JP4849709B2 - Measuring device for flatness etc. - Google Patents

Measuring device for flatness etc. Download PDF

Info

Publication number
JP4849709B2
JP4849709B2 JP2000303400A JP2000303400A JP4849709B2 JP 4849709 B2 JP4849709 B2 JP 4849709B2 JP 2000303400 A JP2000303400 A JP 2000303400A JP 2000303400 A JP2000303400 A JP 2000303400A JP 4849709 B2 JP4849709 B2 JP 4849709B2
Authority
JP
Japan
Prior art keywords
light beam
reflected light
measurement object
measurement
optical sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000303400A
Other languages
Japanese (ja)
Other versions
JP2002107116A (en
Inventor
芳男 市川
進 中谷
Original Assignee
株式会社 コアーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 コアーズ filed Critical 株式会社 コアーズ
Priority to JP2000303400A priority Critical patent/JP4849709B2/en
Publication of JP2002107116A publication Critical patent/JP2002107116A/en
Application granted granted Critical
Publication of JP4849709B2 publication Critical patent/JP4849709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主にICチップなどの多数のピンの主に平坦度をレーザー変位センサーなどにより測定する平坦度等測定装置に関する。
【0002】
【従来技術】
従来技術においては、例えばICチップなどの多数のピンの平坦度を測定する場合、平坦基準板の上にピンを上にしてチップを置き、ピンの上方に設けたレーザー変位センサーからレーザーを各ピンに当て各ピンの位置を測定するものであった。
【0003】
【発明が解決しようとする課題】
上述した従来技術においては、平坦基準面を仮想(仮想平坦基準面)により決めなければならないものであった。例えば、四角形のそれぞれの辺に多数のピン(リード:一辺に40極など)を有するチップの場合においては、検出されたピンの位置からそれぞれの辺で最も上方に出ているピンを検出して、その中で最も出ていないピンを除く3本のピンの頂点を結んだ三角形平面を平坦基準面とする仮想平坦基準面を決め、その仮想平坦基準面からそれぞれのピンがどの程度の距離凹んだ部位にあるかを測定するというものであった。このため、光学測定の「中央列の測定ができない」、空間測定の「複数列での真の基準面が不明」という問題を持つものであった。こうした従来技術は、図10に示すようにチップ本体に反りなどがある場合には、その反りにより仮想平坦基準面そのものが間違ったものとなるので、結果、浮き基準を越える浮きピンが生じることが多くなり、ピンを平坦な実装基盤上に置いて(実装する段階)、半田付けしたりコネクターにはめ込むことになり、実装不良を多く発生させるなどの問題を持つものであった。
【0004】
本発明は以上のような従来技術の持つ問題点に鑑みてなされたものであって、その目的は、絶対平坦(平面)基準面によるチップのピン等の位置の測定を可能とする平坦度等測定装置を提供するにある。
【0005】
【課題を解決するための手段】
本発明は上述した目的を達成するために次ぎに述べるようになっている。
レーザー光線からなる特定光線を照射すると共に測定対象物に当たった該特定光線の反射光線をピント合わせによって感知するレーザーオートフォーカスセンサーである光センサーと、
この光センサーを水平移動させる駆動部と、
前記光センサーの水平移動面と平行に設けられた光透過性平面板と、
この光透過性平面板の外側面からなる前記測定対象物を直接置く平坦基準面と、
前記光センサーから照射され前記光透過性平面板を透過しようとする前記特定光線の一部が第1反射面である前記平坦基準面で反射して該光センサーが感知可能な第1の反射光線が得られると共に、前記光透過性平面板を透過した前記特定光線が第2反射面である前記測定対象物の測定部分で反射して前記光センサーが感知可能な前記第1の反射光線よりも強い第2の反射光線が得られるようにするための、前記光透過性平面板の両面に施された前記特定光線である特定波長域光線の所定の透過特性を得るための蒸着膜などの薄膜とからなるとともに
前記測定対象物のある箇所での前記第1の反射光線と前記第2の反射光線がある状態では、弱い反射光線である前記第1の反射光線には前記ピント合わせがされず、強い反射光線である前記第2の反射光線に前記ピント合わせがされて該第2の反射光線が計測でき、かつ、前記測定対象物の無い箇所では前記第1の反射光線に前記ピント合わせがされて該第1の反射光線が計測できるように、弱い反射光線である前記第1の反射光線と強い反射光線である前記第2の反射光線の関係になるように前記透過特性が設定され
前記第1の反射光線の感知データーにより平坦基準点を演算し、前記第2の反射光線の感知データーにより前記平坦基準点から測定対象物の測定点までの距離を演算するようにしてなることを特徴とする平坦度等測定装置である。
【0006】
平坦基準面に例えば4角形の全ての辺にピン(リード)を多数有するチップを、ピンを平坦基準面に直接載せるようにして置く。光センサー(例えばオートフォーカスセンサー)から特定光線を測定対象物に照射し、該測定対象物からの反射光線を光りセンサーで感知(オートフォーカスセンサーの場合はピント合わせによる)して、平坦基準面から測定対象物までの距離(浮き距離)を測定する。四辺の内で最も突き出ている3本のピンが平坦基準面に当たってチップが置かれるので、それは、そのまま平坦な実装基盤に置かれ実装される状態であるので、誤差の生じない正確なピン位置測定を実現している。
【0007】
【発明の実施の形態】
本発明の実施の形態を図面を参照しながら説明する。
<実施の形態1>図1は本発明の実施の形態1の平坦度等測定装置の構成図、図2は同じ実施の形態1の測定部分の構成図、図3は実施の形態1の測定部分の構成図、図4は図3の構成図における測定結果をモニターに波形で表示した画面図、図5、図6、図7及び図8は四辺列に多数のピンを設けてなる四角形のチップの各辺列の測定結果をモニターに表示した画面図である。
【0008】
平坦(平面)度等測定装置1は、特定光線2を照射すると共に測定対象物(体)3に当たった特定光線2の反射光線を感知する光センサー5と、この光センサー5を水平移動させる駆動部6と、光センサー5から照射された特定光線2が透過して測定対象物3に当り、その測定対象物3で反射されて戻り透過した反射光線4が光センサー5が感知できる強さとなる透過特性である、光センサー5の水平移動面と平行に設けられた光透過性平面板7と、この光透過性平面板7の外側面からなり且つ測定対象物3を直接置くための、光透過性平面板7の内側に位置する光センサー5の水平移動面と水平な平坦(平面)基準面8と、光センサー5の感知データーに基づき測定対象物3の測定部分9の平坦基準面8からの位置(浮き距離)を演算したり駆動部6等を制御したりする制御部10と、測定・制御用表示モニター11と、プリンター12とからなっていて、光センサー5から照射され光透過性平面板7を透過しようとする特定光線2の一部が平坦基準面8で反射して光センサー5が感知可能な第1の反射光線が得られると共に、光透過性平面板7を透過した特定光線2が測定対象物3で反射して光透過性平面板7を戻り透過して光センサー5が感知可能な第2の反射光線が得られるように透過性平面板7の透過特性が設定され、第1の反射光線の感知データーにより平坦基準点11を演算し、第2の反射光線の感知データーにより平坦基準点12から測定対象物3の測定部分(ピンの測定点)9までの距離を演算するようにしてなっている。
【0009】
光センサー(光変位形)5はレーザーフォーカスセンサー(フォーカス測距方式:分解能0.01μm)で、照射される特定光線2は670ナノメートルのレーザー光線を使用している。光透過性平面板7は670ナノメーターのレーザー光線である特定光線2の透過率を98パーセント以上になるように、ガラス平面板の両面にフッ化マグネシウムを主成分とする蒸着膜(真空蒸着による)が施されている。平坦基準面8からの反射は2パーセント弱となる。平坦基準面8は平坦度3μm以下程度に研磨された平坦精度に加工されている。光透過性平面板はガラス板そのままでは反射が大きくて測定対象物からの反射光線が十分に光センサーで感知できないものである。光透過性平面板の透過率は、測定対象物の光反射特性によって違うが、95パーセント以上で反射率は2パーセントから5パーセントくらいがよい。ガラス板にフッ化マグネシウム、アルミ、白金、金、銀、銅、クローム、シリコン、ニッケル、5酸化チタン、ゲルマニュウム、二酸化チタン、一酸化珪素、二酸化珪素等々の蒸着物質の蒸着(複数物質の混合、多層)により、目的とする周波数域のレーザーを目的の透過率のものとすることが出来る。これは、その会社なり作業者により違いがありノウハウによるところが大きい。
【0010】
測定対象物3が置かれた部位での照射された特定光線2は第1の反射光線と第2の反射光線とがある。これはもちろん平坦基準面8からの測定対象物の浮き上がり(距離)を調べるのであるから、第2の反射光線を測定する。この場合、第1の反射光線を避けるために該第1の反射光線を測定できる範囲からはずし第2の反射光線を測定して、平坦基準面8からの測定対象物3の浮き上がり量を最大で計測できる関係に設定してある。
【0011】
図2に示すように、測定対象物3のピン(リード)13先端である測定部分9を直接に平坦基準面8上に置いて測定するので、ピン13を実装基盤に載せ測定部分9を該実装基盤に当接した状態と同じ条件での測定となるので、それは仮想平坦基準面ではなく実際の実装条件と同じ状態での絶対的な平坦基準面(絶対平坦基準面)での測定となる。それれは、図2のごとく測定対象物20の本体が反っていても、実装基盤への実装条件と同じ測定条件による測定であるので、実際の平坦度を測定できるものである。
【0012】
図3において、一列5本のピン22で4列のピン列23、24、25、26を有する測定対象物27が平坦基準面8にセットされている。図4において、図3の測定対象物27の測定結果がモニター11に表示された測定結果画面を示している。ピン列23の2番ピン、ピン列25の5番ピン、ピン列26の3番ピンがそれぞれの列で最も突き出ているピンであるので、この3ピンが平坦基準面8に当接して絶対的な平坦基準面を形成する。この3ピンの当接部分すなわち平坦基準面8から他のピンがどれだけ浮いているかが示されている。波形が高いほど浮き距離が大きい。
【0013】
図5、図6、図7及び図8において、4角形のピン列30、31、32、33(一列15ピン)を有する測定対象物(図示せず)27の測定結果画面がモニター11に表示されている。ピン列30の4番ピン、ピン列31の14番ピン、ピン列32の8番ピンがそれぞれの列で最も突き出ているピンであるので、この3ピンが平坦基準面8に当接して絶対的な平坦基準面を形成する。この3ピンの当接部分すなわち平坦基準面8から他のピンがどれだけ浮いているかが示されている。波形が高いほど浮き距離が大きい。光センサーの特定光線の強さは調節出来るようになっている。
以下の実施の形態の説明に置いて、前述した実施の形態の構成と同じ構成については同じ符号を付しその説明を省略する。
【0014】
<実施の形態2>
図9は本発明の実施の形態2の平坦度等測定装置を示す構成図である。平坦度等測定装置40は、平坦度等測定装置1の構成に加えて、光透過性平面板7の光センサー5の対向側に該光センサー5と同じに一体的に水平移動する該光センサー5と同じ構成の光センサー41を設けた、光センサー41を垂直移動させる垂直駆動部(図示せず)と、この垂直駆動部により垂直移動した光センサー41の垂直移動距離を測定する高精度測定手段である高分解能スケールセンサー44(測定可能範囲50000μm、分解能0.005μm)が設けられている。光センサー5と光センサー41を一体的に移動させるために、水平駆動手段43は一体構成のセンサー固定アーム45に光センサー5を、センサー固定アーム46に光センサー41を固定している。センサー固定アーム45及びセンサー固定アーム46が一体的に水平移動する。測定対象物42を平坦基準面8上に置いた状態での測定対象物42の両面の平坦度及び同時に測定し且つ厚みも測定することができるものである。光センサー41を測定対象物42から外れた部位に移動させ、垂直下降させて光分解のスケールセンサー44により平坦基準面8の位置を測定し記憶する。測定対象物によっては、空き状態で平坦基準面の位置を測定してから、測定対象物を置く。光センサー44により測定対象物42の上部面を測定することにより、該上部面の形状を測定することが出来る。光センサー44により測定した上部面の位置Aを、記憶した平坦基準面位置から算出して、平坦基準面からの距離Bを得ることが出来る。平坦基準面からの距離Bから、光センサー5により測定した平坦基準面から測定対象物42の下部面までの距離(浮き距離)をマイナス演算することにより、測定対象物の厚みCを得ることが出来る。測定対象物の厚みを測定する従来技術においては、測定対象物の両側から測定光線を当ててその厚みを測定するものであったが、この場合、基準点(中位点)を決めるための高精度の校正ゲージを設け、両センサーを垂直に移動させた移動距離を測定するための高精度のスケールセンサーを設けるというものであった。すなわち、高価なスケールセンサーが二つ必要であるのでコスト高となるものであった。平坦度等測定装置40においては、この校正ゲージと一つのスケールセンサーを必要としないものであるので、装置を安価に出来るものである。
【0015】
【発明の効果】
本発明は上述したようになっているので次ぎに述べるような効果を奏する。
レーザー光線からなる特定光線を照射すると共に測定対象物に当たった該特定光線の反射光線をピント合わせによって感知するレーザーオートフォーカスセンサーである光センサーと、この光センサーを水平移動させる駆動部と、前記光センサーの水平移動面と平行に設けられた光透過性平面板と、この光透過性平面板の外側面からなる前記測定対象物を直接置く平坦基準面と、前記光センサーから照射され前記光透過性平面板を透過しようとする前記特定光線の一部が第1反射面である前記平坦基準面で反射して該光センサーが感知可能な第1の反射光線が得られると共に、前記光透過性平面板を透過した前記特定光線が第2反射面である前記測定対象物の測定部分で反射して前記光センサーが感知可能な前記第1の反射光線よりも強い第2の反射光線が得られるようにするための、前記光透過性平面板の両面に施された前記特定光線である特定波長域光線の所定の透過特性を得るための蒸着膜などの薄膜とからなるとともに前記測定対象物のある箇所での前記第1の反射光線と前記第2の反射光線がある状態では、弱い反射光線である前記第1の反射光線には前記ピント合わせがされず、強い反射光線である前記第2の反射光線に前記ピント合わせがされて該第2の反射光線が計測でき、かつ、前記測定対象物の無い箇所では前記第1の反射光線に前記ピント合わせがされて該第1の反射光線が計測できるように、弱い反射光線である前記第1の反射光線と強い反射光線である前記第2の反射光線の関係になるように前記透過特性が設定され、前記第1の反射光線の感知データーにより平坦基準点を演算し、前記第2の反射光線の感知データーにより前記平坦基準点から測定対象物の測定点までの距離を演算するようにしてなることを特徴とする平坦度等測定装置であるので、
例えばチップ本体の反りに関係なく実際に実装される実装基盤に置かれる状態での正確な総合的平坦特性を得ることが出来る。これにより、従来技術の問題点であった光学式測定の「中央列の測定ができない」、空間測定の「複数列での真の基準面が不明」という問題を解決するという効果を奏する。それは多数のピンを有するチップ等においては、不良品を確実に判別して除くことができるので、従来技術にあったようなチップ本体の反りなどの影響を受ける仮想測定条件と実際の実装条件の相違から生ずる実装不良を無くすことが出来るという効果を奏する。すなわち、品質の定量的な測定、評価と信頼性の向上をはかることができるものである。
【0016】
第1の反射光線(平坦基準面)の感知データーにより平坦基準点を演算し、第2の反射光線(測定対象物)の感知データーにより平坦基準点から測定対象物の測定点までの距離を演算するようにしてなるものであるので、平坦基準面が特別な調節を必要としないで確定できるので、誤差無く即測定できるという装置を実現するという効果を奏する。
【0017】
【図面の簡単な説明】
【図1】本発明の実施の形態1の平坦度等測定装置の構成図。
【図2】本発明の実施の形態1の測定部分の構成図。
【図3】本発明の実施の形態1の測定部分の構成図。
【図4】本発明の図3の構成図における測定結果をモニターに波形で表示した画面図。
【図5】本発明の四辺列に多数のピンを設けてなる四角形のチップの第1辺列の測定結果をモニターに表示した画面図。
【図6】本発明の四辺列に多数のピンを設けてなる四角形のチップの第2辺列の測定結果をモニターに表示した画面図。
【図7】本発明の四辺列に多数のピンを設けてなる四角形のチップの第3辺列の測定結果をモニターに表示した画面図。
【図8】本発明の四辺列に多数のピンを設けてなる四角形のチップの第4辺列の測定結果をモニターに表示した画面図。
【図9】本発明の実施の形態2の平坦度等測定装置を示す構成図。
【図10】従来技術の平坦度測定装置の構成図。
【符号の説明】
1・・・・・平坦度等測定装置
2・・・・・特定光線
3・・・・・測定対象物
4・・・・・反り部分
5・・・・・光センサー
6・・・・・駆動部
7・・・・・光透過性平面板
8・・・・・平坦基準面
9・・・・・測定部分
10・・・・・制御部
11・・・・・モニター
12・・・・・プリンター
13・・・・・ピン
22・・・・・ピン
23・・・・・ピン列
24・・・・・ピン列
25・・・・・ピン列
26・・・・・ピン列
27・・・・・測定対象物
30・・・・・ピン列
31・・・・・ピン列
32・・・・・ピン列
33・・・・・ピン列
40・・・・・平坦度等測定装置
41・・・・・光センサー
42・・・・・測定対象物
43・・・・・水平駆動手段
44・・・・・高分解能スケールセンサー
45・・・・・光センサー固定アーム
46・・・・・光センサー固定アーム
50・・・・・従来技術の平坦度測定装置
51・・・・・センサー水平移動駆動部
52・・・・・レーザーフォーカスセンサー
53・・・・・測定対象物置台
54・・・・・特定光線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flatness measuring apparatus that mainly measures flatness of a large number of pins such as an IC chip using a laser displacement sensor or the like.
[0002]
[Prior art]
In the prior art, for example, when measuring the flatness of a large number of pins such as an IC chip, the chip is placed on a flat reference plate, and the laser is detected from a laser displacement sensor provided above the pins. The position of each pin was measured.
[0003]
[Problems to be solved by the invention]
In the above-described prior art, the flat reference surface must be determined virtually (virtual flat reference surface). For example, in the case of a chip having a large number of pins (lead: 40 poles on one side, etc.) on each side of the quadrangle, the pin that is projected upward on each side is detected from the position of the detected pin. The virtual flat reference plane is determined with the triangular plane connecting the vertices of the three pins excluding the pin that is the least out of the flat reference plane, and how far each pin is recessed from the virtual flat reference plane. It was to measure whether it was in the site. For this reason, there is a problem that optical measurement “cannot measure the center row” and spatial measurement “unknown true reference plane in multiple rows”. In such a conventional technique, when the chip body is warped as shown in FIG. 10, the virtual flat reference plane itself is wrong due to the warp, and as a result, a floating pin exceeding the floating reference may be generated. The number of pins has been increased by placing the pins on a flat mounting substrate (mounting stage) and soldering or fitting them into the connector, resulting in many mounting defects.
[0004]
The present invention has been made in view of the above-described problems of the prior art, and its purpose is flatness and the like that enable measurement of the position of a chip pin or the like on an absolute flat (planar) reference surface. To provide a measuring device.
[0005]
[Means for Solving the Problems]
The present invention is described below in order to achieve the above-mentioned object.
An optical sensor is a laser autofocus sensor for sensing the reflected light of the particular light beam impinging on the measurement object irradiates the specific light consisting of laser beam by the focusing,
A drive unit that horizontally moves the light sensor;
A light transmissive flat plate provided in parallel with the horizontal movement surface of the photosensor;
A flat reference surface on which the measurement object consisting of the outer surface of the light-transmitting flat plate is directly placed ;
A first reflected light beam that can be sensed by the optical sensor by reflecting a part of the specific light beam that is irradiated from the optical sensor and attempts to pass through the light-transmissive flat plate by the flat reference surface that is a first reflective surface. And the specific light beam that has passed through the light-transmissive flat plate is reflected by the measurement portion of the measurement object that is the second reflection surface, and is more sensitive than the first reflected light beam that can be sensed by the optical sensor. A thin film such as a vapor deposition film for obtaining a predetermined transmission characteristic of the specific wavelength range light, which is the specific light, applied to both surfaces of the light transmissive flat plate so as to obtain a strong second reflected light beam. such from the Rutotomoni,
In a state where there is the first reflected light beam and the second reflected light beam at a place where the measurement object is present, the first reflected light beam that is a weak reflected light beam is not focused and is a strong reflected light beam. The second reflected light beam is focused and the second reflected light beam can be measured , and the first reflected light beam is focused and the second reflected light beam can be measured at a place where there is no measurement object. The transmission characteristic is set so that the relationship between the first reflected light beam that is a weak reflected light beam and the second reflected light beam that is a strong reflected light beam is set so that one reflected light beam can be measured .
A flat reference point is calculated from the sensing data of the first reflected light beam, and a distance from the flat reference point to the measurement point of the measurement object is calculated from the sensing data of the second reflected light beam. It is a measuring device for flatness and the like.
[0006]
A chip having a large number of pins (leads) on all sides of a square, for example, is placed on the flat reference surface so that the pins are placed directly on the flat reference surface. Irradiate a measurement object with a specific light beam from an optical sensor (for example, an autofocus sensor), and detect the reflected light beam from the measurement object with a light sensor (in the case of an autofocus sensor, by focusing), from a flat reference surface Measure the distance (floating distance) to the measurement object. Since the three pins that protrude most among the four sides hit the flat reference plane and the chip is placed, it is placed on a flat mounting board as it is and mounted, so accurate pin position measurement without error Is realized.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
<Embodiment 1> FIG. 1 is a block diagram of an apparatus for measuring flatness, etc. according to Embodiment 1 of the present invention, FIG. 2 is a block diagram of a measurement portion of the same Embodiment 1, and FIG. FIG. 4 is a screen diagram in which the measurement results in the configuration diagram of FIG. 3 are displayed as waveforms on a monitor, and FIGS. 5, 6, 7 and 8 are quadrangular shapes in which a large number of pins are provided in a four-sided row. It is the screen figure which displayed the measurement result of each side row of a chip on the monitor.
[0008]
The flatness (planar) degree measuring device 1 irradiates a specific light beam 2 and senses a reflected light beam of the specific light beam 2 hitting the measurement object (body) 3 and horizontally moves the light sensor 5. The specific light 2 irradiated from the drive unit 6 and the optical sensor 5 is transmitted and hits the measurement object 3, and the intensity by which the optical sensor 5 can detect the reflected light 4 reflected and reflected by the measurement object 3 is transmitted. The light transmission plane plate 7 provided in parallel with the horizontal movement surface of the optical sensor 5 and the outer surface of the light transmission plane plate 7 and for directly placing the measuring object 3 A horizontal moving surface and a horizontal flat (planar) reference surface 8 of the optical sensor 5 located inside the light-transmitting flat plate 7, and a flat reference surface of the measurement portion 9 of the measurement object 3 based on the sensing data of the optical sensor 5. Calculated the position (floating distance) from 8 A specific light beam which is composed of a control unit 10 for controlling the driving unit 6 and the like, a display monitor 11 for measurement / control, and a printer 12 and which is emitted from the optical sensor 5 and is transmitted through the light-transmissive flat plate 7 2 is reflected by the flat reference surface 8 to obtain a first reflected light beam that can be sensed by the optical sensor 5, and the specific light beam 2 transmitted through the light-transmissive flat plate 7 is reflected by the measurement object 3. Then, the transmission characteristic of the transmissive flat plate 7 is set so that a second reflected light beam that can be detected by the optical sensor 5 by returning and transmitting through the light transmissive flat plate 7 is obtained, and the detection data of the first reflected light beam is used. The flat reference point 11 is calculated, and the distance from the flat reference point 12 to the measurement portion (measurement point of the pin) 9 of the measurement object 3 is calculated based on the second reflected light sensing data.
[0009]
An optical sensor (optical displacement type) 5 is a laser focus sensor ( focus distance measuring method : resolution 0.01 μm), and a specific light beam 2 to be irradiated uses a laser beam of 670 nm. The light-transmitting flat plate 7 is a vapor-deposited film containing magnesium fluoride as a main component on both surfaces of the glass flat plate (by vacuum evaporation) so that the transmittance of the specific light 2 which is a laser beam of 670 nanometers is 98% or more. Is given. Reflection from the flat reference surface 8 is less than 2%. The flat reference surface 8 is processed with flatness polished to a flatness of about 3 μm or less. The light transmissive flat plate is a glass plate as it is so that the reflection is large and the reflected light from the measurement object cannot be sufficiently detected by the optical sensor. The transmittance of the light-transmitting flat plate varies depending on the light reflection characteristics of the object to be measured, but it is preferably 95% or more and the reflectance is about 2% to 5%. Deposition of vapor deposition materials such as magnesium fluoride, aluminum, platinum, gold, silver, copper, chromium, silicon, nickel, titanium pentoxide, germanium, titanium dioxide, silicon monoxide, silicon dioxide, etc. Multilayer) makes it possible to make the laser in the target frequency range have the target transmittance. This differs depending on the company or worker, and is largely based on know-how.
[0010]
The specific light beam 2 irradiated at the site where the measurement object 3 is placed includes a first reflected light beam and a second reflected light beam. Of course, this is because the lift (distance) of the measurement object from the flat reference surface 8 is examined, and the second reflected light beam is measured. In this case, in order to avoid the first reflected light beam, the first reflected light beam is removed from the measurable range, and the second reflected light beam is measured, and the amount of lifting of the measuring object 3 from the flat reference surface 8 is maximized. The relationship that can be measured is set.
[0011]
As shown in FIG. 2, since the measurement part 9 which is the tip of the pin (lead) 13 of the measurement object 3 is directly placed on the flat reference surface 8 and measured, the measurement part 9 is placed on the mounting base and the measurement part 9 Since measurement is performed under the same conditions as those in contact with the mounting substrate, it is measured with an absolute flat reference surface (absolute flat reference surface) in the same state as the actual mounting conditions, not the virtual flat reference surface. . That is, even if the measurement object 20 is warped as shown in FIG. 2 , the actual flatness can be measured because the measurement is performed under the same measurement conditions as the mounting conditions on the mounting substrate.
[0012]
In FIG. 3, a measurement object 27 having four rows of pins 23, 24, 25, and 26 is set on the flat reference surface 8 with five rows of pins 22. 4 shows a measurement result screen in which the measurement result of the measurement object 27 in FIG. The second pin of the pin row 23, the fifth pin of the pin row 25, and the third pin of the pin row 26 are the most protruding pins in each row. A flat reference surface is formed. It is shown how much other pins are floating from the contact portion of the three pins, that is, the flat reference surface 8. The higher the waveform, the greater the floating distance.
[0013]
5, 6, 7, and 8, a measurement result screen of a measurement object (not shown) 27 having quadrangular pin rows 30, 31, 32, 33 (one row of 15 pins) is displayed on the monitor 11. Has been. Since the 4th pin of the pin row 30, the 14th pin of the pin row 31, and the 8th pin of the pin row 32 are the most protruding pins in each row, these 3 pins are in contact with the flat reference surface 8 and are absolutely A flat reference surface is formed. It is shown how much other pins are floating from the contact portion of the three pins, that is, the flat reference surface 8. The higher the waveform, the greater the floating distance. The light intensity of the light sensor can be adjusted.
In the description of the following embodiment, the same reference numerals are given to the same components as those of the above-described embodiments, and the description thereof is omitted.
[0014]
<Embodiment 2>
FIG. 9 is a block diagram showing a measuring apparatus for flatness etc. according to Embodiment 2 of the present invention. Flatness and the like measuring device 40, in addition to the configuration of the flatness or the like measuring device 1, the light sensor for horizontally moving integrally the same as the light sensor 5 to the opposite side of the optical sensor 5 of the light transmissive flat plate 7 5 is a high-precision measurement that measures the vertical movement distance of a vertical driving unit (not shown) that vertically moves the optical sensor 41 and the optical sensor 41 that is vertically moved by the vertical driving unit. A high-resolution scale sensor 44 (measurable range: 50000 μm, resolution: 0.005 μm) is provided. In order to move the optical sensor 5 and the optical sensor 41 integrally, the horizontal driving means 43 fixes the optical sensor 5 to the integrated sensor fixing arm 45 and the optical sensor 41 to the sensor fixing arm 46 . The sensor fixing arm 45 and the sensor fixing arm 46 are horizontally moved integrally. The flatness of both surfaces of the measurement object 42 in a state where the measurement object 42 is placed on the flat reference surface 8 and the thickness can be measured at the same time. The optical sensor 41 is moved to a part off the measurement object 42, vertically lowered, and the position of the flat reference surface 8 is measured and memorized by the photolysis scale sensor 44. Depending on the measurement object, the position of the measurement object is placed after the position of the flat reference surface is measured in an empty state. By measuring the upper surface of the measuring object 42 with the optical sensor 44, the shape of the upper surface can be measured. The position A of the upper surface measured by the optical sensor 44 is calculated from the stored flat reference surface position, and the distance B from the flat reference surface can be obtained. The thickness C of the measurement object can be obtained by negatively calculating the distance (floating distance) from the flat reference surface measured by the optical sensor 5 to the lower surface of the measurement object 42 from the distance B from the flat reference surface. I can do it. In the conventional technique for measuring the thickness of a measurement object, the thickness was measured by applying a measurement beam from both sides of the measurement object. In this case, a high point for determining a reference point (middle point) is used. An accurate calibration gauge was provided, and a high-accuracy scale sensor was provided to measure the distance traveled by moving both sensors vertically. That is, since two expensive scale sensors are required, the cost is high. The flatness measuring device 40 does not require this calibration gauge and one scale sensor, so that the device can be made inexpensive.
[0015]
【The invention's effect】
Since the present invention is as described above, the following effects can be obtained.
An optical sensor that is a laser autofocus sensor that irradiates a specific light beam composed of a laser beam and senses the reflected light beam of the specific light beam that hits the measurement object by focusing, a drive unit that horizontally moves the optical sensor, and the light A light-transmitting flat plate provided in parallel with the horizontal movement surface of the sensor, a flat reference surface on which the measurement object consisting of an outer surface of the light-transmitting flat plate is directly placed, and the light transmitting from the light sensor. A portion of the specific light beam that is about to pass through the reflective flat plate is reflected by the flat reference surface, which is a first reflective surface, to obtain a first reflected light beam that can be sensed by the optical sensor, and the light transmission property the specific light transmitted through the flat plate second stronger than the measurement portion the optical sensor is reflected by the sensible for the first reflected light beam of the measurement object is a second reflective surface For such reflected beam is obtained, and it and a thin film such as deposited film to obtain a predetermined transmission characteristic of the specific wavelength band light is a particular light beam applied to both surfaces of the light transmissive flat plate In addition , in a state where the first reflected light beam and the second reflected light beam at a place where the measurement object is present, the first reflected light beam that is a weak reflected light beam is not focused, The second reflected light beam, which is a strong reflected light beam, is focused and the second reflected light beam can be measured , and the focus is adjusted to the first reflected light beam at a place where the measurement object is not present. The transmission characteristic is set so that the first reflected light beam, which is a weak reflected light beam, and the second reflected light beam, which is a strong reflected light beam, are set so that the first reflected light beam can be measured. First reflected ray sensing data A flat reference point is calculated by a sensor, and a distance from the flat reference point to a measurement point of the measurement object is calculated from the second reflected light sensing data. So
For example, it is possible to obtain an accurate total flat characteristic in a state where the chip is placed on a mounting board that is actually mounted regardless of warping of the chip body. As a result, it is possible to solve the problems of the optical measurement “cannot measure the central column” and the spatial measurement “the true reference planes in a plurality of columns are unknown”, which was a problem of the prior art. In chips with a large number of pins, defective products can be reliably identified and removed, so that there are virtual measurement conditions and actual mounting conditions that are affected by the warpage of the chip body as in the prior art. There is an effect that it is possible to eliminate mounting defects resulting from the difference. In other words, quality can be quantitatively measured, evaluated and improved in reliability.
[0016]
The flat reference point is calculated from the sensing data of the first reflected light (flat reference surface), and the distance from the flat reference point to the measuring point of the measuring object is calculated from the sensing data of the second reflected light (measuring object). Thus, the flat reference plane can be determined without requiring any special adjustment, so that there is an effect of realizing an apparatus capable of measuring immediately without error.
[0017]
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a flatness etc. measuring apparatus according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a measurement part according to the first embodiment of the present invention.
FIG. 3 is a configuration diagram of a measurement part according to the first embodiment of the present invention.
4 is a screen view in which the measurement results in the configuration diagram of FIG. 3 of the present invention are displayed as waveforms on a monitor.
FIG. 5 is a screen view in which a measurement result of a first side row of a square chip in which a large number of pins are provided in the four side row of the present invention is displayed on a monitor.
FIG. 6 is a screen view in which a measurement result of a second side row of a quadrangular chip in which a large number of pins are provided in the four side row of the present invention is displayed on a monitor.
FIG. 7 is a screen view in which a measurement result of a third side row of a rectangular chip in which a large number of pins are provided in the four side row of the present invention is displayed on a monitor.
FIG. 8 is a screen view in which a measurement result of a fourth side row of a quadrangular chip in which a large number of pins are provided in the four side row of the present invention is displayed on a monitor.
FIG. 9 is a configuration diagram showing a flatness etc. measuring apparatus according to a second embodiment of the present invention.
FIG. 10 is a configuration diagram of a conventional flatness measuring apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Flatness etc. measuring apparatus 2 ... Specific light beam 3 ... Measurement object 4 ... Warping part 5 ... Optical sensor 6 ... Drive unit 7 ... Light transmissive flat plate 8 ... Flat reference surface 9 ... Measurement part 10 ... Control unit 11 ... Monitor 12 ...・ Printer 13 ... Pin 22 ... Pin 23 ... Pin row 24 ... Pin row 25 ... Pin row 26 ... Pin row 27 ··· Measurement object 30 ··· Pin row 31 ··· Pin row 32 · · · Pin row 33 · · · Pin row 40 · · · Measuring device for flatness, etc. 41... Optical sensor 42 .. Measurement object 43... Horizontal driving means 44... High resolution scale sensor 45. ... Optical sensor fixed arm 50 ... Platformity measuring device 51 of the prior art ... Sensor horizontal movement drive unit 52 ... Laser focus sensor 53 ... Measurement object table 54..Specific rays

Claims (1)

レーザー光線からなる特定光線を照射すると共に測定対象物に当たった該特定光線の反射光線をピント合わせによって感知するレーザーオートフォーカスセンサーである光センサーと、
この光センサーを水平移動させる駆動部と、
前記光センサーの水平移動面と平行に設けられた光透過性平面板と、
この光透過性平面板の外側面からなる前記測定対象物を直接置く平坦基準面と、
前記光センサーから照射され前記光透過性平面板を透過しようとする前記特定光線の一部が第1反射面である前記平坦基準面で反射して該光センサーが感知可能な第1の反射光線が得られると共に、前記光透過性平面板を透過した前記特定光線が第2反射面である前記測定対象物の測定部分で反射して前記光センサーが感知可能な前記第1の反射光線よりも強い第2の反射光線が得られるようにするための、前記光透過性平面板の両面に施された前記特定光線である特定波長域光線の所定の透過特性を得るための蒸着膜などの薄膜とからなるとともに
前記測定対象物のある箇所での前記第1の反射光線と前記第2の反射光線がある状態では、弱い反射光線である前記第1の反射光線には前記ピント合わせがされず、強い反射光線である前記第2の反射光線に前記ピント合わせがされて該第2の反射光線が計測でき、かつ、前記測定対象物の無い箇所では前記第1の反射光線に前記ピント合わせがされて該第1の反射光線が計測できるように、弱い反射光線である前記第1の反射光線と強い反射光線である前記第2の反射光線の関係になるように前記透過特性が設定され
前記第1の反射光線の感知データーにより平坦基準点を演算し、前記第2の反射光線の感知データーにより前記平坦基準点から測定対象物の測定点までの距離を演算するようにしてなることを特徴とする平坦度等測定装置。
An optical sensor is a laser autofocus sensor for sensing the reflected light of the particular light beam impinging on the measurement object irradiates the specific light consisting of laser beam by the focusing,
A drive unit that horizontally moves the light sensor;
A light transmissive flat plate provided in parallel with the horizontal movement surface of the photosensor;
A flat reference surface on which the measurement object consisting of the outer surface of the light-transmitting flat plate is directly placed ;
A first reflected light beam that can be sensed by the optical sensor by reflecting a part of the specific light beam that is irradiated from the optical sensor and attempts to pass through the light-transmissive flat plate by the flat reference surface that is a first reflective surface. And the specific light beam that has passed through the light-transmissive flat plate is reflected by the measurement portion of the measurement object that is the second reflection surface, and is more sensitive than the first reflected light beam that can be sensed by the optical sensor. A thin film such as a vapor deposition film for obtaining a predetermined transmission characteristic of the specific wavelength range light, which is the specific light, applied to both surfaces of the light transmissive flat plate so as to obtain a strong second reflected light beam. such from the Rutotomoni,
In a state where there is the first reflected light beam and the second reflected light beam at a place where the measurement object is present, the first reflected light beam that is a weak reflected light beam is not focused and is a strong reflected light beam. The second reflected light beam is focused and the second reflected light beam can be measured , and the first reflected light beam is focused and the second reflected light beam can be measured at a place where there is no measurement object. The transmission characteristic is set so that the relationship between the first reflected light beam that is a weak reflected light beam and the second reflected light beam that is a strong reflected light beam is set so that one reflected light beam can be measured .
A flat reference point is calculated from the sensing data of the first reflected light beam, and a distance from the flat reference point to the measurement point of the measurement object is calculated from the sensing data of the second reflected light beam. Measuring device for flatness etc.
JP2000303400A 2000-10-03 2000-10-03 Measuring device for flatness etc. Expired - Lifetime JP4849709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000303400A JP4849709B2 (en) 2000-10-03 2000-10-03 Measuring device for flatness etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000303400A JP4849709B2 (en) 2000-10-03 2000-10-03 Measuring device for flatness etc.

Publications (2)

Publication Number Publication Date
JP2002107116A JP2002107116A (en) 2002-04-10
JP4849709B2 true JP4849709B2 (en) 2012-01-11

Family

ID=18784605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000303400A Expired - Lifetime JP4849709B2 (en) 2000-10-03 2000-10-03 Measuring device for flatness etc.

Country Status (1)

Country Link
JP (1) JP4849709B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354601C (en) * 2005-04-05 2007-12-12 华为技术有限公司 Device pin coplanarity measuring method
CN100449262C (en) * 2005-12-17 2009-01-07 比亚迪精密制造有限公司 Flatness measuring device
KR101523531B1 (en) * 2008-10-28 2015-05-29 재단법인 포항산업과학연구원 Measuring apparatus and the method for flatness
CN102072915B (en) * 2010-10-15 2012-10-10 林德工程(杭州)有限公司 Method for simulating work environment for testing high-temperature stability of plastic filler and special device thereof
JP6719113B2 (en) * 2016-06-27 2020-07-08 株式会社 コアーズ Flat reference plane measuring method and flatness measuring apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642646A (en) * 1979-09-14 1981-04-20 Teijin Ltd Selected light permeable laminate
JPS58162805A (en) * 1982-03-23 1983-09-27 Hitachi Ltd Method for monitoring vapor deposited film optically
JPH0678889B2 (en) * 1990-10-08 1994-10-05 日本電気株式会社 Height measuring device
JPH05215524A (en) * 1991-12-10 1993-08-24 Nec Corp Laser-type height measuring apparatus
JP3486202B2 (en) * 1993-05-13 2004-01-13 亨 山本 Translucent surface protective laminated film and method for producing the same
JP2522191B2 (en) * 1993-12-16 1996-08-07 日本電気株式会社 IC lead height measuring device
JP2000109345A (en) * 1998-08-05 2000-04-18 Nippon Sheet Glass Co Ltd Glass product coated with antireflection color film and optical filter for plasma display panel

Also Published As

Publication number Publication date
JP2002107116A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
AU654775B2 (en) Semiconductor chip mounting method and apparatus
CN1226590C (en) Apparatus for measuring film thickness formed on object, apparatus and method for measuring spectral reflectance of object, and apparatus and method of inspecting foreign material on object
US5710631A (en) Apparatus and method for storing interferometric images of scanned defects and for subsequent static analysis of such defects
JPH04501175A (en) Surface measurement device and method using ellipsometry
JP2890578B2 (en) IC lead inspection device and IC lead inspection method
JPS5999304A (en) Method and apparatus for comparing and measuring length by using laser light of microscope system
WO2004066378A1 (en) Probe device with optical length-measuring device and method of inspecting probe
JPH11344436A (en) Method and device for automatically adjusting sample for elliptical polarimeter
JP4849709B2 (en) Measuring device for flatness etc.
JP2008216200A (en) Device and method for measuring terminal planarity
JP3381341B2 (en) Apparatus and method for inspecting appearance of semiconductor device
EP0006473A1 (en) Gap measurement method
JP5337419B2 (en) Displacement measuring device, seal member shape measuring device using the same, and displacement detecting device used therefor
US5410409A (en) Search routine for ellipsometers
JPH07110966A (en) Method and apparatus for measurement of warp of substance
JP3124535B2 (en) Surface mount component inspection system
US12007219B2 (en) Laser triangulation apparatus and calibration method
US20090059243A1 (en) Method for determining the absolute thickness of non-transparent and transparent samples by means of confocal measurement technology
JPS62212507A (en) Probe type surface shape detector requiring no calibration by laser interferometer
JP2953742B2 (en) Surface roughness evaluation method
JPH05267117A (en) Method and device for detecting and setting gap between mask and substrate
JP3003671B2 (en) Method and apparatus for detecting height of sample surface
JP3481704B2 (en) Height measuring method and device
JPH0626976Y2 (en) Optical disk inspection device Calibration reference plate
JP2505761Y2 (en) Optical disk inspection device calibration reference plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071009

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100209

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100202

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100223

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Ref document number: 4849709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250