JP4850790B2 - engine - Google Patents

engine Download PDF

Info

Publication number
JP4850790B2
JP4850790B2 JP2007181888A JP2007181888A JP4850790B2 JP 4850790 B2 JP4850790 B2 JP 4850790B2 JP 2007181888 A JP2007181888 A JP 2007181888A JP 2007181888 A JP2007181888 A JP 2007181888A JP 4850790 B2 JP4850790 B2 JP 4850790B2
Authority
JP
Japan
Prior art keywords
valve
chamber
supercharging pressure
egr
operating pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007181888A
Other languages
Japanese (ja)
Other versions
JP2009019541A (en
Inventor
正夫 岡崎
哲也 小坂
智 杉本
忠夫 大和
能和 竹本
裕三 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2007181888A priority Critical patent/JP4850790B2/en
Priority to PCT/JP2008/052942 priority patent/WO2009008188A1/en
Publication of JP2009019541A publication Critical patent/JP2009019541A/en
Application granted granted Critical
Publication of JP4850790B2 publication Critical patent/JP4850790B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Supercharger (AREA)

Description

本発明は、エンジンに関し、詳しくは、エンジン回転のハンチングを抑制することができるエンジンに関するものである。   The present invention relates to an engine, and more particularly to an engine capable of suppressing hunting of engine rotation.

従来のエンジンとして、本発明と同様、排気エネルギーで駆動される過給機で吸気通路内に過給を行い、EGR弁の駆動にニューマチック式の弁アクチュエータを用い、この弁アクチュエータの弁作動圧室に過給圧伝達通路を介して吸気通路を連携させ、この吸気通路内の過給圧が高くなるにつれて弁アクチュエータの弁作動圧室の弁作動圧が高くなるようにし、弁作動圧室の弁作動圧が所定値未満となる場合には、閉弁付勢手段でEGR弁の閉弁状態を維持し、弁作動圧室の弁作動圧が所定値以上となる場合には、弁作動圧室の弁作動圧でEGR弁を開弁するようにしたものがある。   As in the present invention, as in the present invention, a turbocharger driven by exhaust energy is used to supercharge the intake passage, and a pneumatic valve actuator is used to drive the EGR valve. The intake passage is linked to the chamber via a supercharging pressure transmission passage so that the valve operating pressure of the valve operating pressure chamber of the valve actuator increases as the supercharging pressure in the intake passage increases. When the valve operating pressure is less than the predetermined value, the valve closing urging means maintains the closed state of the EGR valve, and when the valve operating pressure in the valve operating pressure chamber exceeds the predetermined value, the valve operating pressure is maintained. There is one in which the EGR valve is opened by the valve operating pressure of the chamber.

この種のエンジンでは、負荷の増加による燃料増加で、排気エネルギーが増加し、過給圧が増加すると、弁作動圧が増加し、EGR弁が開弁し、EGRガスが吸気通路に供給され、最高燃焼温度が低下し、NOの発生が抑制される。また、負荷の減少による燃料減少で、排気エネルギーが低下し、過給圧が減少すると、弁作動圧が低下し、EGR弁が閉弁し、EGRガスの供給が停止される。
しかし、従来のエンジンでは、過給圧の変動に対するEGR弁の開閉作動の追従性を調節する手段がないため、問題が生じている。
In this type of engine, when the fuel increases due to an increase in load, the exhaust energy increases, and when the supercharging pressure increases, the valve operating pressure increases, the EGR valve opens, EGR gas is supplied to the intake passage, maximum combustion temperature is lowered, generation of the NO X is suppressed. Further, when the fuel energy is reduced due to the load reduction and the exhaust energy is reduced and the supercharging pressure is reduced, the valve operating pressure is lowered, the EGR valve is closed, and the supply of EGR gas is stopped.
However, the conventional engine has a problem because there is no means for adjusting the followability of the opening / closing operation of the EGR valve with respect to the fluctuation of the supercharging pressure.

上記従来技術では、次の問題がある。
《問題》 エンジン回転のハンチングが起こりやすい。
過給圧の変動に対するEGR弁の開閉作動の追従性を調節する手段がないため、EGR弁の開弁直後、EGRガスの供給によって燃焼が不安定になり、過給圧の脈動が起こると、これにEGR弁の開閉作動が過敏に追従し、短時間中にEGRガスの供給と停止が頻繁に繰り返され、過給圧の脈動が増幅され、エンジン回転のハンチングが起こりやすい。
The above prior art has the following problems.
<Problem> Engine hunting tends to occur.
Since there is no means to adjust the followability of the opening / closing operation of the EGR valve with respect to the fluctuation of the supercharging pressure, immediately after the opening of the EGR valve, combustion becomes unstable due to the supply of EGR gas, and pulsation of the supercharging pressure occurs. The opening and closing operation of the EGR valve follows this, and the supply and stop of the EGR gas are frequently repeated within a short time, the pulsation of the supercharging pressure is amplified, and engine hunting is likely to occur.

本発明は、上記問題点を解決することができるエンジン、すなわち、エンジン回転のハンチングを抑制することができるエンジンを提供することを課題とする。   An object of the present invention is to provide an engine that can solve the above problems, that is, an engine that can suppress hunting of engine rotation.

請求項1に係る発明の発明特定事項は、次の通りである。
図1、図2(A)に例示するように、排気エネルギーで駆動される過給機(30)で吸気通路(3)内に過給を行い、EGR弁(9)の駆動にニューマチック式の弁アクチュエータ(8)を用い、この弁アクチュエータ(8)の弁作動圧室(34)に過給圧伝達通路(20)を介して吸気通路(3)を連携させ、この吸気通路(3)内の過給圧が高くなるにつれて弁アクチュエータ(8)の弁作動圧室(34)の弁作動圧が高くなるようにし、弁作動圧室(34)の弁作動圧が所定値未満となる場合には、閉弁付勢手段(9b)でEGR弁(9)の閉弁状態を維持し、弁作動圧室(34)の弁作動圧が所定値以上となる場合には、弁作動圧室(34)の弁作動圧でEGR弁(9)を開弁するようにした、エンジンにおいて、
過給圧伝達通路(20)の途中に伝達媒体の通過抵抗となる抵抗体(21)を設けることにより、この抵抗体(21)で吸気通路(3)内の過給圧の変動に対するEGR弁(9)の開閉作動の追従性を低下させ、
過給圧伝達通路(20)に過給圧伝達室(23)を設け、この過給圧伝達室(23)内をダイヤフラム(23a)で区画して、相互に不通の上流室(23b)と下流室(23c)とを形成し、上流室(23b)を吸気通路(3)内に連通させ、
下流室(23c)を抵抗体(21)を介して弁アクチュエータ(8)の弁作動圧室(34)に連通させることにより、
吸気通路(3)内の過給圧の変動を、上流室(23b)からダイヤフラム(23a)を介して下流室(23c)に伝達し、下流室(23c)から抵抗体(21)を介して弁作動圧室(34)に伝達するようにした、ことを特徴とするエンジン。
Invention specific matters of the invention according to claim 1 are as follows.
As illustrated in FIGS. 1 and 2A, a supercharger (30) driven by exhaust energy supercharges the intake passage (3), and the EGR valve (9) is driven pneumatically. The valve actuator (8) of this valve actuator is used, and the intake passage (3) is linked to the valve operating pressure chamber (34) of the valve actuator (8) via the supercharging pressure transmission passage (20). The valve operating pressure of the valve operating pressure chamber (34) of the valve actuator (8) is increased as the internal supercharging pressure increases, and the valve operating pressure of the valve operating pressure chamber (34) becomes less than a predetermined value. The valve operating pressure chamber (9b) maintains the closed state of the EGR valve (9), and when the valve operating pressure in the valve operating pressure chamber (34) exceeds a predetermined value, the valve operating pressure chamber In the engine in which the EGR valve (9) is opened with the valve operating pressure of (34),
By providing a resistor (21) serving as a transmission resistance for the transmission medium in the middle of the supercharging pressure transmission passage (20), an EGR valve against a change in supercharging pressure in the intake passage (3) by this resistor (21). (9) lowering the followability of the opening and closing operation ,
The supercharging pressure transmission passage (20) is provided with a supercharging pressure transmission chamber (23), the inside of the supercharging pressure transmission chamber (23) is partitioned by a diaphragm (23a), and the upstream chamber (23b) which is not mutually connected A downstream chamber (23c), and the upstream chamber (23b) communicates with the intake passage (3);
By communicating the downstream chamber (23c) with the valve operating pressure chamber (34) of the valve actuator (8) through the resistor (21),
The fluctuation of the supercharging pressure in the intake passage (3) is transmitted from the upstream chamber (23b) to the downstream chamber (23c) via the diaphragm (23a), and from the downstream chamber (23c) via the resistor (21). An engine characterized by being transmitted to the valve operating pressure chamber (34) .

(請求項1に係る発明)
《効果1−1》 エンジン回転のハンチングを抑制することができる。
図1、図2(A)に例示するように、過給圧伝達通路(20)の途中に伝達媒体の通過抵抗となる抵抗体(21)を設けることにより、この抵抗体(21)で吸気通路(3)内の過給圧の変動に対するEGR弁(9)の開閉作動の追従性を低下させたので、過給圧の脈動が起こっても、これにEGR弁(9)の開閉作動が過敏に追従せず、短時間中にEGRガスの供給と停止が頻繁に繰り返される不具合が回避され。このため、過給圧の脈動が増幅される不具合が回避され、これに起因するエンジン回転のハンチングを抑制することができる。
(Invention according to Claim 1)
<< Effect 1-1 >> Hunting of engine rotation can be suppressed.
As illustrated in FIG. 1 and FIG. 2A, by providing a resistor (21) serving as a passage resistance of the transmission medium in the middle of the supercharging pressure transmission passage (20), the resistor (21) takes in the intake air. Since the followability of the opening / closing operation of the EGR valve (9) with respect to the fluctuation of the supercharging pressure in the passage (3) has been reduced, the opening / closing operation of the EGR valve (9) can be performed even if pulsation of the supercharging pressure occurs. not sensitive follow, Ru problem of stopping the supply of the EGR gas is frequently repeated is avoided during a short period of time. For this reason, the trouble that the pulsation of the supercharging pressure is amplified is avoided, and the hunting of the engine rotation due to this can be suppressed.

《効果1−2》 抵抗体の機能低下を抑制することができる。
図1、図2(A)に例示するように、吸気通路(3)内の過給圧の変動を、上流室(23b)からダイヤフラム(23a)を介して下流室(23c)に伝達し、下流室(23c)から抵抗体(21)を介して弁作動圧室(34)に伝達するので、吸気に含まれる塵埃、カーボン、オイルミスト等の異物が、ダイヤフラム(23a)で遮られ、抵抗体(21)に接近することがない。このため、これら異物の詰まりによる抵抗体(21)の機能低下を抑制することができる。
<< Effect 1-2 >> The functional fall of a resistor can be suppressed.
As illustrated in FIG. 1 and FIG. 2 (A), the fluctuation of the supercharging pressure in the intake passage (3) is transmitted from the upstream chamber (23b) to the downstream chamber (23c) via the diaphragm (23a). Since the gas is transmitted from the downstream chamber (23c) to the valve operating pressure chamber (34) through the resistor (21), foreign matter such as dust, carbon, oil mist, etc. contained in the intake air is blocked by the diaphragm (23a) and resists. There is no approach to the body (21). For this reason, the functional fall of the resistor (21) due to clogging of these foreign substances can be suppressed.

効果1−3》 過給圧伝達通路の導出位置設定の自由度が高まる。
図1、図2(A)に例示するように、吸気に含まれる異物がダイヤフラム(23a)で遮られ、抵抗体(21)に接近することがないので、吸気通路(3)からの過給圧伝達通路(20)の導出位置を異物が進入しにくい位置に設定しなければならないという制約がなくなり、過給圧伝達通路(20)の導出位置設定の自由度が高まる。
<< Effect 1-3 >> The degree of freedom in setting the derived position of the supercharging pressure transmission passage is increased.
As illustrated in FIG. 1 and FIG. 2 (A), since foreign matter contained in the intake air is blocked by the diaphragm (23a) and does not approach the resistor (21), supercharging from the intake passage (3) is possible. The restriction that the lead-out position of the pressure transmission passage (20) must be set to a position where foreign matter does not easily enter is eliminated, and the degree of freedom in setting the lead-out position of the supercharging pressure transmission passage (20) is increased.

請求項2に係る発明)
請求項1に係る発明の効果に加え、次の効果を奏する。
効果2》 エンジンの始動性が高まる。
図2(A)に例示するように、エンジン温度が所定値未満の冷間始動時には、吸気通路(3)内の過給圧に拘わらず、過給圧遮断弁(36)が閉弁して、閉弁付勢手段(9b)でEGR弁(9)の閉弁状態を維持するので、冷間始動時には吸気にEGRガスが供給されず、エンジンの始動性が高まる。
(Invention according to Claim 2 )
In addition to the effect of the invention according to claim 1 , the following effect is achieved.
< Effect 2 > Engine startability is improved.
As illustrated in FIG. 2A, at the cold start when the engine temperature is lower than a predetermined value, the supercharging pressure cutoff valve (36) is closed regardless of the supercharging pressure in the intake passage (3). Since the EGR valve (9) is kept closed by the valve closing urging means (9b), the EGR gas is not supplied to the intake air during the cold start, and the engine startability is improved.

請求項3に係る発明)
請求項1に係る発明の効果1−1、請求項2に係る発明の効果2に加え、次の効果を奏する。
効果3−1》 過給圧遮断弁の機能低下を抑制することができる。
図1、図2(A)に例示するように、吸気通路(3)内の過給圧の変動を、上流室(23b)からダイヤフラム(23a)を介して下流室(23c)に伝達し、下流室(23c)から過給圧遮断弁(36)を介して弁作動圧室(34)に伝達するので、吸気に含まれる塵埃、カーボン、オイルミスト等の異物が、ダイヤフラム(23a)で遮られ、過給圧遮断弁(36)に接近することがない。このため、これら異物の詰まりによる過給圧遮断弁(36)の機能低下を抑制することができる。
(Invention according to claim 3 )
In addition to the effect 1-1 of the invention according to claim 1 and the effect 2 of the invention according to claim 2 , the following effects are produced.
<< Effect 3-1 >> It is possible to suppress a decrease in the function of the boost pressure cutoff valve.
As illustrated in FIG. 1 and FIG. 2 (A), the fluctuation of the supercharging pressure in the intake passage (3) is transmitted from the upstream chamber (23b) to the downstream chamber (23c) via the diaphragm (23a). Since it is transmitted from the downstream chamber (23c) to the valve operating pressure chamber (34) via the supercharging pressure shut-off valve (36), foreign matter such as dust, carbon and oil mist contained in the intake air is blocked by the diaphragm (23a). And the supercharging pressure shut-off valve (36) is not approached. For this reason, the function fall of the supercharging pressure cutoff valve (36) by clogging of these foreign substances can be suppressed.

効果3−2》 過給圧伝達通路の導出位置設定の自由度が高まる。
図1、図2(A)に例示するように、吸気に含まれる異物がダイヤフラム(23a)で遮られ、過給圧遮断弁(36)に接近することがないので、吸気通路(3)からの過給圧伝達通路(20)の導出位置を異物が進入しにくい位置に設定しなければならないという制約がなくなり、過給圧伝達通路(20)の導出位置設定の自由度が高まる。
(請求項4に係る発明)
請求項3に係る発明の効果に加え、請求項1に係る発明の効果1−2、効果1−3と同様の次の効果1−2´、効果1−3´を奏する。
《効果1−2´》 抵抗体と過給圧遮断弁の機能低下を抑制することができる。
図1、図2(A)に例示するように、吸気通路(3)内の過給圧の変動を、上流室(23b)からダイヤフラム(23a)を介して下流室(23c)に伝達し、下流室(23c)から抵抗体(21)と過給圧遮断弁(36)を介して弁作動圧室(34)に伝達するので、吸気に含まれる塵埃、カーボン、オイルミスト等の異物が、ダイヤフラム(23a)で遮られ、抵抗体(21)と過給圧遮断弁(36)に接近することがない。このため、これら異物の詰まりによる抵抗体(21)と過給圧遮断弁(36)の機能低下を抑制することができる。
《効果1−3´》 過給圧伝達通路の導出位置設定の自由度が高まる。
図1、図2(A)に例示するように、吸気に含まれる異物がダイヤフラム(23a)で遮られ、抵抗体(21)と過給圧遮断弁(36)に接近することがないので、吸気通路(3)からの過給圧伝達通路(20)の導出位置を異物が進入しにくい位置に設定しなければならないという制約がなくなり、過給圧伝達通路(20)の導出位置設定の自由度が高まる。
<< Effect 3-2 >> The degree of freedom in setting the derived position of the supercharging pressure transmission passage is increased.
As illustrated in FIG. 1 and FIG. 2 (A), foreign matter contained in the intake air is blocked by the diaphragm (23a) and does not approach the supercharging pressure cutoff valve (36). There is no restriction that the deriving position of the supercharging pressure transmission passage (20) must be set to a position where foreign matter is difficult to enter, and the degree of freedom in setting the deriving position of the supercharging pressure transmission passage (20) is increased.
(Invention of Claim 4)
In addition to the effect of the invention according to claim 3, the following effect 1-2 'and effect 1-3' similar to the effect 1-2 and effect 1-3 of the invention according to claim 1 are exhibited.
<< Effect 1-2 '>> The functional fall of a resistor and a supercharging pressure cutoff valve can be suppressed.
As illustrated in FIG. 1 and FIG. 2 (A), the fluctuation of the supercharging pressure in the intake passage (3) is transmitted from the upstream chamber (23b) to the downstream chamber (23c) via the diaphragm (23a). Since it is transmitted from the downstream chamber (23c) to the valve operating pressure chamber (34) via the resistor (21) and the boost pressure shutoff valve (36), foreign matter such as dust, carbon, oil mist, etc. contained in the intake air It is blocked by the diaphragm (23a) and does not approach the resistor (21) and the boost pressure cutoff valve (36). For this reason, it is possible to suppress deterioration of the functions of the resistor (21) and the supercharging pressure cutoff valve (36) due to clogging of these foreign substances.
<< Effect 1-3 '>> The degree of freedom in setting the deriving position of the supercharging pressure transmission passage is increased.
As illustrated in FIGS. 1 and 2A, foreign matter contained in the intake air is blocked by the diaphragm (23a) and does not approach the resistor (21) and the boost pressure cutoff valve (36). There is no restriction that the position for deriving the supercharging pressure transmission passage (20) from the intake passage (3) has to be set at a position where foreign matter does not easily enter, and the position for deriving the supercharging pressure transmission passage (20) can be freely set. The degree increases.

請求項5に係る発明)
請求項1から請求項4のいずれかに係る発明の効果に加え、次の効果を奏する。
効果5》 過熱によるEGR弁やEGR弁ケースの損傷を抑制することができる。
図3に例示するように、EGR弁(9)を収容したEGR弁ケース(7)を吸気通路(3)の通路壁に取り付けたので、EGR弁(9)やEGR弁ケース(7)の熱が吸気通路(3)の通路壁に放熱され、過熱によるEGR弁(9)やEGR弁ケース(7)の損傷を抑制することができる。
(Invention according to claim 5 )
In addition to the effects of the invention according to any one of claims 1 to 4 , the following effects are provided.
<< Effect 5 >> Damage to the EGR valve and the EGR valve case due to overheating can be suppressed.
As illustrated in FIG. 3, since the EGR valve case (7) containing the EGR valve (9) is attached to the passage wall of the intake passage (3), the heat of the EGR valve (9) and the EGR valve case (7) Is radiated to the passage wall of the intake passage (3), and damage to the EGR valve (9) and the EGR valve case (7) due to overheating can be suppressed.

請求項6に係る発明)
請求項5に係る発明の効果に加え、次の効果を奏する。
《効果》 過給圧伝達通路が短くて済む。
図3、図4に例示するように、EGR弁(9)の弁アクチュエータ(8)をEGR弁ケース(7)に取り付けたので、吸気通路(3)とEGRアクチュエータ(8)との距離が短くなり、過給圧伝達通路(20)が短くて済む。
(Invention of Claim 6 )
In addition to the effect of the invention according to claim 5 , the following effect is achieved.
<Effect> The supercharging pressure transmission path is short.
As illustrated in FIGS. 3 and 4, since the valve actuator (8) of the EGR valve (9) is attached to the EGR valve case (7), the distance between the intake passage (3) and the EGR actuator (8) is short. Therefore, the supercharging pressure transmission path (20) can be shortened.

請求項7に係る発明)
請求項5または請求項6に係る発明の効果に加え、次の効果を奏する。
効果7》 過熱によるEGR弁の損傷を抑制することができる。
図2に例示するように、EGR弁ケース(7)に弁冷却水路(31)を設けたので、過熱によるEGR弁(9)の損傷を抑制することができる。
(Invention of Claim 7 )
In addition to the effect of the invention according to claim 5 or claim 6 , the following effect is produced.
<< Effect 7 >> Damage to the EGR valve due to overheating can be suppressed.
As illustrated in FIG. 2, since the valve cooling water channel (31) is provided in the EGR valve case (7), damage to the EGR valve (9) due to overheating can be suppressed.

請求項8に係る発明)
請求項1に係る発明の効果1−1、請求項5に係る発明の効果5、請求項7に係る発明の効果7に加え、次の効果を奏する。
《効果》 過給圧伝達通路が短くて済む。
図4に示すように、EGR弁ケース(7)に感温作動性の過給圧遮断弁(36)を取り付け、弁冷却水路(31)に過給圧遮断弁(36)の入熱部(37)を臨ませたので、吸気通路(3)と過給圧遮断弁(36)との距離が近くなり、過給圧伝達通路(20)が短くて済む。
(請求項9に係る発明)
請求項8に係る発明の効果に加え、請求項3に係る発明の効果3−1、効果3−2を奏する。
(請求項10に係る発明)
請求項8に係る発明の効果に加え、請求項1に係る発明の効果1−2、1−3を奏する。
(請求項11に係る発明)
請求項8に係る発明の効果に加え、請求項1に係る発明の効果1−2、効果1−3と同様の次の効果1−2´、効果1−3´を奏する。
《効果1−2´》 抵抗体と過給圧遮断弁の機能低下を抑制することができる。
図1、図2(A)に例示するように、吸気通路(3)内の過給圧の変動を、上流室(23b)からダイヤフラム(23a)を介して下流室(23c)に伝達し、下流室(23c)から抵抗体(21)と過給圧遮断弁(36)を介して弁作動圧室(34)に伝達するので、吸気に含まれる塵埃、カーボン、オイルミスト等の異物が、ダイヤフラム(23a)で遮られ、抵抗体(21)と過給圧遮断弁(36)に接近することがない。このため、これら異物の詰まりによる抵抗体(21)と過給圧遮断弁(36)の機能低下を抑制することができる。
《効果1−3´》 過給圧伝達通路の導出位置設定の自由度が高まる。
図1、図2(A)に例示するように、吸気に含まれる異物がダイヤフラム(23a)で遮られ、抵抗体(21)と過給圧遮断弁(36)に接近することがないので、吸気通路(3)からの過給圧伝達通路(20)の導出位置を異物が進入しにくい位置に設定しなければならないという制約がなくなり、過給圧伝達通路(20)の導出位置設定の自由度が高まる。
(Invention of Claim 8 )
In addition to the effect 1-1 of the invention according to claim 1, the effect 5 of the invention according to claim 5, and the effect 7 of the invention according to claim 7 , the following effects are produced.
<Effect> The supercharging pressure transmission path is short.
As shown in FIG. 4, a temperature-sensitive actuated supercharging pressure shut-off valve (36) is attached to the EGR valve case (7), and a heat input portion of the supercharging pressure shut-off valve (36) ( 37), the distance between the intake passage (3) and the supercharging pressure cutoff valve (36) is reduced, and the supercharging pressure transmission passage (20) can be shortened.
(Invention according to claim 9)
In addition to the effect of the invention according to claim 8, the effect 3-1 and the effect 3-2 of the invention according to claim 3 are achieved.
(Invention of Claim 10)
In addition to the effect of the invention according to claim 8, the effect 1-2 and 1-3 of the invention according to claim 1 are exhibited.
(Invention of Claim 11)
In addition to the effect of the invention according to claim 8, the following effect 1-2 'and effect 1-3' similar to the effect 1-2 and effect 1-3 of the invention according to claim 1 are exhibited.
<< Effect 1-2 '>> The functional fall of a resistor and a supercharging pressure cutoff valve can be suppressed.
As illustrated in FIG. 1 and FIG. 2 (A), the fluctuation of the supercharging pressure in the intake passage (3) is transmitted from the upstream chamber (23b) to the downstream chamber (23c) via the diaphragm (23a). Since it is transmitted from the downstream chamber (23c) to the valve operating pressure chamber (34) via the resistor (21) and the boost pressure shutoff valve (36), foreign matter such as dust, carbon, oil mist, etc. contained in the intake air It is blocked by the diaphragm (23a) and does not approach the resistor (21) and the boost pressure cutoff valve (36). For this reason, it is possible to suppress deterioration of the functions of the resistor (21) and the supercharging pressure cutoff valve (36) due to clogging of these foreign substances.
<< Effect 1-3 '>> The degree of freedom in setting the deriving position of the supercharging pressure transmission passage is increased.
As illustrated in FIGS. 1 and 2A, foreign matter contained in the intake air is blocked by the diaphragm (23a) and does not approach the resistor (21) and the boost pressure cutoff valve (36). There is no restriction that the position for deriving the supercharging pressure transmission passage (20) from the intake passage (3) has to be set at a position where foreign matter does not easily enter, and the position for deriving the supercharging pressure transmission passage (20) can be freely set. The degree increases.

請求項12係る発明)
請求項5から請求項11のいずれかに係る発明の効果に加え、次の効果を奏する。
《効果》 EGR弁の損傷を抑制することができる。
図2に示すように、EGR弁(9)の弁軸(9a)を垂直にしてEGR弁ケース(7)内の弁軸挿通孔(7c)に摺動自在に内嵌させたので、EGR弁(9)の弁軸(9a)を水平にした場合のように、EGR弁(9)の弁軸(9a)が自重で弁軸挿通孔(7c)に片当たりする不具合がなく、偏磨耗によるEGR弁(9)の損傷を抑制することができる。
(請求項13に係る発明)
請求項1から請求項12のいずれかに係る発明の効果に加え、次の効果を奏する。
《効果》 絞り抵抗の大きさを容易に調節することができる。
図2(A)(B)に例示するように、抵抗体(21)を細管(22)で構成したので、細管(22)の内径と長さの設定によって絞り抵抗の大きさを容易に調節することができる。
(Invention of Claim 12 )
In addition to the effects of the invention according to any one of claims 5 to 11 , the following effects are produced.
<< Effect >> Damage to the EGR valve can be suppressed.
As shown in FIG. 2, since the valve shaft (9a) of the EGR valve (9) is vertical and is slidably fitted into the valve shaft insertion hole (7c) in the EGR valve case (7), the EGR valve There is no problem that the valve shaft (9a) of the EGR valve (9) comes into contact with the valve shaft insertion hole (7c) by its own weight as in the case where the valve shaft (9a) of (9) is horizontal, and it is caused by uneven wear. Damage to the EGR valve (9) can be suppressed.
(Invention of Claim 13)
In addition to the effects of the invention according to any one of claims 1 to 12, the following effects are provided.
<Effect> The aperture resistance can be easily adjusted.
As illustrated in FIGS. 2A and 2B, the resistor (21) is composed of a narrow tube (22), so that the size of the aperture resistance can be easily adjusted by setting the inner diameter and length of the narrow tube (22). can do.

本発明の実施の形態を図面に基づいて説明する。図1から図9は本発明の実施形態に係るディーゼルエンジンを説明する図で、この実施形態では、立型水冷式の多気筒ディーゼルエンジンについて説明する。   Embodiments of the present invention will be described with reference to the drawings. FIGS. 1 to 9 are diagrams for explaining a diesel engine according to an embodiment of the present invention. In this embodiment, a vertical water-cooled multi-cylinder diesel engine will be described.

本発明の実施形態の概要は、次の通りである。
図5に示すように、シリンダブロック(26)の上部にシリンダヘッド(2)を組み付け、シリンダブロック(26)の下部にオイルパン(27)を組み付け、シリンダブロック(26)の前部に水ポンプ(39)とギヤケース(28)を組み付け、シリンダブロック(26)の後部にフライホイルハウジング(29)を組み付けている。
The outline of the embodiment of the present invention is as follows.
As shown in FIG. 5, the cylinder head (2) is assembled to the upper part of the cylinder block (26), the oil pan (27) is assembled to the lower part of the cylinder block (26), and the water pump is attached to the front part of the cylinder block (26). (39) and the gear case (28) are assembled, and a flywheel housing (29) is assembled to the rear part of the cylinder block (26).

EGR装置の構成は、次の通りである。
図1に示すように、排気通路(4)をEGRクーラ(6)とEGR弁ケース(7)と逆止弁ケース(10)とを介して吸気通路(3)に連通させている。排気通路(4)は排気マニホルドであり、吸気通路(3)は吸気マニホルドである。
The configuration of the EGR device is as follows.
As shown in FIG. 1, the exhaust passage (4) communicates with the intake passage (3) through an EGR cooler (6), an EGR valve case (7), and a check valve case (10). The exhaust passage (4) is an exhaust manifold, and the intake passage (3) is an intake manifold.

図1、図2(A)に示すように、排気エネルギーで駆動される過給機(30)で吸気通路(3)内に過給を行い、EGR弁(9)の駆動にニューマチック式の弁アクチュエータ(8)を用い、この弁アクチュエータ(8)の弁作動圧室(34)に過給圧伝達通路(20)を介して吸気通路(3)を連携させ、この吸気通路(3)内の過給圧が高くなるにつれて弁アクチュエータ(8)の弁作動圧室(34)の弁作動圧が高くなるようにし、弁作動圧室(34)の弁作動圧が所定値未満となる場合には、閉弁付勢手段(9b)でEGR弁(9)の閉弁状態を維持し、弁作動圧室(34)の弁作動圧が所定値以上となる場合には、弁作動圧室(34)の弁作動圧でEGR弁(9)を開弁するようにしている。図1中の符号(45)はエアクリーナ、(46)は燃焼室、(47)は排気マフラである。   As shown in FIG. 1 and FIG. 2 (A), a supercharger (30) driven by exhaust energy supercharges the intake passage (3), and the EGR valve (9) is driven by a pneumatic type. A valve actuator (8) is used, and an intake passage (3) is linked to a valve operating pressure chamber (34) of the valve actuator (8) via a supercharging pressure transmission passage (20). The valve operating pressure of the valve operating pressure chamber (34) of the valve actuator (8) increases as the supercharging pressure of the valve actuator increases, and the valve operating pressure of the valve operating pressure chamber (34) becomes less than a predetermined value. When the valve operating pressure of the valve operating pressure chamber (34) is equal to or higher than a predetermined value when the EGR valve (9) is maintained closed by the valve closing urging means (9b), the valve operating pressure chamber ( The EGR valve (9) is opened with the valve operating pressure of 34). Reference numeral (45) in FIG. 1 is an air cleaner, (46) is a combustion chamber, and (47) is an exhaust muffler.

EGR装置の工夫は、次の通りである。
図2(A)(B)に示すように、過給圧伝達通路(20)の途中に伝達媒体の通過抵抗となる抵抗体(21)を設けることにより、この抵抗体(21)で吸気通路(3)内の過給圧の変動に対するEGR弁(9)の開閉作動の追従性を低下させている。抵抗体(21)を細管(22)で構成している。抵抗体(21)は下流室(23c)の出口に配置されている。
The device of the EGR device is as follows.
As shown in FIGS. 2 (A) and 2 (B), by providing a resistor (21) serving as a passage resistance of the transmission medium in the middle of the supercharging pressure transmission passage (20), the intake passage is formed by this resistor (21). The followability of the opening / closing operation of the EGR valve (9) with respect to the fluctuation of the supercharging pressure in (3) is lowered. The resistor (21) is composed of a thin tube (22). The resistor (21) is disposed at the outlet of the downstream chamber (23c).

図2(A)に示すように、過給圧伝達通路(20)に過給圧伝達室(23)を設け、この過給圧伝達室(23)内をダイヤフラム(23a)で区画して、相互に不通の上流室(23b)と下流室(23c)とを形成し、上流室(23b)を吸気通路(3)内に連通させ、下流室(23c)を抵抗体(21)を介して弁アクチュエータ(8)の弁作動圧室(34)に連通させることにより、吸気通路(3)内の過給圧の変動を、上流室(23b)からダイヤフラム(23a)を介して下流室(23c)に伝達し、下流室(23c)から抵抗体(21)を介して弁作動圧室(34)に伝達するようにしている。抵抗体(21)で絞り抵抗を受ける伝達媒体は、下流室(23c)内から弁作動圧室(34)内にかけて封入されている空気である。図7に示すように、過給圧伝達室(23)はシリンダヘッド(2)に取り付けたヘッドカバー(48)に取り付けている。   As shown in FIG. 2A, a supercharging pressure transmission chamber (23) is provided in the supercharging pressure transmission passage (20), and the inside of the supercharging pressure transmission chamber (23) is partitioned by a diaphragm (23a), An upstream chamber (23b) and a downstream chamber (23c) that do not communicate with each other are formed, the upstream chamber (23b) communicates with the intake passage (3), and the downstream chamber (23c) is connected via the resistor (21). By communicating with the valve operating pressure chamber (34) of the valve actuator (8), the fluctuation of the supercharging pressure in the intake passage (3) is changed from the upstream chamber (23b) through the diaphragm (23a) to the downstream chamber (23c). ) And from the downstream chamber (23c) to the valve operating pressure chamber (34) via the resistor (21). The transmission medium that receives the throttle resistance by the resistor (21) is air sealed from the downstream chamber (23c) to the valve operating pressure chamber (34). As shown in FIG. 7, the supercharging pressure transmission chamber (23) is attached to a head cover (48) attached to the cylinder head (2).

図2(A)に示すように、過給圧伝達通路(20)に感温作動性の過給圧遮断弁(36)を設け、エンジン温度が所定値未満の冷間始動時には、吸気通路(3)内の過給圧に拘わらず、過給圧遮断弁(36)が閉弁して、閉弁付勢手段(9b)でEGR弁(9)の閉弁状態を維持し、エンジン温度が所定値以上の温間始動時や通常運転時には、過給圧遮断弁(36)が開弁して、吸気通路(3)内の過給圧に応じたEGR弁(9)の開閉を行なうようにしている。吸気圧遮断弁(36)は、内部にバイメタル製の感温性変形手段(36a)を備え、その温度による変形で弁体(36b)の開弁圧を変更する。   As shown in FIG. 2 (A), a supercharging pressure shut-off valve (36) having a temperature sensitive operation is provided in the supercharging pressure transmission passage (20), and at the time of cold start when the engine temperature is less than a predetermined value, 3) Regardless of the supercharging pressure, the supercharging pressure shut-off valve (36) is closed, and the EGR valve (9) is kept closed by the valve closing biasing means (9b). At the time of warm start exceeding a predetermined value or during normal operation, the supercharging pressure shut-off valve (36) opens to open and close the EGR valve (9) according to the supercharging pressure in the intake passage (3). I have to. The intake pressure shut-off valve (36) includes temperature sensitive deformation means (36a) made of bimetal, and changes the valve opening pressure of the valve body (36b) by deformation due to the temperature.

この過給圧遮断弁(36)は、過給圧伝達室(23)の下流室(23c)と弁作動圧室(34)との間に配置され、吸気通路(3)内の過給圧の変動は、下流室(23c)から抵抗体(21)と過給圧遮断弁(36)を介して弁作動圧室(34)に伝達される。   The supercharging pressure shut-off valve (36) is disposed between the downstream chamber (23c) of the supercharging pressure transmission chamber (23) and the valve operating pressure chamber (34), and the supercharging pressure in the intake passage (3). Is transmitted from the downstream chamber (23c) to the valve operating pressure chamber (34) through the resistor (21) and the boost pressure cutoff valve (36).

他の工夫は、次の通りである。
図3に示すように、EGR弁(9)を収容したEGR弁ケース(7)を吸気通路(3)の通路壁に取り付けている。EGR弁(9)の弁アクチュエータ(8)をEGR弁ケース(7)に取り付けている。図4に示すように、EGR弁ケース(7)に弁冷却水路(31)を設けている。EGR弁ケース(7)に感温作動性の過給圧遮断弁(36)を取り付け、弁冷却水路(31)に過給圧遮断弁(36)の入熱部(37)を臨ませている。弁冷却水路(31)は平面視でコの字状に形成されている。図2(A)に示すように、EGR弁(9)の弁軸(9a)を垂直にしてEGR弁ケース(7)内の弁軸挿通孔(7c)に摺動自在に内嵌させている。
Other ideas are as follows.
As shown in FIG. 3, an EGR valve case (7) accommodating the EGR valve (9) is attached to the passage wall of the intake passage (3). The valve actuator (8) of the EGR valve (9) is attached to the EGR valve case (7). As shown in FIG. 4, a valve cooling water passage (31) is provided in the EGR valve case (7). The EGR valve case (7) is provided with a temperature-sensitive actuated supercharging pressure shut-off valve (36), and the valve cooling water passage (31) faces the heat input part (37) of the supercharging pressure shut-off valve (36). . The valve cooling water channel (31) is formed in a U shape in plan view. As shown in FIG. 2 (A), the valve shaft (9a) of the EGR valve (9) is vertical and is slidably fitted into the valve shaft insertion hole (7c) in the EGR valve case (7). .

EGRガスの冷却装置は、次の通りである。
図3、図4に示すように、EGRクーラ(6)内にクーラジャケット(33)を形成し、EGR弁ケース(7)内に弁冷却水路(31)を形成し、このクーラジャケット(33)と弁冷却水路(31)とを冷却水中継パイプ(32)を介して直列接続し、エンジン冷却水をクーラジャケット(33)と弁冷却水路(31)とに通過させるに当たり、EGRクーラ(6)とEGR弁ケース(7)とを隣合わせに配置している。図5に示すように、クーラジャケット(33)のクーラジャケット入口(33a)は、冷却水入口パイプ(40)を介してシリンダジャケット出口(41)と連通させている。クーラジャケット(33)のクーラジャケット出口(33b)は、冷却水中継パイプ(32)を介して弁冷却水路(31)の水路入口(31a)に連通させている。弁冷却水路(31)の水路出口(31b)は、冷却水出口パイプ(42)を介して冷却水吸込み通路(図外)の通路入口(43)に連通させている。冷却水吸込み通路の通路出口(図外)は、水ポンプ(39)の吸込み口(図外)と連通している。シリンダジャケット内の冷却水は、水ポンプ(39)の吸込み力により、シリンダジャケット出口(41)とクーラジャケット(33)と弁冷却水路(31)と冷却水出口パイプ(42)と冷却水吸込み通路とをその順に通過して水ポンプ(39)に吸い込まれ、他の冷却水と合流して、ラジエータ(図外)に圧送され、再度、シリンダジャケット内に戻る。図4に示すように、EGRクーラ(6)とEGR弁ケース(7)とを吸気通路(3)の通路壁に沿って配置している。
The cooling device for EGR gas is as follows.
As shown in FIGS. 3 and 4, a cooler jacket (33) is formed in the EGR cooler (6), a valve cooling water passage (31) is formed in the EGR valve case (7), and this cooler jacket (33) is formed. And the valve cooling water channel (31) are connected in series via the cooling water relay pipe (32), and the engine cooling water is passed through the cooler jacket (33) and the valve cooling water channel (31). And the EGR valve case (7) are arranged next to each other. As shown in FIG. 5, the cooler jacket inlet (33a) of the cooler jacket (33) communicates with the cylinder jacket outlet (41) via the cooling water inlet pipe (40). The cooler jacket outlet (33b) of the cooler jacket (33) communicates with the water channel inlet (31a) of the valve cooling water channel (31) via the cooling water relay pipe (32). The water passage outlet (31b) of the valve cooling water passage (31) is communicated with the passage inlet (43) of the cooling water suction passage (not shown) via the cooling water outlet pipe (42). A passage outlet (not shown) of the cooling water suction passage communicates with a suction port (not shown) of the water pump (39). The cooling water in the cylinder jacket is cooled by the suction force of the water pump (39), the cylinder jacket outlet (41), the cooler jacket (33), the valve cooling water passage (31), the cooling water outlet pipe (42), and the cooling water suction passage. Are sequentially sucked into the water pump (39), merged with the other cooling water, pumped to the radiator (not shown), and returned to the cylinder jacket again. As shown in FIG. 4, the EGR cooler (6) and the EGR valve case (7) are arranged along the passage wall of the intake passage (3) .

図3、図4に示すように、クランク軸(1)の架設方向を前後方向、この前後方向と直交するシリンダヘッド(2)の幅方向を横方向として、シリンダヘッド(2)の横一側面に吸気通路(3)の通路壁を取り付け、シリンダヘッド(2)の横他側方に排気通路(4)の通路壁を取り付けるに当たり、吸気通路(3)の通路壁の上部に吸気入口管(5)を立設し、吸気通路(3)の通路壁の上方でEGRクーラ(6)を前後方向に架設し、吸気入口管(5)とEGRクーラ(6)とを前後に並べて配置している。EGRクーラ(6)は、吸気通路(3)の通路壁の真上、すなわち、図4に示すように、シリンダ中心軸線(25)と平行な向きに見た場合に、吸気通路(3)の通路壁の上方で、吸気通路(3)の通路壁と重なる位置に配置している。EGRクーラ(6)は、シリンダ中心軸線(25)と平行な向きに見た場合に、吸気通路(3)の通路壁よりも横外(シリンダヘッドから離れる側)にはみ出さないように配置している。EGRクーラ(6)には、シリンダブロック(26)内の水冷ジャケットから冷却水を導入し、冷却水ポンプ(図外)に冷却水を導出する。 As shown in FIGS. 3 and 4, the horizontal direction of the cylinder head (2) is defined with the installation direction of the crankshaft (1) as the front-rear direction and the width direction of the cylinder head (2) perpendicular to the front-rear direction as the horizontal direction. When the passage wall of the intake passage (3) is attached and the passage wall of the exhaust passage (4) is attached to the other lateral side of the cylinder head (2), an intake inlet pipe ( 5) is erected, the EGR cooler (6) is installed in the front-rear direction above the passage wall of the intake passage (3), and the intake inlet pipe (5) and the EGR cooler (6) are arranged side by side. Yes. The EGR cooler (6) is located directly above the passage wall of the intake passage (3), that is, when viewed in a direction parallel to the cylinder center axis (25) as shown in FIG. Above the passage wall, it is arranged at a position overlapping the passage wall of the intake passage (3). The EGR cooler (6) is arranged so that it does not protrude laterally outside the passage wall of the intake passage (3) when viewed in a direction parallel to the cylinder center axis (25). ing. Cooling water is introduced into the EGR cooler (6) from a water cooling jacket in the cylinder block (26), and the cooling water is led out to a cooling water pump (not shown).

図3に示すように、吸気通路(3)の通路壁の上方にEGR弁ケース(7)を配置し、吸気入口管(5)とEGR弁ケース(7)とEGRクーラ(6)とを前後に並べて配置し、EGRクーラ(6)の下流にEGR弁ケース(7)を位置させ、EGR弁ケース(7)に弁アクチュエータ(8)を取り付けている。EGR弁ケース(7)は、吸気通路(3)の通路壁の真上、すなわち、図4に示すように、シリンダ中心軸線(25)と平行な向きに見た場合に、吸気通路(3)の通路壁の上方で、吸気通路(3)の通路壁と重なる位置に配置している。図3に示すように、ポペット弁製のEGR弁(9)の弁軸(9a)を垂直にしてEGR弁ケース(7)内の弁軸挿通孔(7c)内のガスシール(38)に摺動自在に内嵌させている。EGRガスは、図3に矢印で示すように、EGR弁ケース(7)内を通過し、ガスシール(38)はEGR弁(9)の弁口(44)よりも下流側にある。   As shown in FIG. 3, the EGR valve case (7) is arranged above the passage wall of the intake passage (3), and the intake inlet pipe (5), the EGR valve case (7), and the EGR cooler (6) are moved back and forth. The EGR valve case (7) is positioned downstream of the EGR cooler (6), and the valve actuator (8) is attached to the EGR valve case (7). When the EGR valve case (7) is viewed directly above the passage wall of the intake passage (3), that is, in a direction parallel to the cylinder center axis (25) as shown in FIG. 4, the intake passage (3) Above the passage wall and at a position overlapping the passage wall of the intake passage (3). As shown in FIG. 3, the valve shaft (9a) of the EGR valve (9) made by a poppet valve is made vertical, and is slid onto the gas seal (38) in the valve shaft insertion hole (7c) in the EGR valve case (7). It is fitted in freely. As indicated by arrows in FIG. 3, the EGR gas passes through the EGR valve case (7), and the gas seal (38) is located downstream of the valve port (44) of the EGR valve (9).

図3、図4に示すように、EGR弁ケース(7)と吸気入口管(5)との間に逆止弁ケース(10)を配置し、この逆止弁ケース(10)内の逆止弁(10c)で吸気入口管(5)からEGR弁ケース(7)への吸気の流入とEGRガスの逆流とを阻止することができるようにしている。シリンダヘッド(2)に水冷ジャケット内を通過するヘッド内EGR通路(11)を設け、このヘッド内EGR通路(11)の下流にEGRクーラ(6)を配置している。   As shown in FIGS. 3 and 4, a check valve case (10) is arranged between the EGR valve case (7) and the intake inlet pipe (5), and the check valve in the check valve case (10) is arranged. The valve (10c) can prevent the inflow of intake air from the intake inlet pipe (5) to the EGR valve case (7) and the backflow of EGR gas. An in-head EGR passage (11) passing through the water-cooling jacket is provided in the cylinder head (2), and an EGR cooler (6) is disposed downstream of the in-head EGR passage (11).

図5に示すように、前後方向のうち、エンジン冷却ファン(14)を配置した方を前、その反対側を後として、後から前に向かって順に、吸気入口管(5)とEGR弁ケース(7)とEGRクーラ(6)と接続管(12)とを配置している。図3、図4に示すように、吸気入口管(5)の周壁前部のEGRガス入口部(5a)にEGR弁ケース(7)の後部のEGR弁ケース出口部(7a)を連通させ、EGR弁ケース(7)の前部のEGR弁ケース入口部(7b)にEGRクーラ(6)の後端のクーラ出口部(6a)を取り付けてこれらを連通させ、EGRクーラ(6)の前端のクーラ入口部(6b)に接続管(12)の後面上部の接続管出口部(12a)を取り付けてこれらを連通させ、接続管(12)の横面下部の接続管入口部(12b)をシリンダヘッド(2)の横面前部のヘッド内EGR通路出口部(11a)に取り付けてこれらを連通させている。   As shown in FIG. 5, the intake inlet pipe (5) and the EGR valve case are arranged in order from the rear to the front, with the front side being the front side of the engine cooling fan (14) and the rear side being the rear side. (7), EGR cooler (6) and connecting pipe (12) are arranged. As shown in FIGS. 3 and 4, the EGR valve inlet (5a) at the front of the peripheral wall of the intake inlet pipe (5) is connected to the EGR valve case outlet (7a) at the rear of the EGR valve case (7). A cooler outlet (6a) at the rear end of the EGR cooler (6) is attached to the EGR valve case inlet (7b) at the front of the EGR valve case (7) so as to communicate with each other, and the front end of the EGR cooler (6) is connected. A connection pipe outlet part (12a) at the upper rear surface of the connection pipe (12) is attached to the cooler inlet part (6b) so as to communicate with each other, and the connection pipe inlet part (12b) at the lower side of the connection pipe (12) is connected to the cylinder. The head (2) is attached to the in-head EGR passage outlet (11a) at the front of the lateral surface of the head (2) to communicate these.

EGR弁ケース(7)とEGRクーラ(6)と接続管(12)とを剛性連結体の構成要素とし、これら構成要素で可撓性のない剛性連結体を構成している。また、逆止弁ケース(10)も剛性連結体の構成要素とし、EGR弁ケース(7)の後部のEGR弁ケース出口部(7a)に逆止弁ケース(10)の前部の逆止弁ケース入口部(10b)を取り付けてこれらを連通させ、逆止弁ケース(10)の後面の逆止弁ケース出口部(10a)を吸気入口管(5)の周壁前部のEGRガス入口部(5a)に取り付けてこれらを連通させ、逆止弁ケース(10)内の逆止弁(10c)で吸気入口管(5)からEGR弁ケース(7)への吸気の流入とEGRガスの逆流とを阻止することができるようにしている。   The EGR valve case (7), the EGR cooler (6), and the connecting pipe (12) are components of the rigid coupling body, and these components constitute a rigid coupling body that is not flexible. The check valve case (10) is also a component of the rigid connector, and the EGR valve case outlet (7a) at the rear of the EGR valve case (7) is connected to the check valve at the front of the check valve case (10). A case inlet part (10b) is attached to communicate these, and the check valve case outlet part (10a) on the rear surface of the check valve case (10) is connected to the EGR gas inlet part (front part of the peripheral wall of the intake inlet pipe (5)). 5a) are connected to each other, and the check valve (10c) in the check valve case (10) allows the intake air flow from the intake inlet pipe (5) to the EGR valve case (7) and the back flow of EGR gas. To be able to prevent.

図3、図4に示すように、排気通路(4)内からシリンダヘッド(2)外を通過するヘッド外EGR通路(13)を導出し、このヘッド外EGR通路(13)の下流にEGRクーラ(6)を配置し、EGRクーラ(6)にヘッド内EGR通路(11)とヘッド外EGR通路(13)の両方からEGRガスを導入するようにしている。 As shown in FIGS. 3 and 4, an outside-head EGR passage (13) that passes outside the cylinder head (2) is led out from the inside of the exhaust passage (4) , and an EGR cooler is provided downstream of the outside-head EGR passage (13). (6) is arranged, and EGR gas is introduced into the EGR cooler (6) from both the in-head EGR passage (11) and the out-head EGR passage (13).

図5〜図7に示すように、エンジン冷却ファン(14)の後方にヘッド外EGR通路(13)を配置し、このヘッド外EGR通路(13)にエンジン冷却ファン(14)で起こしたエンジン冷却風が吹き当たるようにしている。図7に示すように、クランク軸(1)の架設方向と平行な向きに見た場合に、ヘッド外EGR通路(13)はエンジン冷却ファン(14)と重なる位置よりも僅かにずれているが、エンジン冷却風の吹き当たり領域は、エンジン冷却ファン(14)の外周の軌跡よりも拡がるため、エンジン冷却風はヘッド外EGR通路(13)に吹き当たる。 As shown in FIGS. 5 to 7, an outside-head EGR passage (13) is arranged behind the engine cooling fan (14), and the engine cooling caused by the engine cooling fan (14) in the outside-head EGR passage (13). The wind blows. As shown in FIG. 7 , when viewed in a direction parallel to the installation direction of the crankshaft (1), the EGR passage outside the head (13) is slightly displaced from the position overlapping the engine cooling fan (14). Since the engine cooling air blowing area is larger than the locus of the outer periphery of the engine cooling fan (14), the engine cooling air blows against the head outside EGR passage (13).

図8に示すように、吸気入口管(5)の周壁前部に横長のEGRガス入口部(5a)を設け、このEGRガス入口部(5a)に左右一対のキリ孔のEGRガス入口(5b)(5c)をあけ、吸気入口管(5)の中心軸線(16)と平行な向きに見た場合に、吸気入口管(5)の中心軸線(16)を通過する前後方向仮想線(17)の左右に、各EGRガス入口(5b)(5c)の中心線(25b)(25c)を位置させ、シリンダヘッド(2)から遠い外寄りのEGRガス入口(5b)の中心線(25b)がシリンダヘッド(2)に近い内寄りのEGRガス入口(5c)の中心線(25c)よりも、前後方向仮想線(17)から遠ざかるようにし、吸気入口管(5)に接続する吸気供給パイプ(18)をシリンダヘッド(2)側から吸気入口管(5)に近づけている。図5〜図7に示すように、吸気供給パイプ(18)は、排気通路(4)の通路壁の上部に取り付けた過給機(30)から導出している。   As shown in FIG. 8, a horizontally long EGR gas inlet (5a) is provided at the front of the peripheral wall of the intake inlet pipe (5), and an EGR gas inlet (5b) of a pair of left and right drill holes is provided in the EGR gas inlet (5a). ) (5c), and when viewed in a direction parallel to the central axis (16) of the intake inlet pipe (5), the front-rear imaginary line (17) passes through the central axis (16) of the intake inlet pipe (5). The center lines (25b) and (25c) of the respective EGR gas inlets (5b) and (5c) are positioned on the left and right of the cylinder), and the center line (25b) of the outer EGR gas inlet (5b) far from the cylinder head (2). The intake supply pipe connected to the intake inlet pipe (5) so that the distance from the virtual line (17) in the front-rear direction is farther from the center line (25c) of the inward EGR gas inlet (5c) near the cylinder head (2) (18) is brought close to the intake inlet pipe (5) from the cylinder head (2) side. As shown in FIGS. 5 to 7, the intake air supply pipe (18) is led out from a supercharger (30) attached to the upper part of the passage wall of the exhaust passage (4).

図9(A)(B)は本発明の実施形態に係るエンジンで用いるEGR装置の変形例を説明する図で、図9(A)は第1変更例の図2(A)相当図、図9(B)は第2変更例で用いる逆止弁を示している。いずれの変更例も抵抗体(21)として、細管(22)に代えて、所定流量の逆流を許容する逆止弁(24)を用い、この逆止弁(24)が弁作動圧室(34)側からの伝達媒体の逆流の通過抵抗となり、この逆止弁(24)で吸気通路(3)内の過給圧の変動に対するEGR弁(9)の開閉作動の追従性を低下させている。図9(A)の第1変更例では、逆止弁(24)としてリード弁を用い、所定流量の逆流を許容するため、リード弁の全閉を阻止する突起(49)を設けている。図9(B)の第2変更例では、逆止弁(24)としてボール弁を用い、所定流量の逆流を許容するため、弁座(50)にスリット(51)を設けている。いずれも変更例も他の構成は、図1〜図8のものと同じである。図9(A)中、図1〜図8のものと同一の要素には同一の符号を付しておく。 9A and 9B are diagrams for explaining a modification of the EGR device used in the engine according to the embodiment of the present invention. FIG. 9A is a diagram corresponding to FIG. 9 (B) shows a check valve used in the second modified example. In any of the modifications, a check valve (24) that allows a backflow of a predetermined flow rate is used as the resistor (21) instead of the thin tube (22), and the check valve (24) is a valve operating pressure chamber (34). ) Side passage resistance of the back flow of the transmission medium, and this check valve (24) reduces the follow-up performance of the opening and closing operation of the EGR valve (9) against the fluctuation of the supercharging pressure in the intake passage (3). . In the first modified example of FIG. 9A, a reed valve is used as the check valve (24), and a protrusion (49) that prevents the reed valve from being fully closed is provided in order to allow a reverse flow at a predetermined flow rate. In the second modified example of FIG. 9B, a ball valve is used as the check valve (24), and a slit (51) is provided in the valve seat (50) in order to allow backflow at a predetermined flow rate. In all the modified examples, the other configurations are the same as those in FIGS. In FIG . 9A , the same elements as those in FIGS. 1 to 8 are denoted by the same reference numerals.

本発明の実施形態に係るエンジンのEGR装置の模式図である。It is a mimetic diagram of an engine EGR device concerning an embodiment of the present invention. 図2(A)は本発明の実施形態に係るエンジンのEGR装置の要部の拡大図、図2(B)は図2(A)のB−B線断面図である。FIG. 2A is an enlarged view of a main part of an EGR device for an engine according to an embodiment of the present invention, and FIG. 2B is a cross-sectional view taken along line BB of FIG.

本発明の実施形態に係るエンジンの吸気通路壁とその周辺部分の左側面図である。It is a left side view of an intake passage wall of an engine according to an embodiment of the present invention and its peripheral portion. 本発明の実施形態に係るエンジンのシリンダヘッドのその周辺部分の平面図である。It is a top view of the peripheral part of the cylinder head of the engine concerning the embodiment of the present invention. 本発明の実施形態に係るエンジンの左側面図である。It is a left view of the engine which concerns on embodiment of this invention. 本発明の実施形態に係るエンジンの平面図である。1 is a plan view of an engine according to an embodiment of the present invention. 本発明の実施形態に係るエンジンの正面図である。1 is a front view of an engine according to an embodiment of the present invention. 本発明の実施形態に係るエンジンで用いる吸気通路壁を説明する図で、図8(A)は後部の左側面図、図8(B)は図8(A)のB−B線断面図、図8(C)は後部の平面図である。8A and 8B are views for explaining an intake passage wall used in the engine according to the embodiment of the present invention, in which FIG. 8A is a left side view of a rear portion, and FIG. FIG. 8C is a plan view of the rear part. 本発明の実施形態に係るエンジンで用いるEGR装置の変更例を説明する図で、図9(A)は第1変更例の図2(A)相当図、図9(B)は第2変更例で用いる逆止弁を示している。FIGS. 9A and 9B are diagrams for explaining a modification example of the EGR device used in the engine according to the embodiment of the present invention. FIG. 9A is a diagram corresponding to FIG. 2A of the first modification example, and FIG. The check valve used in FIG.

(3) 吸気通路
(7) EGR弁ケース
(7c) 弁軸挿通孔
(8) 弁アクチュエータ
(9) EGR弁
(9a) 弁軸
(9b) 閉弁付勢手段
(20) 過給圧伝達通路
(21) 抵抗体
(22) 細管
(23) 過給圧伝達室
(23a) ダイヤフラム
(23b) 上流室
(23c) 下流室
(30) 過給機
(31) 弁冷却水路
(34) 弁作動圧室
(36) 過給圧遮断弁
(37) 入熱部
(3) Intake passage
(7) EGR valve case
(7c) Valve shaft insertion hole
(8) Valve actuator
(9) EGR valve
(9a) Valve stem
(9b) Energizing means for closing the valve
(20) Supercharging pressure transmission passage
(21) Resistor
(22) Narrow tube
(23) Supercharging pressure transmission chamber
(23a) Diaphragm
(23b) Upstream chamber
(23c) Downstream chamber
(30) Turbocharger
(31) Valve cooling water channel
(34) Valve operating pressure chamber
(36) Boost pressure cutoff valve
(37) Heat input section

Claims (13)

排気エネルギーで駆動される過給機(30)で吸気通路(3)内に過給を行い、EGR弁(9)の駆動にニューマチック式の弁アクチュエータ(8)を用い、この弁アクチュエータ(8)の弁作動圧室(34)に過給圧伝達通路(20)を介して吸気通路(3)を連携させ、この吸気通路(3)内の過給圧が高くなるにつれて弁アクチュエータ(8)の弁作動圧室(34)の弁作動圧が高くなるようにし、弁作動圧室(34)の弁作動圧が所定値未満となる場合には、閉弁付勢手段(9b)でEGR弁(9)の閉弁状態を維持し、弁作動圧室(34)の弁作動圧が所定値以上となる場合には、弁作動圧室(34)の弁作動圧でEGR弁(9)を開弁するようにした、エンジンにおいて、
過給圧伝達通路(20)の途中に伝達媒体の通過抵抗となる抵抗体(21)を設けることにより、この抵抗体(21)で吸気通路(3)内の過給圧の変動に対するEGR弁(9)の開閉作動の追従性を低下させ、
過給圧伝達通路(20)に過給圧伝達室(23)を設け、この過給圧伝達室(23)内をダイヤフラム(23a)で区画して、相互に不通の上流室(23b)と下流室(23c)とを形成し、上流室(23b)を吸気通路(3)内に連通させ、
下流室(23c)を抵抗体(21)を介して弁アクチュエータ(8)の弁作動圧室(34)に連通させることにより、
吸気通路(3)内の過給圧の変動を、上流室(23b)からダイヤフラム(23a)を介して下流室(23c)に伝達し、下流室(23c)から抵抗体(21)を介して弁作動圧室(34)に伝達するようにした、ことを特徴とするエンジン。
A supercharger (30) driven by exhaust energy supercharges the intake passage (3), and a pneumatic valve actuator (8) is used to drive the EGR valve (9). ) Is linked to the valve operating pressure chamber (34) via the supercharging pressure transmission passage (20), and the valve actuator (8) is increased as the supercharging pressure in the intake passage (3) increases. When the valve operating pressure of the valve operating pressure chamber (34) becomes higher and the valve operating pressure of the valve operating pressure chamber (34) becomes less than a predetermined value, the EGR valve is operated by the valve closing biasing means (9b). When the valve operating state of (9) is maintained and the valve operating pressure of the valve operating pressure chamber (34) is equal to or higher than a predetermined value, the EGR valve (9) is turned on by the valve operating pressure of the valve operating pressure chamber (34). In the engine that was opened,
By providing a resistor (21) serving as a transmission resistance for the transmission medium in the middle of the supercharging pressure transmission passage (20), an EGR valve against a change in supercharging pressure in the intake passage (3) by this resistor (21). (9) lowering the followability of the opening and closing operation ,
The supercharging pressure transmission passage (20) is provided with a supercharging pressure transmission chamber (23), the inside of the supercharging pressure transmission chamber (23) is partitioned by a diaphragm (23a), and the upstream chamber (23b) which is not mutually connected A downstream chamber (23c), and the upstream chamber (23b) communicates with the intake passage (3);
By communicating the downstream chamber (23c) with the valve operating pressure chamber (34) of the valve actuator (8) through the resistor (21),
The fluctuation of the supercharging pressure in the intake passage (3) is transmitted from the upstream chamber (23b) to the downstream chamber (23c) via the diaphragm (23a), and from the downstream chamber (23c) via the resistor (21). An engine characterized by being transmitted to the valve operating pressure chamber (34).
請求項1に記載したエンジンにおいて、
過給圧伝達通路(20)に感温作動性の過給圧遮断弁(36)を設け、
エンジン温度が所定値未満の冷間始動時には、吸気通路(3)内の過給圧に拘わらず、過給圧遮断弁(36)が閉弁して、閉弁付勢手段(9b)でEGR弁(9)の閉弁状態を維持し、
エンジン温度が所定値以上の温間始動時や通常運転時には、過給圧遮断弁(36)が開弁して、吸気通路(3)内の過給圧に応じたEGR弁(9)の開閉を行なうようにした、ことを特徴とするエンジン。
The engine according to claim 1 ,
The supercharging pressure transmission passage (20) is provided with a temperature-sensitive actuated supercharging pressure cutoff valve (36),
During a cold start when the engine temperature is less than a predetermined value, the supercharging pressure shut-off valve (36) is closed regardless of the supercharging pressure in the intake passage (3), and the EGR is operated by the valve closing urging means (9b). Keep the valve (9) closed,
During a warm start when the engine temperature is higher than a predetermined value or during normal operation, the boost pressure shut-off valve (36) opens, and the EGR valve (9) opens and closes according to the boost pressure in the intake passage (3). An engine characterized by that.
排気エネルギーで駆動される過給機(30)で吸気通路(3)内に過給を行い、EGR弁(9)の駆動にニューマチック式の弁アクチュエータ(8)を用い、この弁アクチュエータ(8)の弁作動圧室(34)に過給圧伝達通路(20)を介して吸気通路(3)を連携させ、この吸気通路(3)内の過給圧が高くなるにつれて弁アクチュエータ(8)の弁作動圧室(34)の弁作動圧が高くなるようにし、弁作動圧室(34)の弁作動圧が所定値未満となる場合には、閉弁付勢手段(9b)でEGR弁(9)の閉弁状態を維持し、弁作動圧室(34)の弁作動圧が所定値以上となる場合には、弁作動圧室(34)の弁作動圧でEGR弁(9)を開弁するようにした、エンジンにおいて、
過給圧伝達通路(20)の途中に伝達媒体の通過抵抗となる抵抗体(21)を設けることにより、この抵抗体(21)で吸気通路(3)内の過給圧の変動に対するEGR弁(9)の開閉作動の追従性を低下させ、
過給圧伝達通路(20)に感温作動性の過給圧遮断弁(36)を設け、
エンジン温度が所定値未満の冷間始動時には、吸気通路(3)内の過給圧に拘わらず、過給圧遮断弁(36)が閉弁して、閉弁付勢手段(9b)でEGR弁(9)の閉弁状態を維持し、
エンジン温度が所定値以上の温間始動時や通常運転時には、過給圧遮断弁(36)が開弁して、吸気通路(3)内の過給圧に応じたEGR弁(9)の開閉を行なうようにし、
過給圧伝達通路(20)に過給圧伝達室(23)を設け、この過給圧伝達室(23)内をダイヤフラム(23a)で区画して、相互に不通の上流室(23b)と下流室(23c)とを形成し、上流室(23b)を吸気通路(3)内に連通させ、
下流室(23c)を過給圧遮断弁(36)を介して弁アクチュエータ(8)の弁作動圧室(34)に連通させることにより、
吸気通路(3)内の過給圧の変動を、上流室(23b)からダイヤフラム(23a)を介して下流室(23c)に伝達し、下流室(23c)から過給圧遮断弁(36)を介して弁作動圧室(34)に伝達するようにした、ことを特徴とするエンジン。
A supercharger (30) driven by exhaust energy supercharges the intake passage (3), and a pneumatic valve actuator (8) is used to drive the EGR valve (9). ) Is linked to the valve operating pressure chamber (34) via the supercharging pressure transmission passage (20), and the valve actuator (8) is increased as the supercharging pressure in the intake passage (3) increases. When the valve operating pressure of the valve operating pressure chamber (34) becomes higher and the valve operating pressure of the valve operating pressure chamber (34) becomes less than a predetermined value, the EGR valve is operated by the valve closing biasing means (9b). When the valve operating state of (9) is maintained and the valve operating pressure of the valve operating pressure chamber (34) is equal to or higher than a predetermined value, the EGR valve (9) is turned on by the valve operating pressure of the valve operating pressure chamber (34). In the engine that was opened,
By providing a resistor (21) serving as a transmission resistance for the transmission medium in the middle of the supercharging pressure transmission passage (20), an EGR valve against a change in supercharging pressure in the intake passage (3) by this resistor (21). (9) lowering the followability of the opening and closing operation,
The supercharging pressure transmission passage (20) is provided with a temperature-sensitive actuated supercharging pressure cutoff valve (36),
During a cold start when the engine temperature is less than a predetermined value, the supercharging pressure shut-off valve (36) is closed regardless of the supercharging pressure in the intake passage (3), and the EGR is operated by the valve closing urging means (9b). Keep the valve (9) closed,
During a warm start when the engine temperature is higher than a predetermined value or during normal operation, the boost pressure shut-off valve (36) opens, and the EGR valve (9) opens and closes according to the boost pressure in the intake passage (3). And do
The supercharging pressure transmission passage (20) is provided with a supercharging pressure transmission chamber (23), the inside of the supercharging pressure transmission chamber (23) is partitioned by a diaphragm (23a), and the upstream chamber (23b) which is not mutually connected A downstream chamber (23c), and the upstream chamber (23b) communicates with the intake passage (3);
By communicating the downstream chamber (23c) with the valve operating pressure chamber (34) of the valve actuator (8) through the supercharging pressure cutoff valve (36),
The fluctuation of the supercharging pressure in the intake passage (3) is transmitted from the upstream chamber (23b) to the downstream chamber (23c) through the diaphragm (23a), and from the downstream chamber (23c), the supercharging pressure cutoff valve (36) An engine characterized by being transmitted to the valve operating pressure chamber (34) via a valve.
請求項3に記載したエンジンにおいて、The engine according to claim 3,
下流室(23c)を過給圧遮断弁(36)を介して弁アクチュエータ(8)の弁作動圧室(34)に連通させることにより、By communicating the downstream chamber (23c) with the valve operating pressure chamber (34) of the valve actuator (8) through the supercharging pressure cutoff valve (36),
吸気通路(3)内の過給圧の変動を、上流室(23b)からダイヤフラム(23a)を介して下流室(23c)に伝達し、下流室(23c)から過給圧遮断弁(36)を介して弁作動圧室(34)に伝達するようにした、ことに代えて、  The fluctuation of the supercharging pressure in the intake passage (3) is transmitted from the upstream chamber (23b) to the downstream chamber (23c) through the diaphragm (23a), and from the downstream chamber (23c), the supercharging pressure cutoff valve (36) Instead of being transmitted to the valve operating pressure chamber (34) via
下流室(23c)を抵抗体(21)と過給圧遮断弁(36)を介して弁アクチュエータ(8)の弁作動圧室(34)に連通させることにより、By connecting the downstream chamber (23c) to the valve operating pressure chamber (34) of the valve actuator (8) through the resistor (21) and the boost pressure cutoff valve (36),
吸気通路(3)内の過給圧の変動を、上流室(23b)からダイヤフラム(23a)を介して下流室(23c)に伝達し、下流室(23c)から抵抗体(21)と過給圧遮断弁(36)を介して弁作動圧室(34)に伝達するようにした、ことを特徴とするエンジン。  The fluctuation of the supercharging pressure in the intake passage (3) is transmitted from the upstream chamber (23b) to the downstream chamber (23c) through the diaphragm (23a), and the resistor (21) and the supercharger are transmitted from the downstream chamber (23c). An engine characterized by being transmitted to the valve operating pressure chamber (34) via the pressure cutoff valve (36).
請求項1から請求項4のいずれかに記載したエンジンにおいて、
EGR弁(9)を収容したEGR弁ケース(7)を吸気通路(3)の通路壁に取り付けた、ことを特徴とするエンジン。
The engine according to any one of claims 1 to 4 ,
An engine characterized in that an EGR valve case (7) containing an EGR valve (9) is attached to a passage wall of an intake passage (3).
請求項5に記載したエンジンにおいて、
EGR弁(9)の弁アクチュエータ(8)をEGR弁ケース(7)に取り付けた、ことを特徴とするエンジン。
The engine according to claim 5 ,
An engine comprising a valve actuator (8) of an EGR valve (9) attached to an EGR valve case (7).
請求項5または請求項6に記載したエンジンにおいて、
EGR弁ケース(7)に弁冷却水路(31)を設けた、ことを特徴とするエンジン。
In the engine according to claim 5 or 6 ,
An engine comprising a valve cooling water passage (31) in an EGR valve case (7).
排気エネルギーで駆動される過給機(30)で吸気通路(3)内に過給を行い、EGR弁(9)の駆動にニューマチック式の弁アクチュエータ(8)を用い、この弁アクチュエータ(8)の弁作動圧室(34)に過給圧伝達通路(20)を介して吸気通路(3)を連携させ、この吸気通路(3)内の過給圧が高くなるにつれて弁アクチュエータ(8)の弁作動圧室(34)の弁作動圧が高くなるようにし、弁作動圧室(34)の弁作動圧が所定値未満となる場合には、閉弁付勢手段(9b)でEGR弁(9)の閉弁状態を維持し、弁作動圧室(34)の弁作動圧が所定値以上となる場合には、弁作動圧室(34)の弁作動圧でEGR弁(9)を開弁するようにした、エンジンにおいて、
過給圧伝達通路(20)の途中に伝達媒体の通過抵抗となる抵抗体(21)を設けることにより、この抵抗体(21)で吸気通路(3)内の過給圧の変動に対するEGR弁(9)の開閉作動の追従性を低下させ、
EGR弁(9)を収容したEGR弁ケース(7)を吸気通路(3)の通路壁に取り付け、
EGR弁ケース(7)に弁冷却水路(31)を設け、
過給圧伝達通路(20)に感温作動性の過給圧遮断弁(36)を設け、
エンジン温度が所定値未満の冷間始動時には、吸気通路(3)内の過給圧に拘わらず、過給圧遮断弁(36)が閉弁して、閉弁付勢手段(9b)でEGR弁(9)の閉弁状態を維持し、
エンジン温度が所定値以上の温間始動時や通常運転時には、過給圧遮断弁(36)が開弁して、吸気通路(3)内の過給圧に応じたEGR弁(9)の開閉を行なうようにするに当たり、
EGR弁ケース(7)に感温作動性の過給圧遮断弁(36)を取り付け、弁冷却水路(31)に過給圧遮断弁(36)の入熱部(37)を臨ませた、ことを特徴とするエンジン。
A supercharger (30) driven by exhaust energy supercharges the intake passage (3), and a pneumatic valve actuator (8) is used to drive the EGR valve (9). ) Is linked to the valve operating pressure chamber (34) via the supercharging pressure transmission passage (20), and the valve actuator (8) is increased as the supercharging pressure in the intake passage (3) increases. When the valve operating pressure of the valve operating pressure chamber (34) becomes higher and the valve operating pressure of the valve operating pressure chamber (34) becomes less than a predetermined value, the EGR valve is operated by the valve closing biasing means (9b). When the valve operating state of (9) is maintained and the valve operating pressure of the valve operating pressure chamber (34) is equal to or higher than a predetermined value, the EGR valve (9) is turned on by the valve operating pressure of the valve operating pressure chamber (34). In the engine that was opened,
By providing a resistor (21) serving as a transmission resistance for the transmission medium in the middle of the supercharging pressure transmission passage (20), an EGR valve against a change in supercharging pressure in the intake passage (3) by this resistor (21). (9) lowering the followability of the opening and closing operation,
An EGR valve case (7) containing the EGR valve (9) is attached to the passage wall of the intake passage (3),
A valve cooling water passage (31) is provided in the EGR valve case (7),
The supercharging pressure transmission passage (20) is provided with a temperature-sensitive actuated supercharging pressure cutoff valve (36),
During a cold start when the engine temperature is less than a predetermined value, the supercharging pressure shut-off valve (36) is closed regardless of the supercharging pressure in the intake passage (3), and the EGR is operated by the valve closing urging means (9b). Keep the valve (9) closed,
During a warm start when the engine temperature is higher than a predetermined value or during normal operation, the boost pressure shut-off valve (36) opens, and the EGR valve (9) opens and closes according to the boost pressure in the intake passage (3). In doing so,
The EGR valve case (7) was provided with a temperature-sensitive actuated supercharging pressure shut-off valve (36), and the heat input part (37) of the supercharging pressure shut-off valve (36) was exposed to the valve cooling water passage (31). An engine characterized by that.
請求項8に記載したエンジンにおいて、The engine according to claim 8,
過給圧伝達通路(20)に過給圧伝達室(23)を設け、この過給圧伝達室(23)内をダイヤフラム(23a)で区画して、相互に不通の上流室(23b)と下流室(23c)とを形成し、上流室(23b)を吸気通路(3)内に連通させ、The supercharging pressure transmission passage (20) is provided with a supercharging pressure transmission chamber (23), the inside of the supercharging pressure transmission chamber (23) is partitioned by a diaphragm (23a), and the upstream chamber (23b) which is not mutually connected A downstream chamber (23c), and the upstream chamber (23b) communicates with the intake passage (3);
下流室(23c)を過給圧遮断弁(36)を介して弁アクチュエータ(8)の弁作動圧室(34)に連通させることにより、By communicating the downstream chamber (23c) with the valve operating pressure chamber (34) of the valve actuator (8) through the supercharging pressure cutoff valve (36),
吸気通路(3)内の過給圧の変動を、上流室(23b)からダイヤフラム(23a)を介して下流室(23c)に伝達し、下流室(23c)から過給圧遮断弁(36)を介して弁作動圧室(34)に伝達するようにした、ことを特徴とするエンジン。  The fluctuation of the supercharging pressure in the intake passage (3) is transmitted from the upstream chamber (23b) to the downstream chamber (23c) through the diaphragm (23a), and from the downstream chamber (23c), the supercharging pressure cutoff valve (36) An engine characterized by being transmitted to the valve operating pressure chamber (34) via a valve.
請求項8に記載したエンジンにおいて、The engine according to claim 8,
過給圧伝達通路(20)に過給圧伝達室(23)を設け、この過給圧伝達室(23)内をダイヤフラム(23a)で区画して、相互に不通の上流室(23b)と下流室(23c)とを形成し、上流室(23b)を吸気通路(3)内に連通させ、The supercharging pressure transmission passage (20) is provided with a supercharging pressure transmission chamber (23), the inside of the supercharging pressure transmission chamber (23) is partitioned by a diaphragm (23a), and the upstream chamber (23b) which is not mutually connected A downstream chamber (23c), and the upstream chamber (23b) communicates with the intake passage (3);
下流室(23c)を抵抗体(21)を介して弁アクチュエータ(8)の弁作動圧室(34)に連通させることにより、By communicating the downstream chamber (23c) with the valve operating pressure chamber (34) of the valve actuator (8) through the resistor (21),
吸気通路(3)内の過給圧の変動を、上流室(23b)からダイヤフラム(23a)を介して下流室(23c)に伝達し、下流室(23c)から抵抗体(21)を介して弁作動圧室(34)に伝達するようにした、ことを特徴とするエンジン。  The fluctuation of the supercharging pressure in the intake passage (3) is transmitted from the upstream chamber (23b) to the downstream chamber (23c) via the diaphragm (23a), and from the downstream chamber (23c) via the resistor (21). An engine characterized by being transmitted to the valve operating pressure chamber (34).
請求項10に記載したエンジンにおいて、The engine according to claim 10, wherein
下流室(23c)を抵抗体(21)を介して弁アクチュエータ(8)の弁作動圧室(34)に連通させることにより、By communicating the downstream chamber (23c) with the valve operating pressure chamber (34) of the valve actuator (8) through the resistor (21),
吸気通路(3)内の過給圧の変動を、上流室(23b)からダイヤフラム(23a)を介して下流室(23c)に伝達し、下流室(23c)から抵抗体(21)を介して弁作動圧室(34)に伝達するようにした、ことに代えて、  The fluctuation of the supercharging pressure in the intake passage (3) is transmitted from the upstream chamber (23b) to the downstream chamber (23c) via the diaphragm (23a), and from the downstream chamber (23c) via the resistor (21). Instead of transmitting to the valve operating pressure chamber (34),
下流室(23c)を抵抗体(21)と過給圧遮断弁(36)を介して弁アクチュエータ(8)の弁作動圧室(34)に連通させることにより、By connecting the downstream chamber (23c) to the valve operating pressure chamber (34) of the valve actuator (8) through the resistor (21) and the boost pressure cutoff valve (36),
吸気通路(3)内の過給圧の変動を、上流室(23b)からダイヤフラム(23a)を介して下流室(23c)に伝達し、下流室(23c)から抵抗体(21)と過給圧遮断弁(36)を介して弁作動圧室(34)に伝達するようにした、ことを特徴とするエンジン。  The fluctuation of the supercharging pressure in the intake passage (3) is transmitted from the upstream chamber (23b) to the downstream chamber (23c) through the diaphragm (23a), and the resistor (21) and the supercharger are transmitted from the downstream chamber (23c). An engine characterized by being transmitted to the valve operating pressure chamber (34) via the pressure cutoff valve (36).
請求項5から請求項11のいずれかに記載したエンジンにおいて、
EGR弁(9)の弁軸(9a)を垂直にしてEGR弁ケース(7)内の弁軸挿通孔(7c)に摺動自在に内嵌させた、ことを特徴とするエンジン。
The engine according to any one of claims 5 to 11 ,
An engine characterized in that a valve shaft (9a) of an EGR valve (9) is vertical and is slidably fitted into a valve shaft insertion hole (7c) in an EGR valve case (7).
請求項1から請求項12のいずれかに記載したエンジンにおいて、
抵抗体(21)を細管(22)で構成した、ことを特徴とするエンジン。
The engine according to any one of claims 1 to 12 ,
An engine characterized by comprising a resistor (21) composed of a thin tube (22).
JP2007181888A 2007-07-11 2007-07-11 engine Expired - Fee Related JP4850790B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007181888A JP4850790B2 (en) 2007-07-11 2007-07-11 engine
PCT/JP2008/052942 WO2009008188A1 (en) 2007-07-11 2008-02-21 Engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181888A JP4850790B2 (en) 2007-07-11 2007-07-11 engine

Publications (2)

Publication Number Publication Date
JP2009019541A JP2009019541A (en) 2009-01-29
JP4850790B2 true JP4850790B2 (en) 2012-01-11

Family

ID=40228377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181888A Expired - Fee Related JP4850790B2 (en) 2007-07-11 2007-07-11 engine

Country Status (2)

Country Link
JP (1) JP4850790B2 (en)
WO (1) WO2009008188A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202506A (en) * 2008-07-23 2011-10-13 Kubota Corp Diesel engine
JP6262358B2 (en) * 2014-09-16 2018-01-17 富士フイルム株式会社 Fiber-reinforced composite material and method for producing fiber-reinforced composite material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185120U (en) * 1974-12-27 1976-07-08
JPS5185120A (en) * 1975-01-24 1976-07-26 Nippon Denso Co JIDOSHAYOINDO JIDOSHOKOSOCHI
JPS581264B2 (en) * 1977-01-31 1983-01-10 日産自動車株式会社 Exhaust recirculation control device
JPS54113915U (en) * 1978-01-31 1979-08-10
JPS54113915A (en) * 1978-02-24 1979-09-05 Maeda Construction Pillar row system underground continuous wall constructing method
JPS60195955A (en) * 1984-03-19 1985-10-04 Hitachi Ltd Semiconductor device
JPS60195955U (en) * 1984-06-06 1985-12-27 トヨタ自動車株式会社 EGR control device for turbocharged engine
JPS62165565A (en) * 1986-01-16 1987-07-22 Toyota Motor Corp Exhaust gas recirculation control method for diesel engine
JP2007085180A (en) * 2005-09-20 2007-04-05 Kubota Corp Engine with supercharger

Also Published As

Publication number Publication date
WO2009008188A1 (en) 2009-01-15
JP2009019541A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP5440806B2 (en) Intake device
US4961404A (en) Internal combustion engine with water-cooling intercooler
JP5289276B2 (en) Blow-by gas reduction device
JP5925738B2 (en) Multistage supercharging device for internal combustion engine
US20070074708A1 (en) Blow-by gas recirculation system
US6564554B2 (en) Method and apparatus to control a turbocharger wastegate using exhaust pressure
JP4654170B2 (en) Multi-cylinder engine
JP4850790B2 (en) engine
JP2008190337A (en) Engine
KR20080015246A (en) Purge system for engine
JP2015218654A (en) Internal combustion engine
JP4814188B2 (en) engine
JP4858176B2 (en) Variable nozzle turbocharger and engine equipped with the same
JP4729547B2 (en) engine
JPH10331621A (en) Breather passage structure for internal combustion engine
JP4588669B2 (en) EGR valve and external air communication device for EGR valve
JP2007218100A (en) Blow-by gas control device
JP2009019540A (en) Engine
JP4613129B2 (en) Turbocharged engine
JP6156995B2 (en) Exhaust turbocharger
JP5319000B2 (en) Blow-by gas reduction device
JP4729548B2 (en) engine
KR20050070395A (en) Intake air control system using vortex tube
JP3861110B2 (en) EGR valve
JP4977675B2 (en) Multi-cylinder engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees