JP2011202506A - Diesel engine - Google Patents

Diesel engine Download PDF

Info

Publication number
JP2011202506A
JP2011202506A JP2008189665A JP2008189665A JP2011202506A JP 2011202506 A JP2011202506 A JP 2011202506A JP 2008189665 A JP2008189665 A JP 2008189665A JP 2008189665 A JP2008189665 A JP 2008189665A JP 2011202506 A JP2011202506 A JP 2011202506A
Authority
JP
Japan
Prior art keywords
gas
passage
swirl
exhaust gas
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008189665A
Other languages
Japanese (ja)
Inventor
Masahiro Akeda
正寛 明田
Masao Okazaki
正夫 岡崎
Shigeyoshi Yamanaka
重善 山中
Satoshi Sugimoto
智 杉本
Masato Ueda
真人 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2008189665A priority Critical patent/JP2011202506A/en
Priority to PCT/JP2009/054648 priority patent/WO2010010731A1/en
Publication of JP2011202506A publication Critical patent/JP2011202506A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/037Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of inertial or centrifugal separators, e.g. of cyclone type, optionally combined or associated with agglomerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a miniaturizable diesel engine.SOLUTION: An EGR valve 4 is installed in an EGR gas recirculation passage 3. An exhaust gas divider 5 is installed in an exhaust passage 1. An exhaust gas 6 is divided into a PM high-concentration gas 7 and a PM low-concentration gas 8 with different concentrations of particulate matters by the exhaust gas divider 5. The PM high-concentration gas 7 is used as the EGR gas 9. The EGR valve 4 is openably driven based on the operation of an EGR valve actuator 10. The EGR valve actuator 10 is operated according to the engine operating conditions detected by an engine operating condition detection means 10a. Based on the opening/closing state of the EGR valve 4 and the differential pressure between the intake and exhaust gases, the recirculation of the EGR gas 9 from the exhaust passage 1 to an intake passage 2 is stopped or performed. In the operating area on the low-speed, low-load side, the recirculation of the EGR gas 9 is stopped, and in the operating area on the high-speed, high-load side, the recirculation of the EGR gas 9 is performed.

Description

本発明は、ディーゼルエンジンに関し、詳しくは、粒子状物質の処理を行うことができるディーゼルエンジンに関するものである。   The present invention relates to a diesel engine, and more particularly, to a diesel engine capable of processing particulate matter.

従来のディーゼルエンジンとして、粒子状物質の捕捉をディーゼル・パティキュレート・フィルタで行うものがある (例えば、特許文献1参照)。   As a conventional diesel engine, there is one in which particulate matter is captured by a diesel particulate filter (see, for example, Patent Document 1).

しかし、この従来の技術では、粒子状物質の捕捉をディーゼル・パティキュレート・フィルタのみで行うため、問題がある。   However, this conventional technique has a problem because the particulate matter is captured only by the diesel particulate filter.

特開2007−71035号公報(図1参照)JP 2007-71035 A (see FIG. 1)

上記従来技術では、次の問題がある。
《問題》 エンジンが大型化する。
粒子状物質の捕捉をディーゼル・パティキュレート・フィルタ(以下、「DPF」)のみで行うため、粒子状物質を焼却処理してDPFを再生するまで、捕捉した多量の粒子状物質をDPF上に保存しておく必要があり、大型のDPFが必要となり、エンジンが大型化する。
The above prior art has the following problems.
<Problem> The engine becomes larger.
Since particulate matter is captured only with a diesel particulate filter (hereinafter “DPF”), a large amount of the captured particulate matter is stored on the DPF until the particulate matter is incinerated and the DPF is regenerated. This requires a large DPF, which increases the size of the engine.

本発明は、上記問題点を解決することができるディーゼルエンジン、すなわち、エンジンを小型化することができる、ディーゼルエンジンを提供することを課題とする。   An object of the present invention is to provide a diesel engine capable of solving the above-described problems, that is, a diesel engine capable of downsizing the engine.

請求項1に係る発明の発明特定事項は、次の通りである。
図1に例示するように、排気経路(1)と吸気経路(2)との間にEGRガス還流通路(3)が設けられ、このEGRガス還流通路(3)にEGR弁(4)が設けられ、
排気経路(1)に排気ガス分流器(5)が設けられ、排気ガス分流器(5)で排気ガス(6)が粒子状物質の濃度が異なるPM高濃度ガス(7)とPM低濃度ガス(8)とに分流され、PM高濃度ガス(7)がEGRガス(9)として用いられ、
EGR弁(4)がEGR弁アクチュエータ(10)の作動に基づいて開閉駆動され、EGR弁アクチュエータ(10)がエンジン運転状態検出手段(10a)で検出されたエンジン運転状態に対応して作動し、EGR弁(4)の開閉状態と吸排気の差圧とに基づいて、排気経路(1)から吸気経路(2)へのEGRガス(9)の還流が停止され、或いは、EGRガス(9)の還流がなされるようにし、
図3に例示するように、低速低負荷側の運転領域では、EGRガス(9)の還流が停止され、高速高負荷側の運転領域では、EGRガス(9)の還流がなされるようにした、ことを特徴とするディーゼルエンジン。
Invention specific matters of the invention according to claim 1 are as follows.
As illustrated in FIG. 1, an EGR gas recirculation passage (3) is provided between the exhaust passage (1) and the intake passage (2), and an EGR valve (4) is provided in the EGR gas recirculation passage (3). And
An exhaust gas diverter (5) is provided in the exhaust path (1), and in the exhaust gas diverter (5), the exhaust gas (6) is a high concentration PM gas (7) and a low concentration PM gas having different concentrations of particulate matter. (8) and PM high concentration gas (7) is used as EGR gas (9),
The EGR valve (4) is driven to open and close based on the operation of the EGR valve actuator (10), and the EGR valve actuator (10) operates in accordance with the engine operating state detected by the engine operating state detecting means (10a). Based on the open / closed state of the EGR valve (4) and the differential pressure between the intake and exhaust, the recirculation of the EGR gas (9) from the exhaust path (1) to the intake path (2) is stopped, or the EGR gas (9) Of reflux, and
As illustrated in FIG. 3, the recirculation of the EGR gas (9) is stopped in the operation region on the low speed and low load side, and the recirculation of the EGR gas (9) is performed in the operation region on the high speed and high load side. Diesel engine characterized by that.

(請求項1または請求項2に係る発明)
《効果》 エンジンを小型化することができる。
図1に例示するように、PM高濃度ガス(7)がEGRガス(9)として用いられるので、PM高濃度ガス(7)中に含まれる粒子状物質がエンジン運転中に燃焼室(39)の燃焼熱で焼却処理される。このため、DPFに代えて排気ガス分流器(5)を用いることより、DPFを無くすことができる。或いは、DPFと排気ガス分流器(5)とを併用することにより、DPFを小型化することができる。
排気ガス分流器(5)は、多くの粒子状物質を保存しておく必要がないため、DPFよりも小型化することができ、DPFに代えて排気ガス分流器(5)を用いる場合、DPFと排気ガス分流器(5)とを併用する場合のいずれの場合も、エンジンを小型化することができる。
(Invention according to Claim 1 or Claim 2)
<Effect> The engine can be reduced in size.
As illustrated in FIG. 1, since the PM high-concentration gas (7) is used as the EGR gas (9), the particulate matter contained in the PM high-concentration gas (7) is burned into the combustion chamber (39) during engine operation. It is incinerated with the heat of combustion. Therefore, the DPF can be eliminated by using the exhaust gas diverter (5) instead of the DPF. Alternatively, the DPF can be reduced in size by using the DPF and the exhaust gas flow divider (5) together.
Since the exhaust gas diverter (5) does not need to store much particulate matter, it can be made smaller than the DPF. When the exhaust gas diverter (5) is used instead of the DPF, the DPF The engine can be downsized in any case where the exhaust gas diverter and the exhaust gas flow divider (5) are used in combination.

《効果》 粒子状物質が速やかに焼却される。
図1に例示するように、PM高濃度ガス(7)がEGRガス(9)として用いられ図3に例示するように、高速高負荷側の運転領域では、EGRガス(9)の還流がなされるようにしたので、燃焼室(39)の燃焼温度が高い高速高負荷側の運転領域で、PM高濃度ガス(7)が燃焼室(39)に流入し、粒子状物質が速やかに焼却される。
<Effect> Particulate matter is quickly incinerated.
As illustrated in FIG. 1, the PM high concentration gas (7) is used as the EGR gas (9), and as illustrated in FIG. 3, the EGR gas (9) is recirculated in the operating region on the high speed and high load side. As a result, PM high concentration gas (7) flows into the combustion chamber (39) in the high-speed and high-load operation region where the combustion temperature of the combustion chamber (39) is high, and the particulate matter is quickly incinerated. The

《効果》 NOの低減機能が高い。
図3に例示するように、高速高負荷側の運転領域では、EGRガス(9)の還流がなされるようにしたので、燃焼室(39)の燃焼温度が高く、NOの発生率が高い高速高負荷側の運転領域で、EGRガス(9)の還流がなされ、NOの低減機能が高い。
< Effect> The NOx reduction function is high.
As illustrated in FIG. 3, since the EGR gas (9) is recirculated in the operating region on the high speed and high load side, the combustion temperature of the combustion chamber (39) is high and the generation rate of NO x is high. in the operation region of the high-speed high-load side, the reflux of the EGR gas (9) is made, reduced function of the NO x is high.

《効果》 エンジン回転のハンチングを抑制することができる。
図3に例示するように、低速低負荷側の運転領域では、EGRガス(9)の還流が停止されるので、燃焼が不安定になりやすい低速低負荷側の運転領域で燃焼を安定化させることができ、エンジン回転のハンチングを抑制することができる。
<< Effect >> Engine hunting can be suppressed.
As illustrated in FIG. 3, since the recirculation of the EGR gas (9) is stopped in the operation region on the low speed and low load side, the combustion is stabilized in the operation region on the low speed and low load side where combustion tends to become unstable. It is possible to suppress hunting of engine rotation.

(請求項3に係る発明)
請求項1または請求項2に係る発明の効果に加え、次の効果を奏する。
《効果》 簡単な構造で、遠心力による排気ガスのガス分流を行うことができる。
図4(A)(B)、図5(A)(B)に例示するように、排気ガス分流器(5)内に螺旋形の排気ガス分流旋回通路(13)が設けられ、この排気ガス分流旋回通路(13)で排気ガス(6)がそれ自身のエネルギーによって旋回するようにしたので、比重の大きい粒子状物質と比重の小さいガス成分とは、その遠心力差に基づいて分離され、粒子状物質は排気ガス分流旋回通路(13)の外周寄りに集まりやすく、PM高濃度ガス(7)が排気ガス分流旋回通路(13)の終端のPM高濃度ガス流出口(14)から流出し、PM低濃度ガス(8)が排気ガス分流旋回通路(13)の内周側にあるPM低濃度ガス流入空間(15)に流入する。このため、簡単な構造で、遠心力による排気ガス(6)のガス分流を行うことができる。
(Invention according to claim 3)
In addition to the effect of the invention according to claim 1 or claim 2, the following effect is achieved.
<< Effect >> With a simple structure, it is possible to perform gas splitting of exhaust gas by centrifugal force.
As illustrated in FIGS. 4A and 4B and FIGS. 5A and 5B, a spiral exhaust gas diversion swirl passage (13) is provided in the exhaust gas diverter (5). Since the exhaust gas (6) is swirled by its own energy in the diversion swirl passage (13), the particulate matter having a high specific gravity and the gas component having a low specific gravity are separated based on the centrifugal force difference, Particulate matter tends to gather near the outer periphery of the exhaust gas diversion swirl passage (13), and the PM high concentration gas (7) flows out from the PM high concentration gas outlet (14) at the end of the exhaust gas diversion swirl passage (13). The PM low concentration gas (8) flows into the PM low concentration gas inflow space (15) on the inner peripheral side of the exhaust gas diversion swirl passage (13). For this reason, it is possible to perform gas splitting of the exhaust gas (6) by centrifugal force with a simple structure.

(請求項4に係る発明)
請求項3に係る発明の効果に加え、次の効果を奏する。
《効果》 PM高濃度ガスにより多くの粒子状物質を偏在させることができる。
図4(A)(B)、図5(A)(B)に例示するように、排気ガス分流旋回通路(13)とPM低濃度ガス流入空間(15)との間に、粒子状物質の通過を抑制する筒形のPMフィルタ(17)が介在しているので、排気ガス分流旋回通路(13)からPM低濃度ガス流入空間(15)への粒子状物質の進入がPMフィルタ(17)で抑制され、PM高濃度ガス(7)により多くの粒子状物質を偏在させることができる。
(Invention of Claim 4)
In addition to the effect of the invention according to claim 3, the following effect is achieved.
<< Effect >> Many particulate substances can be unevenly distributed by PM high concentration gas.
As illustrated in FIGS. 4A and 4B and FIGS. 5A and 5B, the particulate matter is interposed between the exhaust gas diversion swirl passage 13 and the PM low concentration gas inflow space 15. Since the cylindrical PM filter (17) that suppresses the passage is interposed, the particulate matter enters the PM low concentration gas inflow space (15) from the exhaust gas diversion swirl passage (13). Therefore, a large amount of particulate matter can be unevenly distributed in the PM high concentration gas (7).

(請求項5に係る発明)
請求項4に係る発明の効果に加え、次の効果を奏する。
《効果》 排気ガス分流通路の終端部まで遠心力による高いガス分流機能が得られる。
図4(A)(B)、図5(A)(B)に例示するように、排気ガス分流旋回通路(13)の通路断面積が、その終端に近づくにつれて次第に小さくなるようにしたので、排気ガス分流旋回通路(13)の終端に近づくにつれて排気ガス(6)の流量が減少するのに合わせて、排気ガス分流旋回通路(13)の通路断面積が次第に小さくなり、排気ガス(6)の流速低下が抑制される。このため、排気ガス分流通路(13)の終端部まで遠心力による高いガス分流機能が得られる。
(Invention according to claim 5)
In addition to the effect of the invention according to claim 4, the following effect is achieved.
<Effect> A high gas diversion function by centrifugal force can be obtained up to the end of the exhaust gas diversion passage.
As illustrated in FIGS. 4A and 4B and FIGS. 5A and 5B, the passage cross-sectional area of the exhaust gas diversion swirl passage (13) is gradually reduced as it approaches the end. As the flow rate of the exhaust gas (6) decreases as the end of the exhaust gas diversion swirl passage (13) approaches, the cross-sectional area of the exhaust gas diversion swirl passage (13) gradually decreases, and the exhaust gas (6) The decrease in the flow rate is suppressed. For this reason, a high gas diversion function by centrifugal force is obtained up to the end of the exhaust gas diversion passage (13).

(請求項6に係る発明)
請求項4または請求項5に係る発明の効果に加え、次の効果を奏する。
《効果》 PMフィルタによる背圧の上昇が抑制される。
図4(A)(B)、図5(A)(B)に例示するように、PMフィルタ(17)の周面に、周方向に所定間隔を保持して、母線方向に長いガス通過口(18)が複数本並べて設けられているので、ガス通路口(18)の総開口面積を比較的広く形成することができる。このため、PMフィルタ(17)による背圧の上昇が抑制される。
(Invention of Claim 6)
In addition to the effect of the invention according to claim 4 or claim 5, the following effect is achieved.
<Effect> An increase in back pressure due to the PM filter is suppressed.
As illustrated in FIGS. 4 (A), 4 (B), 5 (A), 5 (B), a gas passage port that is long in the busbar direction while maintaining a predetermined interval in the circumferential direction on the peripheral surface of the PM filter (17). Since a plurality of (18) are provided side by side, the total opening area of the gas passage port (18) can be formed relatively wide. For this reason, the rise of the back pressure by PM filter (17) is suppressed.

《効果》 簡単な構造のPM進入抑制フィンで、ガス通過口への粒子状物質の進入を抑制することができる。
図6(C)に例示するように、排気ガス分流旋回通路(13)からガス通過口(18)への粒子状物質の進入を抑制するPM進入抑制フィン(19)が、各ガス通過口(18)のガス旋回上手側縁部(18a)から排気ガス分流旋回通路(13)のガス旋回下手側に向けて突出しているので、PM進入抑制フィン(19)に沿って流れる排気ガス(6)中の粒子状物質が、PM進入抑制フィン(19)で排気ガス分流旋回通路(13)の外周に向けて案内される。一方、ガス成分は比重が小さいため、PM進入抑制フィン(19)があっても、PM進入抑制フィン(19)を迂回して、各ガス通過口(18)にスムーズに引き込まれる。このため、簡単な構造のPM進入抑制フィン(19)で、ガス通過口(18)への粒子状物質の進入を抑制することができる。
<Effect> The PM intrusion suppression fin having a simple structure can suppress the intrusion of particulate matter into the gas passage port.
As illustrated in FIG. 6 (C), PM intrusion suppression fins (19) for suppressing entry of particulate matter from the exhaust gas diversion swirl passage (13) to the gas passage port (18) are provided for each gas passage port ( 18) Since the gas swirl upper side edge 18a protrudes toward the lower gas swirl side of the exhaust gas diversion swirl passage 13, the exhaust gas 6 flowing along the PM intrusion suppression fin 19 Particulate matter therein is guided toward the outer periphery of the exhaust gas diversion swirl passage (13) by the PM entry suppression fin (19). On the other hand, since the specific gravity of the gas component is small, even if there is a PM entry suppression fin (19), it bypasses the PM entry suppression fin (19) and is smoothly drawn into each gas passage port (18). For this reason, it is possible to suppress the particulate matter from entering the gas passage port (18) with the PM intrusion suppression fin (19) having a simple structure.

(請求項7に係る発明)
請求項4から請求項6のいずれかに係る発明の効果に加え、次の効果を奏する。
《効果》 排気ガス分流旋回通路のガス分流機能が高い。
図4(A)(B)、図5(A)(B)に例示するように、排気ガス分流器(5)の内周面に螺旋形の排気ガス分流旋回案内壁(20)が設けられ、この排気ガス分流旋回案内壁(20)の表面に沿って排気ガス分流旋回通路(13)が形成され、排気ガス分旋回案内壁(20)の内周面(20a)がPMフィルタ(17)の外周面に密着しているので、排気ガス分旋回案内壁(20)の内周面とPMフィルタ(17)の外周面の間からの排気ガス(6)の漏れを抑制することができる。このため、排気ガス分流旋回通路(13)での排気ガス(6)の短絡が抑制され、排気ガス(6)が乱れることなくスムーズに旋回し、排気ガス分流旋回通路(13)のガス分流機能が高い。
(Invention of Claim 7)
In addition to the effects of the invention according to any one of claims 4 to 6, the following effects are achieved.
<Effect> The gas diversion function of the exhaust gas diversion swirl passage is high.
As illustrated in FIGS. 4A and 4B and FIGS. 5A and 5B, a spiral exhaust gas diversion swirling guide wall 20 is provided on the inner peripheral surface of the exhaust gas diverter 5. An exhaust gas diversion swirl passage (13) is formed along the surface of the exhaust gas diversion swirl guide wall (20), and the inner peripheral surface (20a) of the exhaust gas diversion swirl guide wall (20) is a PM filter (17). Therefore, leakage of the exhaust gas (6) from between the inner peripheral surface of the exhaust gas turning guide wall (20) and the outer peripheral surface of the PM filter (17) can be suppressed. For this reason, the short circuit of the exhaust gas (6) in the exhaust gas diversion swirl passage (13) is suppressed, the exhaust gas (6) swirls smoothly without being disturbed, and the gas diversion function of the exhaust gas diversion swirl passage (13). Is expensive.

(請求項8に係る発明)
請求項3から請求項7のいずれかに係る発明の効果に加え、次の効果を奏する。
《効果》 排気ガス分流旋回通路への粒子状物質の逆流が起こりにくい。
図4(A)(B)、図5(A)(B)に例示するように、PM高濃度ガス流出口(14)の下流にPM高濃度ガス旋回室(21)が設けられているので、EGRガス(9)の還流停止中は、PM高濃度ガス(7)中の粒子状物質はPM高濃度ガス(7)とともにPM高濃度ガス旋回室(21)内を旋回し続け、排気ガス分流旋回通路(13)に逆流しにくい。このため、排気ガス分流旋回通路(13)への粒子状物質の逆流が起こりにくい。。
(Invention of Claim 8)
In addition to the effects of the invention according to any one of claims 3 to 7, the following effects are achieved.
<Effect> It is difficult for the particulate matter to flow backward into the exhaust gas diversion swirl passage.
As illustrated in FIGS. 4A and 4B and FIGS. 5A and 5B, the PM high concentration gas swirl chamber (21) is provided downstream of the PM high concentration gas outlet (14). During recirculation of the EGR gas (9), the particulate matter in the PM high-concentration gas (7) keeps swirling in the PM high-concentration gas swirl chamber (21) together with the PM high-concentration gas (7). It is difficult to back flow into the diversion swirl passage (13). For this reason, the backflow of the particulate matter to the exhaust gas diversion swirl passage (13) hardly occurs. .

《効果》 簡単な構造により、PM高濃度ガス旋回室で粒子状物質を一時保存することができる。
図4(A)(B)、図5(A)(B)に例示するように、PM高濃度ガス旋回室(21)でPM高濃度ガス(7)がそれ自身のエネルギーによって旋回するようにしたので、PM高濃度ガス(7)を旋回させるための特別な駆動源も必要なく、簡単な構造により、PM高濃度ガス旋回室(21)で粒子状物質を一時保存することができる。
<< Effect >> With a simple structure, particulate matter can be temporarily stored in the PM high-concentration gas swirl chamber.
As illustrated in FIGS. 4A and 4B and FIGS. 5A and 5B, the PM high concentration gas (7) is swirled by its own energy in the PM high concentration gas swirl chamber (21). Therefore, there is no need for a special drive source for swirling the PM high concentration gas (7), and the particulate matter can be temporarily stored in the PM high concentration gas swirl chamber (21) with a simple structure.

(請求項9に係る発明)
請求項8に係る発明の効果に加え、次の効果を奏する。
《効果》 排気ガス分流器内で排気ガス分流旋回通路とPM高濃度ガス旋回室とをコンパクトに近接配置することができる。
図4(A)(B)、図5(A)(B)に例示するように、排気ガス分流器(5)の端部にPM高濃度ガス旋回室(21)が設けられ、排気ガス分流旋回通路(13)の終端部とPM高濃度ガス旋回室(21)との間に仕切り壁(22)が介在し、仕切り壁(22)にPM高濃度ガス流出口(14)が形成されているので、排気ガス分流器(5)内で排気ガス分流旋回通路(13)とPM高濃度ガス旋回室(21)とをコンパクトに近接配置することができる。
(Invention according to claim 9)
In addition to the effect of the invention according to the eighth aspect, the following effect can be obtained.
<Effect> The exhaust gas diversion swirl passage and the PM high-concentration gas swirl chamber can be compactly arranged close to each other in the exhaust gas diverter.
As illustrated in FIGS. 4A and 4B and FIGS. 5A and 5B, a PM high-concentration gas swirl chamber (21) is provided at the end of the exhaust gas diverter (5), and the exhaust gas diversion is performed. A partition wall (22) is interposed between the terminal end of the swirl passage (13) and the PM high concentration gas swirl chamber (21), and a PM high concentration gas outlet (14) is formed in the partition wall (22). Therefore, the exhaust gas diversion swirl passage (13) and the PM high-concentration gas swirl chamber (21) can be compactly arranged close to each other in the exhaust gas diverter (5).

(請求項10に係る発明)
請求項9に係る発明の効果に加え、次の効果を奏する。
《効果》 仕切り板による背圧の上昇が抑制される。
図7(A)に例示するように、仕切り壁(22)がPM高濃度ガス旋回室(21)の径方向に沿って張り渡され、この仕切り壁(22)に、周方向に所定間隔を保持して、径方向に長いPM高濃度ガス流出口(14)が複数本放射状に並べて設けられているので、PM高濃度ガス流出口(14)の総開口面積を比較的広く形成することができる。このため、仕切り壁(22)による背圧の上昇が抑制される。
(Invention according to claim 10)
In addition to the effect of the invention according to claim 9, the following effect is obtained.
<Effect> An increase in back pressure due to the partition plate is suppressed.
As illustrated in FIG. 7A, the partition wall (22) is stretched along the radial direction of the PM high-concentration gas swirl chamber (21), and the partition wall (22) has a predetermined interval in the circumferential direction. Since a plurality of PM high concentration gas outlets (14) that are long in the radial direction are arranged radially, the total opening area of the PM high concentration gas outlet (14) can be formed relatively wide. it can. For this reason, the increase in the back pressure by the partition wall (22) is suppressed.

《効果》 簡単な構造のPM逆流抑制フィンにより、PM高濃度ガス流出口への粒子状物質の逆流を抑制することができる。
図7(B)に例示するように、PM高濃度ガス旋回室(21)からPM高濃度ガス流出口(14)への粒子状物質の逆流を抑制するPM逆流抑制フィン(23)が、各PM高濃度ガス流出口(14)のガス旋回上手側縁部(14a)からPM高濃度ガス旋回室(21)のガス旋回下手側に向けて突出しているので、PM逆流抑制フィン(23)に沿って流れるPM高濃度ガス(7)中の粒子状物質は、PM逆流抑制フィン(23)でPM高濃度ガス流出口(14)から遠ざかる方向に向けて案内される。このため、簡単な構造のPM逆流抑制フィン(23)により、PM高濃度ガス流出口(14)への粒子状物質の逆流を抑制することができる。
<Effect> The backflow of particulate matter to the PM high-concentration gas outlet can be suppressed by the PM backflow suppression fin having a simple structure.
As illustrated in FIG. 7B, each of the PM backflow suppression fins (23) for suppressing the backflow of particulate matter from the PM high concentration gas swirl chamber (21) to the PM high concentration gas outlet (14) is provided. Since it protrudes from the gas swirl upper side edge (14a) of the PM high concentration gas outlet (14) toward the gas swirl lower side of the PM high concentration gas swirl chamber (21), the PM backflow suppression fin (23) Particulate matter in the PM high-concentration gas (7) flowing along is guided in a direction away from the PM high-concentration gas outlet (14) by the PM backflow suppression fin (23). For this reason, the backflow of particulate matter to the PM high concentration gas outlet (14) can be suppressed by the PM backflow suppression fin (23) having a simple structure.

(請求項11に係る発明)
請求項9または請求項10に係る発明の効果に加え、次の効果を奏する。
《効果》 付属ケースの組み付けを簡単に行うことができる。
図4(A)(B)、図5(A)(B)に例示するように、排気ガス分流器(5)は、排気ガス分流旋回通路(13)を備えた本体ケース(24)と、PM高濃度ガス旋回室(21)を備えた付属ケース(25)とを備え、仕切り壁(22)が付属ケース(25)に取り付けられ、付属ケース(25)が本体ケース(24)に取り付けられ、仕切り壁(22)の周縁部(22a)が本体ケース(24)と付属ケース(25)との間にガスケットとして挟み付けられているので、専用のガスケットの組み付けが不要になり、付属ケース(25)の組み付けを簡単に行うことができる。
(Invention of Claim 11)
In addition to the effect of the invention according to claim 9 or claim 10, the following effect is achieved.
<Effect> The attached case can be easily assembled.
As illustrated in FIGS. 4A and 4B and FIGS. 5A and 5B, the exhaust gas diverter (5) includes a main body case (24) including an exhaust gas diversion swirl passage (13), An accessory case (25) having a PM high-concentration gas swirl chamber (21), a partition wall (22) is attached to the accessory case (25), and an accessory case (25) is attached to the main body case (24). Since the peripheral edge portion (22a) of the partition wall (22) is sandwiched between the body case (24) and the accessory case (25) as a gasket, it is not necessary to assemble a special gasket. 25) can be easily assembled.

(請求項12に係る発明)
請求項11に係る発明の効果に加え、次の効果を奏する。
《効果》 排気ガス分流旋回通路等の清掃、PMフィルタの交換を簡単に行うことができる。
図4(A)(B)、図5(A)(B)に例示するように、PMフィルタ(17)と仕切り壁(22)とが付属ケース(25)に取り外し可能に取り付けられているので、本体ケース(24)から付属ケース(25)を取り外し、付属ケース(25)から仕切り壁(22)とPMフィルタ(17)とを取り外すことにより、排気ガス分流旋回通路(13)、PMフィルタ(17)、仕切り壁(22)、PM高濃度ガス旋回室(21)の清掃、PMフィルタ(17)の交換を簡単に行うことができる。
(Invention of Claim 12)
In addition to the effect of the invention according to claim 11, the following effect is achieved.
<Effect> Cleaning of the exhaust gas diversion swirl passage and the like, and replacement of the PM filter can be easily performed.
Since the PM filter (17) and the partition wall (22) are detachably attached to the accessory case (25) as illustrated in FIGS. 4 (A) (B) and 5 (A) (B). By removing the accessory case (25) from the main body case (24) and removing the partition wall (22) and the PM filter (17) from the accessory case (25), the exhaust gas diversion swirl passage (13) and the PM filter ( 17) The partition wall (22), the PM high-concentration gas swirl chamber (21) can be easily cleaned and the PM filter (17) can be easily replaced.

(請求項13に係る発明)
請求項3から請求項12のいずれかに係る発明の効果に加え、次の効果を奏する。
《効果》 排気ガス分流通路の始端部から遠心力による高いガス分流機能が得られる。
図4(A)(B)、図5(A)(B)に例示するように、排気ガス分流旋回通路(13)の上流に螺旋形の排気ガス旋回助走通路(26)が設けられているので、排気ガス分流旋回通路(13)の始端部から排気ガス(6)が乱れることなく、スムーズに旋回する。このため、排気ガス分流通路(13)の始端部から遠心力による高いガス分流機能が得られる。
(Invention of Claim 13)
In addition to the effects of the invention according to any one of claims 3 to 12, the following effects are provided.
<Effect> A high gas diversion function by centrifugal force can be obtained from the start end of the exhaust gas diversion passage.
As illustrated in FIGS. 4A and 4B and FIGS. 5A and 5B, a spiral exhaust gas swirl run-up passage (26) is provided upstream of the exhaust gas diversion swirl passage (13). Therefore, the exhaust gas (6) turns smoothly without being disturbed from the start end of the exhaust gas diversion turning passage (13). For this reason, a high gas diversion function by centrifugal force can be obtained from the start end of the exhaust gas diversion passage (13).

(請求項14に係る発明)
請求項13に係る発明の効果に加え、次の効果を奏する。
《効果》 排気ガス助走旋回通路等を排気ガス分流器内でコンパクトに近接配置することができる。
図4(A)(B)、図5(A)(B)に例示するように、排気ガス旋回助走通路(26)に囲まれた排気ガス分流器(5)の中心部にPM低濃度ガス排出通路(27)が設けられ、PM低濃度ガス流入空間(15)の空間出口(15a)にPM低濃度ガス排出通路(27)の通路入口(27a)が連通し、PM低濃度ガス排出通路(27)の通路出口(27b)が、PM高濃度ガス流出口(14)とは反対側の排気ガス分流器(5)の端部で開口されているので、排気ガス助走旋回通路(26)とPM低濃度ガス排出通路(27)と排気ガス分流旋回通路(13)とPM低濃度ガス流入空間(15)とを、排気ガス分流器(5)内でコンパクトに近接配置することができる。
(Invention according to Claim 14)
In addition to the effect of the invention according to claim 13, the following effect is achieved.
<Effect> It is possible to arrange exhaust gas auxiliary swirl passages and the like in the exhaust gas diverter in a compact proximity.
As illustrated in FIGS. 4A and 4B and FIGS. 5A and 5B, a PM low-concentration gas is disposed at the center of the exhaust gas diverter (5) surrounded by the exhaust gas swirl run-up passage (26). A discharge passage (27) is provided, and the passage outlet (27a) of the PM low-concentration gas discharge passage (27) communicates with the space outlet (15a) of the PM low-concentration gas inflow space (15). Since the passage outlet (27b) of (27) is opened at the end of the exhaust gas diverter (5) opposite to the PM high-concentration gas outlet (14), the exhaust gas running swirl passage (26) Further, the PM low-concentration gas discharge passage (27), the exhaust gas diversion swirl passage (13), and the PM low-concentration gas inflow space (15) can be arranged close together in the exhaust gas diverter (5).

(請求項15に係る発明)
請求項1から請求項14のいずれかに係る発明の効果に加え、次の効果を奏する。
《効果》 EGR弁アクチュエータの電子制御が不要になる。
図1、図2(A)に例示するように、排気エネルギーで駆動される過給機(28)で吸気通路(2)内に過給が行なわれ、EGR弁(4)の駆動にニューマチック式のEGR弁アクチュエータ(10)が用いられるので、EGR弁アクチュエータ(10)の電子制御が不要になる。
(Invention of Claim 15)
In addition to the effects of the invention according to any one of claims 1 to 14, the following effects can be obtained.
<Effect> Electronic control of the EGR valve actuator becomes unnecessary.
As illustrated in FIG. 1 and FIG. 2 (A), supercharging is performed in the intake passage (2) by a supercharger (28) driven by exhaust energy, and the EGR valve (4) is driven pneumatically. Since the EGR valve actuator (10) of the type is used, electronic control of the EGR valve actuator (10) becomes unnecessary.

(請求項16に係る発明)
請求項15に係る発明の効果に加え、次の効果を奏する。
《効果》 エンジンの始動性が高まる。
図1、図2(A)に例示するように、過給圧伝達通路(30)に感温作動性の過給圧遮断弁(32)が設けられ、エンジン温度が所定値未満の冷間始動時には、吸気経路(2)内の過給圧に拘わらず、過給圧遮断弁(32)が閉弁して、閉弁付勢手段(31)でEGR弁(4)の閉弁状態が維持されるので、冷間始動時には吸気にEGRガス(9)が還流されず、エンジンの始動性が高まる。
(Invention of Claim 16)
In addition to the effect of the invention according to claim 15, the following effect is achieved.
<Effect> Increases engine startability.
As illustrated in FIG. 1 and FIG. 2 (A), the supercharging pressure transmission passage (30) is provided with a temperature-sensitive actuated supercharging pressure shut-off valve (32), and the engine temperature is cold start with a predetermined value or less. Sometimes, regardless of the supercharging pressure in the intake passage (2), the supercharging pressure cutoff valve (32) is closed, and the closed state of the EGR valve (4) is maintained by the valve closing urging means (31). Therefore, at the time of cold start, the EGR gas (9) is not recirculated to the intake air, and the engine startability is improved.

(請求項17に係る発明)
請求項15または請求項16に係る発明の効果に加え、次の効果を奏する。
《効果》 エンジン回転のハンチングを抑制することができる。
図1、図2(A)(B)に例示するように、過給圧伝達通路(30)の途中に伝達媒体の通過抵抗となる抵抗体(33)が設けられることにより、この抵抗体(33)で吸気経路(2)内の過給圧の変動に対するEGR弁(4)の開閉作動の追従性が低下するようにしたので、過給圧の脈動が起こっても、これにEGR弁(4)の開閉作動が過敏に追従しない。過給圧の脈動にEGR弁の開閉作動が過敏に追従すると、短時間中にEGRガスの還流と停止が頻繁に繰り返され、過給圧の脈動が増幅され、エンジン回転がハンチングする不具合があるが、本発明では、EGR弁(4)の開閉作動が過敏に追従しないようにして、エンジン回転のハンチングを抑制することができる。
(Invention of Claim 17)
In addition to the effect of the invention according to claim 15 or claim 16, the following effect is produced.
<< Effect >> Engine hunting can be suppressed.
As illustrated in FIGS. 1, 2 </ b> A and 2 </ b> B, a resistor (33) serving as a passage resistance of the transmission medium is provided in the middle of the supercharging pressure transmission passage (30). 33), the followability of the opening / closing operation of the EGR valve (4) with respect to the fluctuation of the supercharging pressure in the intake passage (2) is lowered. Therefore, even if the supercharging pressure pulsates, the EGR valve ( The opening / closing operation of 4) does not follow sensitively. If the opening and closing operation of the EGR valve follows the pulsation of the supercharging pressure with high sensitivity, the EGR gas recirculation and stop are frequently repeated in a short time, the pulsation of the supercharging pressure is amplified, and the engine rotation is hunted. However, in the present invention, the hunting of the engine rotation can be suppressed by preventing the opening / closing operation of the EGR valve (4) from following the sensitivity.

(請求項18に係る発明)
請求項17に係る発明の効果に加え、次の効果を奏する。
《効果》 絞り抵抗の大きさを容易に調節することができる。
図1、図2(A)(B)に例示するように、抵抗体(21)が細管(22)で構成されているので、細管(22)の内径と長さの設定によって絞り抵抗の大きさを容易に調節することができる。
(Invention of Claim 18)
In addition to the effect of the invention according to claim 17, the following effect is achieved.
<Effect> The aperture resistance can be easily adjusted.
As illustrated in FIGS. 1, 2A and 2B, the resistor (21) is composed of a narrow tube (22). Therefore, the aperture resistance can be increased by setting the inner diameter and length of the narrow tube (22). The height can be adjusted easily.

(請求項19に係る発明)
請求項15から請求項18のいずれかに係る発明の効果に加え、次の効果を奏する。
《効果》 EGR弁アクチュエータの機能低下を抑制することができる。
図1、図2(A)に例示するように、吸気経路(2)内の過給圧の変動が、上流室(37)からダイヤフラム(36)を介して下流室(38)に伝達され、下流室(38)から弁作動圧室(29)に伝達されるようにしたので、吸気に進入した粒子状物質が、ダイヤフラム(26)で遮られ、EGR弁アクチュエータ(10)の弁作動圧室(29)側の通路に接近することがない。このため、粒子状物質の詰まりによるEGR弁アクチュエータ(10)の機能低下を抑制することができる。
(Invention of Claim 19)
In addition to the effects of the invention according to any one of claims 15 to 18, the following effects are achieved.
<Effect> It is possible to suppress the functional degradation of the EGR valve actuator.
As illustrated in FIG. 1 and FIG. 2 (A), the fluctuation of the supercharging pressure in the intake passage (2) is transmitted from the upstream chamber (37) to the downstream chamber (38) through the diaphragm (36), Since it is transmitted from the downstream chamber (38) to the valve operating pressure chamber (29), the particulate matter that has entered the intake air is blocked by the diaphragm (26), and the valve operating pressure chamber of the EGR valve actuator (10). (29) There is no approach to the side passage. For this reason, it is possible to suppress the functional deterioration of the EGR valve actuator (10) due to clogging of the particulate matter.

《効果》 過給圧伝達通路の導出位置設定の自由度が高まる。
図1、図2(A)に例示するように、吸気に進入した粒子状物質がダイヤフラム(36)で遮られ、EGR弁アクチュエータ(10)の弁作動圧室(29)側の通路に接近することがないので、吸気経路(2)からの過給圧伝達通路(30)の導出位置を粒子状物質が進入しにくい位置に設定しなければならないという制約がなくなり、過給圧伝達通路(30)の導出位置設定の自由度が高まる。
<Effect> The degree of freedom in setting the derived position of the supercharging pressure transmission passage is increased.
As illustrated in FIG. 1 and FIG. 2A, the particulate matter that has entered the intake air is blocked by the diaphragm (36), and approaches the passage on the valve operating pressure chamber (29) side of the EGR valve actuator (10). Therefore, there is no restriction that the position where the supercharging pressure transmission passage (30) from the intake passage (2) is led out should be set at a position where particulate matter is difficult to enter, and the supercharging pressure transmission passage (30 ) Is more flexible in setting the derived position.

(請求項20に係る発明)
請求項1から請求項19のいずれかに係る発明の効果に加え、次の効果を奏する。
《効果》 エンジンを小型化することができる。
図1に例示するように、粒子状物質を捕捉し、粒子状物質を燃焼除去して再生する、DPFを用いることなく、PM低濃度ガス(8)が大気に排出されるようにしたので、DPFを無くすことができ、エンジンを小型化することができる。
(Invention of Claim 20)
In addition to the effects of the invention according to any one of claims 1 to 19, the following effects are provided.
<Effect> The engine can be reduced in size.
As illustrated in FIG. 1, PM low-concentration gas (8) is discharged to the atmosphere without using a DPF, which captures particulate matter and burns and removes the particulate matter for regeneration. The DPF can be eliminated and the engine can be downsized.

《効果》 エンジンの製造コストを安くすることができる。
図1に例示するように、DPFを無くすことができ、DPFの再生に必要なバーナー、ヒータ等の粒子状物質焼却装置や、コモンレールによるポスト噴射が不要となり、エンジンの製造コストを安くすることができる。
<Effect> The manufacturing cost of the engine can be reduced.
As illustrated in FIG. 1, the DPF can be eliminated, and particulate matter incinerators such as burners and heaters necessary for the regeneration of the DPF and post injection by a common rail are not necessary, and the manufacturing cost of the engine can be reduced. it can.

《効果》 粒子状物質中の灰分の清掃を必要としない。
図1に例示するように、DPFを無くすことができ、DPF再生後もDPFに残留する粒子状物質の灰分の清掃を必要としない。燃焼室(39)でも焼却されない粒子状物質中の灰分は、燃焼室(39)からブローバイガスとともにクランクケース内に排出され、オイルフィルタ(60)やブリーザ室(61)で捕捉される。
<Effect> Cleaning of ash in particulate matter is not required.
As illustrated in FIG. 1, the DPF can be eliminated, and it is not necessary to clean the ash content of the particulate matter remaining in the DPF even after the DPF regeneration. Ash in the particulate matter that is not incinerated even in the combustion chamber (39) is discharged into the crankcase together with blow-by gas from the combustion chamber (39), and is captured by the oil filter (60) and the breather chamber (61).

本発明の実施の形態を図面に基づいて説明する。図1から図12は本発明の実施形態に係るディーゼルエンジンを説明する図で、この実施形態では、立形水冷の4サイクル直列多気筒ディーゼルエンジンについて説明する。   Embodiments of the present invention will be described with reference to the drawings. FIGS. 1 to 12 are diagrams illustrating a diesel engine according to an embodiment of the present invention. In this embodiment, a vertical water-cooled four-cycle in-line multi-cylinder diesel engine will be described.

本発明の実施形態の概要は、次の通りである。
図10に示すように、このディーゼルエンジンは、シリンダブロック(40)の上部にシリンダヘッド(41)が組み付けられ、シリンダヘッド(41)の上部にヘッドカバー(42)が組み付けられ、シリンダブロック(41)の前部にポンプケース(43)が組み付けられ、シリンダブロック(41)の後部にフライホイルハウジング(44)が組み付けられ、シリンダブロック(41)の下部にオイルパン(45)が組み付けられている。ポンプケース(43)の前部にはエンジン冷却ファン(46)が配置されている。図11に示すように、シリンダヘッド(41)の一側には吸気分配通路壁(47)が組み付けられ、他側には排気合流通路壁(48)が組み付けられている。吸気分配通路壁(47)は、吸気マニホルドとしての機能を果たすものであるが、枝管のない箱形構造であるため、吸気分配通路壁と称することにする。排気合流通路壁(48)は、排気マニホルドのことであるが、吸気分配通路壁と表現を合わせるため、排気合流通路壁と称することにする。
The outline of the embodiment of the present invention is as follows.
As shown in FIG. 10, in this diesel engine, a cylinder head (41) is assembled to the upper part of the cylinder block (40), a head cover (42) is assembled to the upper part of the cylinder head (41), and the cylinder block (41). A pump case (43) is assembled to the front of the cylinder block, a flywheel housing (44) is assembled to the rear of the cylinder block (41), and an oil pan (45) is assembled to the lower part of the cylinder block (41). An engine cooling fan (46) is disposed at the front of the pump case (43). As shown in FIG. 11, an intake distribution passage wall (47) is assembled on one side of the cylinder head (41), and an exhaust merging passage wall (48) is assembled on the other side. The intake distribution passage wall (47) functions as an intake manifold, but is referred to as an intake distribution passage wall because it has a box-shaped structure without branch pipes. The exhaust merging passage wall (48) is an exhaust manifold, but is referred to as an exhaust merging passage wall to match the expression with the intake distribution passage wall.

主要部の概要は、次の通りである。
図1に示すように、排気経路(1)と吸気経路(2)との間にEGRガス還流通路(3)が設けられ、このEGRガス還流通路(3)にEGR弁(4)が設けられている。排気経路(1)に排気ガス分流器(5)が設けられ、排気ガス分流器(5)で排気ガス(6)が粒子状物質の濃度が異なるPM高濃度ガス(7)とPM低濃度ガス(8)とに分流され、PM高濃度ガス(7)がEGRガス(9)として用いられる。
EGR弁(4)がEGR弁アクチュエータ(10)の作動に基づいて開閉駆動され、EGR弁アクチュエータ(10)がエンジン運転状態検出手段(10a)で検出されたエンジン運転状態に対応して作動し、EGR弁(4)の開閉状態と吸排気の差圧とに基づいて、排気経路(1)から吸気経路(2)へのEGRガス(9)の還流が停止され、或いは、EGRガス(9)の還流がなされるようにしている。
図3に示すように、低速低負荷側の運転領域では、EGRガス(9)の還流が停止され、高速高負荷側の運転領域では、EGRガス(9)の還流がなされるようにしている。
The outline of the main part is as follows.
As shown in FIG. 1, an EGR gas recirculation passage (3) is provided between the exhaust passage (1) and the intake passage (2), and an EGR valve (4) is provided in the EGR gas recirculation passage (3). ing. An exhaust gas diverter (5) is provided in the exhaust path (1), and in the exhaust gas diverter (5), the exhaust gas (6) is a high concentration PM gas (7) and a low concentration PM gas having different concentrations of particulate matter. (8) and the PM high concentration gas (7) is used as the EGR gas (9).
The EGR valve (4) is driven to open and close based on the operation of the EGR valve actuator (10), and the EGR valve actuator (10) operates in accordance with the engine operating state detected by the engine operating state detecting means (10a). Based on the open / closed state of the EGR valve (4) and the differential pressure between the intake and exhaust, the recirculation of the EGR gas (9) from the exhaust path (1) to the intake path (2) is stopped, or the EGR gas (9) Is refluxed.
As shown in FIG. 3, the recirculation of the EGR gas (9) is stopped in the operation region on the low speed and low load side, and the recirculation of the EGR gas (9) is performed in the operation region on the high speed and high load side. .

排気経路と吸気経路とEGRガス還流通路の構成は、次の通りである。
図1に示すように、排気経路(1)は、排気合流通路壁(48)の内部通路と過給機(28)の排気タービン(49)と大気開放経路(16)とを備え、大気開放経路(16)には排気マフラ(50)を備えている。吸気経路(2)は、エアクリーナ(51)と過給機(28)のコンプレッサ(52)と過給パイプ(53)と吸気分配通路壁(47)の内部通路とを備えている。EGRガス還流通路(3)は、EGRガス通路(54)とEGRクーラ(55)とEGR弁ケース(56)と逆止弁ケース(57)とを備えている。排気ガス分流器(5)は、排気タービン(49)の排気出口に取り付けられ、この排気ガス分流器(5)から大気放出経路(16)とEGRガス通路(54)とが導出されている。
The configuration of the exhaust path, the intake path, and the EGR gas recirculation path is as follows.
As shown in FIG. 1, the exhaust passage (1) includes an internal passage of the exhaust confluence passage wall (48), an exhaust turbine (49) of the supercharger (28), and an air release passage (16). The route (16) is provided with an exhaust muffler (50). The intake passage (2) includes an air cleaner (51), a compressor (52) of the supercharger (28), a supercharge pipe (53), and an internal passage of the intake distribution passage wall (47). The EGR gas recirculation passage (3) includes an EGR gas passage (54), an EGR cooler (55), an EGR valve case (56), and a check valve case (57). The exhaust gas diverter (5) is attached to an exhaust outlet of the exhaust turbine (49), and an atmospheric discharge path (16) and an EGR gas path (54) are led out from the exhaust gas diverter (5).

図10から図12に示すように、EGRガス通路(54)は、シリンダヘッド(41)外の外部配管(58)と、これに続くシリンダヘッド(41)内の内部通路(図外)とからなり、その終端はEGRクーラ(55)のクーラ入口に接続されている。図12に示すように、クランク軸(63)の架設方向と平行な向きに見て、EGRガス通路(54)の外部配管(58)の一部はエンジン冷却ファン(46)とオーバーラップし、EGRガス通路(54)の外部配管(58)を通過するEGRガス(9)が、EGRクーラ(55)で水冷される前に空冷されるようになっている。   As shown in FIGS. 10 to 12, the EGR gas passage (54) is formed from an external pipe (58) outside the cylinder head (41) and an internal passage (not shown) in the cylinder head (41) following this. The end is connected to the cooler inlet of the EGR cooler (55). As shown in FIG. 12, a part of the external pipe (58) of the EGR gas passage (54) overlaps with the engine cooling fan (46) when viewed in a direction parallel to the installation direction of the crankshaft (63). The EGR gas (9) passing through the external pipe (58) of the EGR gas passage (54) is air-cooled before being water-cooled by the EGR cooler (55).

図1に示すように、EGRクーラ(55)のクーラ出口にはEGR弁ケース(56)のケース入口が接続され、EGR弁ケース(56)のケース出口は逆止弁ケース(57)を介して吸気分配通路壁(47)の内部通路と連通させている。逆止弁ケース(57)内には逆止弁が配置され、吸気分配通路壁(47)の内部通路からEGR弁ケース(56)へのEGRガス(9)の逆流や、吸気の流入を防止する。   As shown in FIG. 1, the case inlet of the EGR valve case (56) is connected to the cooler outlet of the EGR cooler (55), and the case outlet of the EGR valve case (56) passes through the check valve case (57). The intake passage wall (47) communicates with the internal passage. A check valve is disposed in the check valve case (57) to prevent backflow of EGR gas (9) and inflow of intake air from the internal passage of the intake distribution passage wall (47) to the EGR valve case (56). To do.

エンジン運転状態とEGRガスの還流と停止の関係は、次の通りである。
図3に示すように、横軸にエンジン回転速度、縦軸に負荷をとったグラフ上にEGRガス(9)の還流境界線(59)を描いた場合、この還流境界線(59)の下側にある低速低負荷側の運転領域では、EGRガス(9)の還流が停止され、還流境界線(59)の上側にある高速高負荷側の運転領域では、EGRガス(9)の還流がなされる。この還流境界線(59)は、EGR弁(4)の開閉状態と吸排気の差圧とに基づいて定まる。低速低負荷側の運転領域でのエンジン回転のハンチングを抑制し、高速高負荷側の運転領域での粒子状物質が速やかに焼却とNOの低減機能を確保するため、少なくとも、エンジン最高回転速度の30%未満で全負荷の30%未満の低速低負荷運転領域(11)では、EGRガス(9)の還流が停止され、エンジン最高回転速度の70%以上で全負荷の70%以上の高速高負荷運転領域(12)では、EGRガス(9)の還流がなされるようにするのが望ましい。
The relationship between the engine operating state and the recirculation and stoppage of EGR gas is as follows.
As shown in FIG. 3, when the recirculation boundary line (59) of the EGR gas (9) is drawn on the graph with the engine speed on the horizontal axis and the load on the vertical axis, the bottom of the recirculation boundary line (59) is drawn. The EGR gas (9) recirculation is stopped in the low-speed and low-load operation region on the side, and the recirculation of EGR gas (9) is performed in the high-speed and high-load operation region on the upper side of the recirculation boundary (59). Made. The recirculation boundary line (59) is determined based on the open / closed state of the EGR valve (4) and the differential pressure between intake and exhaust. Since slow suppress hunting of the engine rotation in the operating region of the low load side, the particulate matter in the operation region of the high-speed high-load side to ensure the function of reducing quickly incineration and NO x, at least, the maximum engine speed In the low-speed and low-load operation region (11) of less than 30% of the total load and less than 30% of the full load, the recirculation of the EGR gas (9) is stopped, and the high speed of 70% or more of the maximum engine speed and 70% or more of the full load. In the high load operation region (12), it is desirable that the EGR gas (9) is recirculated.

排気ガス分流器の構成は、次の通りである。
図4(A)(B)、図5(A)(B)に示すように、排気ガス分流器(5)内に螺旋形の排気ガス分流旋回通路(13)が設けられ、この排気ガス分流旋回通路(13)で排気ガス(6)がそれ自身のエネルギー(膨張エネルギー)によって旋回するようにし、排気ガス分流旋回通路(13)の終端にPM高濃度ガス流出口(14)が形成され、排気ガス分流旋回通路(13)に囲まれた排気ガス分流器(5)の中心部にPM低濃度ガス流入空間(15)が形成され、PM高濃度ガス流出口(14)が吸気経路(2)側に連通されるようにし、PM低濃度ガス流入空間(15)の空間出口(15a)が大気放出経路(16)側に連通されるようにしている。
The configuration of the exhaust gas shunt is as follows.
As shown in FIGS. 4 (A) (B) and 5 (A) (B), a spiral exhaust gas diversion swirl passage (13) is provided in the exhaust gas diverter (5). The exhaust gas (6) is swirled by its own energy (expansion energy) in the swirl passage (13), and a PM high-concentration gas outlet (14) is formed at the end of the exhaust gas diversion swirl passage (13). A PM low-concentration gas inflow space (15) is formed in the center of the exhaust gas diverter (5) surrounded by the exhaust gas diversion swirl passage (13), and the PM high-concentration gas outlet (14) is connected to the intake path (2 ) Side, and the space outlet (15a) of the PM low-concentration gas inflow space (15) is connected to the atmosphere discharge path (16) side.

図4(A)(B)、図5(A)(B)に示すように、排気ガス分流旋回通路(13)とPM低濃度ガス流入空間(15)との間に、粒子状物質の通過を抑制する筒形のPMフィルタ(17)が介在している。
PMフィルタ(17)が、排気ガス分流旋回通路(13)の終端側に近づくにつれて次第に径が大きくなる円錐台形に形成されることにより、排気ガス分流旋回通路(13)の通路断面積が、その終端に近づくにつれて次第に小さくなるようにしている。
As shown in FIGS. 4A and 4B and FIGS. 5A and 5B, the particulate matter passes between the exhaust gas diversion swirl passage 13 and the PM low concentration gas inflow space 15. A cylindrical PM filter (17) is interposed.
The PM filter (17) is formed in a truncated cone shape whose diameter gradually increases as it approaches the terminal side of the exhaust gas diversion swirl passage (13), so that the cross-sectional area of the exhaust gas diversion swirl passage (13) is It gradually decreases as it approaches the end.

図4(A)(B)、図5(A)(B)に示すように、PMフィルタ(17)の周面に、周方向に所定間隔を保持して、母線方向に長いガス通過口(18)が複数本並べて設けられている。
図6(C)に例示するように、排気ガス(6)の旋回方向の上手側、下手側を、それぞれガス旋回上手側、ガス旋回下手側として、排気ガス分流旋回通路(13)からガス通過口(18)への粒子状物質の進入を抑制するPM進入抑制フィン(19)が、各ガス通過口(18)のガス旋回上手側縁部(18a)から排気ガス分流旋回通路(13)のガス旋回下手側に向けて突出している。
図6(A)〜(C)に示すように、PMフィルタ(17)は金属製で、PM進入抑制フィン(19)の内面に沿って周方向に架設された複数のリブ(62)で補強されている。図6(C)に示すように、リブ(62)は隣合うガス通過口(18)(18)の間にあるガス通過口間壁(17a)とPM進入抑制フィン(19)との間に架設されている。ガス通過口間壁(17a)はPMフィルタ(17)の中心軸を中心軸とする円錐台の周面形状で、PM進入抑制フィン(19)はPMフィルタ(17)の中心軸からPMフィルタ(17)の径方向に偏倚された軸を中心軸とする円錐台の周面形状である。
As shown in FIGS. 4 (A), (B), and FIGS. 5 (A) and 5 (B), a gas passage port (longer in the busbar direction) is provided on the peripheral surface of the PM filter (17) while maintaining a predetermined interval in the circumferential direction. 18) are provided side by side.
As illustrated in FIG. 6C, the upper side and the lower side in the swirling direction of the exhaust gas (6) are the gas swirling upper side and the gas swirling lower side, respectively, and the gas passes through the exhaust gas diversion swirling passage (13). A PM intrusion suppression fin (19) that suppresses entry of particulate matter into the mouth (18) is connected to the exhaust gas diversion swirl passage (13) from the gas swirl upper edge (18a) of each gas passage opening (18). Projects toward the lower side of the gas swirl.
As shown in FIGS. 6A to 6C, the PM filter (17) is made of metal, and is reinforced by a plurality of ribs (62) installed in the circumferential direction along the inner surface of the PM entry suppression fin (19). Has been. As shown in FIG. 6 (C), the rib (62) is located between the gas passage opening wall (17a) between the adjacent gas passage openings (18) and (18) and the PM entry suppression fin (19). It is erected. The gas passage opening wall (17a) has a circular truncated cone shape with the central axis of the PM filter (17) as the central axis, and the PM entry suppression fin (19) extends from the central axis of the PM filter (17) to the PM filter ( 17) The shape of the peripheral surface of the truncated cone with the axis biased in the radial direction 17) as the central axis.

図4(A)(B)、図5(A)(B)に示すように、排気ガス分流器(5)に螺旋形の排気ガス分流旋回案内壁(20)が設けられ、この排気ガス分流旋回案内壁(20)の表面に沿って排気ガス分流旋回通路(13)が形成され、排気ガス分旋回案内壁(20)の内周面(20a)がPMフィルタ(17)の外周面に密着している。
図6(A)(B)に示すように、PMフィルタ(17)の外周面には螺旋突条(63)が形成され、この螺旋突条(63)の外周面と排気ガス分旋回案内壁(20)の内周面(20a)とが突き合わせ状に密着している。
As shown in FIGS. 4 (A) (B) and 5 (A) (B), the exhaust gas diverter (5) is provided with a spiral exhaust gas diversion swirl guide wall (20). An exhaust gas diversion swirl passage (13) is formed along the surface of the swirl guide wall (20), and the inner peripheral surface (20a) of the exhaust gas swirl guide wall (20) is in close contact with the outer peripheral surface of the PM filter (17). is doing.
As shown in FIGS. 6 (A) and 6 (B), a spiral protrusion (63) is formed on the outer peripheral surface of the PM filter (17), and the outer peripheral surface of the spiral protrusion (63) and the exhaust gas content turning guide wall. The inner peripheral surface (20a) of (20) is in close contact with each other.

図4(A)(B)、図5(A)(B)に示すように、PM高濃度ガス流出口(14)の下流にPM高濃度ガス旋回室(21)が設けられ、このPM高濃度ガス旋回室(21)でPM高濃度ガス(7)がそれ自身のエネルギー(膨張エネルギー)によって旋回するようにしている。   As shown in FIGS. 4 (A) (B) and 5 (A) (B), a PM high concentration gas swirl chamber (21) is provided downstream of the PM high concentration gas outlet (14). In the concentration gas swirl chamber (21), the PM high concentration gas (7) is swirled by its own energy (expansion energy).

図4(A)(B)、図5(A)(B)に示すように、排気ガス分流器(5)の端部にPM高濃度ガス旋回室(21)が設けられ、排気ガス分流旋回通路(13)の終端部とPM高濃度ガス旋回室(21)との間に仕切り壁(22)が介在し、仕切り壁(22)にPM高濃度ガス流出口(14)が形成されている。   As shown in FIGS. 4A and 4B and FIGS. 5A and 5B, a PM high-concentration gas swirl chamber (21) is provided at the end of the exhaust gas diverter (5), and the exhaust gas diversion swirl. A partition wall (22) is interposed between the terminal end of the passage (13) and the PM high-concentration gas swirl chamber (21), and a PM high-concentration gas outlet (14) is formed in the partition wall (22). .

図7(A)に示すように、仕切り壁(22)がPM高濃度ガス旋回室(21)の径方向に沿って張り渡され、この仕切り壁(22)に、周方向に所定間隔を保持して、径方向に長いPM高濃度ガス流出口(14)が複数本放射状に並べて設けられ、図7(B)に示すように、PM高濃度ガス(6)の旋回方向の上手側、下手側を、それぞれガス旋回上手側、ガス旋回下手側として、PM高濃度ガス旋回室(21)からPM高濃度ガス流出口(14)への粒子状物質の逆流を抑制するPM逆流抑制フィン(23)が、各PM高濃度ガス流出口(14)のガス旋回上手側縁部(14a)からPM高濃度ガス旋回室(21)のガス旋回下手側に向けて突出している。   As shown in FIG. 7A, the partition wall (22) is stretched along the radial direction of the PM high-concentration gas swirl chamber (21), and this partition wall (22) maintains a predetermined interval in the circumferential direction. Then, a plurality of PM high-concentration gas outlets (14) that are long in the radial direction are arranged radially, and as shown in FIG. 7 (B), the upper and lower sides of the turning direction of the PM high-concentration gas (6) The PM backflow suppression fins (23 for suppressing the backflow of particulate matter from the PM high-concentration gas swirl chamber (21) to the PM high-concentration gas outlet (14) with the gas swirl upper side and the gas swirl lower side, respectively. ) Protrudes from the gas swirl upper side edge (14a) of each PM high concentration gas outlet (14) toward the gas swirl lower side of the PM high concentration gas swirl chamber (21).

図4(A)(B)、図5(A)(B)に示すように、排気ガス分流器(5)は、排気ガス分流旋回通路(13)を備えた本体ケース(24)と、PM高濃度ガス旋回室(21)を備えた付属ケース(25)とを備え、仕切り壁(22)が付属ケース(25)に取り付けられ、付属ケース(25)が本体ケース(24)に取り付けられ、仕切り壁(22)の周縁部(22a)が本体ケース(24)と付属ケース(25)との間にガスケットとして挟み付けられている。
前記のように、排気ガス分流旋回通路(13)とPM低濃度ガス流入空間(15)との間に、粒子状物質の通過を抑制する筒形のPMフィルタ(17)が介在し、このPMフィルタ(17)と仕切り壁(22)とが付属ケース(25)に取り外し可能に取り付けられている。仕切り壁(22)とPMフィルタ(17)とは、ボルト(図外)で付属ケース(25)に取り付けられている。
As shown in FIGS. 4A and 4B and FIGS. 5A and 5B, the exhaust gas diverter (5) includes a main body case (24) having an exhaust gas diversion swirl passage (13), a PM An accessory case (25) having a high-concentration gas swirl chamber (21), a partition wall (22) is attached to the accessory case (25), and an accessory case (25) is attached to the main body case (24); A peripheral edge portion (22a) of the partition wall (22) is sandwiched as a gasket between the main body case (24) and the accessory case (25).
As described above, the cylindrical PM filter (17) that suppresses the passage of particulate matter is interposed between the exhaust gas diversion swirl passage (13) and the PM low concentration gas inflow space (15). A filter (17) and a partition wall (22) are detachably attached to the attached case (25). The partition wall (22) and the PM filter (17) are attached to the accessory case (25) with bolts (not shown).

図4(A)(B)、図5(A)(B)に示すように、排気ガス分流旋回通路(13)の上流に螺旋形の排気ガス旋回助走通路(26)が設けられている。排気ガス旋回助走通路(26)の入口部分(26a)は、排気ガス分流器(5)の接線方向に向けられている。
排気ガス旋回助走通路(26)に囲まれた排気ガス分流器(5)の中心部にPM低濃度ガス排出通路(27)が設けられ、PM低濃度ガス流入空間(15)の空間出口(15a)にPM低濃度ガス排出通路(27)の通路入口(27a)が連通し、PM低濃度ガス排出通路(27)の通路出口(27b)が、PM高濃度ガス流出口(14)とは反対側の排気ガス分流器(5)の端部で開口されている。
排気ガス分流器(5)は上下方向に向けられ、PM高濃度ガス流出口(14)とPM高濃度ガス旋回室(21)とは排気ガス分流器(5)の下端部に配置され、PM低濃度ガス排出通路(27)の通路出口(27b)は排気ガス分流器(5)の上端部で開口されている。
排気ガス分流器(5)の外観は、図8(A)〜(C)、図9(A)(B)の通りである。
As shown in FIGS. 4A and 4B and FIGS. 5A and 5B, a spiral exhaust gas swirl run-up passage (26) is provided upstream of the exhaust gas diversion swirl passage (13). The inlet portion (26a) of the exhaust gas swirl runaway passage (26) is directed in the tangential direction of the exhaust gas diverter (5).
A PM low-concentration gas discharge passage (27) is provided at the center of the exhaust gas diverter (5) surrounded by the exhaust gas swirl run-up passage (26), and the space outlet (15a) of the PM low-concentration gas inflow space (15) is provided. ) Communicates with the passage inlet (27a) of the PM low concentration gas discharge passage (27), and the passage outlet (27b) of the PM low concentration gas discharge passage (27) is opposite to the PM high concentration gas outlet (14). Opened at the end of the exhaust gas diverter (5) on the side.
The exhaust gas diverter (5) is directed vertically, and the PM high concentration gas outlet (14) and the PM high concentration gas swirl chamber (21) are arranged at the lower end of the exhaust gas diverter (5). The passage outlet (27b) of the low concentration gas discharge passage (27) is opened at the upper end of the exhaust gas flow divider (5).
The external appearance of the exhaust gas diverter (5) is as shown in FIGS. 8 (A) to 8 (C) and FIGS. 9 (A) and 9 (B).

EGR装置の構成は、次の通りである。
図1に示すように、排気エネルギーで駆動される過給機(28)で吸気通路(2)内に過給が行なわれ、EGR弁(4)の駆動にニューマチック式のEGR弁アクチュエータ(10)が用いられ、このEGR弁アクチュエータ(10)の弁作動圧室(29)に過給圧伝達通路(30)を介して吸気経路(2)が連携され、この吸気経路(2)内の過給圧が高くなるにつれてEGR弁アクチュエータ(10)の弁作動圧室(29)の弁作動圧が高くなるようにし、弁作動圧室(29)の弁作動圧が所定値未満となる場合には、閉弁付勢手段(31)でEGR弁(4)の閉弁状態が維持され、弁作動圧室(29)の弁作動圧が所定値以上となる場合には、弁作動圧室(29)の弁作動圧でEGR弁(4)が開弁されるようにしている。
この実施形態では、エンジン運転状態に応じてEGR弁アクチュエータ(10)の弁作動圧室(29)の弁作動圧が変わり、この弁作動圧室(29)の弁作動圧に基づいてEGR弁(4)の開閉状態が変わるので、EGR弁アクチュエータ(10)の弁作動圧室(29)がエンジン運転状態検出手段(10a)として機能することになる。
The configuration of the EGR device is as follows.
As shown in FIG. 1, supercharging is performed in the intake passage (2) by a supercharger (28) driven by exhaust energy, and a pneumatic EGR valve actuator (10) is used to drive the EGR valve (4). ) Is used, and the intake passage (2) is linked to the valve operating pressure chamber (29) of the EGR valve actuator (10) via the boost pressure transmission passage (30). When the valve operating pressure of the valve operating pressure chamber (29) of the EGR valve actuator (10) increases as the supply pressure increases, and the valve operating pressure of the valve operating pressure chamber (29) becomes less than a predetermined value, When the closed state of the EGR valve (4) is maintained by the valve closing urging means (31) and the valve operating pressure of the valve operating pressure chamber (29) becomes a predetermined value or more, the valve operating pressure chamber (29 The EGR valve (4) is opened with the valve operating pressure of).
In this embodiment, the valve operating pressure of the valve operating pressure chamber (29) of the EGR valve actuator (10) changes according to the engine operating state, and the EGR valve ( Since the open / closed state of 4) changes, the valve operating pressure chamber (29) of the EGR valve actuator (10) functions as the engine operating state detecting means (10a).

EGR弁(4)は電子制御で開閉を制御してもよく、その場合には、エンジン回転速度検出手段と負荷検出手段とを制御手段を介してEGR弁アクチュエータに連携させる。負荷検出手段としては、例えば、燃料噴射ポンプのラック位置センサがある。   The EGR valve (4) may be controlled to open and close by electronic control. In that case, the engine rotation speed detection means and the load detection means are linked to the EGR valve actuator via the control means. As the load detection means, for example, there is a rack position sensor of a fuel injection pump.

図1、図2(A)に示すように、過給圧伝達通路(30)に感温作動性の過給圧遮断弁(32)が設けられ、エンジン温度が所定値未満の冷間始動時には、吸気経路(2)内の過給圧に拘わらず、過給圧遮断弁(32)が閉弁して、閉弁付勢手段(31)でEGR弁(4)の閉弁状態が維持され、エンジン温度が所定値以上の温間始動時や通常運転時には、過給圧遮断弁(32)が開弁可能となり、吸気経路(2)内の過給圧に応じたEGR弁(4)の開閉が行われるようにしている。過給圧遮断弁(32)の感温部(32a)は、EGR弁ケース(56)に設けられたEGR弁冷却水通路(64)に臨ませている。エンジン冷却水はシリンダジャケット(図外)からEGRクーラ(55)を通過した後、EGR弁冷却水通路(64)を通過する。過給圧遮断弁(32)は、内部にバイメタル製の感温性変形部材(32b)を備え、その温度による変形で弁体(32c)の開弁圧を変更する。   As shown in FIG. 1 and FIG. 2 (A), a supercharging pressure shut-off valve (32) that is temperature sensitive and operable is provided in the supercharging pressure transmission passage (30), and during cold start when the engine temperature is less than a predetermined value. Regardless of the supercharging pressure in the intake passage (2), the supercharging pressure cutoff valve (32) is closed, and the closed state of the EGR valve (4) is maintained by the valve closing urging means (31). During warm start when the engine temperature is higher than a predetermined value or during normal operation, the boost pressure cutoff valve (32) can be opened, and the EGR valve (4) corresponding to the boost pressure in the intake path (2) can be opened. It opens and closes. The temperature sensing part (32a) of the supercharging pressure cutoff valve (32) faces the EGR valve cooling water passage (64) provided in the EGR valve case (56). The engine coolant passes through the EGR cooler (55) from the cylinder jacket (not shown) and then passes through the EGR valve coolant passage (64). The supercharging pressure cutoff valve (32) includes a bimetallic temperature-sensitive deformation member (32b) inside, and changes the valve opening pressure of the valve body (32c) by deformation due to the temperature.

図1、図2(A)(B)に示すように、過給圧伝達通路(30)の途中に伝達媒体の通過抵抗となる抵抗体(33)が設けられることにより、この抵抗体(33)で吸気経路(2)内の過給圧の変動に対するEGR弁(4)の開閉作動の追従性が低下するようにしている。抵抗体(33)が細管(34)で構成されている。   As shown in FIGS. 1, 2A and 2B, a resistor (33) serving as a transmission resistance of the transmission medium is provided in the middle of the supercharging pressure transmission passage (30). ), The followability of the opening / closing operation of the EGR valve (4) with respect to the fluctuation of the supercharging pressure in the intake passage (2) is lowered. The resistor (33) is composed of a thin tube (34).

図1、図2(A)(B)に示すように、過給圧伝達通路(30)に過給圧伝達室(35)が設けられ、この過給圧伝達室(25)内がダイヤフラム(36)で区画され、相互に不通の上流室(37)と下流室(38)とが形成され、上流室(37)が吸気経路(2)内に連通し、下流室(38)がEGR弁アクチュエータ(10)の弁作動圧室(29)側の通路に連通することにより、吸気経路(2)内の過給圧の変動が、上流室(37)からダイヤフラム(36)を介して下流室(38)に伝達され、下流室(38)から弁作動圧室(29)に伝達されるようにしている。     As shown in FIGS. 1, 2A and 2B, a supercharging pressure transmission chamber (35) is provided in the supercharging pressure transmission passage (30), and the inside of the supercharging pressure transmission chamber (25) is a diaphragm ( 36), and an upstream chamber (37) and a downstream chamber (38) that are not communicated with each other are formed, the upstream chamber (37) communicates with the intake passage (2), and the downstream chamber (38) is an EGR valve. By communicating with the passage on the valve operating pressure chamber (29) side of the actuator (10), the fluctuation of the supercharging pressure in the intake passage (2) is changed from the upstream chamber (37) to the downstream chamber via the diaphragm (36). (38) and transmitted from the downstream chamber (38) to the valve operating pressure chamber (29).

この実施形態では、図1に示すように、粒子状物質を捕捉し、粒子状物質を燃焼除去して再生する、ディーゼル・パティキュレート・フィルタを用いることなく、PM低濃度ガス(8)が大気に排出されるようにしている。PM低濃度ガス(8)のPM濃度がある程度高い場合には、大気放出経路(16)に小型のディーゼル・パティキュレート・フィルタを取り付け、ディーゼル・パティキュレート・フィルタと排気ガス分流器(5)とを併用してもよい。
なお、図11中の符号(61)はブリーザ室、図12中の符号(60)はオイルフィルタである。
In this embodiment, as shown in FIG. 1, the PM low-concentration gas (8) is captured in the atmosphere without using a diesel particulate filter that captures particulate matter and burns and removes the particulate matter for regeneration. To be discharged. When the PM concentration of the low concentration PM gas (8) is high to some extent, a small diesel particulate filter is attached to the atmospheric discharge path (16), and the diesel particulate filter and the exhaust gas diverter (5) May be used in combination.
In addition, the code | symbol (61) in FIG. 11 is a breather chamber, and the code | symbol (60) in FIG. 12 is an oil filter.

本発明の実施形態に係るディーゼルエンジンの吸排気経路とEGR通路を説明する模式図である。It is a schematic diagram explaining the intake-exhaust path | route and EGR path | route of the diesel engine which concern on embodiment of this invention. 図1の過給圧伝達通路の拡大図である。FIG. 2 is an enlarged view of a supercharging pressure transmission passage in FIG. 1. 図1のエンジンのエンジン運転領域とEGRガスの還流と還流の停止との関係を説明する図である。It is a figure explaining the relationship between the engine operation area | region of the engine of FIG. 図1のエンジンで用いる排気ガス分流器を説明する図で、図4(A)は縦断側面図、図4(B)は図4(A)の斜視図である。4A and 4B are diagrams illustrating an exhaust gas flow divider used in the engine of FIG. 1, in which FIG. 4A is a longitudinal side view, and FIG. 4B is a perspective view of FIG. 図1のエンジンで用いる排気ガス分流器を説明する図で、図5(A)は縦断正面図、図5(B)は図5(A)の斜視図である。5A and 5B are diagrams for explaining an exhaust gas diverter used in the engine of FIG. 1, in which FIG. 5A is a longitudinal front view, and FIG. 5B is a perspective view of FIG. 図1のエンジンで用いるPMフィルタを説明する図で、図6(A)は斜め上から見た斜視図、図6(B)は中心軸と平行に近い向きから見た一部切欠斜視図、図6(C)はPMフィルタの一部分の横断平面図である。6A and 6B are views for explaining a PM filter used in the engine of FIG. 1, FIG. 6A is a perspective view seen obliquely from above, FIG. 6B is a partially cutaway perspective view seen from a direction nearly parallel to the central axis, FIG. 6C is a cross-sectional plan view of a part of the PM filter. 図1のエンジンで用いる仕切り板を説明する図で、図7(A)は平面図、図7(B)は図7(A)のB−B線断面図である。7A and 7B are diagrams illustrating a partition plate used in the engine of FIG. 1, in which FIG. 7A is a plan view, and FIG. 7B is a cross-sectional view taken along line BB in FIG. 図1のエンジンで用いる排気ガス分流器を説明する図で、図8(A)は側面図、図8(B)は正面図、図8(C)は平面図である。FIG. 8A is a side view, FIG. 8B is a front view, and FIG. 8C is a plan view illustrating an exhaust gas flow divider used in the engine of FIG. 1. 図1のエンジンで用いる排気ガス分流器を説明する図で、図9(A)はエンジン本体側から見た側面図、図8(B)は背面図である。FIGS. 9A and 9B are diagrams illustrating an exhaust gas diverter used in the engine of FIG. 1, in which FIG. 9A is a side view seen from the engine body side, and FIG. 図1のエンジンの側面図である。It is a side view of the engine of FIG. 図1のエンジンの平面図である。It is a top view of the engine of FIG. 図1のエンジンの正面図である。It is a front view of the engine of FIG.

符号の説明Explanation of symbols

(1) 排気経路
(2) 吸気経路
(3) EGRガス還流通路
(4) EGR弁
(5) 排気ガス分流器
(6) 排気ガス
(7) PM高濃度ガス
(8) PM低濃度ガス
(9) EGRガス
(10) EGR弁アクチュエータ
(10a) エンジン運転状態検出手段
(11) 低速低負荷運転領域
(12) 高速高負荷運転領域
(13) 排気ガス分流旋回通路
(14) PM高濃度ガス流出口
(14a) ガス旋回上手側縁部
(15) PM低濃度ガス流入空間
(15a) 空間出口
(16) 大気放出経路
(17) PMフィルタ
(18) ガス通過口
(18a) ガス旋回上手側縁部
(19) PM進入抑制フィン
(20) 排気ガス分流旋回案内壁
(20a) 内周面
(21) PM高濃度ガス旋回室
(22) 仕切り壁
(22a) 周縁部
(23) PM逆流抑制フィン
(24) 本体ケース
(25) 付属ケース
(26) 排気ガス旋回助走通路
(27) PM低濃度ガス排出通路
(27a) 通路入口
(27b) 通路出口
(28) 過給機
(29) 弁作動圧室
(30) 過給圧伝達通路
(31) 閉弁付勢手段
(32) 過給圧遮断弁
(33) 抵抗体
(34) 細管
(35) 過給圧伝達室
(36) ダイヤフラム
(37) 上流室
(38) 下流室
(1) Exhaust route
(2) Intake route
(3) EGR gas recirculation passage
(4) EGR valve
(5) Exhaust gas shunt
(6) Exhaust gas
(7) PM high concentration gas
(8) PM low concentration gas
(9) EGR gas
(10) EGR valve actuator
(10a) Engine operating state detection means
(11) Low speed and low load operation area
(12) High-speed and high-load operation area
(13) Exhaust gas diversion swirl passage
(14) PM high concentration gas outlet
(14a) Upper edge of gas swirl
(15) PM low concentration gas inflow space
(15a) Space exit
(16) Air release route
(17) PM filter
(18) Gas passage
(18a) Gas swirl upper edge
(19) PM entry suppression fin
(20) Exhaust gas diversion turning guide wall
(20a) Inner peripheral surface
(21) PM high concentration gas swirl chamber
(22) Partition wall
(22a) Perimeter
(23) PM backflow suppression fin
(24) Body case
(25) Attached case
(26) Exhaust gas turning approach passage
(27) PM low concentration gas discharge passage
(27a) Passage entrance
(27b) Passage exit
(28) Turbocharger
(29) Valve operating pressure chamber
(30) Supercharging pressure transmission passage
(31) Valve closing biasing means
(32) Boost pressure cutoff valve
(33) Resistor
(34) Narrow tube
(35) Supercharging pressure transmission chamber
(36) Diaphragm
(37) Upstream chamber
(38) Downstream chamber

Claims (20)

排気経路(1)と吸気経路(2)との間にEGRガス還流通路(3)が設けられ、このEGRガス還流通路(3)にEGR弁(4)が設けられ、
排気経路(1)に排気ガス分流器(5)が設けられ、排気ガス分流器(5)で排気ガス(6)が粒子状物質の濃度が異なるPM高濃度ガス(7)とPM低濃度ガス(8)とに分流され、PM高濃度ガス(7)がEGRガス(9)として用いられ、
EGR弁(4)がEGR弁アクチュエータ(10)の作動に基づいて開閉駆動され、EGR弁アクチュエータ(10)がエンジン運転状態検出手段(10a)で検出されたエンジン運転状態に対応して作動し、EGR弁(4)の開閉状態と吸排気の差圧とに基づいて、排気経路(1)から吸気経路(2)へのEGRガス(9)の還流が停止され、或いは、EGRガス(9)の還流がなされるようにし、
低速低負荷側の運転領域では、EGRガス(9)の還流が停止され、高速高負荷側の運転領域では、EGRガス(9)の還流がなされるようにした、ことを特徴とするディーゼルエンジン。
An EGR gas recirculation passage (3) is provided between the exhaust passage (1) and the intake passage (2), and an EGR valve (4) is provided in the EGR gas recirculation passage (3).
An exhaust gas diverter (5) is provided in the exhaust path (1), and in the exhaust gas diverter (5), the exhaust gas (6) is a high concentration PM gas (7) and a low concentration PM gas having different concentrations of particulate matter. (8) and PM high concentration gas (7) is used as EGR gas (9),
The EGR valve (4) is driven to open and close based on the operation of the EGR valve actuator (10), and the EGR valve actuator (10) operates in accordance with the engine operating state detected by the engine operating state detecting means (10a). Based on the open / closed state of the EGR valve (4) and the differential pressure between the intake and exhaust, the recirculation of the EGR gas (9) from the exhaust path (1) to the intake path (2) is stopped, or the EGR gas (9) Of reflux, and
A diesel engine characterized in that the recirculation of EGR gas (9) is stopped in the operation region on the low speed and low load side, and the recirculation of EGR gas (9) is performed in the operation region on the high speed and high load side. .
請求項1に記載したディーゼルエンジンにおいて、
少なくとも、エンジン最高回転速度の30%未満で全負荷の30%未満の低速低負荷運転領域(11)では、EGRガス(9)の還流が停止され、エンジン最高回転速度の70%以上で全負荷の70%以上の高速高負荷運転領域(12)では、EGRガス(9)の還流がなされるようにした、ことを特徴とするディーゼルエンジン。
The diesel engine according to claim 1,
At least in the low speed and low load operation region (11) of less than 30% of the maximum engine speed and less than 30% of the full load, the recirculation of the EGR gas (9) is stopped and the full load is reached at 70% or more of the maximum engine speed. The diesel engine is characterized in that the EGR gas (9) is recirculated in a high-speed and high-load operation region (12) of 70% or more.
請求項1または請求項2に記載したディーゼルエンジンにおいて、
排気ガス分流器(5)内に螺旋形の排気ガス分流旋回通路(13)が設けられ、この排気ガス分流旋回通路(13)で排気ガス(6)がそれ自身のエネルギーによって旋回するようにし、排気ガス分流旋回通路(13)の終端にPM高濃度ガス流出口(14)が形成され、排気ガス分流旋回通路(13)に囲まれた排気ガス分流器(5)の中心部にPM低濃度ガス流入空間(15)が形成され、PM高濃度ガス流出口(14)が吸気経路(2)側に連通されるようにし、PM低濃度ガス流入空間(15)の空間出口(15a)が大気放出経路(16)側に連通されるようにした、ことを特徴とするディーゼルエンジン。
In the diesel engine according to claim 1 or 2,
A spiral exhaust gas diversion swirl passage (13) is provided in the exhaust gas diverter (5), and the exhaust gas (6) is swirled by its own energy in the exhaust gas diversion swirl passage (13). A PM high-concentration gas outlet (14) is formed at the end of the exhaust gas diversion swirl passage (13), and the PM low concentration is in the center of the exhaust gas diverter (5) surrounded by the exhaust gas diversion swirl passage (13). A gas inflow space (15) is formed so that the PM high-concentration gas outlet (14) communicates with the intake passage (2), and the space outlet (15a) of the PM low-concentration gas inflow space (15) is air. A diesel engine characterized by being communicated with the discharge path (16).
請求項3に記載したディーゼルエンジンにおいて、
排気ガス分流旋回通路(13)とPM低濃度ガス流入空間(15)との間に、粒子状物質の通過を抑制する筒形のPMフィルタ(17)が介在している、ことを特徴とするディーゼルエンジン。
The diesel engine according to claim 3,
A cylindrical PM filter (17) that suppresses the passage of particulate matter is interposed between the exhaust gas diversion swirl passage (13) and the PM low concentration gas inflow space (15). diesel engine.
請求項4に記載したディーゼルエンジンにおいて、
PMフィルタ(17)が、排気ガス分流旋回通路(13)の終端側に近づくにつれて次第に径が大きくなる円錐台形に形成されることにより、排気ガス分流旋回通路(13)の通路断面積が、その終端に近づくにつれて次第に小さくなるようにした、ことを特徴とするディーゼルエンジン。
The diesel engine according to claim 4,
The PM filter (17) is formed in a truncated cone shape whose diameter gradually increases as it approaches the terminal side of the exhaust gas diversion swirl passage (13), so that the cross-sectional area of the exhaust gas diversion swirl passage (13) is A diesel engine characterized by gradually decreasing as it approaches the end.
請求項4または請求項5に記載したディーゼルエンジンにおいて、
PMフィルタ(17)の周面に、周方向に所定間隔を保持して、母線方向に長いガス通過口(18)が複数本並べて設けられ、
排気ガス(6)の旋回方向の上手側、下手側を、それぞれガス旋回上手側、ガス旋回下手側として、
排気ガス分流旋回通路(13)からガス通過口(18)への粒子状物質の進入を抑制するPM進入抑制フィン(19)が、各ガス通過口(18)のガス旋回上手側縁部(18a)から排気ガス分流旋回通路(13)のガス旋回下手側に向けて突出している、ことを特徴とするディーゼルエンジン。
In the diesel engine according to claim 4 or 5,
A plurality of gas passage ports (18) that are long in the busbar direction are provided side by side on the circumferential surface of the PM filter (17) while maintaining a predetermined interval in the circumferential direction,
The upper side and the lower side of the swirl direction of the exhaust gas (6) are defined as the gas swirl upper side and the gas swirl lower side, respectively.
The PM entry suppression fins (19) that suppress the entry of particulate matter from the exhaust gas diversion swirl passage (13) to the gas passage opening (18) are the gas swirl upper side edges (18a) of the gas passage openings (18). ) Projecting toward the gas swirl lower side of the exhaust gas diversion swirl passage (13).
請求項4から請求項6のいずれかに記載したディーゼルエンジンにおいて、
排気ガス分流器(5)の内周面に螺旋形の排気ガス分流旋回案内壁(20)が設けられ、この排気ガス分流旋回案内壁(20)の表面に沿って排気ガス分流旋回通路(13)が形成され、排気ガス分旋回案内壁(20)の内周面(20a)がPMフィルタ(17)の外周面に密着している、ことを特徴とするディーゼルエンジン。
In the diesel engine according to any one of claims 4 to 6,
A spiral exhaust gas diversion swirl guide wall (20) is provided on the inner peripheral surface of the exhaust gas diverter (5), and an exhaust gas diversion swirl passage (13) is formed along the surface of the exhaust gas diversion swirl guide wall (20). ), And the inner peripheral surface (20a) of the exhaust gas content turning guide wall (20) is in close contact with the outer peripheral surface of the PM filter (17).
請求項3から請求項7のいずれかに記載したディーゼルエンジンにおいて、
PM高濃度ガス流出口(14)の下流にPM高濃度ガス旋回室(21)が設けられ、このPM高濃度ガス旋回室(21)でPM高濃度ガス(7)がそれ自身のエネルギーによって旋回するようにした、ことを特徴とするディーゼルエンジン。
In the diesel engine according to any one of claims 3 to 7,
A PM high concentration gas swirl chamber (21) is provided downstream of the PM high concentration gas outlet (14), and the PM high concentration gas swirl chamber (21) is swirled by its own energy. A diesel engine characterized by that.
請求項8に記載したディーゼルエンジンにおいて、
排気ガス分流器(5)の端部にPM高濃度ガス旋回室(21)が設けられ、排気ガス分流旋回通路(13)の周端部とPM高濃度ガス旋回室(21)との間に仕切り壁(22)が介在し、仕切り壁(22)にPM高濃度ガス流出口(14)が形成されている、ことを特徴とするディーゼルエンジン。
The diesel engine according to claim 8,
A PM high-concentration gas swirl chamber (21) is provided at the end of the exhaust gas diverter (5), and between the peripheral end of the exhaust gas diversion swirl passage (13) and the PM high-concentration gas swirl chamber (21). A diesel engine characterized in that a partition wall (22) is interposed and a PM high-concentration gas outlet (14) is formed in the partition wall (22).
請求項9に記載したディーゼルエンジンにおいて、
仕切り壁(22)がPM高濃度ガス旋回室(21)の径方向に沿って張り渡され、この仕切り壁(22)に、周方向に所定間隔を保持して、径方向に長いPM高濃度ガス流出口(14)が複数本放射状に並べて設けられ、
PM高濃度ガス(6)の旋回方向の上手側、下手側を、それぞれガス旋回上手側、ガス旋回下手側として、
PM高濃度ガス旋回室(21)からPM高濃度ガス流出口(14)への粒子状物質の逆流を抑制するPM逆流抑制フィン(23)が、各PM高濃度ガス流出口(14)のガス旋回上手側縁部(14a)からPM高濃度ガス旋回室(21)のガス旋回下手側に向けて突出している、ことを特徴とするディーゼルエンジン。
The diesel engine according to claim 9, wherein
A partition wall (22) is stretched along the radial direction of the PM high-concentration gas swirl chamber (21), and this partition wall (22) maintains a predetermined interval in the circumferential direction and has a long PM high concentration in the radial direction. A plurality of gas outlets (14) are arranged in a radial pattern,
The upper and lower sides of the turning direction of the PM high-concentration gas (6) are designated as the gas turning upper side and the gas turning lower side, respectively.
The PM backflow suppression fins (23) for suppressing the backflow of the particulate matter from the PM high concentration gas swirl chamber (21) to the PM high concentration gas outlet (14) are gas at each PM high concentration gas outlet (14). A diesel engine characterized by projecting toward the gas swirl lower side of the PM high-concentration gas swirl chamber (21) from the swirl upper edge (14a).
請求項9または請求項10に記載したディーゼルエンジンにおいて、
排気ガス分流器(5)は、排気ガス分流旋回通路(13)を備えた本体ケース(24)と、PM高濃度ガス旋回室(21)を備えた付属ケース(25)とを備え、仕切り壁(22)が付属ケース(25)に取り付けられ、付属ケース(25)が本体ケース(24)に取り付けられ、仕切り壁(22)の周縁部(22a)が本体ケース(24)と付属ケース(25)との間にガスケットとして挟み付けられている、ことを特徴とするディーゼルエンジン。
In the diesel engine according to claim 9 or 10,
The exhaust gas diverter (5) includes a main body case (24) having an exhaust gas diversion swirl passage (13) and an accessory case (25) having a PM high-concentration gas swirl chamber (21). (22) is attached to the accessory case (25), the accessory case (25) is attached to the main body case (24), and the peripheral edge portion (22a) of the partition wall (22) is connected to the main body case (24) and the auxiliary case (25 ), A diesel engine characterized by being sandwiched as a gasket.
請求項11に記載したディーゼルエンジンにおいて、
排気ガス分流旋回通路(13)とPM低濃度ガス流入空間(15)との間に、粒子状物質の通過を抑制する筒形のPMフィルタ(17)が介在し、
このPMフィルタ(17)と仕切り壁(22)とが付属ケース(25)に取り外し可能に取り付けられている、ことを特徴とするディーゼルエンジン。
The diesel engine according to claim 11,
Between the exhaust gas diversion swirl passage (13) and the PM low-concentration gas inflow space (15), a cylindrical PM filter (17) for suppressing the passage of particulate matter is interposed,
A diesel engine characterized in that the PM filter (17) and the partition wall (22) are detachably attached to the attached case (25).
請求項3から請求項12のいずれかに記載したディーゼルエンジンにおいて、
排気ガス分流旋回通路(13)の上流に螺旋形の排気ガス旋回助走通路(26)が設けられている、ことを特徴とするディーゼルエンジン。
The diesel engine according to any one of claims 3 to 12,
A diesel engine characterized in that a spiral exhaust gas swirl running passage (26) is provided upstream of the exhaust gas diversion swirl passage (13).
請求項13に記載したディーゼルエンジンにおいて、
排気ガス旋回助走通路(26)に囲まれた排気ガス分流器(5)の中心部にPM低濃度ガス排出通路(27)が設けられ、PM低濃度ガス流入空間(15)の空間出口(15a)にPM低濃度ガス排出通路(27)の通路入口(27a)が連通し、PM低濃度ガス排出通路(27)の通路出口(27b)が、PM高濃度ガス流出口(14)とは反対側の排気ガス分流器(5)の端部で開口されている、ことを特徴とするディーゼルエンジン。
The diesel engine according to claim 13,
A PM low-concentration gas discharge passage (27) is provided at the center of the exhaust gas diverter (5) surrounded by the exhaust gas swirl run-up passage (26), and the space outlet (15a) of the PM low-concentration gas inflow space (15) is provided. ) Communicates with the passage inlet (27a) of the PM low concentration gas discharge passage (27), and the passage outlet (27b) of the PM low concentration gas discharge passage (27) is opposite to the PM high concentration gas outlet (14). Diesel engine characterized in that it is open at the end of the exhaust gas diverter (5) on the side.
請求項1から請求項14のいずれかに記載したディーゼルエンジンにおいて、
排気エネルギーで駆動される過給機(28)で吸気通路(2)内に過給が行なわれ、EGR弁(4)の駆動にニューマチック式のEGR弁アクチュエータ(10)が用いられ、このEGR弁アクチュエータ(10)の弁作動圧室(29)に過給圧伝達通路(30)を介して吸気経路(2)が連携され、この吸気経路(2)内の過給圧が高くなるにつれてEGR弁アクチュエータ(10)の弁作動圧室(29)の弁作動圧が高くなるようにし、弁作動圧室(29)の弁作動圧が所定値未満となる場合には、閉弁付勢手段(31)でEGR弁(4)の閉弁状態が維持され、弁作動圧室(29)の弁作動圧が所定値以上となる場合には、弁作動圧室(29)の弁作動圧でEGR弁(4)が開弁されるようにした、ことを特徴とするディーゼルエンジン。
The diesel engine according to any one of claims 1 to 14,
A supercharger (28) driven by exhaust energy supercharges the intake passage (2), and a pneumatic EGR valve actuator (10) is used to drive the EGR valve (4). This EGR The intake passage (2) is linked to the valve operating pressure chamber (29) of the valve actuator (10) via the boost pressure transmission passage (30), and EGR is increased as the boost pressure in the intake passage (2) increases. When the valve operating pressure of the valve operating pressure chamber (29) of the valve actuator (10) is increased and the valve operating pressure of the valve operating pressure chamber (29) is less than a predetermined value, the valve closing biasing means ( 31), when the closed state of the EGR valve (4) is maintained and the valve operating pressure in the valve operating pressure chamber (29) becomes a predetermined value or more, the EGR valve is operated with the valve operating pressure in the valve operating pressure chamber (29). A diesel engine characterized in that the valve (4) is opened.
請求項15に記載したディーゼルエンジンにおいて、
過給圧伝達通路(30)に感温作動性の過給圧遮断弁(32)が設けられ、
エンジン温度が所定値未満の冷間始動時には、吸気経路(2)内の過給圧に拘わらず、過給圧遮断弁(32)が閉弁して、閉弁付勢手段(31)でEGR弁(4)の閉弁状態が維持され、
エンジン温度が所定値以上の温間始動時や通常運転時には、過給圧遮断弁(32)が開弁可能となり、吸気経路(2)内の過給圧に応じたEGR弁(4)の開閉が行われるようにした、ことを特徴とディーゼルエンジン。
The diesel engine according to claim 15,
The supercharging pressure transmission passage (30) is provided with a temperature-sensitive actuated supercharging pressure cutoff valve (32),
During a cold start when the engine temperature is less than a predetermined value, the supercharging pressure shut-off valve (32) is closed regardless of the supercharging pressure in the intake passage (2), and the EGR is operated by the valve closing urging means (31). The closed state of the valve (4) is maintained,
During a warm start when the engine temperature is higher than a predetermined value or during normal operation, the boost pressure shut-off valve (32) can be opened, and the EGR valve (4) can be opened and closed according to the boost pressure in the intake passage (2). Made to be done, characterized by the diesel engine.
請求項15または請求項16に記載したディーゼルエンジンにおいて、
過給圧伝達通路(30)の途中に伝達媒体の通過抵抗となる抵抗体(33)が設けられることにより、この抵抗体(33)で吸気経路(2)内の過給圧の変動に対するEGR弁(4)の開閉作動の追従性が低下するようにした、ことを特徴とするディーゼルエンジン。
A diesel engine according to claim 15 or claim 16,
By providing a resistor (33) serving as a transmission resistance for the transmission medium in the middle of the supercharging pressure transmission passage (30), EGR against fluctuations in the supercharging pressure in the intake passage (2) by this resistor (33). A diesel engine characterized in that the followability of the opening and closing operation of the valve (4) is lowered.
請求項17に記載したディーゼルエンジンにおいて、
抵抗体(33)が細管(34)で構成されている、ことを特徴とするディーゼルエンジン。
The diesel engine according to claim 17,
A diesel engine characterized in that the resistor (33) is composed of a thin tube (34).
請求項15から請求項18のいずれかに記載したディーゼルエンジンにおいて、
過給圧伝達通路(30)に過給圧伝達室(35)が設けられ、この過給圧伝達室(25)内がダイヤフラム(36)で区画され、相互に不通の上流室(37)と下流室(38)とが形成され、上流室(37)が吸気経路(2)内に連通し、下流室(38)がEGR弁アクチュエータ(10)の弁作動圧室(29)側の通路に連通可能とされることにより、
吸気経路(2)内の過給圧の変動が、上流室(37)からダイヤフラム(36)を介して下流室(38)に伝達され、下流室(38)から弁作動圧室(29)に伝達されるようにした、ことを特徴とするディーゼルエンジン。
The diesel engine according to any one of claims 15 to 18,
The supercharging pressure transmission passage (30) is provided with a supercharging pressure transmission chamber (35), the inside of the supercharging pressure transmission chamber (25) is partitioned by a diaphragm (36), and the upstream chamber (37) which is not mutually connected. The downstream chamber (38) is formed, the upstream chamber (37) communicates with the intake passage (2), and the downstream chamber (38) is connected to the passage on the valve operating pressure chamber (29) side of the EGR valve actuator (10). By being able to communicate,
The fluctuation of the supercharging pressure in the intake passage (2) is transmitted from the upstream chamber (37) to the downstream chamber (38) through the diaphragm (36), and from the downstream chamber (38) to the valve operating pressure chamber (29). A diesel engine characterized by being transmitted.
請求項1から請求項19のいずれかに記載したディーゼルエンジンにおいて、
粒子状物質を捕捉し、粒子状物質を燃焼除去して再生する、ディーゼル・パティキュレート・フィルタを用いることなく、PM低濃度ガス(8)が大気に排出されるようにした、ことを特徴とするディーゼルエンジン。
The diesel engine according to any one of claims 1 to 19,
The PM low concentration gas (8) is discharged to the atmosphere without using a diesel particulate filter, which captures particulate matter and regenerates it by burning and removing the particulate matter. Diesel engine.
JP2008189665A 2008-07-23 2008-07-23 Diesel engine Pending JP2011202506A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008189665A JP2011202506A (en) 2008-07-23 2008-07-23 Diesel engine
PCT/JP2009/054648 WO2010010731A1 (en) 2008-07-23 2009-03-11 Diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008189665A JP2011202506A (en) 2008-07-23 2008-07-23 Diesel engine

Publications (1)

Publication Number Publication Date
JP2011202506A true JP2011202506A (en) 2011-10-13

Family

ID=41570199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008189665A Pending JP2011202506A (en) 2008-07-23 2008-07-23 Diesel engine

Country Status (2)

Country Link
JP (1) JP2011202506A (en)
WO (1) WO2010010731A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125404A (en) * 2014-12-26 2016-07-11 マツダ株式会社 Exhaust gas recirculation device for engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5806967B2 (en) * 2012-03-30 2015-11-10 株式会社クボタ Diesel engine exhaust treatment equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3019991A1 (en) * 1980-05-24 1981-12-03 Robert Bosch Gmbh, 7000 Stuttgart METHOD AND DEVICE FOR REMOVING SOLID COMPONENTS FROM THE EXHAUST GAS FROM COMBUSTION ENGINE, IN PARTICULAR SOOT COMPONENTS
JP3040153B2 (en) * 1990-11-06 2000-05-08 マツダ株式会社 Engine exhaust gas recirculation system
JP3443748B2 (en) * 1994-04-04 2003-09-08 石川島播磨重工業株式会社 EGR device for supercharged diesel engine
CA2493161A1 (en) * 2002-07-25 2004-02-05 Refaat A. Kammel System and method for reducting pollutants from diesel engine exhaust
JP2007278194A (en) * 2006-04-07 2007-10-25 Hino Motors Ltd Exhaust gas treatment device
JP4850790B2 (en) * 2007-07-11 2012-01-11 株式会社クボタ engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125404A (en) * 2014-12-26 2016-07-11 マツダ株式会社 Exhaust gas recirculation device for engine

Also Published As

Publication number Publication date
WO2010010731A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
US10337398B2 (en) Blowby gas treatment device for internal combustion engine with supercharger
JP2012215155A (en) Blowby gas returning apparatus for engine with supercharger
JP2006274961A (en) Exhaust gas recirculation device
JP2010265854A (en) Internal combustion engine with turbocharger and method of controlling the same
JPWO2013073052A1 (en) Internal combustion engine with a supercharger
US9951723B2 (en) Turbocharging system for use with internal combustion engine
JP2011202506A (en) Diesel engine
JP2016113935A (en) Supercharger for internal combustion engine
JP5999324B2 (en) Intake system structure of internal combustion engine
JP2004156572A (en) Exhaust gas recirculation device of diesel engine
JP2016031063A (en) Exhaust gas recirculation device of engine with turbocharger
JP2010014086A (en) Vortex tube and exhaust gas treatment device of internal combustion engine
JP2014005764A (en) Egr control device of internal combustion engine
JP2019132261A (en) Intake system of internal combustion engine
JP2012167638A (en) Exhaust gas recirculation control method for internal combustion engine
JP5709054B2 (en) Gas sensor wet prevention structure and wet prevention method for internal combustion engine
JP2015140707A (en) Exhaust emission control device
JP5769075B2 (en) Structure for preventing moisture from gas sensor in internal combustion engine
JP2008208721A (en) Exhaust gas recirculation device for internal combustion engine
JP6399028B2 (en) Turbocharged engine
JP2007255371A (en) Injection control method of reducing agent for exhaust gas
JP5958405B2 (en) Engine control device
WO2007076978A3 (en) Particulate filter assembly
JP2020012429A (en) Evaporated fuel treatment device for engine
JP2008025544A (en) Exhaust emission controller of internal-combustion engine