JP4850439B2 - Permanent magnet member for embedded magnet type rotating electrical machine and rotating electrical machine - Google Patents

Permanent magnet member for embedded magnet type rotating electrical machine and rotating electrical machine Download PDF

Info

Publication number
JP4850439B2
JP4850439B2 JP2005164914A JP2005164914A JP4850439B2 JP 4850439 B2 JP4850439 B2 JP 4850439B2 JP 2005164914 A JP2005164914 A JP 2005164914A JP 2005164914 A JP2005164914 A JP 2005164914A JP 4850439 B2 JP4850439 B2 JP 4850439B2
Authority
JP
Japan
Prior art keywords
magnet
permanent magnet
shape
rotating electrical
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005164914A
Other languages
Japanese (ja)
Other versions
JP2006340556A (en
Inventor
康明 青山
健 大橋
孝一 松岡
茂智 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Toshiba Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Toshiba Corp filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005164914A priority Critical patent/JP4850439B2/en
Publication of JP2006340556A publication Critical patent/JP2006340556A/en
Application granted granted Critical
Publication of JP4850439B2 publication Critical patent/JP4850439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Description

本発明は、埋め込み永久磁石を用いた回転電機に用いられる永久磁石部材および回転電機に関する。   The present invention relates to a permanent magnet member and a rotating electrical machine used in a rotating electrical machine using an embedded permanent magnet.

従来、例えば、鉄道車両や電気自動車等の駆動源として永久磁石電機が用いられている。永久磁石電機の一例として、例えば回転せぬよう固定されたステータ(固定子)側に複数のコイルが取り付けられると共に、駆動軸につながれてこれにトルクを与えるロータ(回転子)側に複数の永久磁石が取り付けられた永久磁石同期電機がある。   Conventionally, for example, a permanent magnet electric machine is used as a drive source for a railway vehicle or an electric vehicle. As an example of a permanent magnet electric machine, for example, a plurality of coils are attached to a stator (stator) side fixed so as not to rotate, and a plurality of permanent magnets are connected to a drive shaft to give torque thereto. There is a permanent magnet synchronous electric machine with a magnet attached.

この場合、当該各コイルおよび永久磁石は対向するように配置される。これにより、コイルに3相交流電流等を供給した際にこれに生じる交番磁界と、永久磁石の静磁場とが相互作用し、回転子が交番磁場に同期して回転する。その際、固定子のコイル等が不連続であること等によって回転子にコギングトルクなる、トルクリップルが生じる。さらに、埋め込み永久磁石型回転電機では、固定子と回転子間のギャップ磁束密度が台形になるため、大きなトルクリップルが生じる。   In this case, the coils and the permanent magnets are arranged to face each other. Thereby, when a three-phase alternating current etc. are supplied to a coil, the alternating magnetic field which arises in this and the static magnetic field of a permanent magnet interact, and a rotor rotates synchronizing with an alternating magnetic field. At that time, a torque ripple, which is a cogging torque, is generated in the rotor due to the discontinuity of the coils of the stator. Further, in the embedded permanent magnet type rotating electrical machine, the gap magnetic flux density between the stator and the rotor becomes trapezoidal, and thus a large torque ripple is generated.

また従来は、トルクリップルを減らすために固定子側のコイルおよびティースを斜めにスキューさせることが行われている。しかし、固定子側をスキューさせることはコストを大幅に増加させることになる。さらに、鉄道車両駆動用の大型電機では出力トルクも大きくなり、それにしたがって、コギングトルクも増大することになる。また、鉄道車両駆動用電機にあっては、メンテナンス時に台車に取り付けられた電機を庫内に搬送する際、台車を人力で運んだりする場合がある。この際に、コギングトルクが大きいため、作業に支障が出る場合がある。これらを解消するために低コストでコギングトルクを大幅に削減する方法が望まれているのが実態である。   Conventionally, in order to reduce torque ripple, the coils and teeth on the stator side are skewed obliquely. However, skewing the stator side greatly increases costs. Furthermore, in a large electric machine for driving a railway vehicle, the output torque also increases, and the cogging torque increases accordingly. In addition, in the railway vehicle driving electric machine, when the electric machine attached to the carriage at the time of maintenance is carried into the warehouse, the carriage may be carried manually. At this time, since the cogging torque is large, the work may be hindered. In order to solve these problems, the actual situation is that a method for greatly reducing the cogging torque at low cost is desired.

また永久磁石埋め込み型回転機にあっては、通常、永久磁石部材を回転子の中に埋め込むことから、一体の直方体の磁石を挿入しており、コギングトルク低減には固定子(電機子:コイル)側をスキューさせていた。しかし、コスト増の関係により施工の困難さがあり、コギングトルクを充分に減らせることができなかった。その他、永久磁石式回転電機のコギングトルクを低減する技術が、特許文献1、特許文献2に開示されている。   Further, in a permanent magnet embedded type rotating machine, since a permanent magnet member is normally embedded in a rotor, an integral rectangular parallelepiped magnet is inserted, and a stator (armature: coil) is used to reduce cogging torque. ) The side was skewed. However, there was difficulty in construction due to the increased cost, and the cogging torque could not be reduced sufficiently. In addition, Patent Documents 1 and 2 disclose techniques for reducing the cogging torque of a permanent magnet type rotating electrical machine.

特開2000−350393号公報JP 2000-350393 A 特開2003−18775号公報JP 2003-18775 A

本発明は、埋め込み磁石型回転電機において、コストを増加させることなく、コギングトルクを低減することができる永久磁石部材を提供することを目的とする。   An object of the present invention is to provide a permanent magnet member capable of reducing cogging torque without increasing cost in an embedded magnet type rotating electrical machine.

本発明の1の側面によると、埋め込み磁石型回転電機用の永久磁石部材であって、磁石部を含み、該磁石部が、回転電機に組み込まれた際に、該回転電機の回転軸に垂直な平面における該磁石部の断面の形状、および/または該断面の該回転軸に対する位置関係が連続的に変化している形状を有し、前記磁石部は、略直方体から角部を切り落とした形状をなし、該切り落とされた位置に、前記磁石部と磁気特性が異なり、前記切り落とされた角部の形状と同一形状を有する補助部をさらに含み、前記補助部が、前記磁石部とは磁化方向が異なる磁石からなる永久磁石部材が提供される。また、本発明の他の側面によると、前記永久磁石部材を備える磁石埋め込み型回転電機が提供される。
According to one aspect of the present invention, a permanent magnet member for an embedded magnet type rotating electrical machine includes a magnet portion, and the magnet portion is perpendicular to a rotating shaft of the rotating electrical machine when the magnet portion is incorporated in the rotating electrical machine. A shape of a cross section of the magnet portion in a flat plane and / or a shape in which a positional relationship of the cross section with respect to the rotation axis is continuously changed, and the magnet portion is a shape obtained by cutting off a corner from a substantially rectangular parallelepiped. And further includes an auxiliary portion having a magnetic characteristic different from that of the magnet portion and having the same shape as the cut corner portion , wherein the auxiliary portion is magnetized from the magnet portion. A permanent magnet member made of magnets having different directions is provided. According to another aspect of the present invention, a magnet-embedded rotating electrical machine including the permanent magnet member is provided.

従来の埋め込み永久磁石型の回転電機にあっては、永久磁石部材は、回転子の回転軸方向に同一の断面形状を有している。そのため、永久磁石と鉄芯部でのギャップ磁束密度の変化が大きくなりコギングトルクを増大させていた。   In a conventional embedded permanent magnet type rotating electrical machine, the permanent magnet member has the same cross-sectional shape in the direction of the rotation axis of the rotor. Therefore, the change of the gap magnetic flux density between the permanent magnet and the iron core portion becomes large, and the cogging torque is increased.

一方で、本発明によると、回転軸方向の磁石部断面の形状等を連続的に変化させ、磁気特性の異なる補助部をさらに用いることで、ギャップ磁束密度の急峻な部分を緩和することができる。さらに、磁化方向の異なる磁石からなる補助部を組み合わせることで、出力を大きく変えることなくコギングトルクを大幅に減らすことが可能となる。 On the other hand, according to the present invention, the rotation axis direction of the shape of the magnet cross-sectional or the like was continuously changed, by further using a different auxiliary unit having magnetic properties, be relaxed steep part of the gap magnetic flux density it can. Furthermore, by combining an auxiliary part made of a magnetization direction different magnets, it is possible to greatly reduce the cogging torque without significantly changing the output.

以下に詳細に説明するように、本発明によると、埋め込み磁石型回転電機において、コギングトルクを軽減することができる。また、本発明によると、今までコスト増を引き起こしていた固定子側をスキューさせる場合よりも、安価に、磁石重量も軽減し、短期に施工できる。また、磁化方向の異なる磁石からなる補助部を用いることによって磁束を集中させ、最大磁束密度を向上させることが出来る。   As described in detail below, according to the present invention, cogging torque can be reduced in an embedded magnet type rotating electrical machine. In addition, according to the present invention, it is possible to perform construction in a short period of time at a lower cost than in the case of skewing the stator side, which has been causing an increase in cost, at a lower cost. Moreover, the magnetic flux can be concentrated by using an auxiliary portion made of magnets having different magnetization directions, and the maximum magnetic flux density can be improved.

以下に、本発明の実施の形態を、添付図面を参照しながら説明する。もっとも、以下に説明する実施の形態は本発明を限定するものではない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. However, the embodiments described below do not limit the present invention.

上記したように、本発明の1の側面によると、埋め込み磁石型回転電機用の永久磁石部材であって、磁石部を含み、該磁石部が、回転電機に組み込まれた際に、該回転電機の回転軸に垂直な平面における該磁石部の断面の形状、および/または該断面の該回転軸に対する位置関係が連続的に変化している形状を有する永久磁石部材が提供される。磁石部は、永久磁石部材を回転電機の回転子に組み込んだ際に、固定子側のコイルに生じる交番磁界と相互作用させるための静磁場を主に形成するためのものである。本発明によると、回転電機の回転軸に垂直な平面における磁石部の断面形状等を変化させることで、固定子に設けるコイルをスキューさせることなく、回転子と固定子の静的磁気バランスの変化を緩和させてコギングトルクを低減することができる。   As described above, according to one aspect of the present invention, there is provided a permanent magnet member for an embedded magnet type rotating electrical machine, including a magnet portion, and the rotating electrical machine when the magnet portion is incorporated in the rotating electrical machine. There is provided a permanent magnet member having a shape of a cross section of the magnet portion in a plane perpendicular to the rotation axis and / or a shape in which the positional relationship of the cross section with respect to the rotation axis is continuously changed. The magnet portion is mainly used to form a static magnetic field for interacting with an alternating magnetic field generated in the stator side coil when the permanent magnet member is incorporated in the rotor of the rotating electrical machine. According to the present invention, the change in the static magnetic balance between the rotor and the stator without skewing the coils provided in the stator by changing the cross-sectional shape of the magnet portion in a plane perpendicular to the rotation axis of the rotating electrical machine. To reduce the cogging torque.

特に、磁石部の断面の形状、および/または断面の回転軸に対する位置関係は、磁石の加工とコギングトルク軽減の観点から、連続的に変化していることが好ましい。連続的に変化させることにより、急峻なギャップ磁束の変化を緩和させることができ、急激な磁気変動による力の発生を穏やかにすることでコギングトルクを小さくすることが可能である。ここで、連続的に変化しているとは、回転電機の回転軸方向の一方の端から他方の端までの間において、磁石部の断面形状等が変化していない領域がないことをいう。また、磁石断面の回転軸に対する位置関係が変化しているとは、回転軸に対して、断面の位置が、径方向に変化してもよく、回転電機の回転方向に変化してもよく、それらの組み合わせでもよい。   In particular, it is preferable that the cross-sectional shape of the magnet part and / or the positional relationship of the cross-section with respect to the rotation axis change continuously from the viewpoint of magnet processing and cogging torque reduction. By changing continuously, the change of steep gap magnetic flux can be relieved, and the cogging torque can be reduced by moderately generating the force due to the sudden magnetic fluctuation. Here, continuously changing means that there is no region in which the cross-sectional shape or the like of the magnet portion does not change from one end to the other end in the rotation axis direction of the rotating electrical machine. Further, the positional relationship of the magnet cross section with respect to the rotation axis is changing, the position of the cross section with respect to the rotation axis may be changed in the radial direction, may be changed in the rotation direction of the rotating electrical machine, A combination thereof may also be used.

なお、本発明に用いる磁石部は、特に限定されるものではなく、希土類、フェライト、アルニコ等の磁石を用いることができる。特に、エネルギー積の大きさから希土類(Nd,Sm系)焼結磁石を用いることが好ましい。また、本発明に用いる磁石部は、従来の永久磁石片と同様に、回転電機に組み込んだ際に、回転電機の径方向と実質的に平行な方向の磁化方向を有することが好ましい。   In addition, the magnet part used for this invention is not specifically limited, Magnets, such as a rare earth, a ferrite, and alnico, can be used. In particular, a rare earth (Nd, Sm-based) sintered magnet is preferably used because of the energy product. Moreover, it is preferable that the magnet part used for this invention has the magnetization direction of a direction substantially parallel to the radial direction of a rotary electric machine, when it integrates in a rotary electric machine similarly to the conventional permanent magnet piece.

また、永久磁石部材および磁石部の形状は、永久磁石部材の中心を通り回転電機の径方向の軸に関して、回転対称とすることが好ましい。回転対称の場合、ギャップ部に対して磁石によって発生する磁束の変化が同一であるため、コギングトルクの変化が穏やかであるのに対して、回転対称でない場合は、磁束の変化量に差が出る場合がある。しかしながら、必ずしも回転対称にする必要はなく、例えば、以下に詳細に説明するように、磁石部を、スロープを有する形状や、スキューさせる形状にする場合にあっては、永久磁石部材の片側のみをこれらの形状にすることもでき、また、回転対称になっていない形状(例えばスロープとスキューを組み合わせることも可能)とすることも可能である。すなわち、以下に詳細に説明するように、前記磁石部の形状が、略直方体から、該略直方体の少なくとも1つの頂点を含む略三角錐および/または該略直方体の少なくとも1つの辺を含む略三角柱を少なくとも1つ切り落とした形状であることが好ましい。   Moreover, it is preferable that the shapes of the permanent magnet member and the magnet portion are rotationally symmetric with respect to the radial axis of the rotating electrical machine passing through the center of the permanent magnet member. In the case of rotational symmetry, the change in the magnetic flux generated by the magnet is the same with respect to the gap portion, so the change in cogging torque is gentle, whereas in the case of non-rotation symmetry, there is a difference in the amount of change in magnetic flux. There is a case. However, it is not necessarily required to be rotationally symmetric. For example, as will be described in detail below, when the magnet portion is in a shape having a slope or a shape to be skewed, only one side of the permanent magnet member is used. These shapes can also be used, and shapes that are not rotationally symmetric (for example, a slope and a skew can be combined) are also possible. That is, as will be described in detail below, the shape of the magnet part is from a substantially rectangular parallelepiped to a substantially triangular pyramid including at least one vertex of the substantially rectangular parallelepiped and / or a substantially triangular prism including at least one side of the substantially rectangular parallelepiped. It is preferable that at least one of the shapes is cut off.

[第一の参考となる形態(スロープ、補助部なし)]
具体的には、本発明の第一の参考となる形態にあっては、前記磁石部の形状が、略直方体から、該略直方体の少なくとも1つの頂点を含む略三角錐を少なくとも1つ切り落とした形状であることが好ましい。換言すると、前記磁石部の形状が、略直方体から、前記回転電機の回転軸と平行な辺の1つの少なくとも一部を含む略三角錐を切り落とした形状であるであることが好ましい。図1に、本発明の第一の参考となる形態にかかる永久磁石部材の模式的な斜視図を示す。(a)は、切り落とす前の形状を、(b)は、切り落とした後の形状を示す。すなわち、図1に示すように、当該参考となる形態にかかる永久磁石部材10は、直方体の永久磁石部材から、回転対称となるように、2つの三角錐11を切り落とした形状の磁石部1を有する。ここで、当該三角錐の1つは、回転電機に組み込まれた際に、回転電機の回転軸と平行な辺における2つの頂点A1およびB1と、磁石部の磁化方向と略平行な頂点A1を含む辺における頂点A1以外の頂点C1と、回転電機の回転方向と略平行な頂点A1を含む辺上の点D1とを4つの頂点とする三角錐である。なお、当該参考となる形態にあっては、上記頂点B1の代わりに、回転電機の回転軸と平行な頂点A1を含む辺上の点を選ぶことができる。同様に、上記頂点C1の代わりに、磁石部の磁化方向と略平行な頂点A1を含む辺上の点を選ぶことができる。
[First reference form (no slope, no auxiliary part)]
Specifically, in the first reference form of the present invention, at least one substantially triangular pyramid including at least one vertex of the substantially rectangular parallelepiped is cut off from the substantially rectangular parallelepiped. The shape is preferred. In other words, it is preferable that the shape of the magnet portion is a shape obtained by cutting out a substantially triangular pyramid including at least a part of one of the sides parallel to the rotation axis of the rotating electrical machine from a substantially rectangular parallelepiped. In FIG. 1, the typical perspective view of the permanent magnet member concerning the form used as the 1st reference of this invention is shown. (A) shows the shape before cutting off, (b) shows the shape after cutting off. That is, as shown in FIG. 1, the permanent magnet member 10 according to the reference embodiment includes a magnet portion 1 having a shape obtained by cutting off two triangular pyramids 11 so as to be rotationally symmetric from a rectangular parallelepiped permanent magnet member. Have. Here, one of the triangular pyramids has two vertices A1 and B1 on a side parallel to the rotation axis of the rotating electrical machine and a vertex A1 substantially parallel to the magnetization direction of the magnet portion when incorporated in the rotating electrical machine. This is a triangular pyramid having four vertices, which are a vertex C1 other than the vertex A1 on the side to include and a point D1 on the side including the vertex A1 substantially parallel to the rotation direction of the rotating electrical machine. In the reference form, a point on the side including the vertex A1 parallel to the rotation axis of the rotating electrical machine can be selected instead of the vertex B1. Similarly, instead of the vertex C1, a point on the side including the vertex A1 that is substantially parallel to the magnetization direction of the magnet portion can be selected.

このように、磁石部の角部にスロープをつけるように、略直方体の少なくとも1つの頂点を含む三角錐を切り落とした形状とし、回転軸方向の磁石断面形状が連続的に変化している形状にすることで、回転子と固定子のギャップ磁束密度分布の急峻な場所を緩和することができ、これにより、回転子のコギングトルクを大幅に小さくすることが可能となる。すなわち、上記したように、従来の永久磁石型回転電機では、固定子と回転子間のギャップ磁束密度が台形になるため、大きなトルクリップルが生じていた。しかしながら、当該参考となる形態によると、回転子表面に発生する磁束分布を正弦波に近づけることが可能になり、コギングトルクを低減することができる。また、三角錐を切り落とした形状とすることで、後述するスキューさせる形状と同様に、回転子と固定子の静的磁気バランスをずらしてコギングトルクを低減することができる。 In this manner, the triangular pyramid including at least one apex of the substantially rectangular parallelepiped is cut off so that the corner of the magnet part has a slope, and the magnet cross-sectional shape in the rotation axis direction is continuously changing. By doing so, it is possible to relieve the steep location of the gap magnetic flux density distribution between the rotor and the stator, and thereby it is possible to significantly reduce the cogging torque of the rotor. That is, as described above, in the conventional permanent magnet type rotating electrical machine, the gap magnetic flux density between the stator and the rotor becomes trapezoid, and thus a large torque ripple is generated. However, according to the reference form, the magnetic flux distribution generated on the rotor surface can be brought close to a sine wave, and the cogging torque can be reduced. In addition, by forming the shape with the triangular pyramid cut off, the cogging torque can be reduced by shifting the static magnetic balance between the rotor and the stator, similarly to the shape to be skewed, which will be described later.

[第二の参考となる形態(スキュー、補助部なし)]
また、本発明の第二の参考となる形態にあっては、前記磁石部の形状が、略直方体から、該略直方体の少なくとも1つの辺を含む略三角柱を少なくとも1つ切り落とした形状であることが好ましい。換言すると、前記磁石部の形状が、略直方体から、前記回転電機の回転方向と略垂直な面の1つの少なくとも一部を含む略三角柱を切り落とした形状であることが好ましい。図2に、本発明の第二の参考となる形態にかかる永久磁石部材の模式的な斜視図を示す。(a)は、切り落とす前の形状を、(b)は、切り落とした後の形状を示す。すなわち、図2に示すように、当該参考となる形態にかかる永久磁石部材10は、直方体の永久磁石部材から、回転対称となるように、2つの三角柱12を切り落とした形状の磁石部1を有する。ここで、当該三角柱の1つは、回転電機に組み込まれた際に、回転電機の回転方向と略垂直な面の上の4つの頂点A2、B2、C2およびD2と、頂点A2またはD2を通る他の辺の各々の上の点E2およびF2とを6つの頂点とする三角柱である。なお、当該参考となる形態にあっては、上記頂点B2の代わりに、回転電機の回転軸と平行な頂点A2を含む辺上の点を選ぶことができる。同様に、上記頂点C2の代わりに、回転電機の回転軸と平行な頂点D2を含む辺上の点を選ぶことができる。当該参考となる形態にあっては、磁石の断面形状は同一であるが、磁石断面の位置が変化している。
[Second reference form (skew, no auxiliary part)]
Further, in the second reference form of the present invention, the shape of the magnet portion is a shape obtained by cutting off at least one approximately triangular prism including at least one side of the approximately cuboid from the approximately cuboid. Is preferred. In other words, it is preferable that the shape of the magnet portion is a shape obtained by cutting out a substantially triangular prism including at least a part of one of surfaces substantially perpendicular to the rotation direction of the rotating electrical machine from a substantially rectangular parallelepiped. In FIG. 2, the typical perspective view of the permanent magnet member concerning the form used as the 2nd reference of this invention is shown. (A) shows the shape before cutting off, (b) shows the shape after cutting off. That is, as shown in FIG. 2, the permanent magnet member 10 according to the reference embodiment includes a magnet portion 1 having a shape obtained by cutting off two triangular prisms 12 so as to be rotationally symmetric from a rectangular parallelepiped permanent magnet member. . Here, one of the triangular prisms passes through the four vertices A2, B2, C2, and D2 and the vertex A2 or D2 on a surface substantially perpendicular to the rotation direction of the rotating electrical machine when incorporated in the rotating electrical machine. It is a triangular prism having points E2 and F2 on each of the other sides as six vertices. In the reference form, instead of the vertex B2, a point on the side including the vertex A2 parallel to the rotation axis of the rotating electrical machine can be selected. Similarly, instead of the vertex C2, a point on the side including the vertex D2 parallel to the rotation axis of the rotating electrical machine can be selected. In the reference form, the cross-sectional shape of the magnet is the same, but the position of the cross-section of the magnet is changed.

このように、磁石の角部をスキューさせるように、略直方体の少なくとも1つの辺を含む略三角柱を切り落とした形状とし、回転軸方向の磁石断面の回転軸に対する位置関係が連続的に変化している形状にすることで、回転子と固定子の静的磁気バランスをずらすことができ、これにより、回転子のコギングトルクを大幅に小さくすることが可能となる。   In this way, the triangular shape including at least one side of the substantially rectangular parallelepiped is cut off so as to skew the corners of the magnet, and the positional relationship of the magnet cross section in the rotation axis direction with respect to the rotation axis continuously changes. By adopting such a shape, the static magnetic balance between the rotor and the stator can be shifted, thereby making it possible to significantly reduce the cogging torque of the rotor.

また、本発明によると、コギングトルクを減少させると同時に、さらに出力トルクを向上させることができる。すなわち、本発明では、三角錐、三角柱を切り落とすことにより、コギングトルクを減少させることができ、該スキュー効果を維持したまま、補助磁石などの補助材を補うことにより、コギングトルクを減少して、さらに出力トルクも向上させることもできる。   In addition, according to the present invention, the output torque can be further improved while the cogging torque is reduced. That is, in the present invention, the cogging torque can be reduced by cutting off the triangular pyramid and the triangular prism, and the cogging torque is reduced by supplementing auxiliary materials such as auxiliary magnets while maintaining the skew effect. Further, the output torque can be improved.

ここで、略直方体は、最も広義に解釈されるべきものとし、略平行に対向する3組の面が観念できる形状をいうものとする。具体的には、略直方体は、直方体、立方体等の四角柱の他、断面がD型またはC型で柱状のものも含む。また、略直方体の辺または面に関して、回転電機の回転軸、径方向もしくは回転方向、または磁石部の磁化方向と、(略)平行または(略)垂直という場合、これは、略直方体の辺または面を特定するためのものであり、厳密に平行または垂直でない場合があることに留意すべきである。また、磁石部等の形状について、「切り落とす」という場合、これは、当該形状の製造方法を限定するためのものではなく、当該物の最終的な形状を特定するためにのみ用いられることに留意すべきである。例えば、略直方体から略三角錐を切り落とした形状は、必ずしも略直方体から略三角錐を切り落とすステップにより形成される必要はなく、最終的な形状が、概念的に、略直方体から略三角錐を切り落とすことで得られる形状であればよい。   Here, the substantially rectangular parallelepiped is to be interpreted in the broadest sense and refers to a shape in which three sets of faces facing each other in parallel can be considered. Specifically, the substantially rectangular parallelepiped includes not only a rectangular column such as a rectangular parallelepiped or a cube but also a column having a D-shaped or C-shaped cross section. In addition, regarding the side or surface of the substantially rectangular parallelepiped, when it is (substantially) parallel or (substantially) perpendicular to the rotation axis, radial direction or rotational direction of the rotating electrical machine, or the magnetization direction of the magnet part, It should be noted that the surface is specified and may not be strictly parallel or perpendicular. In addition, regarding the shape of the magnet portion or the like, when “cut off” is used, this is not intended to limit the manufacturing method of the shape, but is used only for specifying the final shape of the object. Should. For example, a shape obtained by cutting out a substantially triangular pyramid from a substantially rectangular parallelepiped need not necessarily be formed by the step of cutting out a substantially triangular pyramid from a substantially rectangular parallelepiped, and the final shape conceptually cuts out a substantially triangular pyramid from a substantially rectangular parallelepiped. Any shape can be used.

磁石部をスキューさせる場合、スキューさせる角度θ(以下スキュー角θともいう)は以下のように定めることが好ましい。すなわち、スキュー角θが、スロット間の角度(スロットピッチ)の1/2になるように磁石に角度をつけることが良い。スキュー角度を大きくすればするほど、角度に比例してコギングトルクは小さくなる。その一方、回転電機としての出力は角度が大きくなるにつれて、小さくなり、出力は一般に1/2スロットで極小値をとるためである。したがって、例えば、スロット数が30であれば、スキュー角θは、360度/30スロット/2となり、最適なスキュー角θは6度となる。   When the magnet portion is skewed, the skew angle θ (hereinafter also referred to as skew angle θ) is preferably determined as follows. That is, it is preferable that the magnet is angled so that the skew angle θ is ½ of the angle between the slots (slot pitch). As the skew angle increases, the cogging torque decreases in proportion to the angle. On the other hand, the output as a rotating electrical machine decreases as the angle increases, and the output generally takes a minimum value in 1/2 slot. Therefore, for example, if the number of slots is 30, the skew angle θ is 360 degrees / 30 slots / 2, and the optimum skew angle θ is 6 degrees.

ここで、スキュー角θは、永久磁石部材が回転子に組み込まれた際における、上記切り落としてなる面の、回転子の回転方向の位置の差の最も大きいものを角度で表したものをいい、回転対称となるようにスキューを設けた永久磁石部材にあっては、回転子の上面と下面の磁石断面中央部を結んだ線が相当する回転子の回転方向の角度をいう。具体的には、図2に示した参考となる形態にあっては、スキュー角θは、上記切り落としてなる面(B2C2F2E2)の、回転方向の位置の差の最も大きいものを角度で表したもの(B2E2の回転方向の大きさを角度で表したもの)をいう。 Here, the skew angle θ refers to an angle representing the largest difference in the position of the rotor in the rotation direction of the surface to be cut off when the permanent magnet member is incorporated in the rotor. In the case of a permanent magnet member provided with a skew so as to be rotationally symmetric, a line connecting the center of the magnet cross section between the upper surface and the lower surface of the rotor means an angle in the rotation direction of the rotor. Specifically, in the reference form shown in FIG. 2, the skew angle θ is an angle representing the largest difference in rotational position of the cut surface (B2C2F2E2). (The size of B2E2 in the rotational direction expressed as an angle).

さらに具体的には、回転対称となるようにスキューを設けた永久磁石部材にあっては、以下のようにスキュー角を定めることができる。図3に、本発明にかかる永久磁石部材を組み込んだ回転子の模式的な平面図を示す。また、図4に、本発明にかかる永久磁石部材を組み込んだ回転子の模式的な斜視図を示す。なお、図3、4にあっては、説明の便宜のために、回転子20の有するスロット21およびスロット21に挿入された永久磁石部材10の1つのみを示す。図3、4に示すように、スキュー角θは、回転子を回転軸に平行な方向から見た場合に、磁石部の上面10aの中心A3および下面10bの中心B3の各々と回転子の回転軸Oとを結んだ線の角度とすることができる。   More specifically, in a permanent magnet member provided with a skew so as to be rotationally symmetric, the skew angle can be determined as follows. In FIG. 3, the typical top view of the rotor incorporating the permanent magnet member concerning this invention is shown. FIG. 4 is a schematic perspective view of a rotor incorporating the permanent magnet member according to the present invention. 3 and 4, for convenience of explanation, only one of the slot 21 of the rotor 20 and the permanent magnet member 10 inserted into the slot 21 is shown. As shown in FIGS. 3 and 4, when the rotor is viewed from a direction parallel to the rotation axis, each of the center A3 of the upper surface 10a and the center B3 of the lower surface 10b of the magnet portion and the rotation of the rotor are shown. The angle of the line connecting the axis O can be set.

この場合、図3、4に示すように、回転子の回転軸Oと永久磁石部材の上面の中心A3との距離をrとすると、永久磁石部材の上面の中心A3と下面の中心B3の、回転子の回転方向における距離は、2rsin(θ/2)となる。そのときの磁石の角度φは、回転子の回転軸方向の長さをLとすると次式で与えられる。
φ=tan-1(2r/L×sin(θ/2))
このように、上記切り落とす三角柱の形状を求めることができ、これに応じて、磁石部をスキューするように加工する。以上は、第二の参考となる形態を例にして、スキュー角について説明したが、これと同様に、第一の参考となる形態にかかる永久磁石部材の磁石部の形状(すなわち、切り落とす三角錐の回転方向の大きさ)を定めることができる。
In this case, as shown in FIGS. 3 and 4, if the distance between the rotation axis O of the rotor and the center A3 of the upper surface of the permanent magnet member is r, the center A3 of the upper surface of the permanent magnet member and the center B3 of the lower surface of The distance in the rotation direction of the rotor is 2rsin (θ / 2). The angle φ of the magnet at that time is given by the following equation, where L is the length of the rotor in the rotation axis direction.
φ = tan −1 (2r / L × sin (θ / 2))
Thus, the shape of the triangular prism to be cut off can be obtained, and the magnet portion is processed so as to be skewed accordingly. In the above, the skew angle has been described by taking the second reference form as an example. Similarly, the shape of the magnet portion of the permanent magnet member according to the first reference form (that is, the triangular pyramid to be cut off) The size of the rotation direction) can be determined.

また、本発明の他の参考となる形態によると、埋め込み磁石型回転電機用の永久磁石部材であって、磁石部と、該磁石部と磁気特性の異なる補助部とを含む永久磁石部材が提供される。ここで、補助部の形状は、前記切り落とされた形状であることが好ましい。また、補助部は、前記磁石部の前記切り落とされた位置に設けることが好ましい。すなわち、前記磁石部に、永久磁石部材全体の形状が元の磁石形状(すなわち略直方体)になるように、補助部を取り付けることが好ましい。このような磁石部と補助部とを含む永久磁石部材を、本発明にかかる回転電機に組み込むことができる。これにより、以下に詳細に説明するように、固定子側をスキューさせることなく、コギングトルクを低減することができ、さらに、永久磁石部材を組み込むためのスロットの形状を、当該永久磁石部材の形状に対応する形状(すなわち略直方体)にすればよいため、回転子の製造、および回転子への当該永久磁石部材の組み込みが容易になる。また、補助部を設けて全体の形状を略直方体にすることで、組み立て易さを確保することができ、さらに出力トルクも向上するものである。また、補助部に磁性材料を用いた場合、透磁率が高いため、磁気回路上の磁路を構成することが可能である。 According to another reference embodiment of the present invention, there is provided a permanent magnet member for an embedded magnet type rotating electrical machine, including a magnet portion and an auxiliary portion having a magnetic characteristic different from that of the magnet portion. Is done. Here, the shape of the auxiliary portion is preferably the cut-off shape. Moreover, it is preferable to provide an auxiliary | assistant part in the said position cut off of the said magnet part. That is, it is preferable that the auxiliary portion is attached to the magnet portion so that the shape of the entire permanent magnet member becomes the original magnet shape (that is, a substantially rectangular parallelepiped shape). A permanent magnet member including such a magnet part and an auxiliary part can be incorporated in the rotating electrical machine according to the present invention. Thereby, as will be described in detail below, the cogging torque can be reduced without skewing the stator side, and the shape of the slot for incorporating the permanent magnet member can be changed to the shape of the permanent magnet member. Therefore, it is easy to manufacture the rotor and to incorporate the permanent magnet member into the rotor. Further, by providing an auxiliary portion and making the entire shape a substantially rectangular parallelepiped, it is possible to ensure ease of assembly and further improve output torque. In addition, when a magnetic material is used for the auxiliary portion, since the magnetic permeability is high, it is possible to configure a magnetic path on the magnetic circuit.

なお、磁石部と磁気特性の異なる補助部は、磁性体および非磁性体のいずれでもよく、磁性体を用いる場合には、着磁していない磁石を用いてもよい。非磁性体からなる補助部(以下、スペーサともいう)を用いる場合、非磁性体の材質は、樹脂(エポキシ、ポリイミドシリコーン、塩化ビニル等)、ベークライト等または、アルミ、SUS等からなる群から選択することができる。また、磁性体からなる補助部を用いる場合、磁性体の材質は、前記磁石部と同様とすることができる他、透磁率が高く鉄損が小さい材料(例えば、積層けい素鋼板等)を選択するとよい。また、本明細書にあっては、磁気特性には、磁束密度、保磁力等の他、磁化方向、磁性であるか否か、および着磁されているか否かが含まれるものとする。すなわち、磁化方向が異なる磁石からなる補助部、非磁性体からなる補助部や、着磁されていない磁性体からなる補助部も、磁石部と磁気特性の異なる補助部に含まれる。   The auxiliary portion having a magnetic characteristic different from that of the magnet portion may be either a magnetic material or a non-magnetic material. When a magnetic material is used, a magnet that is not magnetized may be used. When using an auxiliary part made of non-magnetic material (hereinafter also referred to as spacer), the material of the non-magnetic material is selected from the group consisting of resin (epoxy, polyimide silicone, vinyl chloride, etc.), bakelite, etc., or aluminum, SUS, etc. can do. When using an auxiliary part made of a magnetic material, the material of the magnetic material can be the same as that of the magnet part, and a material having a high magnetic permeability and a small iron loss (for example, a laminated silicon steel plate) is selected. Good. In the present specification, the magnetic characteristics include, in addition to the magnetic flux density, coercive force, and the like, the magnetization direction, whether or not it is magnetic, and whether or not it is magnetized. That is, an auxiliary part made of a magnet having a different magnetization direction, an auxiliary part made of a non-magnetic material, and an auxiliary part made of a non-magnetized magnetic material are also included in the auxiliary parts having magnetic properties different from those of the magnet part.

[第三の参考となる形態(スキュー、非磁性体からなる補助部)]
図5に、本発明の第三の参考となる形態にかかる永久磁石部材の模式的な斜視図を示す。(a)は、非磁性体からなる補助部を取り付ける前の磁石部を、(b)は、磁石部に非磁性体からなる補助部を取り付けた後の永久磁石部材を示す。図5に示すように、当該参考となる形態にかかる永久磁石部材10は、第二の参考となる形態と同様の形状の磁石部1を有する。さらに、当該参考となる形態にかかる永久磁石部材10は、回転対称となるように、第二の参考となる形態において切り落とされた三角柱と同一の形状のスペーサ2を、第二の参考となる形態において切り落とされた位置と同一の位置に有する。なお、非磁性体からなる補助部を用いる場合、特に以下の点で好ましい。すなわち、非磁性体で構成した場合、磁石の磁力等で回転子に吸引する力が小さくなるため回転子に磁石を挿入する際、作業性がよくなる。また、樹脂製の補助部は加工がしやすく、鉄損がない。
[Third reference form (skew, auxiliary part made of non-magnetic material)]
FIG. 5 shows a schematic perspective view of a permanent magnet member according to a third reference embodiment of the present invention. (A) shows the magnet part before attaching the auxiliary | assistant part which consists of nonmagnetic bodies, (b) shows the permanent magnet member after attaching the auxiliary | assistant part which consists of nonmagnetic bodies to a magnet part. As shown in FIG. 5, the permanent magnet member 10 according to the embodiment becomes the reference has a magnet unit 1 of the same shape and form as the second reference. Further, the permanent magnet member 10 according to the embodiment becomes the reference, so as to be rotationally symmetrical, the spacer 2 of the second identical shape triangular prism and which cut off in the form that can be used as a guide, the second reference embodiment In the same position as the position cut off. In addition, when using the auxiliary | assistant part which consists of nonmagnetic materials, it is especially preferable at the following points. That is, when the nonmagnetic material is used, the force attracted to the rotor by the magnetic force of the magnet is reduced, so that workability is improved when the magnet is inserted into the rotor. In addition, the resin auxiliary part is easy to process and there is no iron loss.

[第の実施の形態(スキュー、着磁磁石からなる補助部)]
図6に、本発明の第の実施の形態にかかる永久磁石部材の模式的な斜視図を示す。図6に示すように、当該実施の形態にかかる永久磁石部材10は、第二の参考となる形態と同様の形状の磁石部1を有する。さらに、当該実施の形態にかかる永久磁石部材10は、回転対称となるように、第二の参考となる形態において切り落とされた三角柱と同一の形状で、磁石部とは磁化方向が異なる磁石からなる補助部2を、第二の参考となる形態において切り落とされた位置と同一の位置に有する。ここで、図中、矢印で示すように、磁石部の磁化方向は、回転電機に組み込んだ際に、回転電機の径方向と実質的に平行な方向であり、補助部の磁化方向は、磁石部の磁化方向および回転電機の回転軸と垂直な方向であって、各補助部から磁石部へ向かう向きである。
[ First Embodiment (Auxiliary Part Consisting of Skew and Magnetized Magnet)]
FIG. 6 shows a schematic perspective view of the permanent magnet member according to the first embodiment of the present invention. As shown in FIG. 6, the permanent magnet member 10 according to this embodiment has a magnet portion 1 having the same shape as that of the second reference embodiment. Further, the permanent magnet member 10 according to the embodiment is made of a magnet having the same shape as the triangular prism cut off in the second reference form so as to be rotationally symmetric and having a different magnetization direction from the magnet part. The auxiliary part 2 has the same position as the position cut off in the second reference form. Here, as shown by the arrows in the figure, the magnetization direction of the magnet portion is a direction substantially parallel to the radial direction of the rotating electrical machine when incorporated in the rotating electrical machine, and the magnetization direction of the auxiliary portion is a magnet. It is a direction perpendicular to the magnetization direction of the part and the rotation axis of the rotating electrical machine, and is directed from each auxiliary part to the magnet part.

図6に示すように、磁石の磁化方向が異なる磁石を接合させることによってもコギングトルクを低減することができる。これにより、永久磁石部材の端部における回転電機の径方向の磁束を低減し、磁束の変化を緩和することができる。また、上記したように、磁化方向の異なる磁石からなる補助部を用いることによって磁束を集中させ、最大磁束密度を向上させることが出来、これにより、出力を大きく変えることなくコギングトルクを大幅に減らすことが可能となる。なお、補助部の磁化方向は、磁石部の磁化方向と異なれば、特に限定されるものではないが、特にハルバック型の磁束を集中させる方向を有する磁化が、垂直および横方向の両者を持つ接合方法が好ましい。すなわち、磁石部の磁化方向を、回転電機に組み込んだ際に、回転電機の径方向と実質的に平行な方向であって、ギャップ側に向かう向きとし、補助部の磁化方向を、磁石部の磁化方向および回転電機の回転軸と垂直な方向であって、各補助部から磁石部へ向かう向きとすることができる。また、その逆に、磁石部の磁化方向を、回転電機に組み込んだ際に、回転電機の径方向と実質的に平行な方向であって、ギャップ側から離れる向きとし、補助部の磁化方向を、磁石部の磁化方向および回転電機の回転軸と垂直な方向であって、各補助部から磁石部から離れる向きとすることができる。なお、第の実施の形態に示したように、上記の磁化方向または磁気特性が異なる磁石を用いる場合にあっても、本発明の第一の参考となる形態と同じように、回転軸方向の磁石部の断面形状等を連続的に変化させる磁石片を用いることができる。 As shown in FIG. 6, the cogging torque can also be reduced by joining magnets having different magnetization directions. Thereby, the magnetic flux of the radial direction of the rotary electric machine in the edge part of a permanent magnet member can be reduced, and the change of magnetic flux can be relieve | moderated. Further, as described above, by using the auxiliary portion made of magnets having different magnetization directions, the magnetic flux can be concentrated and the maximum magnetic flux density can be improved, thereby greatly reducing the cogging torque without greatly changing the output. It becomes possible. The magnetization direction of the auxiliary portion is not particularly limited as long as it is different from the magnetization direction of the magnet portion. However, the magnetization having a direction in which a Hullback type magnetic flux is concentrated is a junction having both vertical and lateral directions. The method is preferred. That is, when the magnetization direction of the magnet part is incorporated in the rotating electrical machine, it is a direction substantially parallel to the radial direction of the rotating electrical machine and directed toward the gap side, and the magnetization direction of the auxiliary part is It can be a direction perpendicular to the magnetization direction and the rotation axis of the rotating electrical machine and directed from each auxiliary portion to the magnet portion. Conversely, when the magnetization direction of the magnet part is incorporated in the rotating electrical machine, it is a direction substantially parallel to the radial direction of the rotating electrical machine and away from the gap side, and the magnetization direction of the auxiliary part is The direction of magnetization of the magnet part and the direction perpendicular to the rotation axis of the rotating electrical machine can be away from the magnet part from each auxiliary part. As shown in the first embodiment, even in the case of using magnets having different magnetization directions or magnetic characteristics, the direction of the rotation axis is the same as in the first reference embodiment of the present invention. A magnet piece that continuously changes the cross-sectional shape and the like of the magnet portion can be used.

[第四の参考となる形態(スキュー、非着磁磁石からなる補助部)]
また、上記したように、補助部に磁性体を用いる場合には、着磁していない磁石を用いてもよい。すなわち、図5に示した第三の参考となる形態にあっては、非磁性体からなる補助部を用いたものを示したが、非磁性体からなる補助部に代えて、未着磁の磁石からなる補助部を用いることもできる(第四の参考となる形態、図示せず)。このような永久磁石部材は、未着磁の所定の形状に切り落とされた磁石部に、未着磁の磁石からなる補助部を接合し、着磁したい領域(磁石部)のみにヨークをつけることで部分的に着磁することで製造することができる。また、着磁された所定の形状に切り落とされた磁石部に、未着磁の磁石からなる補助部を接合することでも、着磁部分および未着磁部分を有する永久磁石部材を製造することができる。このように、前記磁石部と前記補助部が一体物であり、前記補助部が着磁されていない態様、換言すると前記永久磁石部材のうち、前記補助部とする領域を着磁することなしに、前記磁石部とする領域のみを着磁することで磁石部が設ける態様にあっては、磁石部と補助部とで同一の材料を用いることができ、加工性が低下することや、温度上昇時に熱などの外乱によって、部材ごとの膨張係数の違いから接着層が破損することを防ぐことができる。
[ Fourth Reference Form (Scue, Auxiliary Part Consisting of Non-Magnetized Magnet)]
As described above, when a magnetic material is used for the auxiliary portion, a magnet that is not magnetized may be used. That is, in the third reference form shown in FIG. 5, the auxiliary part made of a non-magnetic material is used. An auxiliary portion made of a magnet can also be used ( fourth reference form, not shown). In such a permanent magnet member, an auxiliary portion made of an unmagnetized magnet is joined to a magnet portion cut into a predetermined shape that is not magnetized, and a yoke is attached only to an area (magnet portion) that is desired to be magnetized. It can be manufactured by partially magnetizing with. Further, a permanent magnet member having a magnetized portion and an unmagnetized portion can be manufactured by joining an auxiliary portion made of an unmagnetized magnet to a magnet portion cut into a predetermined magnetized shape. it can. In this way, the magnet part and the auxiliary part are integrated, and the auxiliary part is not magnetized, in other words, without magnetizing the area of the permanent magnet member as the auxiliary part. In the embodiment in which the magnet part is provided by magnetizing only the region to be the magnet part, the same material can be used for the magnet part and the auxiliary part, resulting in a decrease in workability and an increase in temperature. It is possible to prevent the adhesive layer from being damaged due to a difference in expansion coefficient among members due to disturbances such as heat.

なお、磁石部および補助部の製造等にあっては、永久磁石の加工に用いられる任意の方法を用いることができ、具体的には、内外周研磨およびワイヤーカットもしくはウォータジェット等の加工方法により、所望の形状になるように加工することができる。また、上記したように、磁石部に補助部を接合させる際には、エポキシ、シリコーン等の耐熱性接着剤を接着面に塗布して接着させることができ、その他、機械的締結や樹脂および樹脂テープ等で固めてしまうことも可能である。   In the manufacture of the magnet part and the auxiliary part, any method used for processing the permanent magnet can be used, and specifically, by a processing method such as inner and outer periphery polishing and wire cutting or water jet. Can be processed into a desired shape. In addition, as described above, when the auxiliary portion is joined to the magnet portion, a heat-resistant adhesive such as epoxy or silicone can be applied and adhered to the adhesive surface, and in addition, mechanical fastening or resin and resin It can also be hardened with a tape or the like.

上記したように、本発明の他の側面によると、前記永久磁石部材を備える磁石埋め込み型回転電機が提供される。図7に、本発明にかかる磁石埋め込み型回転電機の概念的な斜視図を示す。すなわち、本発明にかかる磁石埋め込み型回転電機は、回転子20と固定子(図示せず)とを含む。固定子には、回転磁界を形成するためのコイル30を複数設ける。上記したように、本発明によると、コイル等をスキューさせる必要はないが、スキューさせてもよい。固定子は、従来と同様とすることができるため、詳細な説明は省略する。回転子20は、前記永久磁石部材を挿入するための複数のスロットを有する。図中、矢印で、永久磁石部材を挿入する方向を示す。なお、後述するように、永久磁石部材は、上記永久磁石部材の複数を回転軸方向に並べた形状とすることもできる。スロットの形状は、前記永久磁石部材に対応させる、すなわち、略直方体とすることができる。スロットの位置、数その他の回転子については、従来と同様とすることができるため、詳細な説明は省略する。   As described above, according to another aspect of the present invention, a magnet-embedded rotating electrical machine including the permanent magnet member is provided. FIG. 7 is a conceptual perspective view of a magnet-embedded rotating electrical machine according to the present invention. That is, the magnet-embedded rotating electrical machine according to the present invention includes a rotor 20 and a stator (not shown). The stator is provided with a plurality of coils 30 for forming a rotating magnetic field. As described above, according to the present invention, the coil or the like need not be skewed, but may be skewed. Since the stator can be the same as the conventional one, detailed description is omitted. The rotor 20 has a plurality of slots for inserting the permanent magnet members. In the drawing, the direction in which the permanent magnet member is inserted is indicated by an arrow. As will be described later, the permanent magnet member may have a shape in which a plurality of the permanent magnet members are arranged in the rotation axis direction. The shape of the slot can correspond to the permanent magnet member, that is, can be a substantially rectangular parallelepiped. The slot position, number, and other rotors can be the same as those in the prior art, and a detailed description thereof will be omitted.

以下に、本発明の実施例を、添付図面を参照しながら説明する。もっとも、以下に説明する実施例は本発明を限定するものではない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. However, the embodiments described below do not limit the present invention.

定格出力140kW、定格電流108A、定格回転数2550rpmの鉄道車両駆動用電動機であって、本発明にかかる永久磁石部材を用いたもの(実施例)、および、直方体の永久磁石部材を用いたもの(比較例)のコギングトルクの変動を測定した。実験には、2極対の回転子で、磁石個数が8個の永久磁石埋め込み式インナー回転子電動機を用いた。また、実験には、信越化学社製のNd−Fe−B系磁石N36UH(Br1.18T、保磁力iHc25000 Oe)であって、長さ約200×幅約70×厚さ約20mmの直方体の永久磁石片を用いた。   An electric motor for driving a railway vehicle having a rated output of 140 kW, a rated current of 108 A, and a rated rotational speed of 2550 rpm, using a permanent magnet member according to the present invention (Example), and using a rectangular permanent magnet member ( The variation of the cogging torque in Comparative Example) was measured. In the experiment, a permanent magnet embedded type inner rotor motor having two magnets and two magnets was used. In the experiment, a Nd-Fe-B magnet N36UH (Br1.18T, coercive force iHc25000 Oe) manufactured by Shin-Etsu Chemical Co., Ltd., having a rectangular parallelepiped permanent length of about 200 × width of about 70 × thickness of about 20 mm. A magnet piece was used.

参考例1(スキュー、補助部なし)]
図8に、参考例1にかかる永久磁石部材の模式図を示す。図8は、磁石部の磁化方向が紙面に垂直となる方向から示したものである。参考例1にあっては、図8に示すように、永久磁石部材は、第二の参考となる形態に準じるスキューさせた形状とした。具体的な大きさは、図中に示した。
[ Reference Example 1 (skew, no auxiliary part)]
In FIG. 8, the schematic diagram of the permanent magnet member concerning the reference example 1 is shown. FIG. 8 shows the direction of magnetization of the magnet portion from the direction perpendicular to the paper surface. In Reference Example 1, as shown in FIG. 8, the permanent magnet member has a skewed shape in accordance with the second reference form. Specific sizes are shown in the figure.

参考例2(スロープ、補助部なし)]
図9((a)平面図、(b)側面図、(c)正面図)に、参考例2にかかる永久磁石部材の模式図を示す。図9(a)は、磁石部の磁化方向が紙面に垂直となる方向から示したものである。参考例2にあっては、図9に示すように、永久磁石部材は、第一の実施の形態に準じるスロープを有する形状とした。具体的な大きさは、図中に示した。
[ Reference Example 2 (no slope, no auxiliary part)]
FIG. 9 ((a) plan view, (b) side view, (c) front view) shows a schematic diagram of a permanent magnet member according to Reference Example 2. FIG. FIG. 9A shows the direction of magnetization of the magnet portion from the direction perpendicular to the paper surface. In Reference Example 2, as shown in FIG. 9, the permanent magnet member has a shape having a slope according to the first embodiment. Specific sizes are shown in the figure.

参考例3(スキュー、補助部なし)]
図10に、参考例3にかかる永久磁石部材の模式図を示す。図10は、磁石部の磁化方向が紙面に垂直となる方向から示したものである。参考例3にあっては、図10に示すように、永久磁石部材は、第二の参考となる形態に準じるスキューさせた形状とした。ただし、切り落とされた形状(三角柱)の回転子の回転軸方向の長さを、永久磁石部材の回転子の回転軸方向の長さの半分とした。これにより、参考例3では、スキューを設けることで減少する磁石体積が、参考例1と比べて軽減する。なお、具体的な大きさは、図中に示した。
[ Reference Example 3 (skew, no auxiliary part)]
In FIG. 10, the schematic diagram of the permanent magnet member concerning the reference example 3 is shown. FIG. 10 shows the direction of magnetization of the magnet section from the direction perpendicular to the paper surface. In Reference Example 3, as shown in FIG. 10, the permanent magnet member has a skewed shape in accordance with the second reference form. However, the length in the rotation axis direction of the rotor having the cut shape (triangular prism) was set to half the length in the rotation axis direction of the rotor of the permanent magnet member. Thereby, in the reference example 3, the magnet volume which decreases by providing the skew is reduced compared to the reference example 1. The specific size is shown in the figure.

参考例4(スキュー、非磁性体からなる補助部)]
図11に、参考例4にかかる永久磁石部材の模式図を示す。図11は、磁石部の磁化方向が紙面に垂直となる方向から示したものである。参考例4にあっては、図11に示すように、永久磁石部材は、磁石部1と補助部2とからなるものとした。磁石部1は、直方体の永久磁石片から、回転対称となるように2つの三角柱を切り落としたものを、回転電動機の回転軸方向に2つ並べた形状とした。切り落とす三角柱の大きさは、図中に示した。補助部2は、切り落とされた形状に対応する形状を有し、非磁性体(ポリイミド樹脂)からなるものとした。
[ Reference Example 4 (skew, auxiliary part made of non-magnetic material)]
In FIG. 11, the schematic diagram of the permanent magnet member concerning the reference example 4 is shown. FIG. 11 shows the direction of magnetization of the magnet portion from the direction perpendicular to the paper surface. In Reference Example 4, as shown in FIG. 11, the permanent magnet member is composed of a magnet part 1 and an auxiliary part 2. The magnet unit 1 is formed by cutting two triangular prisms from a rectangular parallelepiped permanent magnet piece so as to be rotationally symmetrical and arranging them in the direction of the rotation axis of the rotary motor. The size of the triangular prism to be cut off is shown in the figure. The auxiliary portion 2 has a shape corresponding to the cut-off shape and is made of a non-magnetic material (polyimide resin).

トルクの測定は、糸で錘をつるし、それを回転子につなげてロードセルで力を測ることにより行った。具体的には、回転軸に紐をつけ、その紐に滑車を介して錘を取り付けた。錘の自重で紐を引っ張りながら紐の中間に設置してあるロードセルに加わる力を測定することによって、コギングトルクを測定した。錘の重さは20kgとした。   The torque was measured by hanging a weight with a thread, connecting it to a rotor, and measuring the force with a load cell. Specifically, a string was attached to the rotating shaft, and a weight was attached to the string via a pulley. The cogging torque was measured by measuring the force applied to the load cell installed in the middle of the string while pulling the string with its own weight. The weight of the weight was 20 kg.

図12に、参考例1〜4および比較例におけるコギングトルク波形の測定の結果を示す。図12から明らかなように、本発明によると、コギングトルクを低減することができた。 In FIG. 12, the result of the measurement of the cogging torque waveform in the reference examples 1 to 4 and the comparative example is shown. As can be seen from FIG. 12, according to the present invention, the cogging torque could be reduced.

また、参考例1,4および比較例における定格時のモータトルク特性を以下のように測定した。すなわち、電動機を動力計に連結して、定格トルクが得られるように調整し、このときの動力計のトルク脈動分を測定した。なお、電流値は324Aとした。図13に、比較例、ならびに参考例1および4の定格時の出力トルク波形を示す。この結果から、本発明によると、コギングトルクが減少でき、さらに出力トルクを向上させることができることが示される。 Moreover, the motor torque characteristics at the time of rating in Reference Examples 1 and 4 and the Comparative Example were measured as follows. That is, the motor was connected to a dynamometer and adjusted so as to obtain a rated torque, and the torque pulsation of the dynamometer at this time was measured. The current value was 324A. In FIG. 13, the output torque waveform at the time of rating of the comparative example and the reference examples 1 and 4 is shown. This result shows that according to the present invention, the cogging torque can be reduced and the output torque can be further improved.

[実施例5(スキュー、着磁磁石からなる補助部)]
また、実施例5にあっては、永久磁石部材は、第の実施の形態に準じる形状とした(図6参照)。すなわち、第二の参考となる形態に準じるスキューさせた形状の磁石部1と、切り落とされた形状に対応する補助部2とを有する永久磁石部材を用いた。各補助部2として、横方向に着磁した磁石、すなわち、磁石部1の着磁方向と垂直で、回転子の回転軸方向と垂直な方向(図11において、左右方向)であって、磁石部1に向かう向きに着磁した磁石(特性は、磁石部と同じ)を用いた。
[Embodiment 5 (skew, auxiliary part made of magnetized magnet)]
Moreover, in Example 5, the permanent magnet member was made into the shape according to 1st embodiment (refer FIG. 6). That is, a permanent magnet member having a skewed magnet portion 1 according to the second reference form and an auxiliary portion 2 corresponding to the cut-off shape was used. As each auxiliary portion 2, a magnet magnetized in the lateral direction, that is, a magnet perpendicular to the magnetizing direction of the magnet portion 1 and perpendicular to the rotation axis direction of the rotor (the left-right direction in FIG. 11), A magnet magnetized in the direction toward part 1 (characteristics are the same as those of the magnet part) was used.

参考例6(スキュー、磁性体からなる補助部)]
図14に、参考例6にかかる永久磁石部材の模式的な斜視図を示す。参考例6にあっては、補助部2として珪素鋼板50A470を用いた以外は、実施例5と同様とした永久磁石部材を用いた。具体的な大きさは、図中に示した。
[ Reference Example 6 (skew, auxiliary part made of magnetic material)]
In FIG. 14, the typical perspective view of the permanent magnet member concerning the reference example 6 is shown. In Reference Example 6, a permanent magnet member similar to that in Example 5 was used except that silicon steel plate 50A470 was used as auxiliary part 2. Specific sizes are shown in the figure.

実施例5,参考例6について、上記参考例1〜4と同様に、コギングトルク波形を測定した。図15に、実施例5,参考例6および比較例におけるコギングトルク波形の測定の結果を示す。また、実施例5,参考例6について、電流値を108Aとした以外は上記参考例1,2と同様に、定格時のモータトルク特性を測定した。図16に、実施例5,参考例6および比較例における定格時の出力トルク波形を示す。図15に示すように、比較例と比べて、実施例5,参考例6ではコギングトルクがより低減されていることが分かる。また、図16に示すように、実施例5と比べて、参考例6では、着磁された磁石の体積が減少するので、モータの出力トルクも減少する。一方で、比較例では、コギングトルクが大きくなるが、出力も最も大きくなる。これらに対して、実施例5では、コギングトルクを軽減させる効果を得ることができると同時に、出力トルクの減少を最小限にとどめることができる。すなわち、実施例5のように、補助部に着磁された磁石を用いることで、出力トルクを減少させることなしに、コギングトルクを低減させることができ、バランスのとれたモータを得ることができる。このように、実施例5,参考例6では、コギングトルクを小さくすることができ、特に実施例5では、さらに出力トルクの減少も少なく抑えることができるため、特に実用的である。なお、上記したように、補助部を非磁性材料や軟磁性材料等で構成することも考えられる。 For Example 5 and Reference Example 6 , the cogging torque waveform was measured as in Reference Examples 1 to 4 above. FIG. 15 shows the results of measurement of cogging torque waveforms in Example 5, Reference Example 6 and Comparative Example. For Example 5 and Reference Example 6 , the motor torque characteristics at the time of rating were measured as in Reference Examples 1 and 2 except that the current value was 108A. FIG. 16 shows output torque waveforms at the time of rating in Example 5, Reference Example 6 and Comparative Example. As shown in FIG. 15, it can be seen that the cogging torque is further reduced in Example 5 and Reference Example 6 compared to the comparative example. Also, as shown in FIG. 16, compared to Example 5, in Reference Example 6 , the volume of the magnetized magnet is reduced, so that the output torque of the motor is also reduced. On the other hand, in the comparative example, the cogging torque is increased, but the output is also maximized. On the other hand, in the fifth embodiment, the effect of reducing the cogging torque can be obtained, and at the same time, the decrease in the output torque can be minimized. That is, as in the fifth embodiment, by using a magnet magnetized in the auxiliary portion, the cogging torque can be reduced without reducing the output torque, and a balanced motor can be obtained. . As described above, in Example 5 and Reference Example 6 , the cogging torque can be reduced, and particularly in Example 5, the decrease in the output torque can be further suppressed to be small, which is particularly practical. As described above, it is conceivable that the auxiliary portion is made of a nonmagnetic material or a soft magnetic material.

本発明の第一の参考となる形態にかかる永久磁石部材の模式的な斜視図を示す。(a)は、切り落とす前の形状を、(b)は、切り落とした後の形状を示す。The typical perspective view of the permanent magnet member concerning the form used as the 1st reference of the present invention is shown. (A) shows the shape before cutting off, (b) shows the shape after cutting off. 本発明の第二の参考となる形態にかかる永久磁石部材の模式的な斜視図を示す。(a)は、切り落とす前の形状を、(b)は、切り落とした後の形状を示す。The typical perspective view of the permanent magnet member concerning the form used as the 2nd reference of the present invention is shown. (A) shows the shape before cutting off, (b) shows the shape after cutting off. 本発明にかかる永久磁石部材を組み込んだ回転子の模式的な平面図を示す。The typical top view of the rotor incorporating the permanent magnet member concerning the present invention is shown. 本発明にかかる永久磁石部材を組み込んだ回転子の模式的な斜視図を示す。The typical perspective view of the rotor incorporating the permanent magnet member concerning the present invention is shown. 本発明の第三の参考となる形態にかかる永久磁石部材の模式的な斜視図を示す。(a)は、非磁性体からなる補助部を取り付ける前の磁石部を、(b)は、磁石部に非磁性体からなる補助部を取り付けた後の永久磁石部材を示す。The typical perspective view of the permanent magnet member concerning the form used as the 3rd reference of the present invention is shown. (A) shows the magnet part before attaching the auxiliary | assistant part which consists of nonmagnetic bodies, (b) shows the permanent magnet member after attaching the auxiliary | assistant part which consists of nonmagnetic bodies to a magnet part. 本発明の第の実施の形態にかかる永久磁石部材の模式的な斜視図を示す。The typical perspective view of the permanent magnet member concerning a first embodiment of the present invention is shown. 本発明にかかる磁石埋め込み型回転電機の概念的な斜視図を示す。1 shows a conceptual perspective view of a magnet-embedded rotating electrical machine according to the present invention. 参考例1にかかる永久磁石部材の模式図を示す。The schematic diagram of the permanent magnet member concerning the reference example 1 is shown. 参考例2にかかる永久磁石部材の模式図を示す。The schematic diagram of the permanent magnet member concerning the reference example 2 is shown. 参考例3にかかる永久磁石部材の模式図を示す。The schematic diagram of the permanent magnet member concerning the reference example 3 is shown. 参考例4にかかる永久磁石部材の模式図を示す。The schematic diagram of the permanent magnet member concerning the reference example 4 is shown. 参考例1〜4および比較例におけるコギングトルク波形の測定の結果を示す。The result of the measurement of the cogging torque waveform in the reference examples 1 to 4 and the comparative example is shown. 参考例1,2および比較例における定格時の出力トルク波形を示す。The output torque waveform at the time of rating in Reference Examples 1 and 2 and the Comparative Example is shown. 参考例6にかかる永久磁石部材の模式的な斜視図を示す。 The typical perspective view of the permanent magnet member concerning the reference example 6 is shown. 実施例5,参考例6および比較例におけるコギングトルク波形の測定の結果を示す。The measurement result of the cogging torque waveform in Example 5, Reference Example 6 and Comparative Example is shown. 実施例5,参考例6および比較例における定格時の出力トルク波形を示す。The output torque waveform at the time of rating in Example 5, Reference Example 6 and Comparative Example is shown.

符号の説明Explanation of symbols

1:磁石部
2:補助部
10:永久磁石部材
10a:永久磁石部材上面
10b:永久磁石部材下面
11:切り落とされる三角錐
12:切り落とされる三角柱
20:回転子
21:スロット
30:コイル
1: Magnet part 2: Auxiliary part 10: Permanent magnet member 10a: Upper surface of permanent magnet member 10b: Lower surface of permanent magnet member 11: Triangular pyramid 12 cut off: Triangular prism 20 cut off: Rotor 21: Slot 30: Coil

Claims (4)

埋め込み磁石型回転電機用の永久磁石部材であって、磁石部を含み、該磁石部が、回転電機に組み込まれた際に、該回転電機の回転軸に垂直な平面における該磁石部の断面の形状、および/または該断面の該回転軸に対する位置関係が連続的に変化している形状を有し、前記磁石部は、略直方体から角部を切り落とした形状をなし、該切り落とされた位置に、前記磁石部と磁気特性が異なり、前記切り落とされた角部の形状と同一形状を有する補助部をさらに含み、前記補助部が、前記磁石部とは磁化方向が異なる磁石からなる永久磁石部材。 A permanent magnet member for an embedded magnet type rotating electrical machine, including a magnet part, and when the magnet part is incorporated in the rotating electrical machine, a cross-section of the magnet part in a plane perpendicular to the rotation axis of the rotating electrical machine The shape and / or the position of the cross section relative to the rotational axis has a continuously changing shape, and the magnet portion has a shape in which a corner portion is cut off from a substantially rectangular parallelepiped, and is in the cut-off position. The permanent magnet member further includes an auxiliary portion having a magnetic characteristic different from that of the magnet portion and having the same shape as the cut-off corner portion, and the auxiliary portion is made of a magnet having a different magnetization direction from the magnet portion. . 前記磁石部の形状が、略直方体から、該略直方体の少なくとも1つの辺を含む略三角柱を少なくとも1つ切り落とした形状である請求項1に記載の永久磁石部材。 Wherein the shape of the magnet portion, the substantially rectangular parallelepiped permanent magnet member according to claim 1 substantially triangular prism comprising at least one side of said substantially rectangular at least one cut off shape. 前記磁石部の形状が、略直方体から、該略直方体の少なくとも1つの頂点を含む略三角錐を少なくとも1つ切り落とした形状である請求項に記載の永久磁石部材。 2. The permanent magnet member according to claim 1 , wherein the shape of the magnet portion is a shape obtained by cutting off at least one substantially triangular pyramid including at least one vertex of the substantially rectangular parallelepiped from a substantially rectangular parallelepiped. 請求項1〜3のいずれかに記載の永久磁石部材を備える磁石埋め込み型回転電機。   A magnet-embedded rotary electric machine comprising the permanent magnet member according to claim 1.
JP2005164914A 2005-06-06 2005-06-06 Permanent magnet member for embedded magnet type rotating electrical machine and rotating electrical machine Active JP4850439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005164914A JP4850439B2 (en) 2005-06-06 2005-06-06 Permanent magnet member for embedded magnet type rotating electrical machine and rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005164914A JP4850439B2 (en) 2005-06-06 2005-06-06 Permanent magnet member for embedded magnet type rotating electrical machine and rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2006340556A JP2006340556A (en) 2006-12-14
JP4850439B2 true JP4850439B2 (en) 2012-01-11

Family

ID=37560603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005164914A Active JP4850439B2 (en) 2005-06-06 2005-06-06 Permanent magnet member for embedded magnet type rotating electrical machine and rotating electrical machine

Country Status (1)

Country Link
JP (1) JP4850439B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007032140A1 (en) * 2007-06-30 2009-01-02 Robert Bosch Gmbh Electric machine
JP6017885B2 (en) * 2012-08-24 2016-11-02 オークマ株式会社 Synchronous motor rotor
KR20180105901A (en) 2017-03-16 2018-10-01 엘지전자 주식회사 Interior Permanent Magnet typed rotor, Interior Permanent Magnet typed motor, and compressor having the same
KR102126315B1 (en) * 2019-06-28 2020-06-24 엘지전자 주식회사 Electric motor, compressor with electric motor and air conditioner having the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308147A (en) * 1996-05-10 1997-11-28 Yaskawa Electric Corp Rotor of inner magnet-type motor
JPH10174324A (en) * 1996-12-06 1998-06-26 Matsushita Electric Ind Co Ltd Permanent-magnet rotor
US6713922B2 (en) * 2000-12-29 2004-03-30 Otis Elevator Company Integrally skewed permanent magnet for use in an electric machine
JP4097902B2 (en) * 2001-02-06 2008-06-11 三菱電機株式会社 Rotor and compressor of permanent magnet motor and refrigeration cycle
JP4113353B2 (en) * 2001-11-29 2008-07-09 澤藤電機株式会社 Rotating electric machine

Also Published As

Publication number Publication date
JP2006340556A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP5521820B2 (en) Rotating electric machine and manufacturing method thereof
JP6508168B2 (en) Electric rotating machine
JP5663936B2 (en) Permanent magnet rotating electric machine
JP4720982B2 (en) Axial air gap type electric motor
JP5646119B1 (en) Permanent magnet type rotating electric machine
JP5502571B2 (en) Permanent magnet rotating electric machine
JP5370313B2 (en) Linear motor
JP5813254B2 (en) Permanent magnet rotating electric machine
TWI459686B (en) Permanent-magnet type synchronous motor
CN103066719B (en) A kind of magneticfocusing stator permanent magnetic type vernier motor
JP2011091911A (en) Permanent-magnet rotary electric machine
JP2009050148A (en) Permanent-magnet electric motor with constant output in wide range
JP4850439B2 (en) Permanent magnet member for embedded magnet type rotating electrical machine and rotating electrical machine
JP2005328679A (en) Permanent magnet reluctance type rotating electric machine
JP2013115899A (en) Rotor of permanent magnet type motor, manufacturing method of the same, and permanent magnet type motor
WO2013065275A1 (en) Rotor for motor and motor provided with same
JP3772819B2 (en) Coaxial motor rotor structure
JP2006081377A (en) Rotor of rotary electric machine
JP2009247041A (en) Rotating machine
JP2007228771A (en) Permanent magnet type motor
JP2008187863A (en) Axial gap rotary electric machine and compressor
JP5151183B2 (en) Axial gap type rotating electric machine and compressor
JP2008054489A (en) Axial-gap type rotating machine and compressor for air-conditioning for mounting the same, blower, and automobile
JP5750995B2 (en) Synchronous motor
JP5740250B2 (en) Permanent magnet rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110922

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111019

R150 Certificate of patent or registration of utility model

Ref document number: 4850439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250