次の高調波成分(主に第5次高調波成分以上)を除去できるように調整されたフィルター機能が装備されているのが通常である。従来のクランプメーターのフィルター機能を有効にした場合の表示値は、図5の例では3.70mAであり、また図6の例では0.025mAとなる。 For this reason, a clamp meter or the like is usually equipped with a filter function adjusted so as to remove higher-order harmonic components (mainly higher than the fifth-order harmonic component). The display value when the filter function of the conventional clamp meter is validated is 3.70 mA in the example of FIG. 5, and 0.025 mA in the example of FIG.
また、このフィルターを多段に組み合わせて接続し、低周波数の特定周波数電流値を測定する漏れ電流計についての提案もなされている(特許文献1及び2参照)。
しかし、本発明者らは、電気機器から流出する漏洩電流の実態に関して調査していたところ、インバーター式蛍光灯などの高周波出力型インバーター回路を備えた電気機器では、そのD種接地線において検出される漏洩電流が非常に大きい値を示し、従来使用されてきたクランプメーターに内蔵されている高次の高調波成分を除去可能なフィルター機能によってもその測定値を下げることができず、正確な漏洩電流を測定することができないことを発見した。この現象について調査を進めた結果、これらの電気機器から流出する漏洩電流中には、従来のクランプメーターが装備するフィルター機能で除去可能な高次の高調波成分が含まれるほか、当該フィルター機能では除去が困難な2次、3次などの低次の高調波成分が多量に含まれており、これら低次の高調波成分が漏洩電流の正確な測定を妨げていることを新たにつきとめた。 However, the present inventors have investigated the actual state of the leakage current flowing out from the electric device. In an electric device equipped with a high-frequency output type inverter circuit such as an inverter type fluorescent lamp, it is detected on the D-type ground line. The leakage current shows a very large value, and the measured value cannot be lowered by the filter function that can remove higher-order harmonic components built in the clamp meter that has been used in the past. It was discovered that the current cannot be measured. As a result of investigating this phenomenon, the leakage current flowing out of these electrical devices contains high-order harmonic components that can be removed by the filter function of conventional clamp meters. It was newly found that low-order harmonic components such as second-order and third-order components that are difficult to remove are contained in large quantities, and these low-order harmonic components prevent accurate measurement of leakage current.
そこで、本発明は、前記のようなインバーター式蛍光灯などの高周波出力型インバーター回路を備えた電気機器などから流出する漏洩電流中の低次の偶数高調波成分を確実に除去するとともに低次の奇数高調波成分の低減を図り、これらの電気機器の漏洩電流をより正確かつ迅速に測定できる漏洩電流測定装置及び測定方法を提供することを目的とする。 Therefore, the present invention reliably removes low-order even-order harmonic components in leakage current flowing out from an electric device or the like equipped with a high-frequency output type inverter circuit such as the inverter type fluorescent lamp as described above. An object of the present invention is to provide a leakage current measuring device and a measuring method capable of reducing odd harmonic components and measuring the leakage current of these electric devices more accurately and quickly.
本発明者らは、前記の新たな課題を解決すべく鋭意検討を重ねた結果、基本波成分と高調波成分とからなる複合波について、例えば基本波成分の1サイクルに相当する分の波形に着目した場合、当該波形内では、偶数高調波成分は正の半波及び負の半波が同数存在するので、半周期を積分区間として複合波の瞬時値の式を積分することで正負の波形(積分値)が相殺され、積分結果を0とすることができ、また
奇数高調波成分もまた半周期を積分区間として複合波の瞬時値を積分することで、同数の正の半波及び負の半波が相殺され、残存する正または負の半波について積分することになるので、当該積分結果を小さくすることができ、その結果奇数高調波成分の低減も可能となる、
ことを利用し、以下に示す所定の演算処理を行うことで、特に低次の高調波成分をより効率的に除去または低減でき、その結果、漏洩電流の真の実効値をより正確に求めることができるとの知見を得、本発明を完成するに至った。
As a result of intensive studies to solve the above-mentioned new problem, the present inventors have obtained a composite wave composed of a fundamental wave component and a harmonic component, for example, into a waveform corresponding to one cycle of the fundamental wave component. when attention is paid, the in the waveform, since the harmonic components even number is a positive half wave and negative half wave is equal present, positive or negative by integrating the expression for the instantaneous value of the composite wave half period as the integration interval the waveform (integrated value) is canceled, the integration result may be a 0, it was or
Odd harmonic components are also by integrating the instantaneous values of the composite wave half period as the integration interval, the half-wave and the negative half-wave of the same number of positive is canceled, integrates the positive or negative half-wave remains Therefore, the integration result can be reduced, and as a result, the odd harmonic components can be reduced.
In particular , the following calculation processing can be performed to remove or reduce particularly low-order harmonic components more efficiently . As a result, the true effective value of leakage current can be obtained more accurately. As a result, the present invention has been completed.
すなわち、本発明の漏洩電流測定装置は、前記目的を達成するために、電路の基本波成分と高調波成分とを含んでなる漏洩電流信号を検出する漏洩電流検出手段と、当該漏洩電流信号を電圧信号に変換する変換回路と、前記電圧信号を増幅する増幅回路と、前記増幅回路からの出力信号中の高次の高調波成分を除去するフィルター回路と、演算回路と、当該演算回路の演算結果を表示及び/または出力する表示・出力回路とを少なくとも備え、前記演算回路は、これに入力される前記フィルター回路の出力波形と、当該出力波形に対して位相角を90°×(2m−1)(mは1以上の整数)だけずらした波形または前記出力波形から周期がπ/2ωだけずれた波形との2つの波形をそれぞれ前記基本波成分のNサイクル(Nは1以上の整数)に相当する分抽出し、それぞれの波形について、前記基本波成分の半周期を積分区間として積分するとともに、当該各波形の瞬時値の式を正負反転させて前記半周期に続く次の半周期を積分区間として積分する積分演算をそれぞれ少なくとも1回行った上で、これらの積分結果を前記2つの波形のそれぞれについて加算し、当該2つの加算結果の平方和の平方根を算出して漏洩電流の実効値を求めるように構成されたことを特徴とする。
That is, in order to achieve the above object, the leakage current measuring apparatus of the present invention has a leakage current detection means for detecting a leakage current signal including a fundamental wave component and a harmonic component of an electric circuit, and the leakage current signal. A conversion circuit for converting to a voltage signal, an amplification circuit for amplifying the voltage signal, a filter circuit for removing high-order harmonic components in the output signal from the amplification circuit, an arithmetic circuit, and an arithmetic operation of the arithmetic circuit result comprising at least a display and / or a display-output circuit for outputting the arithmetic circuit, an output waveform of the filter circuit is input thereto, a phase angle with respect to the
また、本発明の漏洩電流測定方法は、電路に漏洩電流検出手段を装着し、これにより基本波成分と高調波成分とからなる漏洩電流信号を検出する工程と、当該漏洩電流信号を電圧信号に変換して出力する変換工程と、前記電圧信号を増幅する増幅工程と、前記増幅回路からの出力信号中の高次の高調波成分を除去するフィルター工程と、演算処理工程と、当該演算処理工程における演算結果を表示及び/または出力する表示・出力工程とを少なくとも含み、前記演算処理工程は、これに入力される前記フィルター工程の出力波形と、当該出力波形に対して位相角を90°×(2m−1)(mは1以上の整数)だけずらした波形または前記出力波形から周期がπ/2ωだけずれた波形との2つの波形をそれぞれ前記基本波成分のNサイクル(Nは1以上の整数)に相当する分抽出し、それぞれの波形について、前記基本波成分の半周期を積分区間として積分するとともに、当該各波形の瞬時値の式を正負反転させて前記半周期に続く次の半周期を積分区間として積分する積分演算をそれぞれ少なくとも1回行った上で、これらの積分結果を前記2つの波形のそれぞれについて加算し、当該2つの加算結果の平方和の平方根を算出して漏洩電流の実効値を求めるようにされたことを特徴とする。
The leakage current measuring method of the present invention includes a step of attaching a leakage current detection means to an electric circuit, thereby detecting a leakage current signal composed of a fundamental wave component and a harmonic component, and converting the leakage current signal into a voltage signal. A conversion step for converting and outputting, an amplification step for amplifying the voltage signal, a filter step for removing high-order harmonic components in the output signal from the amplification circuit, an arithmetic processing step, and the arithmetic processing step At least a display / output step for displaying and / or outputting the calculation result in the calculation processing step , wherein the calculation processing step inputs an output waveform of the filter step inputted thereto and a phase angle of 90 ° × with respect to the output waveform (2m-1) (m is an integer of 1 or more) shifted by waveform or N cycles (N of each of the fundamental wave component of the two waveforms of a waveform cycle from the output waveform is shifted by [pi / 2 [omega is Were separated extracted corresponding to an integer greater than one), for each of the waveforms, as well as integrating the half period of the fundamental wave component as an integration section, the expression of the instantaneous value of the each waveform by negative reversed following the half cycle following the half cycle an integration calculation for integrating after conducting at least once each as an integration section, these integration results are added for each of the two waveforms, and calculates the square root of the sum of squares of the two addition results It is characterized in that an effective value of leakage current is obtained.
本発明の漏洩電流測定装置及び測定方法によれば、演算回路においてこれに入力される波形信号から基本波成分のNサイクルに相当する分の波形を抽出し、これを半周期ごと順次積分することとしたので、従来のフィルター回路では完全に除去することが困難な基本波成分の周波数に近接する低次の偶数高調波成分を除去することができるとともに、奇数高調波成分の低減を図ることができる。 According to the leakage current measuring apparatus and measuring method of the present invention, a waveform corresponding to N cycles of the fundamental wave component is extracted from a waveform signal input thereto in an arithmetic circuit, and this is sequentially integrated every half cycle. Therefore, it is possible to remove low-order even harmonic components close to the frequency of the fundamental component, which is difficult to remove completely with a conventional filter circuit, and to reduce odd harmonic components. it can.
また、演算回路において、これに入力されるフィルター回路からの出力信号の波形と、当該出力信号の波形に対して位相角を90°×(2m−1)(mは1以上の整数)だけずらした波形または前記出力信号の波形から周期がπ/2ωだけずれた波形との2つの波形を前記基本波成分のNサイクル(Nは1以上の整数)に相当する分抽出し、それぞれの波形について前記基本波成分の半周期を積分区間として積分するとともに、当該各波形の瞬時値の式を正負反転させて当該半周期に続く次の半周期を積分区間として積分する積分演算をそれぞれ少なくとも1回行った上で、これらの積分結果を各波形について加算し、当該加算結果の平方和の平方根を算出することで、従来のフィルター回路では完全に除去することが困難な基本波成分の周波数に近接する低次の偶数高調波成分を除去し、奇数高調波成分の低減が図られ、正確かつ迅速に漏洩電流の実効値を求めることができる。
Further, in the arithmetic circuit, the phase angle of the output signal from the filter circuit input thereto is shifted by 90 ° × (2m−1) (m is an integer of 1 or more) with respect to the waveform of the output signal. for the (the
以下、添付図面を参照して本発明の漏洩電流測定装置及び測定方法について詳細に説明する。図1は、本発明の漏洩電流測定装置の実施形態の一例を示す図である。図中(a)は演算回路においてアナログで信号の演算処理を行う形態を、(b)は演算回路においてデジタルにて信号の演算処理を行う形態を示しており、いずれの図においても同一または共通の各部については同一の符号を用いている。この図において、漏洩電流測定装置1は、クランプ式変流器2、変換回路3、増幅回路4、フィルター回路5、ADコンバーター回路7、演算回路6及び表示・出力回路8を備えている。
Hereinafter, the leakage current measuring apparatus and measuring method of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a diagram showing an example of an embodiment of a leakage current measuring apparatus of the present invention. In the figure, (a) shows a mode in which signal arithmetic processing is performed in analog in the arithmetic circuit, and (b) shows a mode in which signal arithmetic processing is performed digitally in the arithmetic circuit. The same reference numerals are used for the respective parts. In this figure, the leakage
クランプ式変流器2は、電路(不図示)に設置され、当該電路を流れる漏洩電流を検出するものである。このようなクランプ式変流器2としては特に制限されず、公知のものを使用できる。 The clamp type current transformer 2 is installed in an electric circuit (not shown) and detects a leakage current flowing through the electric circuit. Such a clamp type current transformer 2 is not particularly limited, and a known one can be used.
変換回路3は、前記クランプ式変流器2より出力される漏洩電流信号を電圧信号に変換するのに設けられる。この変換回路3としては、通常、シャント抵抗などが用いられる。このシャント抵抗は、クランプ式変流器2の2次出力線に直列に接続され、当該抵抗の両端から電圧信号を取り出すものである。
The
増幅回路4は、変換回路3から出力される電圧信号を後述の演算回路において演算処理可能な信号レベルまで増幅するのに設けられる。この増幅回路4としては、公知のトランジスターやオペアンプなどを使用できる。
The amplifier circuit 4 is provided to amplify the voltage signal output from the
フィルター回路5は、基本波成分以外の低次の高調波成分を減衰させ、高次の高調波成分を除去するのに使用される。フィルター回路5のカットオフ周波数や減衰率は、高調波成分を効率的に除去できるように適宜設定できる。カットオフ周波数は、波形の減衰(だれ)状況にもよるが、通常、約80〜100Hz程度に設定するのがよい。
The
使用されるフィルターとしては、公知のパッシブ・フィルターやアクティブ・フィルターのいずれも使用できる。パッシブ・フィルターとしては、抵抗器、インダクター、コンデンサーなどのパッシブ素子で構成されたRCフィルターやLCフィルターなどが挙げられる。また、アクティブ・フィルターはアクティブ素子とパッシブ素子とで構成され、オペアンプによる微分回路や積分回路を使用したフィルターなどが挙げられる。 As a filter to be used, any known passive filter or active filter can be used. Examples of the passive filter include an RC filter and an LC filter composed of passive elements such as resistors, inductors and capacitors. The active filter is composed of an active element and a passive element, and examples include a filter using a differential circuit or an integration circuit using an operational amplifier.
また、フィルターには、バターワース(最大振幅平坦型)特性、ベッセル(最大遅延平坦型)特性、チェビシェフ(振幅波状)特性、連立チェビシェフ(エリプティック)特性などの周波数特性を備えたものが知られているが、いずれの周波数特性のフィルターも使用できる。例えば、連立チェビシェフ特性を有するフィルターは、減衰域にノッチが入るように調整されており、大きい減衰傾度が得られることから、狭い周波数域で信号を急峻に減衰させたい場合に好適に使用できる。好ましくは、前記例示のフィルターは、最適なパッシブ素子を組み合わせ、または最適なパッシブ素子およびアクティブ素子を組み合わせるなどして前記周波数特性のうち最適な特性が得られるようにするのがよい。 Further, filters having frequency characteristics such as Butterworth (maximum amplitude flat type) characteristic, Bessel (maximum delay flat type) characteristic, Chebyshev (amplitude wave) characteristic, simultaneous Chebyshev (elliptic) characteristic, etc. are known. However, any frequency characteristic filter can be used. For example, a filter having simultaneous Chebyshev characteristics is adjusted so as to have a notch in the attenuation region, and a large attenuation gradient can be obtained. Therefore, the filter can be preferably used when it is desired to attenuate the signal sharply in a narrow frequency region. Preferably, the exemplary filter may be configured to obtain an optimum characteristic among the frequency characteristics by combining optimum passive elements or combining optimum passive elements and active elements.
さらに、フィルター回路5では、複数のフィルターを組み合わせて多段に構成し、基本波成分以外の高調波成分の減衰率を大きくすることもできる。このような構成として、例えば、少なくとも1個のローパスフィルター(LPF)、またはこれと少なくとも1個のバンドパスフィルター(BPF)若しくは少なくとも1個のバンドエリミネートフィルター(BEF)との組み合わせなどを挙げることができる。
Further, the
ADコンバーター回路7は、フィルター回路5を通過したアナログ電圧信号をデジタル信号に変換するのに設けられる。このコンバーター回路7は、後述の演算回路6においてデジタルにて演算処理を行う場合には、当該演算回路6の上流に設ける必要があるが、演算回路6においてアナログにて演算処理を行う場合には、演算回路6の上流に設ける必要はない。なお、前記フィルター回路5の出力信号は、このように当該回路5と後述の演算回路6との間にこのコンバーター回路7を介在させるか否かでデジタル信号またはアナログ信号となるが、これらを区別して説明する煩雑さを避けるために、以下では、「フィルター回路5の出力(信号)」を「演算回路6への入力信号」と呼ぶこととする。
The
演算回路6は、前記のとおり、これに入力される入力信号の波形と、この入力信号の波形に対して位相角を90°×(2m−1)(mは1以上の整数)だけずらした波形または周期がπ/2ωだけずれた波形との2つの波形をそれぞれ基本波成分のNサイクル分(Nは1以上の整数)だけ抽出し、それぞれの波形について、前記基本波成分の半周期を積分区間として積分するとともに、当該各波形の瞬時値の式を正負反転させて当該半周期に続く次の半周期を積分区間として順次積分する積分演算をそれぞれ少なくとも1回行った上で、これらの積分結果を前記2つの波形のそれぞれについて加算し、当該2つの加算結果の平方和の平方根を算出して漏洩電流の実効値を求めるように構成されている。
まず、図2及び以下の式(数1〜数5)を参照して、この演算回路6における高調波成分除去及び基本波成分の電流実効値を求めるための演算処理について説明する。この図2は、縦軸が波形の振幅を示し、横軸が時間(かっこ内は、それぞれの時刻に対応する回転角)を示している。説明を簡単にするために、この演算回路6への入力信号は基本波成分と、位相角φ(φは任意の値)だけ進んだ2次高調波成分とで構成され、また前記入力信号において適宜設定された基準時点t0から基本波成分の1サイクル分の波形を抽出するものと仮定する。この場合、この入力信号の波形の瞬時値は、フーリエ級数によって次式で表すことができる。
First, with reference to FIG. 2 and the following equations (
この入力信号から抽出された一方の波形について、基準時点t0から基本波成分の半周期(t0+π/ω)を積分区間として積分し、Aの値を求めると、次式(数2)の結果が得られる。このAは、図2の上から2段目の波形の横軸(時間軸)よりも上側の斜線部分の面積から下側の斜線部の面積を引いた値を示している。 For one waveform extracted from this input signal, the half-cycle (t 0 + π / ω) of the fundamental wave component is integrated from the reference time t 0 as an integration interval, and the value of A is obtained. Result is obtained. A indicates a value obtained by subtracting the area of the lower hatched portion from the area of the upper hatched portion of the horizontal axis (time axis) of the second waveform from the top in FIG.
次に、演算回路への入力波形について、その瞬時値の式を正負反転させ、前記積分区間に連続する半周期(t0+π/ω〜t0+2π/ω)を積分区間として同様に積分してBの値を求めると、次式(数3)の結果が得られる。Bは、図2の上から3段目の波形の横軸よりも上側の斜線部分の面積から下側の斜線部分の面積を引いた値を示している。
Next, with respect to the input waveform to the arithmetic circuit, the expression of the instantaneous value is inverted between positive and negative, and the half value (t0 + π / ω to t0 + 2π / ω) continuous to the integration interval is integrated in the same manner as the integration interval to obtain the value of B Is obtained, the result of the following equation (Equation 3) is obtained. B indicates a value obtained by subtracting the area of the hatched portion content of lower from the area of the shaded portion of the upper than the horizontal axis of the third stage of the waveform from the top in FIG. 2.
さらに、前記基準時点t0の波形の瞬時値から所定の位相角だけずらして得られる波形について同様に積分を行う。ここでは、前記基準時点t0から位相角を90°だけずらして抽出される1サイクルの波形について説明する。なお、前記位相角は、90°×(2m−1)(mは1以上の整数)、すなわち90°、270°、450°、630°、810°・・・などに設定できるが、ここでは説明の便宜上、90°としている。 Furthermore, it performs integration similarly for waveform obtained by shifting by a predetermined phase angle from the instantaneous value of the waveform of the reference time point t 0. Here it will be described one cycle of the waveform to be extracted from the reference time point t 0 by shifting the phase angle only 90 °. The phase angle can be set to 90 ° × (2m−1) (m is an integer of 1 or more), that is, 90 °, 270 °, 450 °, 630 °, 810 °, etc. For convenience of explanation, the angle is 90 °.
前記抽出された1サイクル分の他方の波形について、前記数2及び数3に示す式と同様に基本波成分の半周期を積分区間として積分し、また当該他方の波形の瞬時値の式を正負反転させて前記半周期に続く次の半周期を積分区間とし積分してCの値及びDの値をそれぞれ求めると、次式(数4及び数5)の結果が得られる。C及びDは、図2の上から4段目及び5段目の波形の横軸よりも上側の斜線部分の面積から下側の斜線部分の面積を引いた値にそれぞれ相当する。
For the other waveforms of one cycle, which is the extraction, the formula of the half period of the fundamental wave component similar to the equation shown in Equation 2 and
前記CおよびDは、基準時点t0から周期π/2ωだけずれるようにした波形を基本波成分の1サイクル分だけ抽出することによっても同様の積分によって求めることができる。実際には、前記のように2つの波形を所定の位相角だけ正確にずらして抽出する回路を設計するのは困難である一方、2つの波形を周期によって抽出するのは回路上にタイマーを実装することで容易に実現できることなどを考慮すると、前記所定の周期だけずれた波形を1サイクル分だけ抽出して積分を行う方が好ましい場合もある。
The C and D can be obtained by the same integration by extracting a waveform that is shifted by a period π / 2ω from the reference time t 0 by one cycle of the fundamental wave component. Actually, as mentioned above, it is difficult to design a circuit that extracts two waveforms by shifting them precisely by a predetermined phase angle. On the other hand, a timer is mounted on the circuit to extract two waveforms according to their period. when considering the ability to easily realized by, in some cases the person who performs a predetermined period shifted waveform by extracting only one cycle of the integration is preferred.
数2〜数5に示す式によって明らかなように、A〜Dの式の右辺第2項の2次の高調波成分についての積分結果はいずれも0となり、結果として2次の高調波成分を完全に除去でき、基本波成分のみの電流波形の積分値を得ることができる。また、これらの式から明らかなように、基準時点t0は基本波成分の瞬時値が0となる時点などに設定する必要がなく、任意に設定できる。 As apparent from the equations shown in Equations 2 to 5, the integration results for the second-order harmonic components in the second term on the right side of the equations A to D are all 0, resulting in the second-order harmonic components being The integrated value of the current waveform of only the fundamental wave component can be obtained. As is clear from these equations, the reference time t 0 is not necessary to set such a time when the instantaneous value of the fundamental wave component becomes 0, it can be arbitrarily set.
また、前記演算回路への入力信号にさらに位相角ξ(ξは任意の値)だけ進んだ第4次の高調波成分が含まれていると仮定した場合についても触れる。この場合、この入力信号の波形の瞬時値は、前記と同様に次式(数6)によって表すことができる。 The case where it is assumed that the input signal to the arithmetic circuit further includes a fourth-order harmonic component advanced by a phase angle ξ (ξ is an arbitrary value) will be described. In this case, the instantaneous value of the waveform of the input signal can be expressed by the following equation (Equation 6) as described above.
この波形の瞬時値について、前記と同様にA〜Dの積分結果を求めた場合もまた、次式(数7)に示すように、右辺第3項の積分結果はいずれも0となるため、前記数2ないし数5の各式に示す演算結果と同様に、2次及び4次の高調波成分を完全に除去でき、基本波成分のみの電流波形の積分値を得ることができる。 For the instantaneous value of this waveform, when the integration results of A to D are obtained in the same manner as described above, the integration result of the third term on the right side is 0 as shown in the following equation (Equation 7). Similar to the calculation results shown in the equations (2) to (5), the second and fourth harmonic components can be completely removed, and the integrated value of the current waveform of only the fundamental component can be obtained.
また、仮に演算回路6への入力信号に奇数高調波成分が含まれているとした場合、前記と同様に積分することで、奇数高調波成分の前記積分区間中における正負1対の波形は相殺され、残存する正または負の波形についての積分値を求めることになり、その結果積分結果を小さくし、奇数高調波成分を低減することができる。
Also, assuming that an odd harmonic component is included in the input signal to the
次に、前記のA〜Dの積分結果を用い、これらを次式(数8)に代入して各波形についての積分結果の加算値の平方和の平方根を求めることで、演算回路6への入力信号中の基本波成分の電流の実効値が得られる。 Next, by using the integration results of A to D described above and substituting them into the following equation (Equation 8) to obtain the square root of the sum of squares of the integration results for each waveform, The effective value of the current of the fundamental wave component in the input signal is obtained.
このように、AからDの積分結果を用いて前記の演算処理を行うことで、正弦波関数と余弦波関数との関係(sin2θ+cos2θ=1)によって式中からこれらの波形関数を消去することができるので、簡単かつ正確に漏洩電流中の基本波成分の電流実効値を求めることができる。 In this way, by performing the above-described arithmetic processing using the integration results from A to D, these waveform functions can be obtained from the equation according to the relationship between the sine wave function and the cosine wave function (sin 2 θ + cos 2 θ = 1). Since it can be erased, the current effective value of the fundamental wave component in the leakage current can be obtained easily and accurately.
以上、演算回路6への入力信号からこれに含まれる基本波成分の1サイクルに相当する分の波形を抽出した場合の演算処理について説明したが、前記入力信号から任意に基本波成分のNサイクル(Nは1以上の整数)に相当する分の波形を抽出した場合にも同様の演算処理を行えることはいうまでもない。この場合、演算回路6に数1に示す式と同様に数9に示す瞬時値を有する波形信号が入力されたとすると、当該回路における演算処理は、数10に示す各式について順次行われる。
The arithmetic processing in the case where the waveform corresponding to one cycle of the fundamental wave component included therein is extracted from the input signal to the
実際の演算回路設計に当たっては、商用電周波数50Hz及び60Hzの最大公約数である10Hzに相当する0.1秒(100ミリ秒)またはその整数倍分の波形を抽出するように設定してもよい。この場合、前記Nの値は、100ミリ秒を基本波成分の周期で除したサイクル数またはその整数倍に設定することができる。すなわち、前記サイクル数は商用周波数が50HzであればN=5、商用周波数が60HzであればN=6となる。このようにNの値を設定することで、商用周波数とは無関係に前記の積分演算を行うことができる。
In actual arithmetic circuit design, it may be set to extract a waveform of 0.1 second (100 milliseconds) corresponding to 10 Hz which is the greatest common divisor of
このような演算処理を行う演算回路は、各種の素子を組み合わせて基板上に構築してもよく、別途、プログラマブルコントローラなどを用いてソフトウェア上に構築してもよい。 An arithmetic circuit for performing such arithmetic processing may be constructed on a substrate by combining various elements, or may be separately constructed on software using a programmable controller or the like.
表示・出力回路8としては、演算回路6における演算結果をデジタルまたはアナログで表示し、若しくは外部に出力し、またはこれらの双方を行えるように構成されたものであれば特に制限なく使用できる。
The display /
本発明の漏洩電流測定装置1は、例えばクランプメーターなどの携帯用に構築してもよく、別の形態として構築してもよい。また、通常使用されるクランプメーターなどを改造することにより本発明の漏洩電流測定装置とすることもでき、あるいは他の計測器の筐体内に内蔵することもできる。また、本発明の漏洩電流測定装置1は、これからクランプ式変流器2を分離し、当該変流器と測定装置本体とを別体に構成し、両者の間を所定の信号線で接続するようにしてもよい。この場合、測定装置本体と信号線とは、コネクター接続などとすることができる。
The leakage
次に、本発明の漏洩電流測定方法について説明する。本発明の漏洩電流測定装置1を用いて漏洩電流を測定するには、通常の漏洩電流測定と同様にクランプ式変流器(漏洩電流検出手段)2を電路に装着する。この変流器2を介して検出された漏洩電流信号を電圧信号に変換した後、当該電圧信号を演算可能な信号レベルまで増幅し、この増幅後の信号中の高次の高調波成分をフィルター回路によって除去する。なお、この増幅後の出力信号は、必要に応じてデジタル信号にAD変換することができる。
Next, the leakage current measuring method of the present invention will be described. In order to measure the leakage current using the leakage
演算回路では、前記フィルター回路の出力信号の波形と、当該出力信号の波形に対して位相角を90°×(2m−1)(mは1以上の整数)だけずらした波形または前記出力信号の波形から周期がπ/2ωだけずれた波形との2つの波形を前記基本波成分のNサイクル(Nは1以上の整数)に相当する分抽出し、それぞれの波形について、前記基本波成分の半周期を積分区間として積分するとともに、当該各波形の瞬時値の式を正負反転させて前記半周期に続く次の半周期を積分区間として積分する積分演算をそれぞれ少なくとも1回行った上で、これらの積分結果を前記2つの波形のそれぞれについて加算し、当該各加算結果の平方和の平方根を算出して漏洩電流の実効値を求める演算処理を行い、表示・出力回路にて当該演算結果を表示及び/または出力する。なお、この演算処理後の信号がアナログ信号の場合、デジタル信号にAD変換することができる。
In the arithmetic circuit includes a waveform of the output signal of the filter circuit, the
以下、本発明の漏洩電流測定装置を用いた測定例について説明する。測定に当たり、漏洩電流中の3次以上の高調波成分を除去できるように、本発明の漏洩電流測定装置のフィルター回路(LPF)に最適なパッシブ素子を選択使用した。 Hereinafter, measurement examples using the leakage current measuring apparatus of the present invention will be described. In the measurement, a passive element optimal for the filter circuit (LPF) of the leakage current measuring device of the present invention was selected and used so that the third and higher harmonic components in the leakage current could be removed.
[測定例1]
高調波解析機能を持つ計測器を用いて2次の高調波成分を多く含む電気設備(店舗などの一般的な蛍光灯専用単相回路)の漏洩電流を検出し、その波形及び高調波含有率を測定した結果を表1及び図3に示す。漏洩電流は、図3(a)および(b)に示すように、特に低次の偶数高調波を多量に含んでおり、その波形はのこぎり状を呈している。
[Measurement Example 1]
Use a measuring instrument with harmonic analysis function to detect the leakage current of electrical equipment that contains a lot of secondary harmonic components (single-phase circuits for general fluorescent lamps in stores, etc.), and its waveform and harmonic content The results of measuring are shown in Table 1 and FIG. As shown in FIGS. 3A and 3B, the leakage current contains a large amount of particularly low-order even harmonics, and the waveform thereof has a saw-tooth shape.
通常使用されるクランプメーターを用いて同じ電気設備の漏洩電流値を求めた結果、フィルター機能不使用時で50.99mA(表1参照)、フィルター機能使用時でも35.44mAであり、いずれも表1の基本波成分の電流値2.16mAよりも大きな値を示した。なお、商用周波数は、60Hzである。 As a result of obtaining the leakage current value of the same electrical equipment using a commonly used clamp meter, it is 50.99 mA when the filter function is not used (see Table 1), and 35.44 mA when the filter function is used. The current value of the fundamental wave component of 1 was larger than 2.16 mA. The commercial frequency is 60 Hz.
同じ電気設備について、本発明の漏洩電流測定装置を用いて当該設備から流出する漏洩電流を検出した結果、その表示値は表1の高調波含有率の基本波の値と一致し、2.16mAを示した。これは本発明の漏洩電流測定装置のフィルター回路によって3次以上の高調波成分を除去し、さらに演算回路において2次の高調波成分も除去したためである。 As a result of detecting the leakage current flowing out from the facility using the leakage current measuring apparatus of the present invention for the same electrical equipment, the displayed value is consistent with the value of the fundamental wave of the harmonic content in Table 1, and is 2.16 mA. showed that. This is because the third and higher harmonic components are removed by the filter circuit of the leakage current measuring apparatus of the present invention, and the second harmonic component is also removed by the arithmetic circuit.
[測定例2]
高調波解析機能を持つ計測器を用いてインバーター式蛍光灯の漏洩電流を検出し、その波形及び高調波含有率を測定した結果を表3及び図4に示す。漏洩電流は、図4(a)および(b)に示すように、低次、特に2次及び4次の偶数高調波を多量に含んでおり、その波形はのこぎり状を呈している。
[Measurement Example 2]
Table 3 and FIG. 4 show the results of detecting the leakage current of the inverter type fluorescent lamp using a measuring instrument having a harmonic analysis function and measuring the waveform and the harmonic content. As shown in FIGS. 4A and 4B, the leakage current contains a large amount of low-order, especially second-order and fourth-order even harmonics, and the waveform thereof has a saw-tooth shape.
通常使用されるクランプメーターを用いて同じインバータ式蛍光灯の漏洩電流値を求めた結果、フィルター機能不使用時で0.038mA,フィルター機能使用時でも0.029mAであり、いずれも基本波成分の電流値0.009mAよりも大きな値を示した。なお、商用周波数は、試験例1の場合と同様、60Hzである。 As a result of obtaining the leakage current value of the same inverter type fluorescent lamp using a normally used clamp meter, it is 0.038 mA when the filter function is not used, and 0.029 mA when the filter function is used. The current value was larger than 0.009 mA. The commercial frequency is 60 Hz as in the case of Test Example 1.
同じインバーター式蛍光灯について、本発明の漏洩電流測定装置を用いて当該設備から流出する漏洩電流を検出した結果、その表示値は表2の高調波含有率の基本波の値と一致し、0.009mAを示した。これは本発明の漏洩電流測定装置のフィルター回路によって、3次以上の高調波成分を除去し、さらに演算回路において2次の高調波成分も除去したためである。 As a result of detecting the leakage current flowing out from the equipment using the leakage current measuring device of the present invention for the same inverter type fluorescent lamp, the displayed value is consistent with the value of the fundamental wave of the harmonic content rate in Table 2, 0.009 mA. This is because the third and higher harmonic components are removed by the filter circuit of the leakage current measuring apparatus of the present invention, and the second harmonic component is also removed by the arithmetic circuit.
以上説明したように、本発明の漏洩電流測定装置及び測定方法を用いることで、高次の高調波成分とともに低次の高調波成分を除去することができ、より正確かつ迅速に漏洩電流の測定を行うことが可能となり、さらにフィルター回路に所定のフィルターを複数組み合わせて第3次以上の高調波成分をカットできるように個々のフィルターを調整することで、正確な漏洩電流の実効値を求めることができる。 As described above, by using the leakage current measuring apparatus and measurement method of the present invention, it is possible to remove higher-order harmonic components and lower-order harmonic components, and to measure leakage current more accurately and quickly. In addition, it is possible to obtain an effective effective value of leakage current by adjusting each filter so that the third and higher harmonic components can be cut by combining a plurality of predetermined filters in the filter circuit. Can do.
本発明の漏洩電流測定装置及び測定方法は、特に入力信号に対して高周波の信号を出力する高周波出力型インバーター回路を有する電気機器などに適用される。 The leakage current measuring apparatus and measuring method according to the present invention are particularly applied to electrical equipment having a high-frequency output type inverter circuit that outputs a high-frequency signal to an input signal.
1 漏洩電流測定装置
2 クランプ式変流器
3 シャント抵抗(変換回路)
4 増幅回路
5 フィルター回路
6 演算回路
7 ADコンバーター回路
8 表示・出力回路
1 Leakage current measuring device 2 Clamp-type
4 Amplifying
Claims (6)
前記演算回路は、
これに入力される前記フィルター回路の出力波形と、当該出力波形に対して位相角を90°×(2m−1)(mは1以上の整数)だけずらした波形または前記出力波形から周期がπ/2ωだけずれた波形との2つの波形をそれぞれ前記基本波成分のNサイクル(Nは1以上の整数)に相当する分抽出し、
それぞれの波形について、前記基本波成分の半周期を積分区間として積分するとともに、当該各波形の瞬時値の式を正負反転させて前記半周期に続く次の半周期を積分区間として積分する積分演算をそれぞれ少なくとも1回行った上で、これらの積分結果を前記2つの波形のそれぞれについて加算し、当該2つの加算結果の平方和の平方根を算出して漏洩電流の実効値を求めるように構成されたことを特徴とする漏洩電流測定装置。 A leakage current detecting means for detecting a leakage current signal including a fundamental wave component and a harmonic component of an electric circuit; a conversion circuit for converting the leakage current signal into a voltage signal; and an amplification circuit for amplifying the voltage signal; Leakage current comprising at least a filter circuit that removes higher-order harmonic components in the output signal from the amplifier circuit, an arithmetic circuit, and a display / output circuit that displays and / or outputs the arithmetic result of the arithmetic circuit A measuring device,
The arithmetic circuit is:
The output waveform of the filter circuit that is input to this, and a waveform in which the phase angle is shifted by 90 ° × (2m−1) (m is an integer of 1 or more) relative to the output waveform , or the period is π from the output waveform Two waveforms with a waveform shifted by / 2ω are extracted corresponding to N cycles (N is an integer of 1 or more) of the fundamental component,
For each waveform, the half cycle of the fundamental wave component is integrated as an integration interval, and the instantaneous value expression of each waveform is inverted, and the next half cycle following the half cycle is integrated as an integration interval. The integration results are added to each of the two waveforms, and the square root of the sum of squares of the two addition results is calculated to obtain the effective value of the leakage current. Leakage current measuring device characterized by that.
前記演算処理工程は、
これに入力される前記フィルター工程の出力波形と、当該出力波形に対して位相角を90°×(2m−1)(mは1以上の整数)だけずらした波形または前記出力波形から周期がπ/2ωだけずれた波形との2つの波形をそれぞれ前記基本波成分のNサイクル(Nは1以上の整数)に相当する分抽出し、
それぞれの波形について、前記基本波成分の半周期を積分区間として積分するとともに、当該各波形の瞬時値の式を正負反転させて前記半周期に続く次の半周期を積分区間として積分する積分演算をそれぞれ少なくとも1回行った上で、これらの積分結果を前記2つの波形のそれぞれについて加算し、当該2つの加算結果の平方和の平方根を算出して漏洩電流の実効値を求めるようにされたことを特徴とする漏洩電流測定方法。 A leakage current detection means is mounted on the electric circuit, thereby detecting a leakage current signal composed of a fundamental wave component and a harmonic component, a conversion step of converting the leakage current signal into a voltage signal and outputting the voltage signal, and the voltage An amplification step for amplifying a signal, a filter step for removing higher-order harmonic components in the output signal from the amplification circuit, an arithmetic processing step, and a display for displaying and / or outputting an arithmetic result in the arithmetic processing step A leakage current measuring method including at least an output process,
The arithmetic processing step includes
An output waveform of the filter process is input thereto, the phase angle 90 ° × respect to the output waveform (2m-1) (m is an integer of 1 or more) the period from shifted by waveform or the output waveform π Two waveforms with a waveform shifted by / 2ω are extracted corresponding to N cycles (N is an integer of 1 or more) of the fundamental component,
For each waveform, the half cycle of the fundamental wave component is integrated as an integration interval, and the instantaneous value expression of each waveform is inverted, and the next half cycle following the half cycle is integrated as an integration interval. The integration results are added to each of the two waveforms, and the square root of the sum of squares of the two addition results is calculated to obtain the effective value of the leakage current. Leakage current measuring method characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006209268A JP4852371B2 (en) | 2006-07-31 | 2006-07-31 | Leakage current measuring device and measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006209268A JP4852371B2 (en) | 2006-07-31 | 2006-07-31 | Leakage current measuring device and measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008032660A JP2008032660A (en) | 2008-02-14 |
JP4852371B2 true JP4852371B2 (en) | 2012-01-11 |
Family
ID=39122226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006209268A Active JP4852371B2 (en) | 2006-07-31 | 2006-07-31 | Leakage current measuring device and measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4852371B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200456352Y1 (en) * | 2008-12-03 | 2011-10-26 | 대덕대학산학협력단 | Circuit for detecting current of ionless current sensor and system using therewith |
JP5396675B2 (en) * | 2009-04-17 | 2014-01-22 | ネッツエスアイ東洋株式会社 | Insulation monitoring device |
KR101228530B1 (en) | 2011-06-13 | 2013-01-31 | 박양석 | Leakage alarm system by detecting leakage current removed harmonic wave and method thereof |
KR101517159B1 (en) * | 2013-11-13 | 2015-05-04 | 주식회사 에렐 | Three phase electric leakage current circuit braker with electric shock protection |
CN105891583B (en) * | 2016-05-31 | 2019-03-29 | 华北电力大学(保定) | A kind of photovoltaic combining inverter contact creepage detection method |
CN108225528A (en) * | 2017-10-18 | 2018-06-29 | 赛多利斯科学仪器(北京)有限公司 | Folding electronic balance density measure kit device |
CN110060445B (en) * | 2019-05-20 | 2020-08-18 | 北京航天常兴科技发展股份有限公司 | Method for preventing electric leakage false alarm, electric fire monitoring detector and monitoring system |
CN111044769A (en) * | 2019-12-05 | 2020-04-21 | 国创新能源汽车智慧能源装备创新中心(江苏)有限公司 | Integral residual current measuring method and integrated system |
CN114062772A (en) * | 2020-08-07 | 2022-02-18 | 天津首瑞智能电气有限公司 | Residual current measuring circuit |
JP7487641B2 (en) | 2020-10-29 | 2024-05-21 | 株式会社デンソー | Electrical Equipment |
CN113325358B (en) * | 2021-05-07 | 2023-08-01 | 南方电网数字电网研究院有限公司 | Rapid detection method and system for residual current of intelligent ammeter |
KR102682033B1 (en) * | 2023-11-09 | 2024-07-05 | 주식회사 제나드시스템 | Lightning arrester leakage current measurement device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62152271A (en) * | 1985-12-26 | 1987-07-07 | Matsushita Electric Ind Co Ltd | Picture recording and reproducing device |
JPH02101920A (en) * | 1988-10-06 | 1990-04-13 | Toshiba Corp | Arithmetic and logic device for effective value |
JPH0512483Y2 (en) * | 1990-09-21 | 1993-03-31 | ||
JP3251498B2 (en) * | 1996-05-30 | 2002-01-28 | 三菱電機株式会社 | AC measurement method and device |
JP2001183408A (en) * | 1999-12-24 | 2001-07-06 | Toyo Commun Equip Co Ltd | Level measuring method coping with a plurality of measurement frequencies |
JP4875257B2 (en) * | 2000-07-17 | 2012-02-15 | パナソニック株式会社 | Earth leakage detector |
-
2006
- 2006-07-31 JP JP2006209268A patent/JP4852371B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008032660A (en) | 2008-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4852371B2 (en) | Leakage current measuring device and measuring method | |
JP5631444B1 (en) | Leakage current calculation device and leakage current calculation method | |
US5347464A (en) | High-pass filter for enhancing the resolution of AC power line harmonic measurements | |
US20150311862A1 (en) | Apparatus for monitoring leakage current of transformer-less photovoltaic inverter | |
CN106526321B (en) | Impedance measuring device and impedance measuring method | |
KR100896091B1 (en) | Measuring instrument for a resistive electric leakage current | |
KR20170110103A (en) | Electronic integrator for Rogowski coil sensor | |
JP2012163543A (en) | Frequency detector | |
JP2013036884A (en) | Insulation monitoring method and insulation monitor | |
CN106483348A (en) | Ripple detection circuit | |
CN104502701A (en) | Method and system for detecting electric power signal frequency based on phase modulation | |
KR100920153B1 (en) | Measurement Device of leakage current ohmic value on power line And Method Thereof | |
JP6739160B2 (en) | Impedance measuring device and impedance measuring method | |
EP1581816B1 (en) | Measuring method for deciding direction to a flickering source | |
JP5144399B2 (en) | Coil current sensor circuit | |
KR101075484B1 (en) | Measurement Device of leakage current ohmic value on power line And Method Thereof | |
JP2014044140A (en) | Method and apparatus for measuring insulation resistance | |
CN104502702A (en) | Method and system for detecting frequency of power signal | |
CN103134969B (en) | A kind of power factor corrector and phase voltage method of estimation | |
CN104483524B (en) | Reactive power metering system in electric energy meter | |
JP7009025B2 (en) | Voltage measuring device, voltage measuring method | |
KR100771939B1 (en) | Measuring instrument for an electric current leakage | |
De Araujo et al. | Integrated circuit for real-time poly-phase power quality monitoring | |
JP2013083566A (en) | Unbalance rate detection device and unbalance rate detection method | |
Zhang et al. | DC current determination in grid-connected transformerless inverter systems using a DC link sensing technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090717 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111011 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111024 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4852371 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141028 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141028 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |