JP4851376B2 - Pretreatment method of conductive substrate used for synthesis of diamond film and method of manufacturing diamond film - Google Patents

Pretreatment method of conductive substrate used for synthesis of diamond film and method of manufacturing diamond film Download PDF

Info

Publication number
JP4851376B2
JP4851376B2 JP2007077295A JP2007077295A JP4851376B2 JP 4851376 B2 JP4851376 B2 JP 4851376B2 JP 2007077295 A JP2007077295 A JP 2007077295A JP 2007077295 A JP2007077295 A JP 2007077295A JP 4851376 B2 JP4851376 B2 JP 4851376B2
Authority
JP
Japan
Prior art keywords
diamond film
conductive substrate
fine particles
pretreatment
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007077295A
Other languages
Japanese (ja)
Other versions
JP2008230945A (en
Inventor
一樹 在原
千晶 寺島
昭 藤嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Japan Railway Co
Original Assignee
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Japan Railway Co filed Critical Central Japan Railway Co
Priority to JP2007077295A priority Critical patent/JP4851376B2/en
Publication of JP2008230945A publication Critical patent/JP2008230945A/en
Application granted granted Critical
Publication of JP4851376B2 publication Critical patent/JP4851376B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、ダイヤモンド膜の合成に用いる導電性基体の前処理方法及びダイヤモンド膜の製造方法に関する。 The present invention relates to a pretreatment method for a conductive substrate used for synthesis of a diamond film and a method for producing the diamond film.

ダイヤモンド膜の合成に使用する基体の前処理としては、(1)研磨剤粒子を分散させた液中に浸して超音波を作用させる(特許文献1、2参照)、(2)基体の表面を研磨粉で研磨する(特許文献3,4参照)、(3)電解処理を行う(特許文献5〜8参照)などが知られている。これらの前処理により、ダイヤモンド膜の成長の起点となる核が基体の表面上に形成される。
特開昭61−121859号公報 特開昭62−226889号公報 特開昭62−108798号公報 特開昭62−108799号公報 特許2616255号公報 特許2720384号公報 特許2766686号公報 特許2794601号公報
As the pretreatment of the substrate used for the synthesis of the diamond film, (1) the substrate is immersed in a liquid in which abrasive particles are dispersed and ultrasonic waves are applied (see Patent Documents 1 and 2), (2) the surface of the substrate is Polishing with abrasive powder (see Patent Documents 3 and 4), (3) performing electrolytic treatment (see Patent Documents 5 to 8), and the like are known. By these pretreatments, nuclei that serve as starting points for the growth of the diamond film are formed on the surface of the substrate.
JP 61-121859 A JP-A-62-226889 JP 62-108798 A JP 62-108799 A Japanese Patent No. 2616255 Japanese Patent No. 2720384 Japanese Patent No. 2766686 Japanese Patent No. 2794601

しかしながら、上記(1)の方法では、基体の表面に成長核となる傷を形成するためには、長時間の超音波処理を必要とする。例えば、特許文献2では、1時間の超音波処理を要する。また、基体が硬質である場合、成長核となる傷が形成されにくい。また研磨むらができやすいため、その後に成膜されるダイヤモンド膜の状態に不均一性が生じてしまう。
上記(2)の方法は、基体が平板でなければ行えない。また、微細な傷をつけるためには、微細な研磨粉を用いる必要があり、そのため研磨に長時間を要する。また、研磨粉に大きな粒子が混入した場合、基体の表面に深い引っ掻き傷ができてしまい、成膜後のダイヤモンド膜もこの形状を反映してしまう。
上記(3)の方法では、基体の表面に、十分に核形成をすることができない。
However, in the above method (1), a long period of ultrasonic treatment is required in order to form a flaw as a growth nucleus on the surface of the substrate. For example, in Patent Document 2, ultrasonic treatment for 1 hour is required. Further, when the substrate is hard, scratches that become growth nuclei are difficult to be formed. Further, since uneven polishing is likely to occur, non-uniformity occurs in the state of the diamond film formed thereafter.
The method (2) cannot be performed unless the substrate is a flat plate. Moreover, in order to make a fine flaw, it is necessary to use a fine polishing powder, so that a long time is required for polishing. Further, when large particles are mixed in the polishing powder, deep scratches are formed on the surface of the substrate, and the diamond film after film formation also reflects this shape.
In the method (3), nuclei cannot be sufficiently formed on the surface of the substrate.

本発明は以上の点に鑑みなされたものであり、簡便に行え、基体の硬さや形状によらず、良好なダイヤモンド膜の形成を可能にする前処理方法、及びダイヤモンド膜の製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and provides a pretreatment method and a diamond film manufacturing method that can be easily performed and can form a good diamond film regardless of the hardness and shape of the substrate. For the purpose.

(1)請求項1の発明は、
ダイヤモンド膜の合成に用いる導電性基体の前処理方法であって、
微粒子を懸濁させた電解質溶液に前記導電性基体を浸漬し、交流電解により電解処理を行うことを特徴とする前処理方法を要旨とする。
(1) The invention of claim 1
A pretreatment method of a conductive substrate used for synthesis of a diamond film,
The gist is a pretreatment method characterized by immersing the conductive substrate in an electrolyte solution in which fine particles are suspended and performing electrolytic treatment by alternating current electrolysis .

本発明の前処理方法を行えば、導電性基体の表面に、微細な傷やピットを多数形成することができ、また、導電性基体の表面に、多数の微粒子を固く保持させることができる。これらの傷、ピット、及び微粒子は、ダイヤモンド膜の成長核として機能する。   By performing the pretreatment method of the present invention, a large number of fine scratches and pits can be formed on the surface of the conductive substrate, and a large number of fine particles can be firmly held on the surface of the conductive substrate. These scratches, pits, and fine particles function as a growth nucleus of the diamond film.

本発明の前処理方法によれば、非常に簡便に、且つ短時間で、ダイヤモンド膜の成長にとって好ましい導電性基体を形成できる。また、ダイヤモンド膜の成長核となる傷、ピット、微粒子の数が多くなるため、アンカー効果が高く、ダイヤモンド膜と導電性基体との密着性を向上させることができる。さらに、導電性基体の硬さや形状によらず、上記の効果を奏することができる。
本発明の前処理方法が上記の効果を奏する原因については明確ではないが、一つの理由として以下のように推察される。すなわち、本発明の前処理方法において電解処理を行うと、電極の表面で電気化学反応が起きて水素あるいは酸素が発生し、これが細かい気泡として観察される。また、導電性基体が陽極の場合には、導電性基体の成分の溶出も起こる。この表面から発生する気泡が溶液内で対流を起こし、その対流に乗って微粒子が導電性基体の表面に衝突する。あるいは、気泡が破裂する際にも大きな運動エネルギーが生じ、それに伴って微粒子が導電性基体の表面に衝突する。それによって、微粒子が導電性基体の表面に固定化され、さらに微細な傷やピットが導電性基体の表面上に形成される。
このことは、以下の事実により裏付けられる。すなわち、後述する比較例1のように、導電性基体をダイヤモンド微粒子を含まないNaOH中で電解しても、本発明の前処理方法を行った後のような微細な傷やピットは導電性基体の表面上に形成されないし、導電性基体が陽極の場合には溶解することにより、表面はより滑らかとなる。このことは、本発明の前処理方法を行った後の導電性基体の表面上に形成される傷やピットは、電解に伴って生成する気泡のみによって生じたものではなく、微粒子の存在が必須であることを示す。
前記前処理とは、導電性基体の表面にダイヤモンド膜を形成する前に、導電性基体の表面を、ダイヤモンド膜の形成に適した状態にするための処理をいう。
According to the pretreatment method of the present invention, a conductive substrate preferable for the growth of a diamond film can be formed very easily and in a short time. In addition, since the number of scratches, pits and fine particles that become the growth nucleus of the diamond film increases, the anchor effect is high, and the adhesion between the diamond film and the conductive substrate can be improved. Furthermore, the above effects can be achieved regardless of the hardness and shape of the conductive substrate.
The reason why the pretreatment method of the present invention has the above-mentioned effect is not clear, but one reason is presumed as follows. That is, when electrolytic treatment is performed in the pretreatment method of the present invention, an electrochemical reaction occurs on the surface of the electrode to generate hydrogen or oxygen, which are observed as fine bubbles. When the conductive substrate is an anode, the components of the conductive substrate are also eluted. Bubbles generated from the surface cause convection in the solution, and the fine particles collide with the surface of the conductive substrate along the convection. Alternatively, a large kinetic energy is generated when the bubble bursts, and the fine particles collide with the surface of the conductive substrate. Thereby, the fine particles are fixed on the surface of the conductive substrate, and further fine scratches and pits are formed on the surface of the conductive substrate.
This is supported by the following facts. That is, as in Comparative Example 1 to be described later, even if the conductive substrate is electrolyzed in NaOH that does not contain diamond fine particles, fine scratches and pits after performing the pretreatment method of the present invention are not detected. When the conductive substrate is an anode, it is dissolved so that the surface becomes smoother. This is because scratches and pits formed on the surface of the conductive substrate after the pretreatment method of the present invention are not caused only by bubbles generated by electrolysis, and the presence of fine particles is essential. Indicates that
The pretreatment refers to a treatment for making the surface of the conductive substrate suitable for the formation of the diamond film before forming the diamond film on the surface of the conductive substrate.

前記導電性基体の材料としては、導電性がある固体であれば特に制限されず、硬い材料であってもよい。例えば、タングステン、白金、モリブデン、ニオブ、タンタル、チタン、グラッシーカーボン、シリコン(アンチモン等をドープし導電性を有しているもの)等が挙げられる。また、導電性基体の形状は、特に制限されず、例えば、線状、平板状等が挙げられる。なお、線状の導電性基体の場合は、本発明の前処理方法を行うことにより、表面の状態をダイヤモンド膜の形成に適した状態にするとともに、その端部の形状を尖鋭化することができる。   The material of the conductive substrate is not particularly limited as long as it is a solid with conductivity, and may be a hard material. For example, tungsten, platinum, molybdenum, niobium, tantalum, titanium, glassy carbon, silicon (having conductivity by doping with antimony or the like), and the like can be given. The shape of the conductive substrate is not particularly limited, and examples thereof include a linear shape and a flat plate shape. In the case of a linear conductive substrate, by performing the pretreatment method of the present invention, it is possible to make the surface state suitable for forming a diamond film and sharpen the shape of its end. it can.

前記微粒子としては、硬度が高い材料から成るもの(いわゆる超硬微粒子)が好ましく、特に、導電性基体よりも硬度が高いものが一層好ましい。こうすることにより、微粒子が基体の表面にめり込んで固定化されやすくなる効果が得られる。微粒子の材料としては、例えば、ダイヤモンド、SiC、Si34、Mo、Al23、AlN、WC等が挙げられる。特に、ダイヤモンドから成る微粒子は、ダイヤモンド膜の質を一層向上させることができるので好ましい。これは、導電性基体上に保持される微粒子と、ダイヤモンド膜とが同一の物質であることにより、ダイヤモンド膜の親和性が良好となるためであると考えられる。微粒子の粒径は、40μm以下であることが好ましい。40μm以下であることにより、微粒子が電解質溶液中で沈下してしまうようなことがない。なお、ここでいう粒径は、動的光散乱法、レーザー回折散乱法、画像処理法等の方法で測定した値である。 As the fine particles, those made of a material having high hardness (so-called super hard fine particles) are preferable, and those having a higher hardness than the conductive substrate are particularly preferable. By doing so, an effect can be obtained in which the fine particles are likely to sink into the surface of the substrate and be fixed. Examples of the fine particle material include diamond, SiC, Si 3 N 4 , Mo, Al 2 O 3 , AlN, and WC. In particular, fine particles made of diamond are preferable because the quality of the diamond film can be further improved. This is presumably because the affinity of the diamond film is improved when the fine particles held on the conductive substrate and the diamond film are the same substance. The particle diameter of the fine particles is preferably 40 μm or less. By being 40 μm or less, the fine particles do not sink in the electrolyte solution. In addition, the particle diameter here is a value measured by a method such as a dynamic light scattering method, a laser diffraction scattering method, or an image processing method.

前記電解質溶液としては、導電性を有する液体であれば特に制限なく用いることができる。電解質溶液の液性は、アルカリ性、中性、酸性のうちのいずれでもよいが、導電性基体の特性などを考慮して適切に選択することが望ましい。電解質溶液の具体例としては、NaOH、Na2SO4、H2SO4等の水溶液が挙げられる。これらの水溶液における電解質の濃度は0.01〜5Mの範囲が好適である。 As the electrolyte solution, any liquid having conductivity can be used without any particular limitation. The liquidity of the electrolyte solution may be any of alkaline, neutral, and acidic, but it is desirable to select appropriately in consideration of the characteristics of the conductive substrate. Specific examples of the electrolyte solution include aqueous solutions such as NaOH, Na 2 SO 4 , and H 2 SO 4 . The concentration of the electrolyte in these aqueous solutions is preferably in the range of 0.01 to 5M.

前記電解処理は、流電解を用いれば、導電性基体の表面に一層多くの微粒子を固定化し、また、一層多くの微細な傷やピットを形成することができるので、ダイヤモンド膜の成膜にとって、一層好ましい。
この理由は、以下のように推測される。すなわち、交流電解において電流が交互に切り替わることで、導電性基体の表面上で酸素発生と水素発生が交互に起こり、発生する気泡が非常に細かくなる。対流形態も非常に複雑になり、それにより導電性基体の表面に衝突する微粒子が増え、より多くの微粒子の固定化、及び微細な傷やピットの形成がなされる。
The electrolysis treatment, the use of ac electrolysis, even many particles fixed to the surface of the conductive substrate, also, it is possible to form a more many fine scratches and pits, for deposition of diamond film More preferable.
The reason is presumed as follows. That is, by alternating current in alternating current electrolysis, oxygen generation and hydrogen generation occur alternately on the surface of the conductive substrate, and the generated bubbles become very fine. The convection form is also very complicated, whereby the number of fine particles that collide with the surface of the conductive substrate increases, more fine particles are fixed, and fine scratches and pits are formed.

また、交流電解を用いれば、電流が交互に切り替わるために、電極に陽極側と陰極側の区別がなく、二つの電極で同様の反応が起こると見なせるので、2つの電極のそれぞれを、前処理を行う導電性基体とすることができる。そのため、同時に2つの導電性基体を前処理することができる。   In addition, when alternating current electrolysis is used, the currents are switched alternately, so there is no distinction between the anode side and the cathode side of the electrodes, and it can be considered that the same reaction occurs between the two electrodes. It can be set as a conductive substrate. Therefore, two conductive substrates can be pretreated at the same time.

上述した前処理方法を行ってから、導電性基体の表面にダイヤモンド膜を合成することができる。こうすることにより、導電性基体の硬さや形状によらず、緻密で結晶構造の良いダイヤモンド膜を簡便に、短期間で製造することができる。ダイヤモンド膜の合成方法としては、公知の方法を幅広く用いることができ、例えば、マイクロ波プラズマCVD法、ホットフィラメントCVD法等を用いることができる。   After performing the pretreatment method described above, a diamond film can be synthesized on the surface of the conductive substrate. By doing so, a dense diamond film having a good crystal structure can be easily and quickly manufactured regardless of the hardness and shape of the conductive substrate. As a method for synthesizing the diamond film, known methods can be widely used. For example, a microwave plasma CVD method, a hot filament CVD method, or the like can be used.

前記電解処理の時間は、10秒〜10分の範囲が好適である。また、電解処理時における、微粒子を懸濁させた電解質溶液の温度は10〜60℃の範囲が好適である。   The time for the electrolytic treatment is preferably in the range of 10 seconds to 10 minutes. In addition, the temperature of the electrolyte solution in which the fine particles are suspended is preferably in the range of 10 to 60 ° C. during the electrolytic treatment.

本発明を、実施例に基づいて具体的に説明する。
1.電解処理用セル1の構成
電解処理用セル1は、図1に示すように、交流あるいは直流の電流を流すため電源3と、電源3及び基体5を接続するリード線7と、後述する前処理液13の容器であるカーボン製ルツボ9と、電源3及びルツボ9を接続するリード線11と、ルツボ9内に収容された前処理液13とからなる。この電解処理用セル1では、ルツボ9が対極として機能する。なお、前処理液11の容器として、ルツボ9の代わりに、ビーカーなどの非導電性の材質から成る容器を用い、その中に、別途、対極を挿入してもよい。
The present invention will be specifically described based on examples.
1. Configuration of Electrolytic Treatment Cell 1 As shown in FIG. 1, the electrolytic treatment cell 1 includes a power source 3 for flowing an AC or DC current, a lead wire 7 connecting the power source 3 and the substrate 5, and a pretreatment described later. It consists of a carbon crucible 9 which is a container for the liquid 13, a lead wire 11 connecting the power source 3 and the crucible 9, and a pretreatment liquid 13 accommodated in the crucible 9. In the electrolytic processing cell 1, the crucible 9 functions as a counter electrode. In addition, as a container for the pretreatment liquid 11, a container made of a non-conductive material such as a beaker may be used instead of the crucible 9, and a counter electrode may be separately inserted therein.

2.電解処理用セル1を用いた前処理方法
図1に示すように、基体5にリード線11を接続し、基体5を前処理液13に浸漬する。基体5の材質及び形状については後述する。前処理液13は、電解質を濃度1Mとなるように含む電解質溶液に微粒子を懸濁させたものであり、微粒子の量は、電解質溶液100mlあたり、0.25〜0.35gである。微粒子及び電解質溶液の詳細については後述する。前処理液13の温度は、前処理を行う全期間において30℃とする。
2. Pretreatment Method Using Electrolytic Treatment Cell 1 As shown in FIG. 1, a lead wire 11 is connected to a base 5 and the base 5 is immersed in a pretreatment liquid 13. The material and shape of the base 5 will be described later. The pretreatment liquid 13 is obtained by suspending fine particles in an electrolyte solution containing an electrolyte at a concentration of 1 M, and the amount of fine particles is 0.25 to 0.35 g per 100 ml of the electrolyte solution. Details of the fine particles and the electrolyte solution will be described later. The temperature of the pretreatment liquid 13 is set to 30 ° C. during the entire pretreatment period.

次に、電源3を用い、基体5とルツボ9との間で通電し、電解処理を行う。通電は、交流の場合と、直流の場合とを、それぞれ行った。交流の場合の通電条件は、電圧10V、周波数60Hz、通電時間1分間であり、直流の場合の通電条件は、電圧12V、通電時間30秒間である。   Next, the power source 3 is used to energize the base 5 and the crucible 9 to perform electrolytic treatment. The energization was performed in each case of alternating current and direct current. The energization conditions in the case of AC are a voltage of 10 V, a frequency of 60 Hz, and an energization time of 1 minute, and the energization conditions in the case of DC are a voltage of 12 V and an energization time of 30 seconds.

通電条件(直流/交流)、微粒子の材料、微粒子径、電解質溶液の組成、及び基体5の形状及び材料を表1のとおりとして、実施例1、3〜18、参考例2の前処理をそれぞれ行った。 The current conditions (direct current / alternating current), the material of fine particles, the fine particle diameter, the composition of the electrolyte solution, and the shape and material of the substrate 5 are as shown in Table 1, and the pretreatments of Examples 1 , 3 to 18 and Reference Example 2 were performed. went.

なお、表1における基体の材質の欄において、Wは純度99.95%のタングステンを表し、Ptは純度99.98%の白金を表し、Moは純度99.95%のモリブデンを表し、Nbは純度99.9%のニオブを表し、Taは純度99.95%のタンタルを表し、Tiは純度99.5%のチタンを表し、GCはグラッシーカーボンを表し、Siはn型、アンチモンドープ、抵抗率0.018Ωcm以下のシリコンを表す。 In the column of the base material in Table 1, W represents tungsten having a purity of 99.95%, Pt represents platinum having a purity of 99.98%, Mo represents molybdenum having a purity of 99.95%, and Nb represents Ni represents 99.9% purity, Ta represents 99.95% purity tantalum, Ti represents 99.5% purity titanium, GC represents glassy carbon, Si represents n-type, antimony doped, resistance It represents silicon with a rate of 0.018 Ωcm or less.

また、表1における基体の形状の欄において、「線」は直径0.3mm、長さ2cmの線状を表し、「板」は、大きさ2cm×0.5cmの矩形状を表す。なお、表1における微粒子の粒径はカタログ記載の値である。   In the column of the shape of the substrate in Table 1, “line” represents a line shape having a diameter of 0.3 mm and a length of 2 cm, and “plate” represents a rectangular shape having a size of 2 cm × 0.5 cm. In addition, the particle size of the fine particles in Table 1 is a value described in the catalog.

実施例1の前処理を実施した後に、基体5の表面を電子顕微鏡で観察すると、図2のような表面形態が得られた。すなわち、表面に多数の微細な傷やピットが形成され、且つ表面に保持されたダイヤモンド微粒子が白い点として観察された。微粒子の直径は100nm以下であり、その数は4.4×108個/m2であった。この微粒子の数は、後述する比較例8における数の4倍である。また、100nm以下という粒子径は、ダイヤモンド膜の形成に理想的な大きさである。さらに、微細な傷やピットが表面に多数形成されていることから、全体として、ダイヤモンド膜の成長の核となる部分がかなり多くなっていることがわかる。 When the surface of the substrate 5 was observed with an electron microscope after the pretreatment of Example 1, the surface morphology as shown in FIG. 2 was obtained. That is, many fine scratches and pits were formed on the surface, and diamond fine particles held on the surface were observed as white spots. The diameter of the fine particles was 100 nm or less, and the number thereof was 4.4 × 10 8 particles / m 2 . The number of fine particles is four times the number in Comparative Example 8 described later. A particle size of 100 nm or less is an ideal size for forming a diamond film. Furthermore, since a lot of fine scratches and pits are formed on the surface, it can be seen that the number of parts that become the core of the growth of the diamond film is considerably increased as a whole.

3.比較例の前処理方法
比較例1〜7の前処理として、前処理液13の代わりに、微粒子を含まない電解質溶液を用いて前処理を行った。その処理条件を上記表1に示す。
3. Pretreatment Method of Comparative Example As a pretreatment of Comparative Examples 1 to 7, a pretreatment was performed using an electrolyte solution containing no fine particles instead of the pretreatment liquid 13. The processing conditions are shown in Table 1 above.

また、比較例8の前処理として、前記実施例1で用いたものと同様のタングステン線を、ダイヤモンド微粒子を含むエタノール溶液中で30分間超音波処理した。ダイヤモンド微粒子の種類、及びエタノールに対する微粒子の量は、前記実施例1と同様とした。   Further, as a pretreatment of Comparative Example 8, the same tungsten wire as that used in Example 1 was subjected to ultrasonic treatment for 30 minutes in an ethanol solution containing diamond fine particles. The kind of diamond fine particles and the amount of fine particles with respect to ethanol were the same as in Example 1.

比較例1の前処理を実施した後に、基体5の表面を電子顕微鏡で観察すると、図3のような表面形態が得られた。この表面形態は、実施例1の場合(図2)と比較して滑らかであり、異物は表面に保持されていない。
また、比較例8の前処理を実施した後に、基体5の表面を電子顕微鏡で観察すると、図4のような表面形態が得られた。すなわち、表面形態は、実施例1の場合(図2)と比較して、微細な傷やピットがなく滑らかであった。また、基体5の表面に保持されたダイヤモンド微粒子(白い点として観察されるもの)の数は、1.1×108個/m2であり、実施例1の場合の約1/4に過ぎなかった。さらに、微粒子の直径は300nm以下であり、実施例1の場合よりも遙かに大きかった。
上記のように、比較例8では、微細な傷やピットがなく、保持されるダイヤモンド微粒子の数が少ない原因は、エタノール中に懸濁した微粒子が、超音波振動では十分な運動エネルギーを有していないためであると考えられる。すなわち、物体の運動エネルギーは(質量)×(速さ)2/2で決まる量であるから、超音波処理により十分な速さを得られない微粒子が表面に衝突しても固定化されずに跳ね返される。
When the surface of the substrate 5 was observed with an electron microscope after the pretreatment of Comparative Example 1, the surface morphology as shown in FIG. 3 was obtained. This surface form is smooth compared with the case of Example 1 (FIG. 2), and the foreign material is not hold | maintained on the surface.
Further, when the surface of the substrate 5 was observed with an electron microscope after performing the pretreatment of Comparative Example 8, a surface form as shown in FIG. 4 was obtained. That is, the surface form was smooth with no fine scratches or pits compared to the case of Example 1 (FIG. 2). Further, the number of diamond fine particles (observed as white dots) held on the surface of the substrate 5 is 1.1 × 10 8 particles / m 2, which is only about ¼ of the case of Example 1. There wasn't. Further, the diameter of the fine particles was 300 nm or less, which was much larger than that in Example 1.
As described above, in Comparative Example 8, there are no fine scratches or pits and the number of retained diamond fine particles is small because fine particles suspended in ethanol have sufficient kinetic energy in ultrasonic vibration. It is thought that this is because it has not. In other words, the kinetic energy of the object (mass) × (speed) because it is the amount determined by the 2/2, even without being immobilized by colliding with the Never particles surface to obtain a fast enough by sonication Bounced back.

4.ダイヤモンド膜の成膜
各実施例及び各比較例の前処理後、基体5を電解処理用セル1から取り出し、マイクロ波プラズマCVD装置に導入し、以下の条件でダイヤモンド膜の成膜を行った。
4). Formation of Diamond Film After the pretreatment of each example and each comparative example, the substrate 5 was taken out from the electrolytic processing cell 1 and introduced into a microwave plasma CVD apparatus, and a diamond film was formed under the following conditions.

マイクロ波の周波数:2.45GHz
マイクロ波の出力:8kW
チャンバー内の圧力:90Torr
ガス流量:500sccm
ダイヤモンド膜の成膜時間:2時間
5.ダイヤモンド膜の評価
ダイヤモンド膜の成膜完了後、電子顕微鏡にて基体5上に形成されたダイヤモンド膜の表面状態を観察した。そして、以下の基準により、ダイヤモンド膜を評価した。
Microwave frequency: 2.45 GHz
Microwave output: 8kW
Pressure in the chamber: 90 Torr
Gas flow rate: 500sccm
4. Diamond film formation time: 2 hours Evaluation of Diamond Film After the completion of the diamond film formation, the surface state of the diamond film formed on the substrate 5 was observed with an electron microscope. The diamond film was evaluated according to the following criteria.

◎:非常に緻密でピンホールのない膜
○:非常に緻密ではあるが一部(全面積の1%以下)ピンホールが見られる膜
△:ある程度(全面積の1〜20%)のピンホールがある膜
×:ダイヤモンドが膜状にならず粒子として存在するか、あるいはほとんど成長しない
その結果を上記表1に示す。
◎: Very dense film without pinholes ○: Very dense, but partially (1% or less of the total area) pinholes △: Pinholes to some extent (1-20% of the total area) Film with x: Diamond does not form a film but exists as particles or hardly grows. The results are shown in Table 1 above.

表1から明らかなとおり、各実施例で前処理を行ったものは、いずれも評価結果が△〜◎であった。特に、電解条件が交流であるもの(実施例1)は、直流であるもの(参考例2)よりも、ダイヤモンド膜の表面状態が一層良好であった。また、基体5の材料がW、Nb、Taであるもの(実施例1、5、6)は、基体5がその他の材料であるもの(実施例3〜4、7)よりも、ダイヤモンド膜の表面状態が一層良好であった。また、微粒子の材質がダイヤモンドであるもの(実施例1)は、微粒子の材質がSiC、Mo、AlO3
、AlN、WCであるもの(実施例10〜14)よりも、ダイヤモンド膜の表面状態が一層良好であった。また、微粒子の粒径については、0.5μm以下、0.5〜1μm、30〜40μmのいずれの場合(実施例1、15〜16)であっても、ダイヤモンド膜の表面状態が良好であった。また、電解質溶液の種類がNaOH、Na2SO4の水溶液であるもの(実施例1、17)は、電解質溶液がH2SO4の水溶液であるもの(実施例18)よりも、ダイヤモンド膜の表面状態が一層良好であった。
As is clear from Table 1, the evaluation results for each of the examples that were pretreated in each Example were Δ to ◎. In particular, the surface condition of the diamond film was better in the case where the electrolytic condition was alternating current (Example 1) than in the case where the electrolytic condition was direct current ( Reference Example 2). In addition, the material of the base 5 made of W, Nb, and Ta (Examples 1, 5, and 6) is a diamond film than the material of the base 5 made of other materials (Examples 3 to 4, and 7). The surface condition was even better. In addition, when the material of the fine particles is diamond (Example 1), the material of the fine particles is SiC, Mo, AlO 3.
The surface condition of the diamond film was better than those of AlN and WC (Examples 10 to 14). Further, regarding the particle size of the fine particles, the surface condition of the diamond film was good in any case of 0.5 μm or less, 0.5 to 1 μm, and 30 to 40 μm (Examples 1, 15 to 16). It was. Moreover, the type of the electrolyte solution is an aqueous solution of NaOH and Na 2 SO 4 (Examples 1 and 17), and the case where the electrolyte solution is an aqueous solution of H 2 SO 4 (Example 18) is higher than that of the diamond film. The surface condition was even better.

また、表1から明らかなとおり、比較例1〜5で前処理を行ったものは、いずれも×であった。
なお、実施例8〜9、比較例6〜7では、基体5自体の材質の問題により、マイクロ波プラズマCVD法では成膜できなかった。ホットフィラメントCVD法ではこれらの材質から成る基体5でも成膜できることが報告されている。
Moreover, as is clear from Table 1, all of the samples subjected to the pretreatment in Comparative Examples 1 to 5 were x.
In Examples 8 to 9 and Comparative Examples 6 to 7, the film could not be formed by the microwave plasma CVD method due to the problem of the material of the substrate 5 itself. It has been reported that the hot filament CVD method can form a film on the substrate 5 made of these materials.

実施例1の前処理を行った後に成膜されたダイヤモンド膜の表面状態を図5に示す。この図5から分かるように、非常に良好な膜が形成されている。一方、比較例1の前処理を行った後に成膜されたダイヤモンド膜の表面状態を図6に示す。この図6から明らかなように、ダイヤモンド膜は形成されていない。   The surface state of the diamond film formed after the pretreatment of Example 1 is shown in FIG. As can be seen from FIG. 5, a very good film is formed. On the other hand, the surface state of the diamond film formed after the pretreatment of Comparative Example 1 is shown in FIG. As is apparent from FIG. 6, no diamond film is formed.

電解処理用セル1の構成を表す説明図である。2 is an explanatory diagram showing a configuration of an electrolytic treatment cell 1. FIG. 前処理後における基材5の表面形態を表す電子顕微鏡写真である。It is an electron micrograph showing the surface form of substrate 5 after pretreatment. 前処理後における基材5の表面形態を表す電子顕微鏡写真である。It is an electron micrograph showing the surface form of substrate 5 after pretreatment. 前処理後における基材5の表面形態を表す電子顕微鏡写真である。It is an electron micrograph showing the surface form of substrate 5 after pretreatment. ダイヤモンド膜の表面形態を表す電子顕微鏡写真である。It is an electron micrograph showing the surface form of a diamond film. ダイヤモンド膜の表面形態を表す電子顕微鏡写真である。It is an electron micrograph showing the surface form of a diamond film.

符号の説明Explanation of symbols

1・・・電解処理用セル 3・・・電源 5・・・基体
7、11・・・リード線 9・・・ルツボ 13・・・前処理液
DESCRIPTION OF SYMBOLS 1 ... Electrolytic processing cell 3 ... Power supply 5 ... Base | substrate 7, 11 ... Lead wire 9 ... Crucible 13 ... Pre-processing liquid

Claims (5)

ダイヤモンド膜の合成に用いる導電性基体の前処理方法であって、
微粒子を懸濁させた電解質溶液に前記導電性基体を浸漬し、交流電解により電解処理を行うことを特徴とする前処理方法。
A pretreatment method of a conductive substrate used for synthesis of a diamond film,
A pretreatment method comprising immersing the conductive substrate in an electrolyte solution in which fine particles are suspended and performing electrolytic treatment by alternating current electrolysis .
前記微粒子の硬度が、前記導電性基体の硬度よりも高いことを特徴とする請求項1記載の前処理方法。   The pretreatment method according to claim 1, wherein the hardness of the fine particles is higher than the hardness of the conductive substrate. 前記微粒子の粒径が、40μm以下であることを特徴とする請求項1又は2に記載の前処理方法。   The pretreatment method according to claim 1, wherein a particle diameter of the fine particles is 40 μm or less. 前記微粒子が、ダイヤモンドから成ることを特徴とする請求項1〜3のいずれかに記載の前処理方法。   The pretreatment method according to claim 1, wherein the fine particles are made of diamond. 請求項1〜のいずれかに記載の前処理方法を行ってから、前記導電性基体の表面にダイヤモンド膜を合成するダイヤモンド膜の製造方法。 The method according to the performing pre-processing method according to any one of Items 1-4, the diamond film to synthesize a diamond film on the surface of the conductive substrate.
JP2007077295A 2007-03-23 2007-03-23 Pretreatment method of conductive substrate used for synthesis of diamond film and method of manufacturing diamond film Expired - Fee Related JP4851376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007077295A JP4851376B2 (en) 2007-03-23 2007-03-23 Pretreatment method of conductive substrate used for synthesis of diamond film and method of manufacturing diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007077295A JP4851376B2 (en) 2007-03-23 2007-03-23 Pretreatment method of conductive substrate used for synthesis of diamond film and method of manufacturing diamond film

Publications (2)

Publication Number Publication Date
JP2008230945A JP2008230945A (en) 2008-10-02
JP4851376B2 true JP4851376B2 (en) 2012-01-11

Family

ID=39904195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007077295A Expired - Fee Related JP4851376B2 (en) 2007-03-23 2007-03-23 Pretreatment method of conductive substrate used for synthesis of diamond film and method of manufacturing diamond film

Country Status (1)

Country Link
JP (1) JP4851376B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210167A1 (en) 2022-04-26 2023-11-02 住友化学株式会社 Substrate with deposited diamond film and method for producing substrate with deposited diamond film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794601B2 (en) * 1989-12-14 1998-09-10 昭和電工株式会社 Surface treatment of cemented carbide substrate for diamond deposition
JP3425167B2 (en) * 1992-10-27 2003-07-07 シャープ株式会社 Manufacturing method of thin film diamond
JPH10310494A (en) * 1996-05-31 1998-11-24 Ngk Spark Plug Co Ltd Production of cemented carbide member with diamond coating film
WO1997047789A1 (en) * 1996-06-12 1997-12-18 Matsushita Electric Industrial Co., Ltd. Diamond film and process for preparing the same

Also Published As

Publication number Publication date
JP2008230945A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
TWI295697B (en) Conductive diamond electrode and process for producing the same
EP1655265B1 (en) Method of preparing a single-atom tip
US20090324810A1 (en) Method for production of diamond electrodes
JP2007070689A (en) Nanocarbon/aluminum composite material, method for producing the same, and plating liquid used therefor
US7001494B2 (en) Electrolytic cell and electrodes for use in electrochemical processes
JP5882878B2 (en) Diamond electrode and ozone generator using diamond electrode
JP2012193415A (en) Electrode for electrolytically synthesizing fluorine compound
KR20200005828A (en) Porous Ni-Al-Mo Cathod for Alkaline Water Electrolysis, Preparation Method thereof and Ni-Al-Mo Coating Material for Thermal Spray
JP5271345B2 (en) Conductive diamond electrode, sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus using the same
JP2006299338A (en) Lubricating agent for plating in molten salt, and plating method in molten salt using the lubricating agent
JP6849273B2 (en) Electrode material for electrolytic hydrogen production
US6569308B2 (en) Fabrication of a high surface area diamond-like carbon or dirty diamond coated metal mesh for electrochemical applications
JP4851376B2 (en) Pretreatment method of conductive substrate used for synthesis of diamond film and method of manufacturing diamond film
Furuya et al. Protective agent-free preparation of gold nanoplates and nanorods in aqueous HAuCl4 solutions using gas–liquid interface discharge
TW201035384A (en) Anode for electrolysis and method of electrolytically synthesizing fluorine-containing substance using the anode for electrolysis
US10697073B2 (en) Method for manufacturing electrode for hydrogen production using tungsten carbide nanoflake and electrode for hydrogen production manufactured thereby
JP5217712B2 (en) Coated cemented carbide member
JP4365415B2 (en) How to produce high adhesion thick protective coating of valve metal parts by micro arc oxidation
JP2009200038A (en) Anticorrosive conductive coating, anticorrosive conductive material, solid polymer fuel cell, its separator, and manufacturing method of anticorrosive conductive material
JP2015010253A (en) Alloy electrode for oxygen generation and manufacturing method of the same
JP4133655B2 (en) Method for producing nanocarbon material and method for producing wiring structure
JP2008266717A (en) Electrode for ozone generation
JP2006206971A (en) Diamond coated electrode
JP2006189276A (en) Monoatomic chip and its preparation method
JP2018083964A (en) Iron nitride material and method of manufacturing iron nitride material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees