JP5396675B2 - Insulation monitoring device - Google Patents

Insulation monitoring device Download PDF

Info

Publication number
JP5396675B2
JP5396675B2 JP2009101322A JP2009101322A JP5396675B2 JP 5396675 B2 JP5396675 B2 JP 5396675B2 JP 2009101322 A JP2009101322 A JP 2009101322A JP 2009101322 A JP2009101322 A JP 2009101322A JP 5396675 B2 JP5396675 B2 JP 5396675B2
Authority
JP
Japan
Prior art keywords
phase
zero
current
value
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009101322A
Other languages
Japanese (ja)
Other versions
JP2010249747A (en
Inventor
文典 阿部
Original Assignee
ネッツエスアイ東洋株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ネッツエスアイ東洋株式会社 filed Critical ネッツエスアイ東洋株式会社
Priority to JP2009101322A priority Critical patent/JP5396675B2/en
Publication of JP2010249747A publication Critical patent/JP2010249747A/en
Application granted granted Critical
Publication of JP5396675B2 publication Critical patent/JP5396675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

本発明は、絶縁監視装置に関し、特に、単相2線式、単相3線式、3相3線式の電路の接地線から零相電流センサを介して入力した零相電流に含まれる抵抗性地絡電流の実効値を検出する装置に関する。   The present invention relates to an insulation monitoring device, and more particularly, a resistance included in a zero-phase current input from a ground wire of a single-phase two-wire type, single-phase three-wire type, and three-phase three-wire type electric circuit via a zero-phase current sensor. The present invention relates to an apparatus for detecting an effective value of a ground fault current.

電路の漏洩電流を監視するための絶縁監視装置が知られている。特に、近年は24時間無停電化の要請から活線状態にて電路を監視する必要がある。漏洩電流には、対地静電容量C0に起因する地絡電流Igcと、絶縁抵抗R0に起因する地絡電流Igrが含まれるが、漏電火災等を引き起こす原因は絶縁抵抗の低下であり、絶縁抵抗に起因する漏洩電流Igrを正確に検出できれば、電路の絶縁状態を正確に把握でき、漏電火災等の大惨事を未然に防止できる。   An insulation monitoring device for monitoring the leakage current of an electric circuit is known. In particular, in recent years, it has been necessary to monitor the electric circuit in a live state in response to a request for 24 hours of uninterruptible power. The leakage current includes the ground fault current Igc due to the ground capacitance C0 and the ground fault current Igr due to the insulation resistance R0, but the cause of the leakage fire is a decrease in the insulation resistance. If the leakage current Igr caused by the current can be accurately detected, the insulation state of the electric circuit can be accurately grasped, and a catastrophe such as a leakage fire can be prevented.

従来の絶縁監視装置として、電路に注入トランスから測定用低周波信号を印加し、対地静電容量C0及び絶縁抵抗R0を介して帰還する漏洩電流I0を零相変流器で検出するものがある(特許文献1参照)。しかしながら、この絶縁監視装置は、注入トランスや測定用低周波信号を発生させる電源装置が必要であり、回路規模が大型化することから、最近は注入トランスを用いない小型な絶縁監視装置のニーズが高まっている。   As a conventional insulation monitoring device, there is one that applies a low frequency signal for measurement from an injection transformer to an electric circuit and detects a leakage current I0 that is fed back through a ground capacitance C0 and an insulation resistance R0 with a zero-phase current transformer. (See Patent Document 1). However, since this insulation monitoring device requires an injection transformer and a power supply device for generating a low frequency signal for measurement, and the circuit scale increases, there is a recent need for a small insulation monitoring device that does not use an injection transformer. It is growing.

注入トランスを用いない絶縁監視方式として、例えば、零相電流センサから入力した零相電流波形のゼロクロス点を求め、また電圧プローブ等から入力した電圧波形のゼロクロス点を求め、それらの位相差から三角関数による演算を行って、絶縁抵抗に起因する地絡電流Igrの実効値を求める方式(以下、「a方式」という)が知られている(特許文献2参照)。また、零相電流センサから入力した零相電流波形と、電圧プローブ等から入力した電圧波形のゼロクロス点を基準として発生させる理想正弦波とを用いてベクトル演算を行って、絶縁抵抗に起因する地絡電流Igrの実効値を求める方式(以下、「b方式」という)が知られている(特許文献3参照)。   As an insulation monitoring method that does not use an injection transformer, for example, a zero cross point of a zero phase current waveform input from a zero phase current sensor is obtained, a zero cross point of a voltage waveform input from a voltage probe or the like is obtained, and a triangular shape is obtained from the phase difference. A method of calculating an effective value of a ground fault current Igr caused by an insulation resistance by performing a calculation using a function (hereinafter referred to as “a method”) is known (see Patent Document 2). Also, the vector calculation is performed using the zero-phase current waveform input from the zero-phase current sensor and the ideal sine wave generated with reference to the zero-cross point of the voltage waveform input from the voltage probe, etc. There is known a method (hereinafter referred to as “b method”) for obtaining an effective value of the leakage current Igr (see Patent Document 3).

特開平10−90324号公報JP-A-10-90324 特開2005−140532号公報JP 2005-140532 A 特開2002−125313号公報JP 2002-125313 A

しかしながら、特許文献2に示されたa方式の場合、零相電流センサから入力した零相電流波形のゼロクロス点を求める手段としてコンパレータなどの回路が必要である。a方式では、零相電流と線間電圧のゼロクロス点を比較することにより、両者の位相差を高精度で求める必要があり、高精度で位相差を求めるためには高精度のコンパレータが必要となる。その結果、物理的な規模が広がると共にコスト高になる、という問題が生じる。   However, in the case of the a method shown in Patent Document 2, a circuit such as a comparator is required as means for obtaining the zero cross point of the zero phase current waveform input from the zero phase current sensor. In the a method, it is necessary to determine the phase difference between the two phases with high accuracy by comparing the zero-phase current and the zero-cross point of the line voltage, and a high-precision comparator is required to obtain the phase difference with high accuracy. Become. As a result, there arises a problem that the physical scale is increased and the cost is increased.

また、特許文献3に示されたb方式の場合、理想正弦波を発生させる手段が必要であり、ソフトウェアの実装においても、零相電流センサから入力した零相電流波形からADコンバータを通した量子化データと、理想正弦波の離散化データとで三角関数による演算を行うため、誤差の要因が増えることにより測定精度が落ちるという問題がある。特に、シミュレーションとして形成される理想波形と実際の電圧波形は必ずしも一致するとは限らないため、理想波形と実際の電圧波形が乖離した場合には測定精度が大幅に悪化する可能性がある。   Further, in the case of the b method shown in Patent Document 3, means for generating an ideal sine wave is necessary, and in the implementation of software, the quantum that has passed through the AD converter from the zero-phase current waveform input from the zero-phase current sensor. Since the calculation using the trigonometric function is performed on the digitized data and the idealized sine wave discretized data, there is a problem in that the measurement accuracy decreases due to an increase in error factors. In particular, since the ideal waveform formed as a simulation does not always match the actual voltage waveform, if the ideal waveform and the actual voltage waveform deviate, the measurement accuracy may be greatly deteriorated.

本発明は上記課題を解決するものであり、本発明の目的は、零相電流波形のゼロクロス点を求める手段を不要化し、理想正弦波を発生させる手段を不要化することで二つの誤差を消去し、さらに、加算と減算と定数換算という単純な演算を行うことで、小規模化、及び、精度を向上させた信頼性のある絶縁監視装置を提供することにある。   The present invention solves the above problems, and the object of the present invention is to eliminate the need for means for obtaining the zero-cross point of the zero-phase current waveform and eliminate the need for means for generating an ideal sine wave to eliminate two errors. Another object of the present invention is to provide a reliable insulation monitoring apparatus that is reduced in size and improved in accuracy by performing simple operations such as addition, subtraction, and constant conversion.

上記課題を解決するため、本発明による絶縁監視装置は、単相2線式または単相3線式の電路の接地線から零相電流Ioを検出する零相電流検出手段と、前記零相電流検出手段によって検出された前記零相電流Ioを取り込む零相電流取込手段と、前記電路の接地線と前記非接地線との間の電路間電圧の位相情報を取り込む電路間電圧位相取込手段と、電路間電圧の位相を基準位相とし、時間変数をt、電路間電圧の周期をTとするとき、電路間電圧の1周期を単位として、0 ≦ t ≦ T/2のときは前記零相電流取込手段から出力される零相電流Io( t ) の値を累積加算し、T/2 < t < T のときは前記零相電流Io( t ) の値を累積加算し、それぞれの累積加算値のうち一方から他方を減算する加減算手段と、前記加減算手段から出力された値に対し所定の演算を施すことにより、抵抗性地絡電流の実効値igrを求める演算手段と、を備えることを特徴としている。電路間電圧位相取込手段は、位相情報として、取り込んだ電路間電圧の電圧波形におけるゼロクロス点の検出タイミングを出力し、加減算手段は、電路間電圧位相取込手段から出力される任意のゼロクロス点のタイミングをt = 0として設定し、演算手段は、加減算手段から出力された値を定数倍換算し、抵抗性地絡電流の実効値igrを求める定数倍換算手段を含んでいてもよい。
In order to solve the above-described problems, an insulation monitoring apparatus according to the present invention includes a zero-phase current detecting means for detecting a zero-phase current Io from a ground line of a single-phase two-wire or single-phase three-wire circuit, and the zero-phase current. Zero-phase current capturing means for capturing the zero-phase current Io detected by the detecting means, and inter-circuit voltage phase capturing means for capturing phase information of the voltage between the circuit between the ground line and the non-ground line of the circuit When the phase of the voltage between the circuits is a reference phase, the time variable is t, and the period of the voltage between the circuits is T, the period of the voltage between the circuits is a unit, and when 0 ≦ t ≦ T / 2, the above zero The zero-phase current Io (t) value output from the phase current capturing means is cumulatively added. When T / 2 <t <T, the zero-phase current Io (t) value is cumulatively added. Addition / subtraction means for subtracting one of the cumulative addition values from the other, and a predetermined calculation for the value output from the addition / subtraction means By applying it is characterized a calculating means for calculating an effective value igr resistive ground fault current, in that it comprises. The electrical circuit voltage phase capturing means outputs the detection timing of the zero cross point in the voltage waveform of the captured electrical circuit voltage as phase information, and the adding and subtracting means is an arbitrary zero cross point output from the electrical circuit voltage phase capturing means. The calculation means may include constant multiple conversion means for converting the value output from the addition / subtraction means by a constant multiple to obtain the effective value igr of the resistive ground fault current.

また、本発明による絶縁監視装置は、3相3線式の電路の接地線から零相電流Ioを検出する零相電流検出手段と、零相電流検出手段によって検出された零相電流Ioを取り込む零相電流取込手段と、電路の第1の非接地線と第2の非接地線との間の電路間電圧の位相情報を取り込む電路間電圧位相取込手段と、電路間電圧の位相情報を90°分だけ移動した位相情報に変換する位相移動手段と、位相移動手段から出力される位相情報を基準位相とし、時間変数をt、電路間電圧の周期をTとするとき、電路間電圧の1周期を単位として、0 ≦ t ≦ T/2における零相電流Io( t ) の値を累積加算し、T/2 < t < Tにおける零相電流Io( t ) の値を累積加算し、それぞれの累積加算値の一方から他方を減算する加減算手段と、加減算手段から出力された値に対し所定の演算を施すことにより、抵抗性地絡電流の実効値igrを求める演算手段と、を備えることを特徴とする。電路間電圧位相取込手段は、位相情報として、取り込んだ電路間電圧の電圧波形におけるゼロクロス点の検出タイミングを位相移動手段に出力し、位相移動手段は、ゼロクロス点のタイミングを基準位相の90°分だけ移動して加減算手段に出力し、加減算手段は、位相移動手段から出力される任意のゼロクロス点のタイミングをt = 0として設定し、演算手段は、加減算手段から出力された値を定数倍換算し、抵抗性地絡電流の実効値igrを求める定数倍換算手段を含んでいてもよい。
In addition, the insulation monitoring apparatus according to the present invention captures the zero-phase current Io detected by the zero-phase current detection means and the zero-phase current detection means for detecting the zero-phase current Io from the ground line of the three-phase three-wire electric circuit. Zero-phase current capturing means, inter- circuit voltage phase capturing means for capturing phase information of the inter-circuit voltage between the first non-ground line and the second non-ground line of the electrical circuit, and phase information of the inter- circuit voltage Phase shift means for converting phase information moved by 90 °, phase information output from the phase shift means as a reference phase, time variable as t, and period between voltage paths as T. The cumulative value of the zero-phase current Io (t) at 0 ≤ t ≤ T / 2 is cumulatively added, and the value of the zero-phase current Io (t) at T / 2 <t <T is cumulatively added. Addition / subtraction means for subtracting the other from one of the cumulative addition values, and the value output from the addition / subtraction means And a calculation means for obtaining an effective value igr of the resistive ground fault current by performing a predetermined calculation. The electric circuit voltage phase capturing means outputs, as phase information, the detection timing of the zero cross point in the voltage waveform of the acquired electric circuit voltage to the phase moving means, and the phase moving means outputs the zero cross point timing to 90 ° of the reference phase. The value is output to the adder / subtractor by moving by the amount. There may be included a constant multiple conversion means for converting and obtaining the effective value igr of the resistive ground fault current.

本発明による絶縁監視装置は、絶縁監視装置に電力を供給するための装置電源と、装置電源が任意の電路から取り込んだ電源電圧の位相と電路間電圧位相取込手段から出力される基準位相とを比較して位相差を求め、位相差を記憶する位相比較記憶手段とをさらに備え、位相比較記憶手段は、所定の電路から取り込んだ電源電圧の位相と位相差とに基づいて基準位相を生成してもよい。
The insulation monitoring device according to the present invention includes a device power supply for supplying power to the insulation monitoring device, a phase of a power supply voltage taken in by the device power supply from an arbitrary electric circuit, and a reference phase output from an inter-circuit voltage phase capturing means. obtains a phase difference by comparing, further comprising a phase comparator storing means for storing the phase difference, the phase comparator storage means, generates a reference phase based on the phase and the phase difference between the supply voltage taken from a predetermined path May be.

本発明において、前記位相比較記憶手段は、抵抗性地絡電流成分がゼロの零相電流Ioを前記零相電流検出手段に入力し、このとき得られる抵抗性地絡電流成分がゼロとなるように前記位相差を調整する位相差調整手段を含むことが好ましい。
In the present invention, the phase comparison storage means inputs a zero-phase current Io having a resistance ground fault current component of zero to the zero-phase current detection means, and the resistance ground fault current component obtained at this time becomes zero. It is preferable to include a phase difference adjusting means for adjusting the phase difference.

本発明において、前記定数倍換算手段は、所定の実効値を有する零相電流Ioを前記零相電流検出手段に入力し、このとき得られる零相電流の実効値が前記所定の実効値と同じ値となるように前記定数倍の値を調整する振幅値調整手段を含むことが好ましい。   In the present invention, the constant multiple conversion means inputs a zero-phase current Io having a predetermined effective value to the zero-phase current detection means, and the effective value of the zero-phase current obtained at this time is the same as the predetermined effective value. It is preferable to include an amplitude value adjusting means for adjusting the value of the constant multiple so as to be a value.

本発明によれば、電圧プローブ等の電圧検出手段から入力した電路間電圧波形の位相のゼロクロス点を元に基準位相の時間 t = 0 を決めて、0 ≦ t ≦ T/2のときは、Io( t ) の値を加算していき、T/2 < t < Tのときは、Io( t ) の値を減算していき、この加減算していった結果が1周期分の抵抗性地絡電流の実効値igrの定数倍となることから、零相電流センサから入力した零相電流波形の位相を求める手段が不要になり、電圧プローブ等の電圧検出手段から入力した電圧位相を元にした理想正弦波を発生させる手段も不要となる。したがって、回路規模を小さくできる。Igrを求めるために零相電流とIgrの位相差自体を算出する必要がないため、絶縁抵抗の測定精度を高めることができる。   According to the present invention, the time t = 0 of the reference phase is determined based on the zero cross point of the phase of the voltage waveform between the electric circuits input from the voltage detection means such as a voltage probe, and when 0 ≦ t ≦ T / 2, The value of Io (t) is added, and when T / 2 <t <T, the value of Io (t) is subtracted. Since it is a constant multiple of the effective value igr of the ripple current, there is no need for means for obtaining the phase of the zero-phase current waveform input from the zero-phase current sensor, and the voltage phase input from the voltage detection means such as a voltage probe is used. The means for generating the ideal sine wave is also unnecessary. Therefore, the circuit scale can be reduced. Since it is not necessary to calculate the phase difference itself between the zero-phase current and Igr in order to obtain Igr, the measurement accuracy of the insulation resistance can be increased.

第1の実施形態による絶縁監視装置の構成を示すブロック図である。It is a block diagram which shows the structure of the insulation monitoring apparatus by 1st Embodiment. 第2の実施形態による絶縁監視装置の構成を示すブロック図である。It is a block diagram which shows the structure of the insulation monitoring apparatus by 2nd Embodiment. 単相3線式及び単相2線式における零相電流の電流成分を示すベクトル図である。It is a vector diagram which shows the electric current component of the zero phase current in a single phase 3 wire system and a single phase 2 wire system. 電路間電圧と零相電流の関係を示す図である。It is a figure which shows the relationship between the voltage between electrical circuits, and a zero phase current. 第3の実施形態による絶縁監視装置の構成を示すブロック図である。It is a block diagram which shows the structure of the insulation monitoring apparatus by 3rd Embodiment. 第4の実施形態による絶縁監視装置の構成を示すブロック図である。It is a block diagram which shows the structure of the insulation monitoring apparatus by 4th Embodiment. 第5の実施形態による絶縁監視装置の構成を示すブロック図である。It is a block diagram which shows the structure of the insulation monitoring apparatus by 5th Embodiment. 3相3線式における零相電流の電流成分を示すベクトル図である。It is a vector diagram which shows the electric current component of the zero phase current in a three-phase three-wire system. 3相3線式の電路の位相取り込みを、一方の非接地相と接地相、及び、他方の非接地相と接地相の2回に分けて取り込む場合の絶縁監視装置の構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration of an insulation monitoring device in the case of capturing a phase of a three-phase three-wire electric circuit in two phases of one non-ground phase and a ground phase and another non-ground phase and a ground phase. is there. Io位相誤差を与えた場合のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result at the time of giving an Io phase error. Io実効値誤差を与えた場合のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result at the time of giving Io RMS value error. 誤差を与えない場合のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result when not giving an error. 1周期のサンプリング数を増加させた場合のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result at the time of increasing the sampling number of 1 period. 電路間電圧のゼロクロス点からβだけ前後する時点をt=0として、igrを求める方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of calculating | requiring igr by setting t = 0 as the time of about β from the zero crossing point of the electric circuit voltage. 電路間電圧のゼロクロス点からπ/2だけ遅れた時点をt=0として、igrを求める方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of calculating | requiring igr by making t = 0 the time of being late | slow by (pi) / 2 from the zero crossing point of the voltage between electrical circuits.

以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の第1の実施形態による絶縁監視装置の構成を示すブロック図である。   FIG. 1 is a block diagram showing a configuration of an insulation monitoring apparatus according to the first embodiment of the present invention.

図1に示すように、本実施形態による絶縁監視装置1Aは、単相3線式の電路20を監視対象とする位相取込型絶縁監視装置であって、接地線(接地相)20oから延びる接地ライン3oに取り付けられた零相電流センサ(零相電流検出手段)2と、増幅回路やLPF等からなる零相電流取込手段4と、電圧プローブ(電圧検出手段)3aを介して非接地線(非接地相)20a,20bのどちらか一方(ここでは非接地線20a)に接続されると共に、電圧プローブ(電圧検出手段)3bを介して接地線20oに接続された電路間電圧位相取込手段5と、零相電流取込手段4と電路間電圧位相取込手段5に接続された加減算手段6と、加減算手段6に接続された定数倍換算手段7と、定数倍換算手段7に接続された報知手段8とを備えている。   As shown in FIG. 1, the insulation monitoring apparatus 1A according to the present embodiment is a phase capture type insulation monitoring apparatus that monitors a single-phase three-wire electric circuit 20 and extends from a ground line (ground phase) 20o. Zero-phase current sensor (zero-phase current detection means) 2 attached to the ground line 3o, zero-phase current capturing means 4 comprising an amplifier circuit, LPF, etc., and non-grounded via a voltage probe (voltage detection means) 3a The voltage phase adjustment between the electric circuits connected to one of the wires (non-ground phase) 20a and 20b (here, the non-ground wire 20a) and connected to the ground wire 20o via the voltage probe (voltage detection means) 3b. Loading means 5, zero-phase current capturing means 4, addition / subtraction means 6 connected to circuit voltage phase capturing means 5, constant multiple conversion means 7 connected to addition / subtraction means 6, and constant multiple conversion means 7 And connected notification means 8.

零相電流取込手段4は零相電流センサ2が検出した零相電流を取り込み、零相電流波形Io( t )を抽出する(tは時間変数)。一方、電路間電圧位相取込手段5は、接地線20oと非接地線20aとの間の電路間電圧を取り込み、電路間電圧のゼロクロス点を求める。零相電流がマイナスからプラスにクロスするゼロクロス点P1と、次のマイナスからプラスにクロスするゼロクロス点P2の差が零相電流の周期Tとなる。加減算手段6は、基準位相であるゼロクロス点P1の検出時刻をt = 0とし、1周期の時間をTとして、前半の1/2周期である0 ≦ t ≦ T/2のときは零相電流Io( t ) の値を加算していき、後半の1/2周期であるT/2 < t < T のときはIo( t ) の値を減算していく。定数倍換算手段7はその加減算値に換算用の定数を乗算して抵抗性地絡電流の実効値igrを求める。報知手段8は抵抗性地絡電流の実効値igrを監視し、その実効値が警報値に達したときにランプを点灯させたり、値を表示させたりするなどの報知を行う。   The zero-phase current capturing means 4 captures the zero-phase current detected by the zero-phase current sensor 2 and extracts the zero-phase current waveform Io (t) (t is a time variable). On the other hand, the inter-circuit voltage phase capturing means 5 captures the inter-circuit voltage between the ground line 20o and the non-ground line 20a and obtains the zero cross point of the inter-circuit voltage. The difference between the zero cross point P1 where the zero phase current crosses from minus to plus and the zero cross point P2 where the zero phase current crosses from minus to plus becomes the cycle T of the zero phase current. The adder / subtractor 6 sets the detection time of the zero-cross point P1, which is the reference phase, to t = 0, the time of one cycle as T, and the zero-phase current when the first half of the cycle is 0 ≦ t ≦ T / 2. The value of Io (t) is added, and when T / 2 <t <T, which is the half cycle of the latter half, the value of Io (t) is subtracted. The constant multiple conversion means 7 multiplies the addition / subtraction value by a conversion constant to obtain an effective value igr of the resistive ground fault current. The notification means 8 monitors the effective value igr of the resistive ground fault current, and notifies that the lamp is turned on or the value is displayed when the effective value reaches the alarm value.

図2は、本発明の第2の実施形態による絶縁監視装置の構成を示すブロック図である。   FIG. 2 is a block diagram showing a configuration of an insulation monitoring apparatus according to the second embodiment of the present invention.

図2に示す絶縁監視装置1Bは、単相2線式の電路30を監視対象する点で図1の絶縁監視装置1Aと相違するが、装置構成は実質的に同一であり、位相取り込み用の引き込み線についても一方が非接地線30a、他方が接地線30oから延びる接地ライン3oにそれぞれ接続される点で同一である。そのため、同一の構成要素には同一の符号を付し、絶縁監視装置1Bの詳細な説明は省略する。
The insulation monitoring device 1B shown in FIG. 2 is different from the insulation monitoring device 1A of FIG. 1 in that the single-phase two-wire electric circuit 30 is monitored, but the device configuration is substantially the same, and is for phase acquisition. The lead wires are the same in that one is connected to the non-ground line 30a and the other is connected to the ground line 3o extending from the ground line 30o . For this reason, the same components are denoted by the same reference numerals, and detailed description of the insulation monitoring device 1B is omitted.

次に、抵抗性地絡電流の実効値igrを求める方法について詳細に説明する。   Next, a method for obtaining the effective value igr of the resistive ground fault current will be described in detail.

図3は、単相3線式及び単相2線式における零相電流の電流成分を示すベクトル図である。   FIG. 3 is a vector diagram showing current components of the zero-phase current in the single-phase three-wire system and the single-phase two-wire system.

図3に示すように、零相電流Ioは、容量性地絡電流Icと抵抗性地絡電流Igrとの合成であり、単相3線式及び単相2線式の電路では、容量性地絡電流Icと抵抗性地絡電流Igrの位相は90°ずれている。αは零相電流Ioと抵抗性地絡電流Igrとの位相角である。よって、抵抗性地絡電流Igrの大きさを零相電流Ioで表すと式(1)のようになる。つまり、零相電流Ioの大きさと位相角αを求めれば、抵抗性地絡電流Igrの大きさを求めることができる。   As shown in FIG. 3, the zero-phase current Io is a combination of the capacitive ground fault current Ic and the resistive ground fault current Igr. In the single-phase three-wire and single-phase two-wire electric circuits, The phases of the fault current Ic and the resistive ground fault current Igr are shifted by 90 °. α is a phase angle between the zero-phase current Io and the resistive ground fault current Igr. Therefore, when the magnitude of the resistive ground fault current Igr is expressed by the zero-phase current Io, the following equation (1) is obtained. That is, if the magnitude of the zero-phase current Io and the phase angle α are obtained, the magnitude of the resistive ground fault current Igr can be obtained.

Figure 0005396675
Figure 0005396675

次に、零相電流波形Io( t )について考える。tを時間変数とし、電路間電圧位相取込手段5から出力される基準位相であるゼロクロス点の時間をt = 0、基準位相と零相電流波形の位相差、すなわち、Igr( t )とIo( t )の位相差をα、零相電流波形の振幅値をIo、角周波数をω、周波数をf、電路周波数の1周期の時間をTとするとき、単相3線式及び単相2線式において、零相電流取込手段4から加減算手段6に出力される零相電流波形Io( t )は式(2)のように表せる。   Next, consider the zero-phase current waveform Io (t). With t as a time variable, the time at the zero crossing point, which is the reference phase output from the inter-circuit voltage phase capturing means 5, is t = 0, and the phase difference between the reference phase and the zero-phase current waveform, that is, Igr (t) and Io When the phase difference of (t) is α, the amplitude value of the zero-phase current waveform is Io, the angular frequency is ω, the frequency is f, and the time of one cycle of the circuit frequency is T, the single-phase three-wire system and the single-phase 2 In the linear system, the zero-phase current waveform Io (t) output from the zero-phase current capturing means 4 to the adding / subtracting means 6 can be expressed as shown in Expression (2).

Figure 0005396675
Figure 0005396675

図4は、電路間電圧と零相電流の関係を示す図である。電路間電圧(基準位相)と零相電流の位相のずれが式(2)に示す位相角αに相当する。また、電路間電圧の周期と零相電流の周期は当然ながら同一である。図4に示すように、0 ≦ t ≦ T/2のときは零相電流Io( t )を累積加算しT/2 < t < T のときはIo( t )の値を累積減算し、その結果をasIoとする。asIoは式(3)のようになる(式中のIgrは抵抗性地絡電流の振幅値である)。式(1)の関係を適用することにより、位相角αが式(3)から除去されている。   FIG. 4 is a diagram illustrating the relationship between the voltage between the electric circuits and the zero-phase current. The phase shift between the electric circuit voltage (reference phase) and the zero-phase current corresponds to the phase angle α shown in Equation (2). Of course, the cycle of the voltage between the electric circuits and the cycle of the zero-phase current are the same. As shown in FIG. 4, when 0 ≦ t ≦ T / 2, zero-phase current Io (t) is cumulatively added, and when T / 2 <t <T, the value of Io (t) is cumulatively subtracted. The result is asIo. asIo is as shown in Equation (3) (Igr in the equation is the amplitude value of the resistive ground fault current). By applying the relationship of equation (1), the phase angle α is removed from equation (3).

Figure 0005396675
Figure 0005396675

ゆえに、抵抗性地絡電流の振幅値Igrは、式(4)のようになり、求める抵抗性地絡電流の実効値をigrとすると、igrが正であることを考慮して、式(5)によりigrを表せる。既知の値であるasIoに基づき、位相角αを算出することなく、igrを求めることができる。   Therefore, the amplitude value Igr of the resistive ground fault current is as shown in the formula (4). When the effective value of the resistive ground fault current to be obtained is igr, the formula (5) is considered in consideration that igr is positive. ) To express igr. Based on the known value asIo, igr can be obtained without calculating the phase angle α.

Figure 0005396675
Figure 0005396675

Figure 0005396675
Figure 0005396675

ソフトウェア実装のための設計では、kを1周期サンプリング用時間変数とし、零相電流取込手段4から出力される零相電流波形をIo( k )、電路間電圧位相取込手段5から出力される基準位相のゼロクロス点の時間をk = 0、基準位相と零相電流波形の位相差をα、零相電流波形の振幅値をIo、電路周波数の1周期サンプリング数をN(Nは2より大きい偶数)とすると、Io( k )は式(6)のように表せる。   In the design for software implementation, k is a time variable for one-period sampling, and the zero-phase current waveform output from the zero-phase current capturing means 4 is output from the Io (k) and the inter-circuit voltage phase capturing means 5. The time of the zero cross point of the reference phase is k = 0, the phase difference between the reference phase and the zero-phase current waveform is α, the amplitude value of the zero-phase current waveform is Io, and the number of samplings of one cycle of the circuit frequency is N (N is 2) Io (k) can be expressed as in Equation (6).

Figure 0005396675
Figure 0005396675

ここで、rはADコンバータへの入力の際のオフセット値で設計上は既知とできるが、1周期ごとに求めてもよい。0 ≦ k ≦ N/2のときはIo( k ) の値を加算していき、N/2< k < NのときはIo( k ) の値を減算し、その結果をasIoとすると、asIoは式(7)のようになる(Igrは抵抗性地絡電流の振幅値である)。式(1)の関係を適用することにより、位相角αは式(7)から除去される。   Here, r is an offset value at the time of input to the AD converter and can be known in design, but it may be obtained every cycle. When 0 ≤ k ≤ N / 2, the value of Io (k) is added. When N / 2 <k <N, the value of Io (k) is subtracted, and the result is asIo. (7) (Igr is the amplitude value of the resistive ground fault current). By applying the relationship of equation (1), the phase angle α is removed from equation (7).

Figure 0005396675
Figure 0005396675

ゆえに、抵抗性地絡電流の振幅値Igrは式(8)のようになり、求める抵抗性地絡電流の実効値をigrとすると、igrが正であることを考慮して、式(9)となる。   Therefore, the amplitude value Igr of the resistive ground fault current is as shown in Formula (8). If the effective value of the resistive ground fault current to be obtained is igr, the formula (9) is taken into account that igr is positive. It becomes.

Figure 0005396675
Figure 0005396675

Figure 0005396675
Figure 0005396675

ただし、ADコンバータのビット数やレンジによる換算は、定数倍換算手段7の定数が変わるだけなので、ここでは考慮していない。なお、多重割込みの回避策にはメディアンなどを利用すればよい。   However, the conversion based on the number of bits and the range of the AD converter is not considered here because the constant of the constant multiple conversion means 7 changes. A median or the like may be used as a measure for avoiding multiple interrupts.

以上説明したように、本実施形態による絶縁監視装置1は、電圧プローブから入力した電路間電圧波形の位相のゼロクロス点を元に基準位相の時間 t = 0 を定め、0 ≦ t ≦ T/2のときにはIo( t )の値を加算していき、T/2 < t < T のときにはIo( t )の値を減算していき、1周期分を加減算していった結果を定数倍することにより、抵抗性地絡電流の実効値igrを求めることができる。式(3)や式(7)に、式(1)の関係を適用すれば、式中から位相角αを除去できる。すなわち、α自体を求める労力をかけることなく、Igrやigrを求めることができる。そのため、零相電流センサから入力した零相電流波形の位相を求める手段が不要になり、電圧位相を元にした理想正弦波を発生させる手段も不要となる。この二つが不要となることで小規模化が実現され、また、位相角αの算出や理想正弦波の演算に基づく誤差もなくなるため絶縁抵抗の測定精度を高めることができる。   As described above, the insulation monitoring apparatus 1 according to the present embodiment determines the time t = 0 of the reference phase based on the zero cross point of the phase of the voltage waveform between the electric circuits input from the voltage probe, and 0 ≦ t ≦ T / 2 Io (t) value is added at the time of I, and Io (t) value is subtracted when T / 2 <t <T, and the result of adding / subtracting one period is multiplied by a constant. Thus, the effective value igr of the resistive ground fault current can be obtained. If the relationship of Formula (1) is applied to Formula (3) or Formula (7), the phase angle α can be removed from the formula. That is, Igr and igr can be obtained without taking the effort to find α itself. Therefore, a means for obtaining the phase of the zero-phase current waveform input from the zero-phase current sensor becomes unnecessary, and a means for generating an ideal sine wave based on the voltage phase becomes unnecessary. Since the two are not required, the scale can be reduced, and the measurement accuracy of the insulation resistance can be improved because there is no error based on the calculation of the phase angle α and the calculation of the ideal sine wave.

図5は、本発明の第3の実施形態による絶縁監視装置の構成を示すブロック図である。   FIG. 5 is a block diagram showing a configuration of an insulation monitoring apparatus according to the third embodiment of the present invention.

図5に示すように、本実施形態による絶縁監視装置1Cの特徴は、当該絶縁監視装置1Cの装置電源10を利用し、電源電圧波形のゼロクロス点を元に基準位相の時間 t = 0 を決定する点にある。装置電源10は、絶縁監視装置1Cそのものを動作させるために必要なものであり、変圧回路やLPF等で構成されている。さらに、絶縁監視装置1Cは位相比較記憶手段11を備えており、位相比較記憶手段11は装置電源10から提供される電源電圧の位相と電路間電圧位相取込手段5から出力される本来の基準位相とを比較し、得られた位相差dを記憶する。そして、絶縁監視装置1Cの運用時には、装置電源10からの位相に位相比較記憶手段11が保持する位相差dを加算し、その結果を基準位相として、抵抗性地絡電流の実効値igrを求める。   As shown in FIG. 5, the insulation monitoring device 1C according to the present embodiment is characterized by using the device power supply 10 of the insulation monitoring device 1C and determining the time t = 0 of the reference phase based on the zero cross point of the power supply voltage waveform. There is in point to do. The device power supply 10 is necessary for operating the insulation monitoring device 1C itself, and is composed of a transformer circuit, LPF, or the like. Furthermore, the insulation monitoring device 1C is provided with a phase comparison storage means 11 which is the original reference output from the phase of the power supply voltage provided from the apparatus power supply 10 and the voltage phase capturing means 5 between the electric circuits. The phase difference d obtained by comparing with the phase is stored. During operation of the insulation monitoring device 1C, the phase difference d held by the phase comparison storage means 11 is added to the phase from the device power supply 10, and the effective value igr of the resistive ground fault current is obtained using the result as a reference phase. .

そのため、電圧プローブ3a,3bを用いて電路の電圧波形の位相を最初に取り込んでおけば、その後は、電路間電圧位相取込手段5の信号取込手段3a,3bを取り外したとしても、装置電源10からの位相に位相比較記憶手段11が保持する位相差dを加算して、加算された結果を基準位相として、抵抗性地絡電流の実効値igrを求めることができる。したがって、電圧プローブの常時設置が困難な状況下では非常に便利であり、低コスト化を実現することもできる。   Therefore, if the phase of the voltage waveform of the electric circuit is first acquired by using the voltage probes 3a and 3b, even if the signal acquisition means 3a and 3b of the inter-circuit voltage phase acquisition means 5 are removed thereafter, the apparatus The effective value igr of the resistive ground fault current can be obtained by adding the phase difference d held by the phase comparison storage unit 11 to the phase from the power supply 10 and using the added result as a reference phase. Therefore, it is very convenient in a situation where it is difficult to always install the voltage probe, and the cost can be reduced.

初期設定で電圧プローブ3a,3bを用いる理由は、装置電源10から取り込んだ電源電圧の位相が、電圧プローブ3a,3bを用いて取り込むべき本来の電路の位置の位相と必ず一致するとは限らないことによるものである。   The reason why the voltage probes 3a and 3b are used in the initial setting is that the phase of the power supply voltage acquired from the apparatus power supply 10 does not always coincide with the phase of the original electric circuit position to be acquired using the voltage probes 3a and 3b. Is due to.

24時間体制で電路20の絶縁状態を監視することが望ましいが、電圧プローブ3a、3bを常時接続するのは難しい状況もある。第3の実施形態によれば、装置電源10の電圧波形に基づいてigrを算出できるため、電圧プローブを常時接続しなくても24時間体制の絶縁監視が可能となる。ただし、装置電源10の動作電力は、電路20とトランス結合されている別の電路から供給されているのかもしれない。装置電源10の動作電力が電路20から供給されるとしても、装置電源10内部の遅延や電路20から装置電源10までの伝送遅延により、装置電源10に供給される電圧波形と電路20が提供する電圧波形の位相が同相になるとは限らない。このため、電路20の電圧波形と装置電源10の電圧波形は同期するものの、両者の間にはいくばくかの位相差d(位相遅れ)が発生する。この位相差dを装置を設置する際に測定しておけば、以後は、装置電源10に提供される電圧波形の位相に位相差dを加算すれば、電路20の電圧波形の位相を求めることができる。したがって、電圧プローブ3a、3bを常時接続することなく絶縁監視できる。   Although it is desirable to monitor the insulation state of the electric circuit 20 on a 24-hour basis, there are situations where it is difficult to always connect the voltage probes 3a and 3b. According to the third embodiment, since igr can be calculated based on the voltage waveform of the apparatus power supply 10, it is possible to monitor insulation for 24 hours without always connecting a voltage probe. However, the operating power of the apparatus power supply 10 may be supplied from another electric circuit that is transformer-coupled to the electric circuit 20. Even if the operating power of the apparatus power supply 10 is supplied from the electric circuit 20, the voltage waveform supplied to the apparatus power supply 10 and the electric circuit 20 are provided by the delay in the apparatus power supply 10 and the transmission delay from the electric circuit 20 to the apparatus power supply 10. The phase of the voltage waveform is not always in phase. For this reason, although the voltage waveform of the electric circuit 20 and the voltage waveform of the apparatus power supply 10 are synchronized, some phase difference d (phase lag) is generated between the two. If the phase difference d is measured when the apparatus is installed, thereafter, the phase of the voltage waveform of the electric circuit 20 is obtained by adding the phase difference d to the phase of the voltage waveform provided to the apparatus power supply 10. Can do. Therefore, the insulation can be monitored without always connecting the voltage probes 3a and 3b.

以上説明したように、本実施形態によれば、絶縁監視装置1Cの運用中は装置電源10からの電圧位相に基づいて基準位相を生成することから、電圧プローブ3a,3bの常時接続が不要となり、信頼性やコスト面で非常に有利な構成とすることができる。すなわち、電圧プローブ3a,3bを電路に常時接続する場合には、電圧プローブ自身が地絡の原因となるおそれがあり、不具合の発生源になりかねない。また、電圧プローブを常時接続に対応させるためにはより耐久性・信頼性の高い丈夫な作りのものにしなければならず、高コストとなる。しかしながら、電圧プローブを絶縁監視装置の設置時にのみ使用し、最初に位相を取り込んだ後は電圧プローブを取り外す場合には、簡易な作りの電圧プローブの使い回しができるので、コスト面でも有利である。   As described above, according to the present embodiment, since the reference phase is generated based on the voltage phase from the apparatus power supply 10 during the operation of the insulation monitoring apparatus 1C, it is not necessary to always connect the voltage probes 3a and 3b. Therefore, the configuration can be very advantageous in terms of reliability and cost. That is, when the voltage probes 3a and 3b are always connected to the electric circuit, the voltage probe itself may cause a ground fault, which may be a source of trouble. Further, in order to make the voltage probe compatible with the constant connection, it is necessary to make the voltage probe more durable and reliable, and the cost becomes high. However, if the voltage probe is used only at the time of installation of the insulation monitoring device and the voltage probe is removed after the phase is first taken in, it is advantageous in terms of cost because a simple voltage probe can be reused. .

図6は、本発明の第4の実施形態による絶縁監視装置の構成を示すブロック図である。   FIG. 6 is a block diagram showing a configuration of an insulation monitoring apparatus according to the fourth embodiment of the present invention.

図6に示すように、本実施形態による絶縁監視装置1Dの特徴は、零相電流センサ2や基板実装部品の特性のばらつきによる抵抗性地絡電流の実効値igrの位相のずれを予め調整する機能を備える点にある。図3に示したように、零相電流Ioが容量性地絡電流Icのみからなり抵抗性地絡電流Igrが0の場合には、抵抗性地絡電流の実効値igrも理論上0になるはずであるが、実際には零相電流取込手段4や電路間電圧位相取込手段5に含まれる位相遅延要素によって抵抗性地絡電流の実効値igrが0として検出されるとは限らない。そのため、容量性地絡電流Icのみを流せる擬似電路21を用意し、装置電源10の電圧を疑似電路21から取り込み、定数倍換算手段7により抵抗性地絡電流の実効値igrを求める。そして、抵抗性地絡電流の実効値igrが0に収束するように位相比較記憶手段11が保持する位相差を調整し、調整済みの位相差を位相比較記憶手段11に記憶させておくことで、位相調整された抵抗性地絡電流の実効値igrを求めることができる。このような調整作業は、絶縁監視装置1Dを電路に設置する前(より具体的には製品出荷前)に行われる。   As shown in FIG. 6, the feature of the insulation monitoring device 1D according to the present embodiment is to adjust in advance the phase shift of the effective value igr of the resistive ground fault current due to variations in the characteristics of the zero-phase current sensor 2 and the board mounted components. It has a function. As shown in FIG. 3, when the zero-phase current Io consists only of the capacitive ground fault current Ic and the resistive ground fault current Igr is zero, the effective value igr of the resistive ground fault current is theoretically zero. However, in practice, the effective value igr of the resistive ground fault current is not always detected as 0 by the phase delay element included in the zero-phase current capturing unit 4 or the inter-circuit voltage phase capturing unit 5. . Therefore, a pseudo electric circuit 21 through which only the capacitive ground fault current Ic can flow is prepared, the voltage of the apparatus power supply 10 is taken from the pseudo electric circuit 21, and the effective value igr of the resistive ground fault current is obtained by the constant multiple conversion means 7. Then, the phase difference held by the phase comparison storage unit 11 is adjusted so that the effective value igr of the resistive ground fault current converges to 0, and the adjusted phase difference is stored in the phase comparison storage unit 11. The effective value igr of the resistive ground fault current adjusted in phase can be obtained. Such adjustment work is performed before the insulation monitoring device 1D is installed on the electric circuit (more specifically, before product shipment).

また、本実施形態による絶縁監視装置1Dは、零相電流センサ2や基板実装部品の特性のばらつきによる抵抗性地絡電流の実効値igrの振幅のずれを予め調整することも可能である。そのような調整は、零相電流Ioの実効値を求める手段を設け、定数倍換算手段7により抵抗性地絡電流の実効値igrを求め、流している容量性地絡電流になるように、定数倍換算手段7の換算値を変更すればよい。   In addition, the insulation monitoring device 1D according to the present embodiment can also adjust in advance the amplitude deviation of the effective value igr of the resistive ground fault current due to variations in the characteristics of the zero-phase current sensor 2 and the board-mounted components. For such adjustment, a means for obtaining the effective value of the zero-phase current Io is provided, and the effective value igr of the resistive ground fault current is obtained by the constant multiple conversion means 7 so that the capacitive ground fault current is flowing. The conversion value of the constant multiple conversion means 7 may be changed.

たとえば、工場出荷時において、Icの実効値ic= 500mA、同じくIgrの実効値igr = 0mAとなる容量成分のみの零相電流Ioを試験的に流す。絶縁監視装置1D内部の遅延要素等により、定数倍換算手段は非負のigrを検出したとする。ic = 500mA、igr = 0mAとなる試験的な零相電流Ioを流したときに、 igr = 1mAが検出された場合には、零相電流Ioの1/500が装置固有の要素によりigrとして検出されてしまうことが判明する。このような値を補正値として登録しておくことにより、絶縁監視時に検出されるigrから装置内部の遅延要因を除去することができるため、いっそう測定精度を向上させることができる。実際には、容量成分のみの零相電流Ioを流したときに非負のigrが検出されたときには、位相比較記憶手段11が検出したαを0.1°ずつずらしながら、本来の位相角α=0に調整する。この調整分が補正値となる。   For example, at the time of shipment from the factory, a zero-phase current Io having only a capacitance component having an effective value of Ic of ic = 500 mA and an effective value of Igr of igr = 0 mA is experimentally passed. It is assumed that the constant multiple conversion means detects non-negative igr due to a delay element or the like inside the insulation monitoring device 1D. When igr = 1mA is detected when a trial zero-phase current Io with ic = 500mA and igr = 0mA is applied, 1/500 of the zero-phase current Io is detected as igr by a device-specific element. It turns out that it will be. By registering such a value as a correction value, the delay factor inside the apparatus can be removed from the igr detected during insulation monitoring, so that the measurement accuracy can be further improved. Actually, when a non-negative igr is detected when a zero-phase current Io having only a capacitance component is supplied, the original phase angle α = Adjust to zero. This adjustment becomes a correction value.

位相だけでなく、振幅の調整についても同様である。たとえば、工場出荷時において、ic=500mA、igr = 0となる抵抗成分のみの零相電流Ioを試験的に流したとき、検出されたIoの振幅が499mAであったとする。この場合、検出されたIoの振幅に乗数k=500/499を乗算すれば、実際のIoの振幅を求めることができる。   The same applies to not only the phase but also the amplitude adjustment. For example, it is assumed that when the zero-phase current Io having only a resistance component satisfying ic = 500 mA and igr = 0 is flowed experimentally at the time of shipment from the factory, the amplitude of the detected Io is 499 mA. In this case, the actual amplitude of Io can be obtained by multiplying the detected amplitude of Io by a multiplier k = 500/499.

以上説明したように、本実施形態によれば、絶縁監視装置1Cを電路に設置する前に、装置固有の位相誤差や振幅誤差を修正することができ、より精度の高い抵抗性地絡電流の検出が可能となる。   As described above, according to the present embodiment, the phase error and the amplitude error inherent to the device can be corrected before the insulation monitoring device 1C is installed in the electric circuit, and the resistance ground fault current with higher accuracy can be corrected. Detection is possible.

図7は、本発明の第5の実施形態による絶縁監視装置の構成を示すブロック図である。   FIG. 7 is a block diagram showing a configuration of an insulation monitoring apparatus according to the fifth embodiment of the present invention.

図7に示すように、本実施形態による絶縁監視装置1Eは、3相3線式の電路20を監視対象する位相取込型絶縁監視装置であって、位相移動手段9を備えている点を特徴としている。すなわち、絶縁監視装置1Eは、接地線(接地相)20oから延びる接地ライン3oに取り付けられた零相電流センサ(零相電流検出手段)2と、増幅回路やLPF等からなる零相電流取込手段4と、電圧プローブ3aを介して一方の非接地線(非接地相)20aに接続されると共に、電圧プローブ3bを介して他方の非接地線(非接地相)20bに接続された電路間電圧位相取込手段5と、電路間電圧位相取込手段5に接続された位相移動手段9と、零相電流取込手段4と位相移動手段9に接続された加減算手段6と、加減算手段6に接続された定数倍換算手段7と、定数倍換算手段7に接続された報知手段8とを備えている。
As shown in FIG. 7, the insulation monitoring apparatus 1E according to the present embodiment is a phase capture type insulation monitoring apparatus that monitors a three-phase three-wire electric circuit 20 and includes a phase shift means 9. It is a feature. That is, the insulation monitoring device 1E includes a zero-phase current sensor (zero-phase current detection means) 2 attached to a ground line 3o extending from the ground line (ground phase) 20o, and a zero-phase current capturing unit including an amplifier circuit and an LPF. Between the circuit 4 and the electric circuit connected to one non-ground line (non-ground phase) 20a via the voltage probe 3a and connected to the other non-ground line (non-ground phase) 20b via the voltage probe 3b Voltage phase capturing means 5, phase shift means 9 connected to the inter-circuit voltage phase capture means 5, zero-phase current capture means 4, addition / subtraction means 6 connected to the phase shift means 9, and addition / subtraction means 6 And a constant multiple conversion means 7 connected to, and a notification means 8 connected to the constant multiple conversion means 7.

零相電流取込手段4は零相電流センサ2が検出した零相電流を取り込み、零相電流波形Io( t )を抽出する(tは時間変数)。一方、電路間電圧位相取込手段5は、非接地線20aと非接地線20bとの間の電路間電圧を取り込み、電路間電圧波形の位相が求められるが、この位相は位相移動手段によって90°シフトされ、このシフトされた位相が基準位相に設定される。加減算手段6は、基準位相のゼロクロス点の時刻をt = 0とし、基準位相の1周期の時間をTとして、前半の1/2周期である0 ≦ t ≦ T/2のときは零相電流Io( t )の値を累積加算していき、後半の1/2周期であるT/2 < t < T のときはIo( t )の値を累積減算していく。定数倍換算手段7はその加減算値に換算用の定数を乗算して抵抗性地絡電流の実効値igrを求める。報知手段8は抵抗性地絡電流の実効値igrを監視し、その実効値が警報値に達したときにランプを点灯させたり、値を表示させたりするなどの報知を行う。   The zero-phase current capturing means 4 takes in the zero-phase current detected by the zero-phase current sensor 2 and extracts the zero-phase current waveform Io (t) (t is a time variable). On the other hand, the inter-circuit voltage phase capturing means 5 captures the inter-circuit voltage between the non-ground line 20a and the non-ground line 20b, and the phase of the inter-circuit voltage waveform is obtained. Is shifted, and this shifted phase is set as the reference phase. The adder / subtractor 6 sets the time of the zero cross point of the reference phase to t = 0, the time of one cycle of the reference phase as T, and zero phase current when the first half of the cycle is 0 ≦ t ≦ T / 2 The value of Io (t) is cumulatively added. When T / 2 <t <T, which is the latter half of the cycle, the value of Io (t) is cumulatively subtracted. The constant multiple conversion means 7 multiplies the addition / subtraction value by a conversion constant to obtain an effective value igr of the resistive ground fault current. The notification means 8 monitors the effective value igr of the resistive ground fault current, and notifies that the lamp is turned on or the value is displayed when the effective value reaches the alarm value.

次に、抵抗性地絡電流の実効値igrを求める方法について詳細に説明する。   Next, a method for obtaining the effective value igr of the resistive ground fault current will be described in detail.

図8は、3相3線式における零相電流の電流成分を示すベクトル図である。   FIG. 8 is a vector diagram showing the current component of the zero-phase current in the three-phase three-wire system.

図8に示す零相電流Ioは、容量性地絡電流Icと電路oaにおける抵抗性地絡電流Igrとの合成であり、3相3線式の電路では、容量性地絡電流Icと抵抗性地絡電流Igrの位相は120°ずれる。αは零相電流Ioと基準位相Igrmとの位相角である。よって、抵抗性地絡電流Igrの絶対値を零相電流Ioで表すと式10のようになる。

Figure 0005396675
The zero-phase current Io shown in FIG. 8 is a combination of the capacitive ground fault current Ic and the resistive ground fault current Igr in the circuit oa. In the three-phase three-wire circuit, the capacitive ground fault current Ic and the resistance The phase of the ground fault current Igr is shifted by 120 °. α is a phase angle between the zero-phase current Io and the reference phase Igrm. Therefore, when the absolute value of the resistive ground fault current Igr is expressed by the zero-phase current Io, the following equation 10 is obtained.
Figure 0005396675

つまり、零相電流Ioの大きさと位相角αを求めることができれば、抵抗性地絡電流Igrの大きさを求めることができる。電路oaにおける電流ioa、電路abにおける電流iab、電路obにおける電流iobは、それぞれ60°ずつ位相がずれる。ここで電流ioaについての地絡電流の容量成分icaは、電流ioaに対して位相が90°進む。同様に、電流iobについての地絡電流の容量成分icbは、電流iobに対して位相が90°進む。電流iabについての地絡電流の容量成分は十分に小さいためここでは考慮しない。icaとicbを合成し、地絡電流全体としての容量成分Icを求める。Icの位相とIgrの位相は120°ずれるかたちになる。容量成分Icから90°遅れた位相を基準位相Igrmとする。IgrmとIoの位相差がαである。Igrの位相は、電流ioaと同相であるから、IgrmとIgrの位相差は30°となる。IgrとIcを合成するとIoになる。ただし、この段階では、IgrもIoも大きさは未知である。以上により、式(10)の関係が成立する。式(3)や式(7)にこの関係を代入すれば、Igrを求めることができる。  That is, if the magnitude of the zero-phase current Io and the phase angle α can be obtained, the magnitude of the resistive ground fault current Igr can be obtained. The current ioa in the electric circuit oa, the current iab in the electric circuit ab, and the current iob in the electric circuit ob are out of phase by 60 °. Here, the capacity component ica of the ground fault current for the current ioa advances by 90 ° with respect to the current ioa. Similarly, the capacitance component icb of the ground fault current for the current iob advances by 90 ° with respect to the current iob. Since the capacitance component of the ground fault current for the current iab is sufficiently small, it is not considered here. By combining ica and icb, the capacitance component Ic as the entire ground fault current is obtained. The phase of Ic and the phase of Igr are shifted by 120 °. A phase delayed by 90 ° from the capacitance component Ic is defined as a reference phase Igrm. The phase difference between Igrm and Io is α. Since the phase of Igr is in phase with the current ioa, the phase difference between Igrm and Igr is 30 °. When Igr and Ic are combined, it becomes Io. However, at this stage, the sizes of Igr and Io are unknown. Thus, the relationship of Expression (10) is established. Igr can be obtained by substituting this relationship into equations (3) and (7).

次に、零相電流波形Io( t )について考える。加減算手段6について、3相3線式のときは、tを時間変数とし、零相電流検出手段4から出力される零相電流波形をIo( t )、位相移動手段9から出力される基準位相のゼロクロス点の時間をt = 0、基準位相と零相電流波形の位相差をα、零相電流波形の振幅値をIo、角周波数をω、周波数をf、電路周波数の1周期の時間をTとすると、3相3線式においても、零相電流検出手段4から加減算手段6に出力される零相電流波形Io( t )は式(2)のように表せる。   Next, consider the zero-phase current waveform Io (t). For the addition / subtraction means 6, in the case of a three-phase three-wire system, t is a time variable, the zero-phase current waveform output from the zero-phase current detection means 4 is Io (t), and the reference phase output from the phase shift means 9 The time of zero cross point of t = 0, the phase difference between the reference phase and the zero-phase current waveform is α, the amplitude value of the zero-phase current waveform is Io, the angular frequency is ω, the frequency is f, and the time of one cycle of the circuit frequency Assuming T, even in the three-phase three-wire system, the zero-phase current waveform Io (t) output from the zero-phase current detection means 4 to the addition / subtraction means 6 can be expressed as shown in Expression (2).

0 ≦ t ≦ T/2のときはIo( t )の値を加算していき、T/2 < t < T のときはIo( t )の値を減算し、その結果をasIoとすると、asIoは式(11)のようになる(式中のIgrは抵抗性地絡電流の振幅値である)。   When 0 ≤ t ≤ T / 2, the value of Io (t) is added. When T / 2 <t <T, the value of Io (t) is subtracted, and the result is asIo. (11) where Igr is the amplitude value of the resistive ground fault current.

Figure 0005396675
Figure 0005396675

ゆえに、抵抗性地絡電流の振幅値Igrは式(12)のようになり、求める抵抗性地絡電流の実効値igrは、igrが正であることを考慮して、式(13)になる。   Therefore, the amplitude value Igr of the resistive ground fault current is as shown in the formula (12), and the effective value igr of the resistive ground fault current to be obtained is given as the formula (13) in consideration that igr is positive. .

Figure 0005396675
Figure 0005396675

Figure 0005396675
Figure 0005396675

ソフトウェア実装のための設計では、kを1周期サンプリング用時間変数とし、零相電流検出手段4から出力される零相電流波形をIo( k )、位相移動手段9から出力される基準位相のゼロクロス点の時間をk = 0、基準位相と零相電流波形の位相差をα、零相電流波形の振幅値をIo、電路周波数の1周期サンプリング数をN(Nは、2より大きい偶数とする)とすると、Io( k )は式(6)のように表せる。   In the design for software implementation, k is a time variable for one-period sampling, the zero-phase current waveform output from the zero-phase current detection means 4 is Io (k), and the zero cross of the reference phase output from the phase shift means 9 The point time is k = 0, the phase difference between the reference phase and the zero-phase current waveform is α, the amplitude value of the zero-phase current waveform is Io, and the number of samplings of one cycle of the circuit frequency is N (N is an even number greater than 2) ), Io (k) can be expressed as in equation (6).

ここで、rはADコンバータ入力の際のオフセット値で設計上は既知とできるが、1周期ごとに求めてもよい。0 ≦ k ≦ N/2のときはIo( k )の値を加算していき、N/2 < k < N のときはIo( k )の値を減算し、その結果をasIoとすると、asIoは式(14)のようになる(Igrは抵抗性地絡電流の振幅値である)。   Here, r is an offset value at the time of AD converter input, which can be known in design, but may be obtained every cycle. When 0 ≤ k ≤ N / 2, the value of Io (k) is added. When N / 2 <k <N, the value of Io (k) is subtracted, and the result is asIo. (14) (Igr is the amplitude value of the resistive ground fault current).

Figure 0005396675

ゆえに、抵抗性地絡電流の振幅値Igrは式(15)のようになり、求める抵抗性地絡電流の実効値をigrとすると、igrが正であることを考慮して、式(16)になる。
Figure 0005396675

Therefore, the amplitude value Igr of the resistive ground fault current is as shown in Expression (15). If the effective value of the resistive ground fault current to be obtained is igr, then considering that igr is positive, Expression (16) become.

Figure 0005396675
Figure 0005396675

Figure 0005396675
Figure 0005396675

ただし、ADコンバータのビット数やレンジによる換算は、定数倍換算手段7の定数が変わるだけなので、ここでは考慮していない。なお、多重割込みの回避策にはメディアンなどを利用すればよい。   However, the conversion based on the number of bits and the range of the AD converter is not considered here because the constant of the constant multiple conversion means 7 changes. A median or the like may be used as a measure for avoiding multiple interrupts.

ところで、3相3線式の電路の位相取り込みを、一方の非接地相と接地相、及び、他方の非接地相と接地相の2回に分けて取り込む場合、図9に示すように、1回目に取り込んだ位相を位相比較記憶手段11に記憶し、2回目に取り込んだ位相と記憶した位相の中央値をとれば、図8に示すようなIgrmの位相になり、前記の位相移動手段9で位相を90°移動させたときの結果と同値になる。   By the way, in the case of capturing the phase of the three-phase three-wire electric circuit in two steps, that is, one non-ground phase and the ground phase, and the other non-ground phase and the ground phase, as shown in FIG. If the phase acquired at the second time is stored in the phase comparison storage means 11 and the median value of the phase acquired at the second time and the stored phase is taken, the phase becomes Igrm as shown in FIG. The result is the same as the result when the phase is moved by 90 °.

以上説明したように、本実施形態による絶縁監視装置1は、電圧プローブから入力した電路間電圧波形の位相のゼロクロス点を元に基準位相の時間 t = 0 を定め、0 ≦ t ≦ T/2のときにはIo( t )の値を加算していき、T/2 < t < TのときにはIo( t )の値を減算していき、1周期分を加減算していった結果を定数倍することにより、抵抗性地絡電流の実効値igrを求めることができる。そのため、零相電流センサから入力した零相電流波形の位相を求める手段が不要になり、電圧位相を元にした理想正弦波を発生させる手段も不要となる。この二つが不要となることで小規模化になり、また、位相差や理想正弦波の演算に基づく誤差もなくなるため絶縁抵抗の測定精度を高めることができる。   As described above, the insulation monitoring apparatus 1 according to the present embodiment determines the time t = 0 of the reference phase based on the zero cross point of the phase of the voltage waveform between the electric circuits input from the voltage probe, and 0 ≦ t ≦ T / 2 Io (t) value is added at the time of, and Io (t) value is subtracted when T / 2 <t <T, and the result of adding / subtracting one period is multiplied by a constant. Thus, the effective value igr of the resistive ground fault current can be obtained. Therefore, a means for obtaining the phase of the zero-phase current waveform input from the zero-phase current sensor becomes unnecessary, and a means for generating an ideal sine wave based on the voltage phase becomes unnecessary. Since the two are unnecessary, the scale is reduced, and the error based on the calculation of the phase difference and the ideal sine wave is eliminated, so that the measurement accuracy of the insulation resistance can be improved.

本発明と従来のb方式とを比較した抵抗性地絡電流測定のシミュレーションを行った。   A simulation of resistive ground fault current measurement was performed comparing the present invention with a conventional b system.

シミュレーションでは、図10〜13に示す入力パラメータを与えた。ここで、「周波数」は電路の周波数、「Io実効値」は零相電流の実効値、「1周期サンプリング数」は電路周波数の1周期中に等間隔で零相電流波形の電流値をサンプリングするデータ数、「ADコンバータビット数」は零相電流検出手段に設けるADコンバータのビット数、「ADコンバータ入力レンジ」は上記ADコンバータの最大ビットに対応する零相電流最大振幅値を2倍したもの、「理想正弦波振幅値」はb方式による理想正弦波の振幅値、「Io実効値誤差」は零相電流実効値の誤差、「Io位相誤差」は零相電流波形の位相誤差である。   In the simulation, input parameters shown in FIGS. Here, “Frequency” is the frequency of the circuit, “Io RMS” is the effective value of the zero-phase current, and “Number of samplings per cycle” is the current value of the zero-phase current waveform sampled at regular intervals during one cycle of the circuit frequency. “AD converter bit number” is the number of AD converter bits provided in the zero phase current detection means, and “AD converter input range” is twice the maximum zero phase current amplitude value corresponding to the maximum bit of the AD converter. The “ideal sine wave amplitude value” is the amplitude value of the ideal sine wave by the b method, the “Io effective value error” is the error of the zero phase current effective value, and the “Io phase error” is the phase error of the zero phase current waveform. .

各図に示すシミュレーション結果において、横軸はIoの位相差、縦軸は入力パラメータにより出力される抵抗性地絡電流の実効値igrの真値との誤差であり、b方式、理論誤差、及び本発明の場合について比較して示している。なお、理論誤差はADコンバータの量子化誤差はないものとしている。b方式で利用する理想正弦波は、0.1°間隔で3600個のデータを用意した。   In the simulation results shown in each figure, the horizontal axis is the phase difference of Io, the vertical axis is the error from the true value of the effective value igr of the resistive ground fault current output by the input parameter, and the b method, theoretical error, and The case of the present invention is shown in comparison. The theoretical error is assumed not to be a quantization error of the AD converter. For the ideal sine wave used in the b method, 3600 data were prepared at intervals of 0.1 °.

各図に示すシミュレーションについての各入力パラメータは、周波数:50Hz、Io実効値:1000mA、1周期サンプリング数:32個、ADコンバータビット数:12bit、理想正弦波振幅値:1000mAである。Io実効値誤差、Io位相誤差をそれぞれ変化させている。図10では、Io実効値誤差:0mA、Io位相誤差:−0.1°とした場合のシミュレーション結果である。図10に示すように、Io位相誤差を−0.1°与えた場合、綺麗な正弦波による誤差である理論誤差に合わさるように本発明の誤差があり、b方式の誤差は理論誤差から離れるものとなった。鋸状の波形は、ADコンバータによる量子化誤差による影響である。b方式では理想正弦波による離散化誤差も含む。   The input parameters for the simulation shown in each figure are: frequency: 50 Hz, Io effective value: 1000 mA, 1 period sampling number: 32, AD converter bit number: 12 bit, ideal sine wave amplitude value: 1000 mA. Io RMS error and Io phase error are changed. FIG. 10 shows a simulation result when Io effective value error: 0 mA and Io phase error: −0.1 °. As shown in FIG. 10, when the Io phase error is given by −0.1 °, there is an error of the present invention so as to match the theoretical error which is an error due to a clean sine wave, and the error of the b method is separated from the theoretical error. became. The sawtooth waveform is an influence due to a quantization error by the AD converter. The b method includes a discretization error due to an ideal sine wave.

図11は、Io実効値誤差:1mA、Io位相誤差:0°とした場合のシミュレーション結果である。図11に示すように、Io実効値誤差を1mA与えた場合、綺麗な半波整流である理論誤差に合わさるように本発明の誤差があり、b方式の誤差は理論誤差から離れてずれている。   FIG. 11 shows the simulation results when the Io effective value error is 1 mA and the Io phase error is 0 °. As shown in FIG. 11, when the Io effective value error is given 1 mA, the error of the present invention is matched with the theoretical error which is a beautiful half-wave rectification, and the error of the b method is shifted away from the theoretical error. .

図12は、Io実効値誤差:0mA、Io位相誤差:0°とした場合のシミュレーション結果である。図12に示すように、誤差を与えなかった場合、理論誤差はIo位相差によらず0になり、本発明の誤差は0付近にあり、b方式の誤差は理論誤差から離れている。   FIG. 12 shows a simulation result when Io effective value error: 0 mA and Io phase error: 0 °. As shown in FIG. 12, when no error is given, the theoretical error is 0 regardless of the Io phase difference, the error of the present invention is in the vicinity of 0, and the error of the b method is far from the theoretical error.

図13は、Io実効値誤差:0mA、Io位相誤差:−0.1°とした場合のシミュレーション結果である。ただし、ここでは1周期のサンプリング数を128にしている。図13に示すように、Io位相誤差を−0.1°、1周期サンプリング数を128で与えた場合、b方式は理想誤差に近づいていることがわかる。   FIG. 13 shows a simulation result when Io effective value error: 0 mA and Io phase error: −0.1 °. However, here, the number of samples in one cycle is set to 128. As shown in FIG. 13, when the Io phase error is −0.1 ° and the number of samplings per period is 128, it can be seen that the b method approaches the ideal error.

a方式について、位相誤差が生じた場合、図13の理想誤差のグラフからわかる通り、Io位相誤差−0.1°で抵抗性地絡電流の実効値igrの誤差は最大約1.7mAになるため位相誤差の影響は大きいと言える。   In the case of the a method, when a phase error occurs, as shown in the ideal error graph of FIG. 13, when the Io phase error is -0.1 °, the error of the effective value igr of the resistive ground fault current is about 1.7 mA at the maximum. It can be said that the influence of is great.

b方式は、サンプリング数を変えたり理想正弦波の各値の四捨五入や切り捨てや切り上げなど変えることにより、特定条件では理論誤差に近づいたり良くなる場合もあるが、位相調整値やIo位相誤差やIo実効値誤差が変わることで、結果として誤差は理想誤差に近づかず、安定しなくなる。また、サンプリング数を上げていけば理想誤差に近づくのは、離散化誤差がなくなっていくからであると言える。   The b method may approach or improve the theoretical error under certain conditions by changing the number of samplings or changing the rounding, rounding, or rounding up of each value of the ideal sine wave, but the phase adjustment value, Io phase error, Io As the RMS value error changes, the error does not approach the ideal error and becomes unstable as a result. Moreover, it can be said that if the number of samplings is increased, the error becomes closer to the ideal error because the discretization error disappears.

以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Needless to say, it is included in the range.

例えば、上記の各実施形態においては、零相電流検出手段として零相電流センサを用い、電路間電圧検出手段として電圧プローブを用いているが、本発明はそのような取込手段に限定されるものではなく、各種の電流・電圧取込手段を採用することができる。また、上記の各実施形態においては、電路間電圧の1周期を単位として前半の半周期に累積加算、後半の半周期に累積減算を行っているが、これを逆にして累積減算、累積加算の順で加減算を行っても構わない。これは、抵抗性地絡電流の実効値であるigrは「正」であることを根拠として式(5),(9),(13),(16)に示すように絶対値による演算を行うためである。更に、上記の各実施形態においては、電路間電圧のゼロクロス点を t = 0 として加減算を行っているが、例えば、図14、図15に示すように、電路間電圧のゼロクロス点からずれたタイミングを t = 0 として電路間電圧の周期分だけ加減算処理を行った場合でも、その後の演算がやや複雑になるものの、抵抗性地絡電流を算出することが可能である。   For example, in each of the above embodiments, a zero-phase current sensor is used as the zero-phase current detection means, and a voltage probe is used as the inter-circuit voltage detection means. However, the present invention is limited to such an acquisition means. Instead, various current / voltage capturing means can be employed. Further, in each of the above embodiments, cumulative addition is performed in the first half cycle and cumulative subtraction is performed in the second half cycle in units of one cycle of the circuit voltage. However, this is reversed and cumulative subtraction and cumulative addition are performed. Addition / subtraction may be performed in this order. This is based on the fact that igr, which is the effective value of the resistive ground fault current, is “positive”, and the calculation based on the absolute value is performed as shown in equations (5), (9), (13), and (16). Because. Furthermore, in each of the above embodiments, addition / subtraction is performed with the zero crossing point of the electric circuit voltage set to t = 0. For example, as shown in FIGS. 14 and 15, timing shifted from the zero crossing point of the electric circuit voltage Even if the addition / subtraction processing is performed for the period of the voltage between the circuit with t = 0, it is possible to calculate the resistive ground fault current although the subsequent calculation is somewhat complicated.

図14は、電路間電圧のゼロクロス点からβだけ前後する時点をt=0として、igrを求める方法を説明するための模式図である。ゼロクロス点からβだけ遅れた時点をt=0として求めるasIoをA1、ゼロクロス点からβだけ進んだ時点をt=0として求めるasIoをA2とよぶことにする。A1は、以下の式(17)により求められる。   FIG. 14 is a schematic diagram for explaining a method of obtaining igr, where t = 0 is a time point before and after the zero crossing point of the voltage between the electric circuits by β. Assume that asIo, which is determined as t = 0 when the time is delayed by β from the zero cross point, is referred to as A1, and asIo which is determined as t = 0, which is advanced from the zero cross point as β, is referred to as A2. A1 is calculated | required by the following formula | equation (17).

Figure 0005396675

また、A2は以下の式(18)により求められる。
Figure 0005396675

Moreover, A2 is calculated | required by the following formula | equation (18).

Figure 0005396675

A1とA2を加算すると式(19)となる。
Figure 0005396675

βがゼロでないとすると、抵抗性地絡電流の実効値igrは、式(1)に基づく以下の式(20)により求めることができる。
Figure 0005396675

こうして、igrからαを消去できるため、βが既知であれば、A1、A2からigrを求めることができる。
Figure 0005396675

When A1 and A2 are added, Expression (19) is obtained.
Figure 0005396675

If β is not zero, the effective value igr of the resistive ground fault current can be obtained by the following equation (20) based on the equation (1).
Figure 0005396675

In this way, α can be deleted from igr. Therefore, if β is known, igr can be obtained from A1 and A2.

図15は、電路間電圧のゼロクロス点からπ/2だけ遅れた時点をt=0として、igrを求める方法を説明するための模式図である。この場合のasIoは、式(21)により求められる。

Figure 0005396675
FIG. 15 is a schematic diagram for explaining a method of obtaining igr, where t = 0 is a time point delayed by π / 2 from the zero crossing point of the voltage between the electric circuits. In this case, asIo is obtained by equation (21).
Figure 0005396675

Figure 0005396675

Figure 0005396675

Figure 0005396675

であるから、Igrは、以下の式(25)により求められる。
Figure 0005396675

ゆえに、実効値igrは、以下の式(26)により求められる。
Figure 0005396675
Figure 0005396675

Figure 0005396675

Figure 0005396675

Therefore, Igr is obtained by the following equation (25).
Figure 0005396675

Therefore, the effective value igr is obtained by the following equation (26).
Figure 0005396675

1A〜1F 絶縁監視装置
2 零相電流センサ(零相電流検出手段)
3 電圧プローブ(電圧検出手段)
4 零相電流取込手段
5 電路間電圧位相取込手段
6 加減算手段
7 定数倍換算手段
8 報知手段
9 位相移動手段
10 装置電源入力手段
11 位相比較記憶手段
1A to 1F Insulation monitoring device 2 Zero phase current sensor (Zero phase current detection means)
3 Voltage probe (voltage detection means)
4 Zero-phase current capture means 5 Inter-circuit voltage phase capture means 6 Addition / subtraction means 7 Constant multiple conversion means 8 Notification means 9 Phase shift means 10 Device power supply input means 11 Phase comparison storage means

Claims (8)

単相2線式または単相3線式の電路の接地線から零相電流Ioを検出する零相電流検出手段と、
前記零相電流検出手段によって検出された前記零相電流Ioを取り込む零相電流取込手段と、
前記電路の接地線と非接地線との間の電路間電圧の位相情報を取り込む電路間電圧位相取込手段と、
電路間電圧の位相を基準位相とし、時間変数をt、電路間電圧の周期をTとするとき、電路間電圧の1周期を単位として、0 ≦ t ≦ T/2のときは前記零相電流取込手段から出力される零相電流Io( t ) の値を累積加算し、T/2 < t < T のときは前記零相電流Io( t ) の値を累積加算し、それぞれの累積加算値のうち一方から他方を減算する加減算手段と、
前記加減算手段から出力された値に対し所定の演算を施すことにより、抵抗性地絡電流の実効値igrを求める演算手段と、を備えることを特徴とする絶縁監視装置。
A zero-phase current detecting means for detecting a zero-phase current Io from a ground wire of a single-phase two-wire or single-phase three-wire circuit;
Zero phase current capturing means for capturing the zero phase current Io detected by the zero phase current detecting means;
An inter-circuit voltage phase capturing means for capturing phase information of an inter-circuit voltage between a ground line and a non-ground line of the electrical circuit;
When the phase of the voltage between the circuits is the reference phase, the time variable is t, and the period of the voltage between the circuits is T, the period of the voltage between the circuits is a unit, and when 0 ≤ t ≤ T / 2, the zero-phase current Cumulative addition of the value of the zero-phase current Io (t) output from the capture means. When T / 2 <t <T, the value of the zero-phase current Io (t) is cumulatively added. Addition / subtraction means for subtracting the other from one of the values;
An insulation monitoring apparatus comprising: an operation unit that obtains an effective value igr of the resistive ground fault current by performing a predetermined operation on the value output from the addition / subtraction unit.
前記電路間電圧位相取込手段は、前記位相情報として、取り込んだ電路間電圧の電圧波形におけるゼロクロス点の検出タイミングを出力し、
前記加減算手段は、前記電路間電圧位相取込手段から出力される任意のゼロクロス点のタイミングをt = 0として設定し、
前記演算手段は、前記加減算手段から出力された値を定数倍換算し、抵抗性地絡電流の実効値igrを求める定数倍換算手段を含むことを特徴とする請求項1に記載の絶縁監視装置。
The circuit voltage phase capturing means outputs the detection timing of the zero cross point in the voltage waveform of the captured circuit voltage as the phase information,
The addition / subtraction means sets the timing of an arbitrary zero cross point output from the inter-circuit voltage phase capturing means as t = 0,
2. The insulation monitoring apparatus according to claim 1, wherein the calculation unit includes a constant multiple conversion unit that converts the value output from the addition / subtraction unit to a constant multiple to obtain an effective value igr of the resistive ground fault current. .
3相3線式の電路の接地線から零相電流Ioを検出する零相電流検出手段と、
前記零相電流検出手段によって検出された前記零相電流Ioを取り込む零相電流取込手段と、
前記電路の第1の非接地線と第2の非接地線との間の電路間電圧の位相情報を取り込む電路間電圧位相取込手段と、
前記電路間電圧の位相情報を90°分だけ移動した位相情報に変換する位相移動手段と、
前記位相移動手段から出力される位相情報を基準位相とし、時間変数をt、電路間電圧の周期をTとするとき、電路間電圧の1周期を単位として、0 ≦ t ≦ T/2における前記零相電流Io( t ) の値を累積加算し、T/2 < t < Tにおける前記零相電流Io( t ) の値を累積加算し、それぞれの累積加算値の一方から他方を減算する加減算手段と、
前記加減算手段から出力された値に対し所定の演算を施すことにより、抵抗性地絡電流の実効値igrを求める演算手段と、を備えることを特徴とする絶縁監視装置。
Zero-phase current detecting means for detecting zero-phase current Io from a ground wire of a three-phase three-wire circuit;
Zero phase current capturing means for capturing the zero phase current Io detected by the zero phase current detecting means;
An inter- circuit voltage phase capturing means for capturing phase information of an inter-circuit voltage between the first non-ground line and the second non-ground line of the electrical circuit;
Phase shift means for converting the phase information of the voltage between the electric circuits into phase information shifted by 90 °;
When the phase information output from the phase shifting means is a reference phase, the time variable is t, and the period of the inter-circuit voltage is T, the unit of one period of the inter-circuit voltage is 0 ≦ t ≦ T / 2 Addition / subtraction of cumulatively adding the zero-phase current Io (t) value, cumulatively adding the zero-phase current Io (t) value at T / 2 <t <T, and subtracting the other from one of the cumulative addition values Means,
An insulation monitoring apparatus comprising: an operation unit that obtains an effective value igr of the resistive ground fault current by performing a predetermined operation on the value output from the addition / subtraction unit.
前記電路間電圧位相取込手段は、前記位相情報として、取り込んだ電路間電圧の電圧波形におけるゼロクロス点の検出タイミングを前記位相移動手段に出力し、
前記位相移動手段は、前記ゼロクロス点のタイミングを基準位相の90°分だけ移動して前記加減算手段に出力し、
前記加減算手段は、前記位相移動手段から出力される任意のゼロクロス点のタイミングをt = 0として設定し、
前記演算手段は、前記加減算手段から出力された値を定数倍換算し、抵抗性地絡電流の実効値igrを求める定数倍換算手段を含むことを特徴とする請求項3に記載の絶縁監視装置。
The inter-circuit voltage phase capturing means outputs, as the phase information, the detection timing of the zero cross point in the voltage waveform of the captured inter-circuit voltage to the phase moving means,
The phase shift means shifts the timing of the zero cross point by 90 ° of a reference phase and outputs it to the addition / subtraction means,
The addition / subtraction means sets the timing of an arbitrary zero cross point output from the phase shift means as t = 0,
4. The insulation monitoring apparatus according to claim 3, wherein the arithmetic means includes constant multiple conversion means for converting a value output from the addition / subtraction means to a constant multiple to obtain an effective value igr of the resistive ground fault current. .
前記絶縁監視装置に電力を供給するための装置電源と、前記装置電源が任意の電路から取り込んだ電源電圧の位相と前記電路間電圧位相取込手段から出力される基準位相とを比較して位相差を求め、当該位相差を記憶する位相比較記憶手段とをさらに備え、
前記位相比較記憶手段は、前記所定の電路から取り込んだ電源電圧の位相と前記位相差とに基づいて基準位相を生成することを特徴とする請求項1乃至4の何れかに記載の絶縁監視装置。
A device power supply for supplying power to the insulation monitoring device, a phase of a power supply voltage taken in by the device power supply from an arbitrary electric circuit, and a reference phase output from the inter-circuit voltage phase capturing means are compared. A phase comparison storage means for obtaining a phase difference and storing the phase difference;
5. The insulation monitoring apparatus according to claim 1, wherein the phase comparison storage unit generates a reference phase based on a phase of a power supply voltage taken in from the predetermined electric circuit and the phase difference. .
前記位相比較記憶手段は、抵抗性地絡電流成分がゼロの零相電流Ioを前記零相電流検出手段に入力し、このとき得られる抵抗性地絡電流成分がゼロとなるように前記位相差を調整する位相差調整手段を含むことを特徴とする請求項5に記載の絶縁監視装置。 The phase comparison storage means inputs a zero-phase current Io having a zero resistance ground fault current component to the zero phase current detection means, and the phase difference so that the resistance ground fault current component obtained at this time becomes zero. 6. The insulation monitoring apparatus according to claim 5, further comprising a phase difference adjusting unit that adjusts. 前記定数倍換算手段は、所定の実効値を有する零相電流Ioを前記零相電流検出手段に入力し、このとき得られる零相電流の実効値が前記所定の実効値と同じ値となるように前記定数倍の値を調整する振幅値調整手段を含むことを特徴とする請求項2又は4に記載の絶縁監視装置。 The constant multiple conversion means inputs a zero-phase current Io having a predetermined effective value to the zero-phase current detection means so that the effective value of the zero-phase current obtained at this time becomes the same value as the predetermined effective value. 5. The insulation monitoring apparatus according to claim 2 , further comprising an amplitude value adjusting means for adjusting the value of the constant multiple. 前記演算手段により得られた前記抵抗性地絡電流の実効値igrが所定の閾値以上のときにその旨を報知する報知手段を更に備えることを特徴とする請求項1乃至7のいずれか一項に記載の絶縁監視装置。   The information processing device according to any one of claims 1 to 7, further comprising notification means for notifying that when an effective value igr of the resistive ground fault current obtained by the calculation means is equal to or greater than a predetermined threshold value. The insulation monitoring device described in 1.
JP2009101322A 2009-04-17 2009-04-17 Insulation monitoring device Active JP5396675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009101322A JP5396675B2 (en) 2009-04-17 2009-04-17 Insulation monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009101322A JP5396675B2 (en) 2009-04-17 2009-04-17 Insulation monitoring device

Publications (2)

Publication Number Publication Date
JP2010249747A JP2010249747A (en) 2010-11-04
JP5396675B2 true JP5396675B2 (en) 2014-01-22

Family

ID=43312241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101322A Active JP5396675B2 (en) 2009-04-17 2009-04-17 Insulation monitoring device

Country Status (1)

Country Link
JP (1) JP5396675B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698651B (en) * 2013-12-27 2016-05-11 国家电网公司 A kind ofly supervise method and the device that D.C. isolation bus is altered mutually
JP6226061B2 (en) * 2014-04-03 2017-11-08 理化工業株式会社 AC signal measuring device
CN110470941B (en) * 2019-09-16 2021-10-08 威胜集团有限公司 Method, device and equipment for detecting leakage current of alternating current and storage medium
JP7353002B1 (en) 2023-05-08 2023-09-29 株式会社SoBrain Measuring device, measuring method and measuring program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222166A (en) * 1985-12-24 1987-09-30 Toshiba Corp Ac signal detector
JP4599120B2 (en) * 2004-08-31 2010-12-15 株式会社東芝 Electrical installation insulation monitoring device and method
JP4852371B2 (en) * 2006-07-31 2012-01-11 中国電力株式会社 Leakage current measuring device and measuring method

Also Published As

Publication number Publication date
JP2010249747A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4657151B2 (en) Rotational phase angle measuring device, frequency measuring device using the same, synchronous phasor measuring device, switching pole phase control device, synchronous input device and phase discrimination device
US8823356B2 (en) Supply voltage auto-sensing
KR101681288B1 (en) Method for error calibration of electric power device
JP2010190645A (en) Method for detecting leakage current, leakage current detector, and system monitor
JP5396675B2 (en) Insulation monitoring device
US20140253091A1 (en) Determination device, determination method, and non-transitory recording medium
CN104155517B (en) A kind of non-integer-period sampled error compensating method of digitalized electrical energy meter and system
US9013156B2 (en) Signal generation device and signal generation method
US10571495B2 (en) Systems and methods for monitoring power
JP6059751B2 (en) Phase calibration device
TWI633313B (en) Power measuring system and power measuring method
JP2009079972A (en) Electric power measurement method and electric power measuring device
JP6192051B2 (en) Power system reverse power flow monitoring device
CN102981061A (en) Direct earth capacitance gauge in converting station power distribution system
JP4738274B2 (en) Insulation monitoring apparatus and method for electrical equipment
JP6238609B2 (en) Inverter
JP2005172617A (en) Leakage current measuring device
JP2007298414A (en) Electric power measuring instrument
KR101444582B1 (en) Apparatus and method for detecting frequency
JP4734177B2 (en) Three-phase three-wire circuit leakage detection device and leakage detection method
JP3891434B2 (en) Judgment method of electric quantity change factor
Lu et al. Power grid frequency monitoring over mobile platforms
JP2023507333A (en) Detecting the fundamental component of the current to gate energy consumption storage
CN109782057B (en) Circuit and method for measuring input active power of single-phase power supply of variable-frequency household appliance
JP2008151723A (en) Instantaneous voltage drop detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5396675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250