JP4133655B2 - Method for producing nanocarbon material and method for producing wiring structure - Google Patents

Method for producing nanocarbon material and method for producing wiring structure Download PDF

Info

Publication number
JP4133655B2
JP4133655B2 JP2003270361A JP2003270361A JP4133655B2 JP 4133655 B2 JP4133655 B2 JP 4133655B2 JP 2003270361 A JP2003270361 A JP 2003270361A JP 2003270361 A JP2003270361 A JP 2003270361A JP 4133655 B2 JP4133655 B2 JP 4133655B2
Authority
JP
Japan
Prior art keywords
nanocarbon material
semiconductor
catalyst metal
carbon
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003270361A
Other languages
Japanese (ja)
Other versions
JP2005023408A (en
Inventor
治男 横道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003270361A priority Critical patent/JP4133655B2/en
Priority to PCT/JP2003/016831 priority patent/WO2005003409A1/en
Priority to CA002530976A priority patent/CA2530976A1/en
Priority to US10/563,018 priority patent/US20060163077A1/en
Publication of JP2005023408A publication Critical patent/JP2005023408A/en
Application granted granted Critical
Publication of JP4133655B2 publication Critical patent/JP4133655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes

Description

本発明は、カーボンナノチューブ等のナノカーボン材料の製造方法、及びナノカーボン材料を配線に用いた配線構造の製造方法に関する。   The present invention relates to a method for producing a nanocarbon material such as a carbon nanotube, and a method for producing a wiring structure using the nanocarbon material for wiring.

近年、いわゆるカーボンナノチューブ等のナノカーボン材料が注目されている。これらのナノカーボン材料は従来の炭素材料であるグラファイトやダイヤモンドと異なる物性を有しているため、電極の電子放出源、伝導性膜、電池電極等への応用が期待されている。また、ナノカーボン材料は配線用途としても適していると考えられる。上記カーボンナノチューブ等のナノカーボンの製造(合成)方法としては、気相合成法やアーク放電法が知られている。   In recent years, nanocarbon materials such as so-called carbon nanotubes have attracted attention. Since these nanocarbon materials have physical properties different from those of conventional carbon materials such as graphite and diamond, they are expected to be applied to electrode electron emission sources, conductive films, battery electrodes, and the like. Nanocarbon materials are also considered suitable for wiring applications. As methods for producing (synthesizing) nanocarbons such as the above-mentioned carbon nanotubes, a gas phase synthesis method and an arc discharge method are known.

一方、上記ナノカーボン材料とは異なるが、新規なカーボン材料としてダイヤモンドライクカーボン(DLC)やカーボン膜が研究されている。従来、このDLCやカーボン膜は蒸着法(CVD、PVD)によって一般に製造されてきたが、最近、電解析出による製造方法が提案されている(例えば、非特許文献1、2参照)。   On the other hand, diamond-like carbon (DLC) and carbon films have been studied as new carbon materials, although they are different from the nanocarbon materials. Conventionally, the DLC and the carbon film have been generally manufactured by a vapor deposition method (CVD, PVD), but recently, a manufacturing method by electrolytic deposition has been proposed (for example, see Non-Patent Documents 1 and 2).

ハオ・ウオン(Hao Wang)、外4名、「デポジション・オブ・ダイヤモンドライク・カーボン・フィルムズ・バイ・エレクトリシス・オブ・メタノール・ソリューション(Depositionof Diamond-like carbon films by electrolysis of methanol solution)」,(米国),アプライド・フィジックス・レターズ (AppliedPhysics Letters ),1996年8月19日,69(8),p.1074−1076Hao Wang, 4 others, “Deposition of Diamond-like carbon films by electrolysis of methanol solution”, (USA), Applied Physics Letters, August 19, 1996, 69 (8), p. 1074-1076 ヨシカツ・ナンバ (Yoshikatsu Namba)、「アテンプト・トウ・グロー・ダイヤモンド・フェーズ・カーボン・フィルムズ・フロム・アン・オーガニック・ソリューション(Attempt to grow diamond phase carbon films from an organic solution)」,(米国),ジャーナル・オブ・バキューム・サイエンス・テクノロジー(Journal of vacuum science technology),1992年9/10月,A10(5),p.3368−3370Yoshikatsu Namba, "Attempt to grow diamond phase carbon films from an organic solution", (USA), Journal・ Journal of vacuum science technology, September / October 1992, A10 (5), p. 3368-3370

しかしながら、カーボンナノチューブ等のナノカーボン材料を電気化学的に製造する技術については、全く検討されていない。そして、カーボンナノチューブを気相合成するには約550℃の温度が必要とされるため、製造コストが大となったり、カーボンナノチューブの応用分野が制限されるという問題がある。例えばカーボンナノチューブを回路基板上に直接形成させて配線に用いようとする場合、回路基板の耐熱温度が低いために上記気相合成法を適用することは困難である。
本発明は上記の課題を解決するためになされたものであり、装置が簡易で、低温で製造が可能なナノカーボン材料の製造方法、及び配線構造の製造方法の提供を目的とする。
However, a technique for electrochemically producing nanocarbon materials such as carbon nanotubes has not been studied at all. In addition, since a temperature of about 550 ° C. is required to synthesize carbon nanotubes in a gas phase, there are problems that the manufacturing cost is increased and the application field of carbon nanotubes is limited. For example, when carbon nanotubes are directly formed on a circuit board and used for wiring, it is difficult to apply the gas phase synthesis method because the heat resistant temperature of the circuit board is low.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for producing a nanocarbon material that can be produced at a low temperature with a simple apparatus and a method for producing a wiring structure.

本発明者らは種々検討した結果、所定の陰極及び電解液を用いることで、ナノカーボン材料を電気分解によって、装置が簡易で、従来より低温(例えば常温)で製造できることを見出した。つまり、上記した目的を達成するために、本発明のナノカーボン材料の製造方法は、触媒金属が不均一に形成された半導体を陰極とし、有機溶媒を含む電解液中で電気分解することにより、前記触媒金属の表面にナノカーボン材料を形成させることを特徴とする。   As a result of various studies, the present inventors have found that by using a predetermined cathode and an electrolytic solution, the nanocarbon material can be produced by electrolysis at a lower temperature (for example, room temperature) than before, with a simple apparatus. That is, in order to achieve the above-described object, the method for producing a nanocarbon material of the present invention uses a semiconductor in which a catalytic metal is heterogeneously formed as a cathode, and performs electrolysis in an electrolytic solution containing an organic solvent. A nanocarbon material is formed on the surface of the catalyst metal.

また、本発明のナノカーボン材料の製造方法は、触媒金属のイオンを含む電解液中で半導体を陰極として電気分解し、該半導体の表面に前記触媒金属を不均一に形成させる工程と、前記触媒金属が不均一に形成された半導体を陰極とし、有機溶媒を含む電解液中で電気分解することにより、前記触媒金属の表面にナノカーボン材料を形成させる工程とを有することを特徴とする。   The method for producing a nanocarbon material of the present invention includes a step of electrolyzing a semiconductor as a cathode in an electrolytic solution containing catalyst metal ions, and forming the catalyst metal unevenly on a surface of the semiconductor; And a step of forming a nanocarbon material on the surface of the catalyst metal by electrolysis in an electrolyte containing an organic solvent using a semiconductor in which a metal is unevenly formed as a cathode.

さらに、本発明のナノカーボン材料の製造方法は、半導体の表面に形成された触媒金属をエッチングし、該半導体の表面に前記触媒金属を不均一に形成させる工程と、前記触媒金属が不均一に形成された半導体を陰極とし、有機溶媒を含む電解液中で電気分解することにより、前記触媒金属の表面にナノカーボン材料を形成させる工程とを有することを特徴とする。   Furthermore, the method for producing a nanocarbon material of the present invention includes a step of etching a catalyst metal formed on a semiconductor surface to form the catalyst metal non-uniformly on the surface of the semiconductor, and the catalyst metal non-uniformly formed. And forming a nanocarbon material on the surface of the catalyst metal by electrolysis in an electrolytic solution containing an organic solvent using the formed semiconductor as a cathode.

本発明の配線構造の製造方法は、配線形成位置の両端にそれぞれ突状に形成された触媒金属を陰極及び/又は陽極とし、有機溶媒を含む電解液中で電気分解することにより、前記触媒金属間にナノカーボン材料を配線として形成させることを特徴とする。 The method for manufacturing a wiring structure according to the present invention is characterized in that the catalytic metal is formed as a cathode and / or an anode on both ends of the wiring forming position, and electrolyzed in an electrolytic solution containing an organic solvent. It is characterized in that a nanocarbon material is formed as a wiring in between.

本発明のナノカーボン材料の製造方法によれば、電気分解法という簡易な方法により、装置が簡易で、かつ従来より低温(例えば常温)でナノカーボン材料を製造することができ、特にカーボンナノチューブやカーボンナノワイヤー等の繊維状のナノカーボン材料の製造に適している。   According to the method for producing a nanocarbon material of the present invention, the nanocarbon material can be produced at a lower temperature (for example, room temperature) than the conventional apparatus by a simple method called an electrolysis method. Suitable for the production of fibrous nanocarbon materials such as carbon nanowires.

以下、本発明に係るナノカーボン材料の製造方法の実施の形態について説明する。
本発明に係るナノカーボン材料の製造方法は、触媒金属が不均一に形成された半導体を陰極とし、有機溶媒を含む電解液中で電気分解することにより、前記触媒金属の表面にナノカーボン材料を形成させるものである。
Hereinafter, embodiments of the method for producing a nanocarbon material according to the present invention will be described.
The method for producing a nanocarbon material according to the present invention uses a semiconductor in which a catalytic metal is heterogeneously formed as a cathode and electrolyzes it in an electrolytic solution containing an organic solvent, whereby the nanocarbon material is formed on the surface of the catalytic metal. It is to be formed.

本発明により製造されるナノカーボン材料とは、0.1nm程度〜数100nmのサイズの構造体からなるカーボン材料をいい、例えばカーボンナノチューブ(直径が0.1nm〜数10nmの管状繊維状物が例示される)、カーボンナノワイヤー(直径が数100nmの中実の繊維状物が例示される)、カーボンオニオン(直径が数nm〜数100nmでタマネギ状に黒鉛層が数10〜数100層積層した球状微粒子が例示される)、カーボンナノワイヤーの放射状集合体(カーボンナノワイヤが多数放射状に束ねられ、花のように拡がったもの)が挙げられる。特に、本発明は、カーボンナノチューブやカーボンナノワイヤー等、細長く繊維状の材料の製造に適している。   The nanocarbon material produced according to the present invention refers to a carbon material composed of a structure having a size of about 0.1 nm to several hundred nm, such as a carbon nanotube (a tubular fibrous material having a diameter of 0.1 nm to several tens of nm). Carbon nanowires (examples are solid fibrous materials having a diameter of several hundreds of nanometers), carbon onions (diameters of several nanometers to several hundreds of nanometers, and several to several hundreds of graphite layers laminated in an onion shape) Spherical fine particles are exemplified), and a radial aggregate of carbon nanowires (a large number of carbon nanowires are radially bundled and spread like a flower). In particular, the present invention is suitable for producing elongated and fibrous materials such as carbon nanotubes and carbon nanowires.

陰極に用いる半導体としては、シリコンが入手しやすく好ましいが、この他にゲルマニウム等の半導体や、高抵抗の金属を用いることができる。又、シリコンを用いる場合は、不純物がドーピングされたものを用いると、電気抵抗が低くなるので好ましい。   As a semiconductor used for the cathode, silicon is preferable because it is easily available, but in addition to this, a semiconductor such as germanium or a metal having high resistance can be used. In addition, when silicon is used, it is preferable to use a material doped with impurities since the electric resistance is lowered.

この半導体の表面には触媒金属が不均一に形成しているが、ここでいう不均一形成とは半導体表面に例えば島状、粒状に分散して形成することをいい、触媒金属の形成部分が半導体に比べて導電性が高いために、電流がこの触媒金属の形成部分に集中し、電解液中の有機溶媒の炭素原子がこの形成部分を核として電析するものと考えられる。触媒金属は導電性を有するものであれば何でもよいが、例えばNi、Co、Fe、Al、Cu、Znを例示することができる。好ましくはNi、Co、Feがよく、特にNiが最も好ましく、次にCo、Feの順で好ましい。触媒金属は、半導体の表面に数nm〜数10nm、好ましくは10nm程度の厚みで形成させるのが好ましい。なお、複数種類の触媒金属(例えばNiとFe)やこれらの合金を1つの半導体上に形成させてもよい。   The catalyst metal is unevenly formed on the surface of the semiconductor, but the term “nonuniform formation” as used herein means that the semiconductor surface is dispersed, for example, in the form of islands and grains. Since the conductivity is higher than that of a semiconductor, it is considered that the current concentrates on the formation part of the catalyst metal, and the carbon atoms of the organic solvent in the electrolytic solution are electrodeposited using the formation part as a nucleus. The catalyst metal may be anything as long as it has conductivity, and examples thereof include Ni, Co, Fe, Al, Cu, and Zn. Ni, Co, and Fe are preferred, and Ni is most preferred, followed by Co and Fe in this order. The catalytic metal is preferably formed on the surface of the semiconductor with a thickness of several nm to several tens of nm, preferably about 10 nm. A plurality of types of catalyst metals (for example, Ni and Fe) and alloys thereof may be formed on one semiconductor.

半導体表面に不均一形成された個々の島状(又は粒状)の触媒金属の大きさは、その表面に主に形成されるナノカーボン材料の種類を決めると考えられる。例えば、個々の触媒金属の大きさ(径)を0.1〜数10nm、好ましくは0.1〜10nm、より好ましくは0.1〜0.5nmとすると、主にカーボンナノチューブが製造される。これは、いわゆるエッジ効果により触媒金属の縁部に電解電流が集中して該縁部に炭素が電析し、一方で触媒金属の中心部には電析し難くなり、管状のカーボンナノチューブが成長することが考えられる。また、例えば、個々の触媒金属の大きさ(径)を数100nm、好ましくは100〜200nmとすると、主にカーボンナノワイヤーが製造される。このようにすると、径が大きくなるためにエッジ効果は生じず触媒金属の表面全体に電解電流が流れ、触媒金属の表面全体に炭素が電析し、中実のカーボンカーボンナノワイヤーが成長することが考えられる。なお、種々の大きさ(径)の触媒金属が半導体表面に存在する場合、その径に応じて各種のナノカーボン材料が形成される。   The size of each island-shaped (or granular) catalyst metal formed nonuniformly on the semiconductor surface is considered to determine the type of nanocarbon material mainly formed on the surface. For example, when the size (diameter) of each catalytic metal is 0.1 to several tens of nm, preferably 0.1 to 10 nm, more preferably 0.1 to 0.5 nm, carbon nanotubes are mainly produced. This is because the electrolysis current concentrates on the edge of the catalytic metal due to the so-called edge effect, and carbon deposits on the edge, while it becomes difficult to deposit on the central part of the catalytic metal, and tubular carbon nanotubes grow. It is possible to do. For example, when the size (diameter) of each catalyst metal is several 100 nm, preferably 100 to 200 nm, carbon nanowires are mainly produced. When this is done, the edge effect does not occur due to the large diameter, electrolysis current flows over the entire surface of the catalytic metal, carbon deposits on the entire surface of the catalytic metal, and solid carbon carbon nanowires grow. Can be considered. In addition, when catalyst metals of various sizes (diameters) are present on the semiconductor surface, various nanocarbon materials are formed according to the diameters.

半導体表面に触媒金属を不均一に形成させる方法としては、例えば触媒金属のイオンを含む電解液中で半導体を陰極として電気分解し、半導体の表面に前記触媒金属を不均一に電析させる方法がある。この場合、電解液中の触媒金属イオン濃度を低くしたり、低電流密度で電解することにより、触媒金属を不均一形成させることができる。この場合、溶液中に溶解している金属イオンが全て基板表面(片面)に堆積したとすると、その膜厚が10nm程度になるような分量だけ、金属イオンを電解液に溶解すればよい。従って、電解液の量に応じて濃度が異なるので、上記条件に沿うよう適宜調整する。電解液としては、例えば上記触媒金属の硝酸塩(硝酸ニッケル、硝酸コバルト、硝酸第1鉄等)をアルコール(例えばエチルアルコール)に溶解したものを用いることができる。   As a method for forming the catalyst metal non-uniformly on the semiconductor surface, for example, there is a method of electrolyzing the semiconductor as a cathode in an electrolytic solution containing ions of the catalyst metal and depositing the catalyst metal non-uniformly on the surface of the semiconductor. is there. In this case, the catalyst metal can be formed non-uniformly by lowering the catalyst metal ion concentration in the electrolytic solution or by performing electrolysis at a low current density. In this case, if all the metal ions dissolved in the solution are deposited on the substrate surface (one side), the metal ions may be dissolved in the electrolytic solution in such an amount that the film thickness is about 10 nm. Accordingly, the concentration varies depending on the amount of the electrolytic solution, so that the concentration is appropriately adjusted to meet the above conditions. As the electrolytic solution, for example, a solution obtained by dissolving a nitrate (eg, nickel nitrate, cobalt nitrate, ferrous nitrate) of the catalyst metal in an alcohol (eg, ethyl alcohol) can be used.

半導体表面に触媒金属を不均一に形成させる他の方法としては、半導体の表面に触媒金属を形成し、この触媒金属をエッチングする方法がある。この場合、例えば半導体の表面にNi等の触媒金属をスパッタリングにより所定厚み形成し、これをエッチングガス(例えばアンモニアガス)中に置くことで、Niが部分的にエッチング除去される。   As another method for forming the catalyst metal unevenly on the semiconductor surface, there is a method of forming the catalyst metal on the surface of the semiconductor and etching the catalyst metal. In this case, for example, a catalyst metal such as Ni is formed on the surface of the semiconductor by sputtering to a predetermined thickness, and this is placed in an etching gas (for example, ammonia gas), whereby Ni is partially removed by etching.

不均一に形成された個々の触媒金属の大きさ(径)を制御する方法としては、上記電析の場合は、電解液中の金属イオンの量を多くすることで触媒金属を大きな粒とすることができる。上記エッチングの場合は、エッチング温度が高く、時間が長い方が触媒金属が小さな粒となる。なお、いずれの場合も通常、触媒金属の大きさはかなり広範囲に分布し、大きい粒の粒径は数μm、小さい粒の粒径は数nmであることが多い。   As a method for controlling the size (diameter) of each catalyst metal formed unevenly, in the case of the above electrodeposition, the catalyst metal is made into large particles by increasing the amount of metal ions in the electrolytic solution. be able to. In the case of the above etching, the catalyst metal becomes smaller particles when the etching temperature is higher and the time is longer. In either case, the size of the catalyst metal is usually distributed over a fairly wide range, and the particle size of large particles is often several μm, and the particle size of small particles is often several nm.

電解液に含まれる有機溶媒としては特に制限はないが、アルコール、ニトリル、ベンゼン、キシレンを例示することができ、好ましくはメタノールやエタノール等のアルコールや、メタンにトリルやエタンニトリル(アセトニトリル)等の脂肪族ニトリルがよい。電解液は有機溶媒単体であってもよく、又、複数種類の有機溶媒を混合したものであってもよく、さらに、有機溶媒に水、電導助剤等を加えたものでもよい。   Although there is no restriction | limiting in particular as an organic solvent contained in electrolyte solution, Alcohol, a nitrile, benzene, xylene can be illustrated, Preferably alcohol, such as methanol and ethanol, Toluyl, ethane nitrile (acetonitrile), etc. to methane Aliphatic nitriles are preferred. The electrolytic solution may be a single organic solvent, may be a mixture of a plurality of types of organic solvents, or may be a solution obtained by adding water, a conductive aid or the like to an organic solvent.

本発明は上記電解液を電気分解するものであり、陽極としては特に制限されないが、例えばカーボン電極、各種の不溶性陽極等を用いることができる。又、電解条件も特に制限されないが、例えば1〜数10mA/cm、好ましくは2〜6mA/cmの電流密度で直流電解すればよい。電解電圧(陰極と陽極間の電圧)は、電極間距離、電解液の電気電導度に応じて変化するが、好ましくは0.1kV〜数10kV、より好ましくは0.1〜5kVとする。電解電圧をこのように高くすることで、有機溶媒中の炭素原子がアニオンとなって電析し易くなる可能性がある。又、交番電解してもよく、この場合は陰極と陽極のいずれか、好ましくは両方に上記半導体を用いればよい。なお、電解温度も特に制限はなく、電解液が沸騰しない温度、例えば室温〜50℃程度とすればよい。電解による発熱を防止するため、適宜電解液を冷却してもよい。電解時間は電解条件によって変化するが、例えば1〜10時間程度電解すればよい。 In the present invention, the electrolytic solution is electrolyzed, and the anode is not particularly limited. For example, a carbon electrode, various insoluble anodes, and the like can be used. Although not particularly limited electrolysis conditions, for example, to several 10 mA / cm 2, preferably it may be direct electrolysis at a current density of 2~6mA / cm 2. The electrolytic voltage (voltage between the cathode and the anode) varies depending on the distance between the electrodes and the electric conductivity of the electrolytic solution, but is preferably 0.1 kV to several tens kV, more preferably 0.1 to 5 kV. By increasing the electrolysis voltage in this way, carbon atoms in the organic solvent may become anions and may be easily electrodeposited. Alternatively, alternating electrolysis may be performed. In this case, the above semiconductor may be used for either the cathode or the anode, preferably both. The electrolysis temperature is not particularly limited, and may be a temperature at which the electrolytic solution does not boil, for example, about room temperature to 50 ° C. In order to prevent heat generation due to electrolysis, the electrolytic solution may be appropriately cooled. Although electrolysis time changes with electrolysis conditions, it may suffice, for example for about 1 to 10 hours.

電気分解を行うには、例えば図1に示す電解装置を用いることができる。この図において、電解装置10は、電解槽2、マグネチックスターラ3、半導体基板からなる陰極4、陽極6、温度計7、DC電源8を備えている。電解槽2内には有機溶媒を含む電解液が入っている。陰極4のうち陽極6との対向面には触媒金属4aが不均一に形成されている。そして、電解により、有機溶媒中の炭素原子が触媒金属4a上に電析し、陽極6側へ成長してゆく。   For the electrolysis, for example, an electrolysis apparatus shown in FIG. 1 can be used. In this figure, an electrolysis apparatus 10 includes an electrolytic cell 2, a magnetic stirrer 3, a cathode 4 made of a semiconductor substrate, an anode 6, a thermometer 7, and a DC power source 8. The electrolytic bath 2 contains an electrolytic solution containing an organic solvent. A catalyst metal 4 a is formed unevenly on the surface of the cathode 4 facing the anode 6. Then, carbon atoms in the organic solvent are electrodeposited on the catalyst metal 4a by electrolysis and grow to the anode 6 side.

ところで、電析したナノカーボン材料は、例えば触媒金属から機械的方法で剥いで回収してもよい。又、触媒金属を内包したナノカーボン材料や、触媒金属が底部に形成されたナノカーボン材料を得ることができる。また、半導体上に電析したままで使用してもよい。   By the way, the electrodeposited nanocarbon material may be separated from the catalyst metal by a mechanical method and recovered. Moreover, the nanocarbon material which included the catalyst metal, and the nanocarbon material in which the catalyst metal was formed in the bottom part can be obtained. Moreover, you may use it, depositing on a semiconductor.

図2、3に、ナノカーボン材料が電析する態様を模式的に示す。図2において、半導体基板40の表面に触媒金属40aが島状に形成され、既に述べたエッジ効果により触媒金属40aの縁部から陽極側(図の上方向)に向かってナノカーボン材料が成長し、管状のカーボンナノチューブが形成されている。又、図3においては、半導体基板41の表面に触媒金属41aが島状に形成され、この場合は触媒金属40aの表面全体(側面を含む)にナノカーボン材料が電析し、触媒金属を内包したカーボンオニオンが形成されている。   2 and 3 schematically show how the nanocarbon material is electrodeposited. In FIG. 2, the catalyst metal 40a is formed in an island shape on the surface of the semiconductor substrate 40, and the nanocarbon material grows from the edge of the catalyst metal 40a toward the anode side (upward in the figure) by the edge effect described above. Tubular carbon nanotubes are formed. In FIG. 3, the catalyst metal 41a is formed in an island shape on the surface of the semiconductor substrate 41. In this case, the nanocarbon material is electrodeposited on the entire surface (including side surfaces) of the catalyst metal 40a, and the catalyst metal is included. Carbon onions are formed.

次に、本発明の配線構造の製造方法の一実施形態について説明する。本発明の配線構造の製造方法は、上記ナノカーボン材料の製造方法と同様な手順により行われるが、陰極及び陽極として、配線形成位置の両端にそれぞれ突状に形成された触媒金属を用いる点が上記方法と異なっている。そして、本発明の配線構造の製造方法においては、陰極及び陽極となる触媒金属間にナノカーボン材料を配線として形成させるものであるが、これについて図4を参照して説明する。   Next, an embodiment of a method for manufacturing a wiring structure according to the present invention will be described. The method for producing a wiring structure of the present invention is performed by the same procedure as the method for producing the nanocarbon material, except that a catalytic metal formed in a protruding shape at both ends of the wiring forming position is used as the cathode and the anode. Different from the above method. And in the manufacturing method of the wiring structure of this invention, nanocarbon material is formed as wiring between the catalyst metals used as a cathode and an anode, and this is demonstrated with reference to FIG.

図4において、2つの回路基板100、101の表面にはそれぞれ配線パターン200、201が形成されている(図4(a))。いま、配線パターン200の端部(右端)と、配線パターン201の端部(左端)とを配線して接続したいとする。この場合、まず配線形成位置の両端となる、配線パターン200の端部(右端)と配線パターン201の端部(左端)とに、それぞれ触媒金属からなる突部200a、201aを予め形成しておく。次に、少なくとも突部200a、201aを含む上記配線形成位置が、有機溶媒を含む電解液に浸漬(又は接触)するようにする。この場合、各回路基板100、101全体を上記電解液に浸漬してもよく、又、上記配線形成位置のみが電解液に浸漬されるような電解セルを用いてもよい。   In FIG. 4, wiring patterns 200 and 201 are formed on the surfaces of two circuit boards 100 and 101, respectively (FIG. 4A). Now, it is assumed that the end portion (right end) of the wiring pattern 200 and the end portion (left end) of the wiring pattern 201 are to be wired and connected. In this case, first, protrusions 200a and 201a made of a catalyst metal are formed in advance on the end (right end) of the wiring pattern 200 and the end (left end) of the wiring pattern 201, which are both ends of the wiring formation position, respectively. . Next, the wiring formation position including at least the protrusions 200a and 201a is immersed (or contacted) with an electrolytic solution containing an organic solvent. In this case, the entire circuit boards 100 and 101 may be immersed in the electrolytic solution, or an electrolytic cell in which only the wiring forming position is immersed in the electrolytic solution may be used.

そして、この状態で突部200a、201aをそれぞれ陰極,陽極(いずれが陰極であってもよいがこの実施形態では仮に突部200aを陰極とする)として電気分解すると、突部200aに電析したナノカーボン材料が、突部201a側に向かって成長し、やがてナノカーボン材料は突部201aに接続する。このようにして、突部200a、201a間にナノカーボン材料が配線300として形成される(図4(b))。なお、電気分解は直流電解でもよく、又、交番電解でもよい。なお、実際には、突部200aが配線パターン200と導通し、突部201aが配線パターン201と導通しているので、電源を各配線パターン200、201に接続して電解すればよい。なお、直流電解を行う場合、アノード側の突部には、不溶性の金属やカーボン材料を電極として形成するのが好ましい。   In this state, the projections 200a and 201a are electrolyzed as the cathode and the anode, respectively (which may be a cathode, but in this embodiment, the projection 200a is assumed to be a cathode). The nanocarbon material grows toward the protrusion 201a, and the nanocarbon material eventually connects to the protrusion 201a. In this way, the nanocarbon material is formed as the wiring 300 between the protrusions 200a and 201a (FIG. 4B). The electrolysis may be direct current electrolysis or alternating electrolysis. Actually, since the protrusion 200a is electrically connected to the wiring pattern 200 and the protrusion 201a is electrically connected to the wiring pattern 201, a power source may be connected to each of the wiring patterns 200 and 201 for electrolysis. When direct current electrolysis is performed, it is preferable to form an insoluble metal or carbon material as an electrode on the projection on the anode side.

突部200a、201aの大きさ(径)は、上記したナノカーボン材料の製造方法における触媒金属の大きさ(径)と同等でよく、径を制御することにより、ナノカーボン材料の種類も変化する点についても、上記したナノカーボン材料の製造方法の場合と同様である。突部200a、201aの高さは、例えば数nm〜数10nmとすればよい。要は、突部200a、201aに電流が集中すればよい。   The size (diameter) of the protrusions 200a and 201a may be equal to the size (diameter) of the catalytic metal in the above-described method for producing a nanocarbon material, and the type of the nanocarbon material also changes by controlling the diameter. This is also the same as in the above-described method for producing a nanocarbon material. The height of the protrusions 200a and 201a may be several nm to several tens of nm, for example. In short, it suffices if the current concentrates on the protrusions 200a and 201a.

次に、本発明の配線構造の製造方法の他の実施形態について、図5を参照して説明する。図5において、配線パターン210には突部210aが形成され、配線パターン211には突部211aが形成されている。いま、配線パターン210、211を対向させ、突部210aと突部211aの間を配線したいとする。なお、この図において、配線パターン210は配線パターン211の上側に位置し、突部210aは突部211aの延長線上にあるものとする。   Next, another embodiment of the method for manufacturing a wiring structure of the present invention will be described with reference to FIG. In FIG. 5, a protrusion 210 a is formed on the wiring pattern 210, and a protrusion 211 a is formed on the wiring pattern 211. Now, it is assumed that the wiring patterns 210 and 211 are opposed to each other and the wiring between the protruding portion 210a and the protruding portion 211a is to be wired. In this figure, it is assumed that the wiring pattern 210 is located above the wiring pattern 211 and the protrusion 210a is on an extension line of the protrusion 211a.

そして、少なくとも突部210aと突部211aの間に上記電解液を満たした状態で、電源を各配線パターン210、211に接続して電解すると、上記図4の場合と同様に、突部210aと突部211aの間にナノカーボン材料が配線301として形成される。なお、突部210aが突部211aの延長線からある程度ずれていても、ナノカーボン材料が配線として形成される。   When the electrolytic solution is filled between at least the protrusions 210a and the protrusions 211a and a power source is connected to the wiring patterns 210 and 211 and electrolysis is performed, as in the case of FIG. A nanocarbon material is formed as the wiring 301 between the protrusions 211a. Note that the nanocarbon material is formed as the wiring even if the protrusion 210a is displaced to some extent from the extension line of the protrusion 211a.

以上のように、本発明の配線構造の製造方法によれば、ナノカーボン材料を用いて常温等の低温で配線ができ、また、従来は極めて困難であった微細な配線を簡易に行うことができる。すなわち、配線形成位置における突状部に電流が集中するので、配線したい部分に選択的にナノカーボン材料を電析させて配線として形成できる。   As described above, according to the method for manufacturing a wiring structure of the present invention, it is possible to perform wiring at a low temperature such as room temperature using a nanocarbon material, and it is possible to easily perform fine wiring that has been extremely difficult in the past. it can. That is, current concentrates on the projecting portion at the wiring forming position, so that the nanocarbon material can be selectively deposited on the portion to be wired to form a wiring.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.

1.半導体基板表面への触媒金属の形成
p型のシリコン結晶からなる半導体基板(抵抗率:0.5Ωcm、電極面積50mm)の表面に、スパッタリングによって厚み30nmのNiを形成した後、アンモニアガス雰囲気(13.33kPa、800℃)に10分間置いた。これにより、Niが部分的にエッチング除去されて粒状のNiが残存した半導体基板が得られた。Niが不均一に形成された半導体基板をSEM(走査型電子顕微鏡)で撮影した像を図6に示す。図の白い部分が粒状のNiであり、0.1〜0.5μm程度の大きさ(径)の粒状Niが主に見られるが、さらに倍率を高くしたSEM像で数10nm粒径の粒状Niも確認した(不図示)。このエッチング法により作製した半導体基板を基板1とする。
1. Formation of catalytic metal on semiconductor substrate surface After forming Ni of 30 nm thickness by sputtering on the surface of a semiconductor substrate made of p-type silicon crystal (resistivity: 0.5 Ωcm, electrode area 50 mm 2 ), an ammonia gas atmosphere ( (13.33 kPa, 800 ° C.) for 10 minutes. As a result, a semiconductor substrate in which Ni was partially removed by etching and granular Ni remained was obtained. The image which image | photographed the semiconductor substrate in which Ni was formed unevenly with SEM (scanning electron microscope) is shown in FIG. The white part of the figure is granular Ni, and granular Ni having a size (diameter) of about 0.1 to 0.5 μm is mainly seen, but a granular Ni having a particle size of several tens of nm in a SEM image with a higher magnification. Was also confirmed (not shown). A semiconductor substrate manufactured by this etching method is a substrate 1.

2.電気分解による陰極への電析
前記図1に示した電解装置を準備した。陰極には上記基板1を用いた。陽極には5mm外径のカーボン棒を用いた。そして、電解液としてメタンニトリル(純度 99.5 vol%,試薬特級)50mLを用い、電流密度4mA/cm、電極間距離5mm、電解電圧1kV、電解液量50mLで電解を行い、陰極表面に電析物を得た。電解は室温で行ったが、電解後も液温度は2〜3℃しか上昇しなかった。
2. Electrodeposition on the cathode by electrolysis The electrolytic apparatus shown in FIG. 1 was prepared. The substrate 1 was used as the cathode. A carbon rod having an outer diameter of 5 mm was used for the anode. Then, 50 mL of methane nitrile (purity 99.5 vol%, reagent grade) is used as the electrolytic solution, electrolysis is performed at a current density of 4 mA / cm 2 , a distance between electrodes of 5 mm, an electrolytic voltage of 1 kV, and an electrolytic solution amount of 50 mL, and electrodeposited on the cathode surface I got a thing. Although electrolysis was performed at room temperature, the liquid temperature rose only by 2 to 3 ° C. even after electrolysis.

この実施例では、下記の電解液により上記半導体基板へのNiの不均一析出と、ナノカーボン材料の電析とを同時に行った。
まず、硝酸Ni4.4×10−2mgをエタノール(純度 99.5 vol%,試薬特級)2.5mLに溶かした後、これをエタノール50mLに溶かして電解液を作製した。この電解液中で、上記電解装置を用い、上記半導体基板を陰極とし、上記カーボン棒を陽極として、上記実施例1と同一の電解条件で電解し、陰極表面に電析物を得た。電解時間は8時間とした。この電解では、初期にNiが半導体基板上に粒状に析出し、次にNi粒上にナノカーボン材料が電析したものと考えられる。
In this example, non-uniform deposition of Ni on the semiconductor substrate and electrodeposition of the nanocarbon material were simultaneously performed with the following electrolyte solution.
First, nitric acid Ni 4.4 × 10 −2 mg was dissolved in ethanol (purity 99.5 vol%, reagent special grade) 2.5 mL, and then dissolved in ethanol 50 mL to prepare an electrolytic solution. In this electrolytic solution, electrolysis was performed on the surface of the cathode using the above electrolysis apparatus, electrolysis under the same electrolysis conditions as in Example 1, using the semiconductor substrate as a cathode and the carbon rod as an anode. The electrolysis time was 8 hours. In this electrolysis, it is considered that Ni was first deposited in a granular form on the semiconductor substrate, and then the nanocarbon material was electrodeposited on the Ni grains.

比較例
基板として、Niを形成させずに上記半導体基板を用いたことと、電解液としてエタノールを用いたことの他は、上記実施例1とまったく同様にして電解を行い、陰極表面に電析物を得た。
Comparative Example Electrolysis was performed in exactly the same manner as in Example 1 except that the semiconductor substrate was used without forming Ni as a substrate and ethanol was used as the electrolytic solution. I got a thing.

各実施例及び比較例で得られた電析物の同定を次の方法で行った。まず、電析物が得られた陰極のSEM(走査型電子顕微鏡:日本電子製 JSM-5600 (電子線15kV))測定を行い、また、電析物のTEM(透過型電子顕微鏡:日本電子製 JEM-2010F (電子線200kV))測定を行った。また、上記SEM測定と同じ測定領域におけるEDS(Energy
dispersive spectroscopy:エネルギー分散型X線分光装置、オックスフォード製 Link ISIS (電子線15kV))測定を行った。結果は図7〜図18、及び表1にまとめた通りである。
The electrodeposits obtained in each Example and Comparative Example were identified by the following method. First, SEM (scanning electron microscope: JSM-5600 (electron beam 15 kV)) of the cathode from which the deposit was obtained was measured, and the TEM (transmission electron microscope: manufactured by JEOL) of the deposit. JEM-2010F (electron beam 200 kV)) measurement was performed. In addition, EDS (Energy
dispersive spectroscopy: An energy dispersive X-ray spectrometer, Oxford Link ISIS (electron beam 15 kV)) was measured. The results are as summarized in FIGS. 7 to 18 and Table 1.

まず、図7は、実施例2における電析後の基板表面のSEM像であり、図8は図7の部分拡大SEM像であり、図9は図8の部分拡大SEM像であり、図10は図9の部分拡大SEM像である。各図中、白い部分が析出物を示し、黒い部分はアモルファス的カーボン膜の堆積物を示す。この析出物は半導体基板の所定部分を核としてスパイク状(針状)に成長していることがわかる。   First, FIG. 7 is a SEM image of the substrate surface after electrodeposition in Example 2, FIG. 8 is a partially enlarged SEM image of FIG. 7, FIG. 9 is a partially enlarged SEM image of FIG. Fig. 10 is a partially enlarged SEM image of Fig. 9. In each figure, white portions indicate precipitates, and black portions indicate deposits of an amorphous carbon film. It can be seen that this precipitate grows in a spike shape (needle shape) with a predetermined portion of the semiconductor substrate as a nucleus.

図11は、実施例2における電析後の基板表面の別の場所のSEM像であり、図12は図11の部分拡大SEM像である。各図中、白い部分が析出物を示し、この析出物は繊維状に成長していることがわかる。さらに、上記各図7,11の測定試料と同一の測定領域について、EDXにより元素分析を行ったところ、各図の白い部分が炭素であることが判明した。以上の図7〜図12より、実施例2においては直径約100nmで繊維状の炭素構造物が生成していることがわかり、これはカーボンナノワイヤであるということができる。   FIG. 11 is an SEM image of another location on the substrate surface after electrodeposition in Example 2, and FIG. 12 is a partially enlarged SEM image of FIG. In each figure, a white part shows the deposit and it turns out that this deposit is growing in the fiber form. Furthermore, when elemental analysis was performed by EDX on the same measurement region as the measurement sample in each of FIGS. 7 and 11, it was found that the white portion of each figure was carbon. From FIG. 7 to FIG. 12, it can be seen that in Example 2, a fibrous carbon structure having a diameter of about 100 nm was generated, which can be said to be a carbon nanowire.

図13は、実施例2における電析物のTEM像である。この図において、直径が10〜20nm程度で、黒鉛層が多数積層したタマネギ状の炭素構造体が生成していることがわかる。また、上記EDX分析の結果からこの構造体の組成は炭素であり、これらのことから、この析出物はカーボンオニオンであると同定することができる。   FIG. 13 is a TEM image of the electrodeposit in Example 2. In this figure, it can be seen that an onion-like carbon structure having a diameter of about 10 to 20 nm and a large number of graphite layers is formed. Moreover, the composition of this structure is carbon from the results of the above EDX analysis, and from these facts, this precipitate can be identified as carbon onion.

図14は、実施例2における電析物のうち、図13と別の測定領域におけるTEM像であり、図15は図14の部分拡大TEM像である。図15によれば、この繊維状の析出物は、黒鉛層が多数積層しており、また芯部は空洞であることがわかる。そして、図15によれば、各黒鉛層の層間隔はおよそ0.33〜0.36nmで、外径約30nm、内径約2nmであると読み取れた。通常、カーボンナノチューブの層間隔は0.34nmといわれており、これより、この析出物はカーボンナノチューブであると同定することができる。   14 is a TEM image in a measurement region different from that of FIG. 13 among the electrodeposits in Example 2, and FIG. 15 is a partially enlarged TEM image of FIG. According to FIG. 15, it is understood that the fibrous precipitate has a large number of graphite layers laminated and the core is a cavity. According to FIG. 15, it was read that the interval between the graphite layers was about 0.33 to 0.36 nm, the outer diameter was about 30 nm, and the inner diameter was about 2 nm. Usually, the layer interval of carbon nanotubes is said to be 0.34 nm, and this precipitate can be identified as carbon nanotubes.

図16は、実施例1における電析後の基板表面のSEM像であり、図の中央部やや右よりの部分には、Niを核としてスパイク状の電析物が見られる。この電析物もEDXによれば炭素からなることが判明したので、カーボンナノワイヤであると考えられる。   FIG. 16 is an SEM image of the substrate surface after electrodeposition in Example 1, and spike-like electrodeposits with Ni as the nucleus are seen in the center part and a part from the right side of the figure. Since this electrodeposit was also found to be composed of carbon according to EDX, it is considered to be a carbon nanowire.

図17は、比較例における電析後の基板表面のSEM像である。図の白い部分と黒い部分は、いずれもアモルファス的カーボン膜であり、膜厚の相違(膜表面の凹凸)により、白い部分と黒い部分が撮影されたと考えられる。また、図18は、図17の部分拡大SEM像である。膜状物が基板表面のほぼ全面に析出したが、カーボンナノチューブやカーボンナノワイヤー等の繊維状の炭素材料は見られなかった。なお、この膜状物のラマン分光を行ったところ、ダイヤモンド的カーボンに見られるようなシャープな信号は観測されなかったため、これはアモルファス構造のカーボン膜であると考えられる。   FIG. 17 is an SEM image of the substrate surface after electrodeposition in the comparative example. The white part and the black part in the figure are both amorphous carbon films, and it is considered that the white part and the black part were photographed due to the difference in film thickness (unevenness on the film surface). FIG. 18 is a partially enlarged SEM image of FIG. Although the film-like material was deposited on almost the entire surface of the substrate, fibrous carbon materials such as carbon nanotubes and carbon nanowires were not found. When this film-like material was subjected to Raman spectroscopy, a sharp signal as seen in diamond-like carbon was not observed, which is considered to be an amorphous carbon film.

以上の結果を表1にまとめる。   The results are summarized in Table 1.

表1から明らかなように、実施例1、2の場合、カーボンナノチューブ、カーボンナノワイヤーや、カーボンオニオンが得られた。一方、比較例の場合、アモルファス構造の炭素膜層が得られたが、カーボンナノチューブやカーボンナノワイヤーが得られなかった。   As apparent from Table 1, in the case of Examples 1 and 2, carbon nanotubes, carbon nanowires, and carbon onions were obtained. On the other hand, in the case of the comparative example, a carbon film layer having an amorphous structure was obtained, but carbon nanotubes and carbon nanowires were not obtained.

本発明のナノカーボン材料の製造に用いて好適な電解装置の構成を示す図である。It is a figure which shows the structure of the electrolyzer suitable for using for manufacture of the nanocarbon material of this invention. ナノカーボン材料が電析する態様を模式的に示す図である。It is a figure which shows typically the aspect which nanocarbon material electrodeposits. ナノカーボン材料が電析する態様を模式的に示す別の図である。It is another figure which shows typically the aspect which nanocarbon material electrodeposits. 本発明の配線構造の製造方法を行う態様を示す工程図である。It is process drawing which shows the aspect which performs the manufacturing method of the wiring structure of this invention. 図4(a)に続く図である。It is a figure following Fig.4 (a). 本発明の配線構造の製造方法を行う態様を示す別の図である。It is another figure which shows the aspect which performs the manufacturing method of the wiring structure of this invention. Niが不均一に形成された半導体基板のSEM像である。It is a SEM image of the semiconductor substrate in which Ni was formed nonuniformly. 電析後の基板表面のSEM像である。It is a SEM image of the substrate surface after electrodeposition. 図7の部分拡大SEM像である。FIG. 8 is a partially enlarged SEM image of FIG. 7. 図8の部分拡大SEM像である。FIG. 9 is a partially enlarged SEM image of FIG. 8. 図9の部分拡大SEM像である。Fig. 10 is a partially enlarged SEM image of Fig. 9. 電析後の基板表面の別の場所のSEM像である。It is a SEM image of another place of the substrate surface after electrodeposition. 図11の部分拡大SEM像である。FIG. 12 is a partially enlarged SEM image of FIG. 11. 電析物のTEM像である。It is a TEM image of an electrodeposit. 電析物の別の測定領域のTEM像である。It is a TEM image of another measurement field of an electrodeposit. 図14の部分拡大TEM像である。FIG. 15 is a partially enlarged TEM image of FIG. 14. 電析後の別の基板表面のSEM像である。It is a SEM image of another substrate surface after electrodeposition. 比較例における電析後の基板表面のSEM像である。It is a SEM image of the substrate surface after electrodeposition in a comparative example. 図17の部分拡大SEM像である。18 is a partially enlarged SEM image of FIG.

符号の説明Explanation of symbols

2 電解槽
4 陰極(半導体)
4a 触媒金属
6 陽極
8 DC電源
10 電解装置
2 Electrolyzer 4 Cathode (semiconductor)
4a Catalytic metal 6 Anode 8 DC power supply 10 Electrolyzer

Claims (4)

触媒金属が不均一に形成された半導体を陰極とし、有機溶媒を含む電解液中で電気分解することにより、前記触媒金属の表面にナノカーボン材料を形成させることを特徴とするナノカーボン材料の製造方法。   Production of a nanocarbon material characterized by forming a nanocarbon material on the surface of the catalyst metal by electrolysis in an electrolyte containing an organic solvent using a semiconductor in which the catalyst metal is heterogeneously formed as a cathode Method. 触媒金属のイオンを含む電解液中で半導体を陰極として電気分解し、該半導体の表面に前記触媒金属を不均一に形成させる工程と、
前記触媒金属が不均一に形成された半導体を陰極とし、有機溶媒を含む電解液中で電気分解することにより、前記触媒金属の表面にナノカーボン材料を形成させる工程と
を有することを特徴とするナノカーボン材料の製造方法。
Electrolyzing a semiconductor as a cathode in an electrolytic solution containing catalyst metal ions, and forming the catalyst metal non-uniformly on the surface of the semiconductor; and
A step of forming a nanocarbon material on the surface of the catalytic metal by electrolyzing the semiconductor in which the catalytic metal is heterogeneously formed as a cathode and in an electrolytic solution containing an organic solvent. A method for producing a nanocarbon material.
半導体の表面に形成された触媒金属をエッチングし、該半導体の表面に前記触媒金属を不均一に形成させる工程と、
前記触媒金属が不均一に形成された半導体を陰極とし、有機溶媒を含む電解液中で電気分解することにより、前記触媒金属の表面にナノカーボン材料を形成させる工程と
を有することを特徴とするナノカーボン材料の製造方法。
Etching the catalyst metal formed on the surface of the semiconductor, and forming the catalyst metal non-uniformly on the surface of the semiconductor;
A step of forming a nanocarbon material on the surface of the catalytic metal by electrolyzing the semiconductor in which the catalytic metal is heterogeneously formed as a cathode and in an electrolytic solution containing an organic solvent. A method for producing a nanocarbon material.
配線形成位置の両端にそれぞれ突状に形成された触媒金属を陰極及び/又は陽極とし、有機溶媒を含む電解液中で電気分解することにより、前記触媒金属間にナノカーボン材料を配線として形成させることを特徴とする配線構造の製造方法。
A catalyst metal formed in a protruding shape at both ends of the wiring formation position is used as a cathode and / or anode, and electrolysis is performed in an electrolyte containing an organic solvent, thereby forming a nanocarbon material between the catalyst metals as a wiring. A method of manufacturing a wiring structure characterized by the above.
JP2003270361A 2003-07-02 2003-07-02 Method for producing nanocarbon material and method for producing wiring structure Expired - Fee Related JP4133655B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003270361A JP4133655B2 (en) 2003-07-02 2003-07-02 Method for producing nanocarbon material and method for producing wiring structure
PCT/JP2003/016831 WO2005003409A1 (en) 2003-07-02 2003-12-25 Method for producing nanocarbon material and method for manufacturing wiring structure
CA002530976A CA2530976A1 (en) 2003-07-02 2003-12-25 Method for producing nanocarbon material and method for manufacturing wiring structure
US10/563,018 US20060163077A1 (en) 2003-07-02 2003-12-25 Method for producing nanocarbon material and method for manufacturing wiring structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270361A JP4133655B2 (en) 2003-07-02 2003-07-02 Method for producing nanocarbon material and method for producing wiring structure

Publications (2)

Publication Number Publication Date
JP2005023408A JP2005023408A (en) 2005-01-27
JP4133655B2 true JP4133655B2 (en) 2008-08-13

Family

ID=33562613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270361A Expired - Fee Related JP4133655B2 (en) 2003-07-02 2003-07-02 Method for producing nanocarbon material and method for producing wiring structure

Country Status (4)

Country Link
US (1) US20060163077A1 (en)
JP (1) JP4133655B2 (en)
CA (1) CA2530976A1 (en)
WO (1) WO2005003409A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625955B2 (en) * 2005-08-23 2011-02-02 国立大学法人電気通信大学 Carbon tube and carbon tube manufacturing method
TWI363367B (en) * 2007-12-26 2012-05-01 Tatung Co Composite field emission source and method of fabricating the same
JPWO2011111791A1 (en) * 2010-03-11 2013-06-27 国立大学法人北海道大学 Method for producing carbon nanotube
US9075148B2 (en) * 2011-03-22 2015-07-07 Savannah River Nuclear Solutions, Llc Nano structural anodes for radiation detectors
CN104591855B (en) * 2013-10-31 2017-07-25 刘广安 The method for preparing the nano-carbon powder for fertilizer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3627647A (en) * 1969-05-19 1971-12-14 Cogar Corp Fabrication method for semiconductor devices
JPH10167714A (en) * 1996-12-16 1998-06-23 Osaka Gas Co Ltd Production of carbon material
JP3713561B2 (en) * 2001-06-26 2005-11-09 独立行政法人科学技術振興機構 Method for synthesizing highly aligned aligned carbon nanotubes using organic liquid and apparatus for synthesizing the same
JP2003115259A (en) * 2001-10-03 2003-04-18 Sony Corp Electron emitting device and manufacturing method for it, cold cathode field electron emitting element and manufacturing method for it, cold cathode field electron emitting display device and manufacturing method for it, and method for etching thin film
JP4691648B2 (en) * 2002-03-08 2011-06-01 独立行政法人情報通信研究機構 Conductive nanowire manufacturing apparatus and manufacturing method
JP3877302B2 (en) * 2002-06-24 2007-02-07 本田技研工業株式会社 Method for forming carbon nanotube
JP4338948B2 (en) * 2002-08-01 2009-10-07 株式会社半導体エネルギー研究所 Method for producing carbon nanotube semiconductor device

Also Published As

Publication number Publication date
WO2005003409A1 (en) 2005-01-13
CA2530976A1 (en) 2005-01-13
US20060163077A1 (en) 2006-07-27
JP2005023408A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
Gao et al. 3D flower-like defected MoS2 magnetron-sputtered on candle soot for enhanced hydrogen evolution reaction
Fan et al. WC nanocrystals grown on vertically aligned carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction
US8030191B2 (en) Method of manufacturing micro structure, and method of manufacturing mold material
EP1578599A1 (en) Method for synthesizing nanoscale structures in defined locations
US20100140588A1 (en) Catalyst support substrate, method for growing carbon nanotubes using the same, and transistor using carbon nanotubes
JP3986711B2 (en) Method for producing single-walled carbon nanotube
JP2007070689A (en) Nanocarbon/aluminum composite material, method for producing the same, and plating liquid used therefor
JP2008297197A (en) Growth method of branch type carbon nanotubes
JP2007533581A (en) Method for synthesizing small-diameter carbon nanotubes having electron field emission characteristics
JP2007533581A6 (en) Method for synthesizing small-diameter carbon nanotubes having electron field emission characteristics
JP2007157372A (en) Light-weighted wire with high conductivity and its manufacturing method
JP4975005B2 (en) Catalyst particles on the tip
CN101570329B (en) Method for preparing carbon nanofiber
JP2009048937A (en) Carbon fiber manufacturing method, carbon fiber electron source, and field emission display device
JP5064724B2 (en) Electrode, metal fine particle production apparatus, and metal fine particle production method
JP4133655B2 (en) Method for producing nanocarbon material and method for producing wiring structure
JP4374439B2 (en) Metal nanotube manufacturing apparatus and metal nanotube manufacturing method
US10697073B2 (en) Method for manufacturing electrode for hydrogen production using tungsten carbide nanoflake and electrode for hydrogen production manufactured thereby
Cheng et al. Fabrication and growth mechanism of metal (Zn, Sn) nanotube arrays and metal (Cu, Ag) nanotube/nanowire junction arrays
JP2008027763A (en) Test piece carrier for transmission type electron microscope and its manufacturing method, observation and crystal structure analysis methods using the same, and test piece for transmission type electron microscope and its manufacturing method
KR101369285B1 (en) 2D-nanostructured tungsten carbide and method for fabricating the same
Yen et al. Density control for carbon nanotube arrays synthesized by ICP-CVD using AAO/Si as a nanotemplate
Wang et al. Well-aligned carbon nanotube array membrane and its field emission properties
Karmakar et al. Tubular Diamond as an Efficient Electron Field Emitter
Lai et al. Field-emission performance of wormhole-like mesoporous tungsten oxide nanowires

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees