JP4849547B2 - Montmorillonite interlayer immobilized sub-nano-order palladium catalyst - Google Patents

Montmorillonite interlayer immobilized sub-nano-order palladium catalyst Download PDF

Info

Publication number
JP4849547B2
JP4849547B2 JP2006333785A JP2006333785A JP4849547B2 JP 4849547 B2 JP4849547 B2 JP 4849547B2 JP 2006333785 A JP2006333785 A JP 2006333785A JP 2006333785 A JP2006333785 A JP 2006333785A JP 4849547 B2 JP4849547 B2 JP 4849547B2
Authority
JP
Japan
Prior art keywords
group
palladium
montmorillonite
sub
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006333785A
Other languages
Japanese (ja)
Other versions
JP2008142645A (en
Inventor
清臣 金田
洋和 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Osaka University NUC
Original Assignee
Daicel Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp, Osaka University NUC filed Critical Daicel Corp
Priority to JP2006333785A priority Critical patent/JP4849547B2/en
Publication of JP2008142645A publication Critical patent/JP2008142645A/en
Application granted granted Critical
Publication of JP4849547B2 publication Critical patent/JP4849547B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、モンモリロナイト層間にサブナノオーダー(粒子のサイズが1ナノメーター未満)のパラジウムクラスターを固定化してなるモンモリロナイト層間固定化サブナノオーダーパラジウム触媒及びその製造方法に関する。   The present invention relates to a montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst obtained by immobilizing a sub-nanoorder (particle size of less than 1 nanometer) palladium cluster between montmorillonite layers and a method for producing the same.

モンモリロナイトは、層間に多価金属カチオンを導入できる。この性質を利用して層間に銅、スカンジウム等の金属イオンを導入し、種々の有機合成反応において触媒として使用する技術が知られている(非特許文献1及び2)。このような触媒は、比較的穏和な条件下で高い触媒活性を示す上、反応終了後は簡易な操作により生成物と分離し、回収・再使用することが可能であり、環境調和型有機合成において有望である。   Montmorillonite can introduce a polyvalent metal cation between layers. A technique is known in which metal ions such as copper and scandium are introduced between layers using this property and used as a catalyst in various organic synthesis reactions (Non-Patent Documents 1 and 2). Such a catalyst exhibits high catalytic activity under relatively mild conditions, and can be separated from the product by a simple operation after the completion of the reaction, and can be recovered and reused. Is promising.

一方、パラジウムクラスターは医薬品や農薬等、多様な化合物の合成用触媒として極めて有用である。特に、クラスターをナノサイズまで微小化したパラジウムナノクラスターは粒子サイズが微小なために表面積が大きく、触媒活性が高い。そこで、さらに微小なサブナノオーダーのクラスターが得られれば、より高活性な触媒となることが期待されるが、このような超微粒子のクラスターは調製の過程において、又は触媒として使用する工程において容易に凝集して塊となるため、有機合成反応において触媒として使用しうる安定なサブナノオーダーパラジウムクラスターを得るのは困難であった。   On the other hand, palladium clusters are extremely useful as catalysts for the synthesis of various compounds such as pharmaceuticals and agricultural chemicals. In particular, palladium nanoclusters in which the clusters are miniaturized to a nano size have a large surface area and a high catalytic activity due to the small particle size. Thus, if even smaller sub-nano-order clusters are obtained, it is expected to become a more highly active catalyst. However, such ultrafine particle clusters can be easily obtained in the process of preparation or in the process of using as a catalyst. Since it aggregates and becomes a lump, it was difficult to obtain a stable sub-nano-order palladium cluster that can be used as a catalyst in an organic synthesis reaction.

J.Am.Chem.Soc.,125,10486(2003)J. et al. Am. Chem. Soc. , 125, 10486 (2003) Chem.Eur.J.,11.288(2005)Chem. Eur. J. et al. , 11.288 (2005)

本発明の目的は、比較的穏和な条件下で高い活性を示し、反応終了後は生成物と触媒とを容易に分離でき、再使用が可能である有機合成触媒を提供することである。本発明の他の目的は、高い触媒活性を有し、回収・再利用が容易に可能である有機合成触媒の簡易な製造方法を提供することである。   An object of the present invention is to provide an organic synthesis catalyst that exhibits high activity under relatively mild conditions, can easily separate a product and a catalyst after completion of the reaction, and can be reused. Another object of the present invention is to provide a simple method for producing an organic synthesis catalyst that has high catalytic activity and can be easily recovered and reused.

本発明者らは上記課題を解決するために鋭意検討した結果、モンモリロナイト結晶層間にサブナノオーダーパラジウムクラスターを固定化することにより、該クラスターが凝集して塊となることを抑制し、有機合成触媒として使用しうる安定なサブナノオーダーパラジウムクラスターが得られることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have fixed sub-nanoorder palladium clusters between montmorillonite crystal layers, thereby suppressing the clusters from agglomerating and forming a lump, and as an organic synthesis catalyst. It was found that stable sub-nano-order palladium clusters that can be used were obtained, and the present invention was completed.

すなわち本発明は、モンモリロナイト結晶層間に、サブナノオーダーパラジウムクラスターを固定してなるモンモリロナイト層間固定化サブナノオーダーパラジウム触媒の存在下、下記式(1)

Figure 0004849547
(式(1)中、R 1 〜R 5 は同一または異なって、水素原子又は炭化水素基であり、R 6 は炭化水素基を示す。R 1 、R 2 、R 3 、R 4 、R 5 のうち少なくとも2つが結合して隣接する複数の炭素原子と共に環を形成していてもよい)
で表されるアリルカーボネートと、求核剤として下記式(4)
Figure 0004849547
(式(4)中、Yはニトロ基、アシル基、カルボキシル基、又はニトリル基を示し、nは1〜3の整数を示す)
で表されるフェノール誘導体とを反応させて、対応するアリル位置換反応生成物を得ることを特徴とするアリル位置換反応生成物の製造方法を提供する。
本発明はまた、モンモリロナイト結晶層間に、サブナノオーダーパラジウムクラスターを固定してなるモンモリロナイト層間固定化サブナノオーダーパラジウム触媒の存在下、下記式(2)
Figure 0004849547
(式(2)中、R 1 〜R 5 は同一または異なって、水素原子又は炭化水素基を示す。R 1 、R 2 、R 3 、R 4 、R 5 のうち少なくとも2つが結合して隣接する複数の炭素原子と共に環を形成していてもよい)
で表されるアリルアセテートと、求核剤として下記式(3)
Figure 0004849547
(式(3)中、R 7 、R 8 、R 9 は同一又は異なって、水素原子、ハロゲン原子、炭化水素基、複素環式基、カルボキシル基、カルバモイル基、シアノ基、アシル基、ニトロ基、アルキルスルフィニル基、硫黄酸基、硫黄酸エステル基、ヒドロキシル基、置換オキシ基、メルカプト基、又はこれらが複数個結合した基を示す。R 7 、R 8 、R 9 のうち少なくとも2つが結合して隣接する複数の炭素原子と共に環を形成していてもよい)
で表される1,3−ジカルボニル化合物若しくは下記式(4)
Figure 0004849547
(式(4)中、Yはニトロ基、アシル基、カルボキシル基、又はニトリル基を示し、nは1〜3の整数を示す)
で表されるフェノール誘導体とを反応させて、対応するアリル位置換反応生成物を得ることを特徴とするアリル位置換反応生成物の製造方法を提供する。
尚、本明細書には、上記発明の他に、モンモリロナイト結晶層間に、サブナノオーダーパラジウムクラスターを固定してなるモンモリロナイト層間固定化サブナノオーダーパラジウム触媒、アルカリ土類金属型モンモリロナイトを2価パラジウム化合物で処理しパラジウム(II)型モンモリロナイトを得る工程、及び得られたパラジウム(II)型モンモリロナイトを還元剤で処理する工程を含む請求項1記載のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒の製造方法についても記載する。 That is, the present invention provides the following formula (1) in the presence of a montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst in which a subnanoorder palladium cluster is immobilized between montmorillonite crystal layers.
Figure 0004849547
(In the formula (1), R 1 ~R 5 are the same or different and each represents a hydrogen atom or a hydrocarbon group, R 6 represents a hydrocarbon group .R 1, R 2, R 3 , R 4, R 5 And at least two of them may combine to form a ring with a plurality of adjacent carbon atoms)
And the following formula (4) as a nucleophile
Figure 0004849547
(In formula (4), Y represents a nitro group, an acyl group, a carboxyl group, or a nitrile group, and n represents an integer of 1 to 3)
The method for producing an allylic substitution reaction product is characterized in that a corresponding allylic substitution reaction product is obtained by reacting with a phenol derivative represented by the formula:
The present invention also provides the following formula (2) in the presence of a montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst obtained by immobilizing a subnanoorder palladium cluster between montmorillonite crystal layers.
Figure 0004849547
(In the formula (2), R 1 to R 5 are the same or different and each represents a hydrogen atom or a hydrocarbon group. At least two of R 1 , R 2 , R 3 , R 4 and R 5 are adjacent to each other. And may form a ring with a plurality of carbon atoms
And the following formula (3) as a nucleophile:
Figure 0004849547
(In formula (3), R 7 , R 8 and R 9 are the same or different and are a hydrogen atom, a halogen atom, a hydrocarbon group, a heterocyclic group, a carboxyl group, a carbamoyl group, a cyano group, an acyl group, or a nitro group. , An alkylsulfinyl group, a sulfuric acid group, a sulfuric acid ester group, a hydroxyl group, a substituted oxy group, a mercapto group, or a group in which a plurality of these are bonded, and at least two of R 7 , R 8 , and R 9 are bonded. And may form a ring with a plurality of adjacent carbon atoms)
1,3-dicarbonyl compound represented by the following formula (4)
Figure 0004849547
(In formula (4), Y represents a nitro group, an acyl group, a carboxyl group, or a nitrile group, and n represents an integer of 1 to 3)
The method for producing an allylic substitution reaction product is characterized in that a corresponding allylic substitution reaction product is obtained by reacting with a phenol derivative represented by the formula :
In addition to the above-described invention, the present specification includes a montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst in which a sub-nanoorder palladium cluster is fixed between montmorillonite crystal layers, and an alkaline earth metal type montmorillonite treated with a divalent palladium compound. A method for producing a montmorillonite interlayer-immobilized sub-nano-order palladium catalyst according to claim 1, further comprising a step of obtaining palladium (II) type montmorillonite and a step of treating the obtained palladium (II) type montmorillonite with a reducing agent. .

本発明のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒は、不均一系触媒としてアリル位置換反応等の有機反応に対し極めて高い活性を示す。また、生成物と容易に分離でき、高い触媒活性を保持したまま繰り返し再利用可能である。さらに、クラスターの表面積が大きく活性が高いため、反応に必要な金属量が少なく、同じ触媒を廃棄することなく長く使えることからコスト的に有利であり、廃棄物の削減にもつながる。
本発明の製造方法によれば、従来困難であった安定なサブナノオーダーパラジウムクラスター触媒を簡易に製造することができる。
The montmorillonite interlayer-immobilized sub-nano-order palladium catalyst of the present invention exhibits extremely high activity for organic reactions such as allylic substitution as a heterogeneous catalyst. Moreover, it can be easily separated from the product and can be reused repeatedly while maintaining high catalytic activity. Furthermore, since the surface area of the cluster is large and the activity is high, the amount of metal required for the reaction is small, and the same catalyst can be used for a long time without being discarded, which is advantageous in terms of cost and leads to reduction of waste.
According to the production method of the present invention, it is possible to easily produce a stable sub-nano-order palladium cluster catalyst that has been difficult in the past.

本発明のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒は、アルカリ土類金属型モンモリロナイト層間のアルカリ土類金属イオンを2価パラジウムイオンで交換し、パラジウム(II)型モンモリロナイトを得る工程及び得られたパラジウム(II)型モンモリロナイトを還元剤で処理する工程により調製することができる。   The montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst of the present invention comprises a step of exchanging alkaline earth metal ions between alkaline earth metal type montmorillonite layers with divalent palladium ions to obtain palladium (II) type montmorillonite and the obtained palladium ( II) Type montmorillonite can be prepared by treating with a reducing agent.

アルカリ土類金属型モンモリロナイトは例えば、市販のナトリウム型モンモリロナイトのナトリウムイオンを適宜な方法によりアルカリ土類金属イオンに交換することにより調製することができる。上記アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウムなどを使用できるが、これらの中で特に、カルシウムが好ましい。ナトリウムイオンのアルカリ土類金属イオンへの交換は、ナトリウム型モンモリロナイトを例えば、水酸化カルシウム水溶液、酢酸カルシウム水溶液、硫酸カルシウム水溶液等のアルカリ土類金属イオンを含む水溶液で処理することにより行うことができる。アルカリ土類金属イオンを含む水溶液のアルカリ土類金属濃度は特に制限されず、モンモリロナイトが浸食されない範囲で選択することができる。例えば、0.1〜1000mMの範囲から選択することができる。処理温度は、例えば20〜150℃、好ましくは50〜110℃、特に好ましくは60〜80℃程度である。処理時間は処理温度によっても異なるが、例えば1〜72時間、好ましくは10〜24時間の範囲から選択することができる。カルシウムイオンなどのアルカリ土類金属イオンを含む水溶液での処理終了後、ろ過により回収し、必要に応じてイオン交換水等で洗浄し、乾燥することによりアルカリ土類金属型モンモリロナイトを得ることができる。   The alkaline earth metal type montmorillonite can be prepared, for example, by exchanging sodium ions of a commercially available sodium type montmorillonite with alkaline earth metal ions by an appropriate method. As the alkaline earth metal, beryllium, magnesium, calcium and the like can be used, and among these, calcium is particularly preferable. The exchange of sodium ions for alkaline earth metal ions can be performed by treating sodium-type montmorillonite with an aqueous solution containing alkaline earth metal ions such as an aqueous calcium hydroxide solution, an aqueous calcium acetate solution, or an aqueous calcium sulfate solution. . The alkaline earth metal concentration of the aqueous solution containing alkaline earth metal ions is not particularly limited, and can be selected within a range in which montmorillonite is not eroded. For example, it can select from the range of 0.1-1000 mM. The treatment temperature is, for example, 20 to 150 ° C, preferably 50 to 110 ° C, and particularly preferably about 60 to 80 ° C. The treatment time varies depending on the treatment temperature, but can be selected, for example, from 1 to 72 hours, preferably from 10 to 24 hours. After the treatment with an aqueous solution containing alkaline earth metal ions such as calcium ions, the alkaline earth metal type montmorillonite can be obtained by collecting by filtration, washing with ion-exchanged water or the like as necessary, and drying. .

アルカリ土類金属型モンモリロナイト層間のアルカリ土類金属イオンの2価パラジウムイオンへの交換は、アルカリ土類金属型モンモリロナイトを2価パラジウム化合物の溶液で処理することにより行うことができる。上記2価パラジウム化合物としては例えば、ビス(ジベンジリデンアセトン)パラジウム(II)、ビス(アセチルアセトン)パラジウム(II)、ビス(8−オキシキノリン)パラジウム(II)、プロピオン酸パラジウム(II)、ビス(ベンゾニトリル)パラジウム(II)酢酸塩などのパラジウム錯化合物;塩化パラジウム(II)、硝酸パラジウム(II)、テトラアンミンジクロロパラジウム(II)、ジナトリウムテトラクロロパラジウム(II)等のパラジウム無機塩;酢酸パラジウム(II)、安息香酸パラジウム(II)、α−ピコリン酸パラジウム(II)等のパラジウムカルボン酸塩を例示できる。これらの中で、ビス(ベンジリデンアセトン)パラジウム(II)を好適に使用できる。   Exchange of the alkaline earth metal ions between the alkaline earth metal type montmorillonite layers to divalent palladium ions can be performed by treating the alkaline earth metal type montmorillonite with a solution of a divalent palladium compound. Examples of the divalent palladium compound include bis (dibenzylideneacetone) palladium (II), bis (acetylacetone) palladium (II), bis (8-oxyquinoline) palladium (II), palladium (II) propionate, bis ( Palladium complex compounds such as benzonitrile) palladium (II) acetate; palladium inorganic salts such as palladium chloride (II), palladium nitrate (II), tetraamminedichloropalladium (II), disodium tetrachloropalladium (II); palladium acetate Palladium carboxylates such as (II), palladium (II) benzoate and palladium (II) α-picolinate can be exemplified. Of these, bis (benzylideneacetone) palladium (II) can be suitably used.

上記2価パラジウム化合物の溶液に使用する溶媒は特に制限されず、使用する2価パラジウム化合物の溶解性等に応じて適宜選択することができる。例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド類を例示できる。溶媒は、1種または2種以上を選択して使用することができる。2価パラジウム化合物としてビス(ジベンジリデンアセトン)パラジウム(II)を使用する場合であれば、N,N−ジメチルアセトアミドをもっとも好適に使用することができる。   The solvent used in the divalent palladium compound solution is not particularly limited, and can be appropriately selected according to the solubility of the divalent palladium compound used. For example, amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone can be exemplified. One or more solvents can be selected and used. If bis (dibenzylideneacetone) palladium (II) is used as the divalent palladium compound, N, N-dimethylacetamide can be most preferably used.

2価パラジウム化合物の使用量は特に制限されないが、例えば、カルシウム型モンモリロナイトに含まれるカルシウムイオンの0.1〜2.5モル倍の範囲から選択することができる。交換処理の際の温度は特に制限されず、処理温度は例えば、20〜150℃、好ましくは50〜110℃、特に好ましくは60〜80℃程度である。処理時間は処理温度によっても異なるが、例えば、1〜72時間、好ましくは10〜24時間の範囲から選択することができる。交換処理終了後は、得られたパラジウム(II)型モンモリロナイトはそのまま次の還元工程に付すことができるが、脱イオン水又は有機溶媒(アセトン、エタノール等)で洗浄し、乾燥後還元処理することが好ましい。乾燥は例えば、減圧下室温付近で行うことができる。   Although the usage-amount of a bivalent palladium compound is not restrict | limited in particular, For example, it can select from the range of 0.1-2.5 mol times of the calcium ion contained in a calcium type montmorillonite. The temperature during the exchange treatment is not particularly limited, and the treatment temperature is, for example, 20 to 150 ° C, preferably 50 to 110 ° C, and particularly preferably about 60 to 80 ° C. The treatment time varies depending on the treatment temperature, but can be selected, for example, from 1 to 72 hours, preferably from 10 to 24 hours. After completion of the exchange treatment, the obtained palladium (II) type montmorillonite can be subjected to the next reduction step as it is, but it is washed with deionized water or an organic solvent (acetone, ethanol, etc.), dried and then subjected to reduction treatment. Is preferred. Drying can be performed, for example, near room temperature under reduced pressure.

ナトリウム型モンモリロナイト中のナトリウムイオンをカルシウムイオンなどのアルカリ土類金属イオンで交換し、アルカリ土類金属型モンモリロナイトを経由することで、効率よくモンモリロナイト層間にパラジウムイオンを導入することができる。ナトリウム型モンモリロナイトをビス(ジベンジリデンアセトン)パラジウム(II)等で同様の処理を行っても、効率よくパラジウム型モンモリロナイトを得ることはできない。   Palladium ions can be efficiently introduced between the montmorillonite layers by exchanging sodium ions in the sodium montmorillonite with alkaline earth metal ions such as calcium ions and passing through the alkaline earth metal montmorillonite. Even if sodium-type montmorillonite is subjected to the same treatment with bis (dibenzylideneacetone) palladium (II) or the like, palladium-type montmorillonite cannot be obtained efficiently.

上述のようにして得られたパラジウム(II)型モンモリロナイトを還元剤で処理することにより、本発明のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒を得ることができる。還元剤は公知乃至慣用の還元剤から適宜選択して使用することができ特に制限されないが、例えば、ヒドラジン、ホルムアルデヒド、水素化ホウ素カリウム、水素化ホウ素ナトリウム、水素、蟻酸、蟻酸の塩、エチレン、プロピレン、ブテン、シクロヘキセン、アリルアルコール、アクロレイン等を例示できる。還元剤による処理を行う際は、必要に応じて酸又はアルカリを添加してもよい。本発明において還元剤としては2価のパラジウムを0価のパラジウムに還元できる還元剤であれば特に限定されないが、水素化ホウ素ナトリウム、水素化ホウ素カリウム等の水素化ホウ素アルカリ金属類を好適に使用でき、特に水素化ホウ素カリウムを好適に使用できる。   By treating the palladium (II) type montmorillonite obtained as described above with a reducing agent, the montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst of the present invention can be obtained. The reducing agent can be appropriately selected from known or commonly used reducing agents and is not particularly limited. For example, hydrazine, formaldehyde, potassium borohydride, sodium borohydride, hydrogen, formic acid, formic acid salt, ethylene, Examples include propylene, butene, cyclohexene, allyl alcohol, acrolein and the like. When performing the treatment with a reducing agent, an acid or an alkali may be added as necessary. In the present invention, the reducing agent is not particularly limited as long as it is a reducing agent capable of reducing divalent palladium to zero-valent palladium, but alkali metal borohydrides such as sodium borohydride and potassium borohydride are preferably used. In particular, potassium borohydride can be preferably used.

還元剤処理は、例えば、パラジウム(II)型モンモリロナイトを水中に分散してスラリーとし、撹拌下、還元剤を添加することにより行うことができる。還元剤の使用量は特に制限されないが、例えば、パラジウム(II)型モンモリロナイトの調製において使用したパラジウム(II)化合物の0.1〜200モル倍程度、好ましくは20〜80モル倍の範囲から選択することができる。還元剤は、適宜な溶媒(水など)に溶解してパラジウム(II)型モンモリロナイトスラリー中に添加してもよい。還元剤として水素化ホウ素カリウムを使用する場合であれば、水を溶媒とし、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物を添加するのが好ましい。還元処理終了後はろ過等により固体と液体を分離し、必要に応じて洗浄乾燥して本発明のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒が得られる。   The reducing agent treatment can be performed, for example, by dispersing palladium (II) type montmorillonite in water to form a slurry and adding the reducing agent with stirring. The amount of the reducing agent used is not particularly limited. For example, the reducing agent is selected from the range of about 0.1 to 200 moles, preferably 20 to 80 moles of the palladium (II) compound used in the preparation of the palladium (II) type montmorillonite. can do. The reducing agent may be dissolved in an appropriate solvent (such as water) and added to the palladium (II) type montmorillonite slurry. If potassium borohydride is used as the reducing agent, it is preferable to add an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide using water as a solvent. After completion of the reduction treatment, the solid and the liquid are separated by filtration or the like, washed and dried as necessary, and the montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst of the present invention is obtained.

上述のようにして得られた本発明のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒は、比表面積の大きいサブナノオーダーのパラジウムクラスターがモンモリロナイト構造中のオングストローム単位の間隙に固定化されているため、種々の有機合成反応において高い触媒活性を示す。また、モンモリロナイト層間に固定されたパラジウムクラスターは、クラスター同士の凝集により粒子径が増大することなく、サブナノオーダーの粒子径を反応条件下においても保持するため、反応の終始に亘り高い触媒活性を発現する。本発明のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒は空気中でも安定であり、水などの水性溶媒中においても好適に使用できる。さらに、本発明のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒は、触媒として繰り返し再利用した場合であっても、クラスターが凝集することなくサブナノオーダーの粒子径を維持し、高い触媒活性や選択性は失われない。   The montmorillonite interlayer-immobilized sub-nano-order palladium catalyst of the present invention obtained as described above has a variety of organic materials because the sub-nano-order palladium cluster having a large specific surface area is immobilized in the angstrom unit gap in the montmorillonite structure. High catalytic activity in the synthesis reaction. In addition, palladium clusters fixed between montmorillonite layers maintain a sub-nano order particle size even under reaction conditions without increasing the particle size due to aggregation between the clusters, and thus exhibit high catalytic activity throughout the reaction. To do. The montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst of the present invention is stable in air and can be suitably used in an aqueous solvent such as water. Furthermore, the montmorillonite interlayer-immobilized sub-nano-order palladium catalyst of the present invention maintains a sub-nano-order particle size without agglomeration of clusters even when it is repeatedly reused as a catalyst, and high catalytic activity and selectivity are lost. I will not.

本発明のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒は、例えば、
アリル位置換反応の触媒として好適に使用でき、具体的には例えば、下記式(1)で表されるアリルカーボネートや、下記式(2)で表されるアリルアセテートと種々の求核剤とのアリル位置換反応の触媒として好適に使用できる。

Figure 0004849547
(式(1)中、R1〜R5は同一または異なって、水素原子又は置換基を有していてもよい炭化水素基であり、R6は置換基を有していてもよい炭化水素基を示す。R1、R2、R3、R4、R5のうち少なくとも2つが結合して隣接する複数の炭素原子と共に環を形成していてもよい)
Figure 0004849547
(式(2)中、R1〜R5は同一または異なって、水素原子又は置換基を有していてもよい炭化水素基を示す。R1、R2、R3、R4、R5のうち少なくとも2つが結合して隣接する複数の炭素原子と共に環を形成していてもよい) The montmorillonite interlayer-immobilized sub-nano-order palladium catalyst of the present invention is, for example,
It can be suitably used as a catalyst for the allylic substitution reaction. Specifically, for example, allyl carbonate represented by the following formula (1), allyl acetate represented by the following formula (2), and various nucleophiles It can be suitably used as a catalyst for allylic substitution reaction.
Figure 0004849547
(In Formula (1), R < 1 > -R < 5 > is the same or different and is a hydrocarbon group which may have a hydrogen atom or a substituent, and R < 6 > is a hydrocarbon which may have a substituent. And at least two of R 1 , R 2 , R 3 , R 4 and R 5 may be bonded to form a ring with a plurality of adjacent carbon atoms).
Figure 0004849547
(In the formula (2), R 1 ~R 5 are the same or different, .R 1, R 2, R 3 represents a hydrogen atom or an optionally substituted hydrocarbon group, R 4, R 5 And at least two of them may combine to form a ring with a plurality of adjacent carbon atoms)

求核剤の代表的な例としては例えば、下記式(3)

Figure 0004849547
(式(3)中R7、R8、R9は同一又は異なって、水素原子又は非金属原子含有基を示す。R7、R8、R9のうち少なくとも2つが結合して隣接する複数の炭素原子と共に環を形成していてもよい)
で表される1,3−ジカルボニル化合物や、
下記式(4)
Figure 0004849547
(式(4)中Yは電子吸引性基を示し、nは1〜3の整数を示す)
で表されるフェノール誘導体を例示できる。 As a typical example of a nucleophile, for example, the following formula (3)
Figure 0004849547
(In formula (3), R 7 , R 8 , and R 9 are the same or different and represent a hydrogen atom or a non-metal atom-containing group. A plurality of adjacent groups in which at least two of R 7 , R 8 , and R 9 are bonded together. And may form a ring together with carbon atoms of
1,3-dicarbonyl compounds represented by
Following formula (4)
Figure 0004849547
(In formula (4), Y represents an electron-withdrawing group, and n represents an integer of 1 to 3)
The phenol derivative represented by these can be illustrated.

1〜R5における置換基を有していてもよい炭化水素基としては、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、これらが複数結合した基が挙げられる。脂肪族炭化水素基としては例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s−ブチル、t−ブチル、ヘキシル、デシル、ドデシル、テトラデシル、ヘキサデシル、ビニル、アリル、エチニル、1−プロピニル基等の炭素数1〜20程度の直鎖状又は分岐鎖状の脂肪族炭化水素基(アルキル基、アルケニル基、アルキニル基)などが挙げられる。脂環式炭化水素基としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘキセニル、シクロオクチル、シクロデシル、シクロドデシル、ノルボニル、アダマンチル基などの炭素数3〜20程度の脂環式炭化水素基(シクロアルキル基、シクロアルケニル基、橋架け炭素環式基等)などが挙げられる。芳香族炭化水素基としては、例えば、フェニル、ナフチル基等の炭素数6〜14程度の芳香族炭化水素基等が挙げられる。 Examples of the hydrocarbon group which may have a substituent in R 1 to R 5 include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which a plurality of these are bonded. Examples of the aliphatic hydrocarbon group include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, hexyl, decyl, dodecyl, tetradecyl, hexadecyl, vinyl, allyl, ethynyl, 1-propynyl group and the like. And a linear or branched aliphatic hydrocarbon group (alkyl group, alkenyl group, alkynyl group) having about 1 to 20 carbon atoms. Examples of the alicyclic hydrocarbon group include an alicyclic hydrocarbon group having about 3 to 20 carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, cyclooctyl, cyclodecyl, cyclododecyl, norbornyl, and adamantyl groups. (A cycloalkyl group, a cycloalkenyl group, a bridged carbocyclic group, etc.). Examples of the aromatic hydrocarbon group include aromatic hydrocarbon groups having about 6 to 14 carbon atoms such as phenyl and naphthyl groups.

脂肪族炭化水素基と脂環式炭化水素基とが結合した基としては例えば、シクロペンチルメチル、シクロヘキシルメチル、シクロヘキシルエチル基などが挙げられる。また、脂肪族炭化水素基と芳香族炭化水素基とが結合した基として例えば、ベンジル、2−フェニルエチル、1−フェニルエチル、3−フェニルプロピル等のアラルキル基;2−メチルフェニル、3−メチルフェニル、4−メチルフェニル基等が挙げられる。   Examples of the group in which an aliphatic hydrocarbon group and an alicyclic hydrocarbon group are bonded include a cyclopentylmethyl, cyclohexylmethyl, and cyclohexylethyl groups. Examples of the group in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group are bonded include, for example, aralkyl groups such as benzyl, 2-phenylethyl, 1-phenylethyl, 3-phenylpropyl; 2-methylphenyl, 3-methyl Examples include phenyl and 4-methylphenyl groups.

式(1)で表されるアリルカーボネートとしては具体的には例えば、アリルメチルカーボネート、1,3−ジフェニル−2−プロペン−1−イルエチルカーボネートなどを例示できる。   Specific examples of the allyl carbonate represented by the formula (1) include allyl methyl carbonate and 1,3-diphenyl-2-propen-1-ylethyl carbonate.

6における置換基を有してもよい炭化水素基としては、R1〜R5における置換基を有していてもよい炭化水素基と同様のものを例示できる。 Examples of the hydrocarbon group that may have a substituent in R 6 include the same hydrocarbon groups that may have a substituent in R 1 to R 5 .

式(2)で表されるアリルアセテートとしては具体的には例えば、アリルアセテート、3−フェニル−2−プロペニルアセテート、3−アセトキシ−5−カルボメトキシシクロヘキサ−1−エンなどを例示できる。   Specific examples of the allyl acetate represented by the formula (2) include allyl acetate, 3-phenyl-2-propenyl acetate, 3-acetoxy-5-carbomethoxycyclohex-1-ene and the like.

7、R8、R9における非金属原子含有基としては、例えば、ハロゲン原子、炭化水素基、複素環式基、カルボキシル基、置換オキシカルボニル基、置換もしくは無置換カルバモイル基、シアノ基、アシル基、ニトロ基、アルキルスルフィニル基、硫黄酸基、硫黄酸エステル基、ヒドロキシル基、置換オキシ基、メルカプト基、置換チオ基、これらが複数個結合した基等が挙げられる。 Examples of the non-metal atom-containing group in R 7 , R 8 and R 9 include a halogen atom, a hydrocarbon group, a heterocyclic group, a carboxyl group, a substituted oxycarbonyl group, a substituted or unsubstituted carbamoyl group, a cyano group, and an acyl group. Groups, nitro groups, alkylsulfinyl groups, sulfur acid groups, sulfur acid ester groups, hydroxyl groups, substituted oxy groups, mercapto groups, substituted thio groups, groups in which a plurality of these are bonded, and the like.

式(3)で表される1,3−ジカルボニル化合物としては例えば、アセチルアセトン、ベンゾイルアセトン、2−メチルシクロヘキサン−1,3−ジオン、5,5−ジメチルシクロヘキサン−1,3−ジオン、2−アセチルシクロヘキサン−1−オンなどのβ−ジケトン;アセト酢酸メチル、アセト酢酸エチル、2−メチル−1−エトキシブタン−1,3−ジオンエチルベンゾイルアセテートなどのβ−ケトエステルなどが挙げられる。   Examples of the 1,3-dicarbonyl compound represented by the formula (3) include acetylacetone, benzoylacetone, 2-methylcyclohexane-1,3-dione, 5,5-dimethylcyclohexane-1,3-dione, 2- Β-diketones such as acetylcyclohexane-1-one; β-ketoesters such as methyl acetoacetate, ethyl acetoacetate, 2-methyl-1-ethoxybutane-1,3-dioneethylbenzoyl acetate, and the like.

式(4)中Yで表される電子吸引性基としては例えば、ニトロ基、アシル基、カルボキシル基、ニトリル基等が例示できる。式(4)で表されるフェノール誘導体としては具体的には例えば、p−ニトロフェノール、2,4−ジニトロフェノール、ピクリン酸、サリチル酸などを例示できる。一般に、電子吸引性基を有するフェノール類とのアリル位置換反応は、均一系パラジウム触媒を使用した場合容易には進行しないことが知られているが、本発明のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒によれば、容易に進行する。   Examples of the electron-withdrawing group represented by Y in formula (4) include a nitro group, an acyl group, a carboxyl group, and a nitrile group. Specific examples of the phenol derivative represented by the formula (4) include p-nitrophenol, 2,4-dinitrophenol, picric acid and salicylic acid. In general, it is known that the allylic substitution reaction with phenols having an electron-withdrawing group does not proceed easily when a homogeneous palladium catalyst is used, but the montmorillonite interlayer-immobilized sub-nano-order palladium catalyst of the present invention According to, it proceeds easily.

上記アリル位置換反応は、モンモリロナイト層間固定化サブナノオーダーパラジウム触媒の存在下、基質と求核剤とを混合し、撹拌することによって行うことができる。基質と求核剤との比率は適宜選択できるが、例えば、基質1モルに対して求核剤を0.1〜30モル、好ましくは2〜15モル程度の範囲から選択することができる。モンモリロナイト層間固定化サブナノオーダーパラジウム触媒の使用量も特に制限されず、適宜選択することができるが、例えば、基質1モルに対してモンモリロナイト層間固定化サブナノオーダーパラジウム触媒5〜100g、好ましくは50〜70gの範囲から選択することができる。   The allylic substitution reaction can be carried out by mixing and stirring the substrate and the nucleophile in the presence of a montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst. The ratio of the substrate and the nucleophile can be appropriately selected. For example, the nucleophile can be selected in the range of 0.1 to 30 mol, preferably about 2 to 15 mol, per 1 mol of the substrate. The amount of the montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst is not particularly limited and can be appropriately selected. For example, the montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst is 5 to 100 g, preferably 50 to 70 g, per 1 mol of the substrate. You can choose from a range of

反応は、通常溶媒の存在下行われる。溶媒としては特に制限されず、例えば、水;メタノール、エタノール、ブタノール、エチレングリコール、1,4−ブタンジオールなどのアルコール;ジエチルエーテル、テトラヒドロフラン、テトラヒドロピランなどのエーテル;アセトニトリル、ベンゾニトリルなどのニトリル;アセトアミド、ジメチルアセトアミド、ジメチルホルムアミド、ジエチルホルムアミド、N−メチルピロリドンなどのアミド;ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;酢酸エチル、酢酸プロピル、酢酸ブチルなどのエステルが例示できる。これらの中で、アルコールを特に好適に使用できる。   The reaction is usually performed in the presence of a solvent. The solvent is not particularly limited. For example, water; alcohols such as methanol, ethanol, butanol, ethylene glycol, and 1,4-butanediol; ethers such as diethyl ether, tetrahydrofuran, and tetrahydropyran; nitriles such as acetonitrile and benzonitrile; Amides such as acetamide, dimethylacetamide, dimethylformamide, diethylformamide, N-methylpyrrolidone; aliphatic hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene; ethyl acetate, Examples include esters such as propyl acetate and butyl acetate. Among these, alcohol can be particularly preferably used.

反応温度は原料の種類等に応じて適宜選択でき、例えば、20〜250℃、好ましくは50〜150℃程度である。反応時間は、原料の種類や反応温度等に応じて適宜選択できるが、例えば、0.5〜20時間、好ましくは5〜15時間程度である。反応は、回分式、半回分式、連続式等の慣用の方式で行うことができる。反応は通常大気圧下で行うが、加圧下で行ってもよい。反応は、空気雰囲気下で行ってもよく、アルゴン、窒素などの不活性ガス雰囲気下でおこなってもよい。慣用のパラジウム触媒は通常、空気中では失活するか又は活性が低下するが、本発明のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒は空気中で反応を行った場合も高い活性を維持する。   The reaction temperature can be appropriately selected according to the type of raw material and the like, and is, for example, about 20 to 250 ° C., preferably about 50 to 150 ° C. Although reaction time can be suitably selected according to the kind of raw material, reaction temperature, etc., for example, it is 0.5 to 20 hours, Preferably it is about 5 to 15 hours. The reaction can be carried out in a conventional manner such as batch, semi-batch, or continuous. The reaction is usually performed under atmospheric pressure, but may be performed under pressure. The reaction may be performed in an air atmosphere or in an inert gas atmosphere such as argon or nitrogen. Conventional palladium catalysts are usually deactivated or decrease in activity in air, but the montmorillonite interlayer-immobilized sub-nano-order palladium catalyst of the present invention maintains high activity even when reacted in air.

反応終了後、反応生成物は、例えば、ろ過、濃縮、蒸留、析出、析晶、再結晶、吸着、カラムクロマトグラフィーなどの分離手段やこれらを組み合わせた分離手段により分離精製できる。   After completion of the reaction, the reaction product can be separated and purified by separation means such as filtration, concentration, distillation, precipitation, precipitation, recrystallization, adsorption, column chromatography, etc., or a separation means combining these.

以下に実施例を挙げて本発明をより詳細に説明するが、本発明はこれらの実施例により何ら制限されるものではない。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

アリル位置換反応生成物の同定は、NMR及びMSの測定により行った。化学式中、Meはメチル基、Etはエチル基、Acはアセチル基、Phはフェニル基を示す。   Identification of the allylic substitution reaction product was performed by NMR and MS measurements. In the chemical formula, Me represents a methyl group, Et represents an ethyl group, Ac represents an acetyl group, and Ph represents a phenyl group.

(実施例1)
[モンモリロナイト固定化サブナノクラスターパラジウム触媒の調製]
1.5gのナトリウム型モンモリロナイト[クニミネ工業(株)製:商品名「クニピアF」;(Na0.66(OH)4Si7.7(Al3.34Mg0.66Fe0.19)O20)]を水酸化カルシウム水溶液(水:500mL、Ca(OH)2:9.0mM)に添加し、70℃で15時間撹拌した。固体を濾過により分離し、脱イオン水で洗浄後、減圧下室温で乾燥し、カルシウム型モンモリロナイトを得た。得られたカルシウム型モンモリロナイト1.5gをビスジベンジリデンアセトンパラジウムのN,N−ジメチルアセトアミド(DMA)溶液(DMA:200ml、Pd(dba)2:0.2mM)により空気中、室温にて20時間処理した。得られたスラリーをろ過し、アセトンで洗浄後減圧下室温で乾燥し、2価パラジウム型モンモリロナイトの淡黄色粉末を得た。得られた2価パラジウム型モンモリロナイト1.5gを蒸留水1000mL中に室温にて添加した。水素化ホウ素カリウム及び水酸化ナトリウムの水溶液(水:15mL、KBH4:0.225mmol、NaOH:0.03mmol)を上記不均一混合物にゆっくりと添加し、得られた混合物を空気中、室温にて1時間撹拌した。得られたスラリーをろ過により回収し、蒸留水で洗浄後減圧下乾燥し、淡灰色粉末状のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒〈パラジウム含有量:0.0035mmol/g)を得た。
Example 1
[Preparation of Montmorillonite-immobilized sub-nanocluster palladium catalyst]
1.5 g of sodium-type montmorillonite [manufactured by Kunimine Kogyo Co., Ltd .: trade name “Kunipia F”; (Na 0.66 (OH) 4 Si 7.7 (Al 3.34 Mg 0.66 Fe 0.19 ] O 20 )] in a calcium hydroxide aqueous solution (water : 500 mL, Ca (OH) 2 : 9.0 mM) and stirred at 70 ° C. for 15 hours. The solid was separated by filtration, washed with deionized water, and then dried at room temperature under reduced pressure to obtain calcium type montmorillonite. 1.5 g of the obtained calcium-type montmorillonite was added to an N, N-dimethylacetamide (DMA) solution of bisdibenzylideneacetone palladium (DMA: 200 ml, Pd (dba) 2 : 0.2 mM) in air at room temperature for 20 hours. Processed. The obtained slurry was filtered, washed with acetone, and then dried at room temperature under reduced pressure to obtain a light yellow powder of divalent palladium-type montmorillonite. 1.5 g of the obtained divalent palladium-type montmorillonite was added to 1000 mL of distilled water at room temperature. An aqueous solution of potassium borohydride and sodium hydroxide (water: 15 mL, KBH 4 : 0.225 mmol, NaOH: 0.03 mmol) was slowly added to the heterogeneous mixture, and the resulting mixture was allowed to air at room temperature. Stir for 1 hour. The obtained slurry was collected by filtration, washed with distilled water, and dried under reduced pressure to obtain a light gray powdery montmorillonite interlayer-immobilized sub-nano-order palladium catalyst (palladium content: 0.0035 mmol / g).

(実施例2:参考例とする
[アリル位置換反応]
還流冷却器を備えた反応器に、触媒として実施例1で調製したモンモリロナイト層間固定化サブナノオーダーパラジウム触媒(0.18g、Pd:0.63μmol)、溶媒としてエタノール2ml、基質としてアリルメチルカーボネート(1a)0.3mmol、求核剤としてアセチルアセトン(2a)3.6mmolを入れ、アルゴン雰囲気下、80℃にて9時間激しく撹拌し反応させた。その結果、対応するアリル位置換反応生成物(3a)を得た。内部標準法によるGC収率は93%であった。

Figure 0004849547
(Example 2 : Reference example )
[Allylic substitution reaction]
In a reactor equipped with a reflux condenser, a montmorillonite interlayer-immobilized sub-nano-order palladium catalyst prepared in Example 1 as a catalyst (0.18 g, Pd: 0.63 μmol), ethanol as a solvent, 2 ml, and allylmethyl carbonate (1a) as a substrate. ) 0.3 mmol and 3.6 mmol of acetylacetone (2a) as a nucleophile were added, and the mixture was vigorously stirred and reacted at 80 ° C. for 9 hours under an argon atmosphere. As a result, the corresponding allylic substitution product (3a) was obtained. The GC yield by the internal standard method was 93%.
Figure 0004849547

(実施例3:参考例とする
[モンモリロナイト層間固定化サブナノオーダーパラジウム触媒の再利用]
実施例2の反応終了後の反応液中より、使用したモンモリロナイト層間固定化サブナノオーダーパラジウム触媒をアルゴン雰囲気下ろ過により回収し、少量のエタノールで洗浄した。回収したモンモリロナイト層間固定化サブナノオーダーパラジウム触媒を再利用して上記[アリル位置換反応]と同様の操作を行い、アリル位置換反応生成物(3a)を収率99%で得た。さらに同様の操作を行ない、再利用2回目及び再利用3回目のモンモリロナイト層間サブナノオーダーパラジウム触媒を使用したときのアリル位置換反応生成物(3a)の内部標準法によるGC収率は、それぞれ、99%及び98%であった。
3回再利用後のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒のTEM(透過型電子顕微鏡)像には、パラジウムの凝集体は確認されなかった。TEMの検出限界は1nmである。
(Example 3 : Reference example )
[Reuse of sub-nano-order palladium catalyst immobilized on montmorillonite interlayer]
From the reaction solution after completion of the reaction in Example 2, the used montmorillonite interlayer-immobilized sub-nano-order palladium catalyst was recovered by filtration under an argon atmosphere and washed with a small amount of ethanol. The recovered montmorillonite interlayer-immobilized sub-nano-order palladium catalyst was reused in the same manner as in [Allyl position substitution reaction] to obtain an allylic position substitution reaction product (3a) in a yield of 99%. Further, the same operation was performed, and the GC yield of the allylic substitution product (3a) by the internal standard method when using the second and third reused montmorillonite interlayer sub-nanoorder palladium catalyst was 99 respectively. % And 98%.
Aggregates of palladium were not confirmed in the TEM (transmission electron microscope) image of the montmorillonite interlayer-immobilized sub-nano-order palladium catalyst after three reuses. The detection limit of TEM is 1 nm.

(実施例4:参考例とする
反応を空気雰囲気下で行った以外は実施例2と同様の操作を行ない、化合物(3a)を収率93%で得た。
(Example 4 : Reference example )
The same operation as in Example 2 was carried out except that the reaction was carried out in an air atmosphere to obtain the compound (3a) in a yield of 93%.

(実施例5:参考例とする
実施例2においてさらに、トリフェニルホスフィン1.26μmolを加えた以外は実施例2と同様の操作を行い、アリル位置換反応生成物(3a)を得た。収率は50%であった。
多くの慣用のパラジウム触媒系においては、ホスフィン類を配位子として添加することによりアルキル化が促進されるが、本発明のパラジウム型モンモリロナイト触媒では、トリフェニルホスフィンを添加することにより触媒活性は抑制される。
(Example 5 : Reference example )
In Example 2, the same operation as in Example 2 was carried out except that 1.26 μmol of triphenylphosphine was added to obtain an allylic substitution product (3a). The yield was 50%.
In many conventional palladium catalyst systems, alkylation is promoted by adding phosphines as ligands, but in the palladium-type montmorillonite catalyst of the present invention, catalytic activity is suppressed by adding triphenylphosphine. Is done.

(比較例1)
実施例1で、水素化ホウ素カリウム水溶液処理を行わない以外は実施例1と同様の操作を行いパラジウム(II)型モンモリロナイトを調整した。
触媒としてモンモリロナイト層間固定化サブナノオーダーパラジウム触媒に換えて、上記パラジウム(II)型モンモリロナイトを使用した以外は実施例2と同様の操作を行った。アリル位置換反応は進行しなかった。
(Comparative Example 1)
A palladium (II) type montmorillonite was prepared in the same manner as in Example 1 except that the treatment in Example 1 was not performed.
The same operation as in Example 2 was performed except that the palladium (II) type montmorillonite was used instead of the montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst. The allylic substitution reaction did not proceed.

(比較例2)
触媒としてモンモリロナイト層間固定化サブナノオーダーパラジウム触媒に換えてPd/Al23(エヌ・イー ケムキャット製)を使用し、溶媒としてエタノール2mlに換えて水1mlを使用した以外は実施例2と同様の操作を行った。アリル位置換反応生成物(3a)を内部標準法によるGC収率14%で得た。
(Comparative Example 2)
Example 2 except that Pd / Al 2 O 3 (manufactured by N.E. Chemcat) was used instead of the montmorillonite interlayer-immobilized sub-nano-order palladium catalyst, and 1 ml of water was used instead of 2 ml of ethanol as the solvent. The operation was performed. The allylic substitution product (3a) was obtained with a GC yield of 14% according to the internal standard method.

(比較例3)
触媒としてモンモリロナイト層間固定化サブナノオーダーパラジウム触媒に換えてPd/SiO2(エヌ・イー ケムキャット製)を使用し、溶媒としてエタノール2mlに換えて水1mlを使用した以外は実施例2と同様の操作を行った。痕跡量のアリル位置換反応生成物(3a)を得た。
(Comparative Example 3)
The same operation as in Example 2 was performed except that Pd / SiO 2 (manufactured by NP Chemcat) was used instead of the montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst, and 1 ml of water was used instead of 2 ml of ethanol as the solvent. went. A trace amount of allylic substitution product (3a) was obtained.

(比較例4)
触媒としてモンモリロナイト層間固定化サブナノオーダーパラジウム触媒に換えてPd/Carbon(エヌ・イー ケムキャット製)を使用し、溶媒としてエタノール2mlに換えて水1mlを使用した以外は実施例2と同様の操作を行った。アリル位置換反応は進行しなかった。
(Comparative Example 4)
The same operation as in Example 2 was carried out except that Pd / Carbon (manufactured by NP Chemcat) was used instead of the montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst, and 1 ml of water was used instead of 2 ml of ethanol as the solvent. It was. The allylic substitution reaction did not proceed.

(比較例5)
触媒としてモンモリロナイト層間固定化サブナノオーダーパラジウム触媒に換えてPd/TiO2(エヌ・イー ケムキャット製)を使用し、溶媒としてエタノール2mlに換えて水1mlを使用した以外は実施例2と同様の操作を行った。アリル位置換反応は進行しなかった。
(Comparative Example 5)
The same operation as in Example 2 was performed except that Pd / TiO 2 (manufactured by NP Chemcat) was used in place of the montmorillonite interlayer-immobilized sub-nano-order palladium catalyst, and 1 ml of water was used in place of 2 ml of ethanol as the solvent. went. The allylic substitution reaction did not proceed.

(実施例6:参考例とする
溶媒として、エタノールに換えてDMF(ジメチルホルムアミド)を使用した以外は実施例2と同様の操作を行い、化合物(3a)を得た。内部標準法によるGC収率は58%であった。
(Example 6 : Reference example )
The same operation as in Example 2 was carried out except that DMF (dimethylformamide) was used in place of ethanol as a solvent to obtain compound (3a). The GC yield by the internal standard method was 58%.

(実施例7:参考例とする
溶媒として、エタノールに換えてTHF(テトラヒドロフラン)を使用した以外は実施例2と同様の操作を行い、化合物(3a)を得た。内部標準法によるGC収率は52%であった。
(Example 7 : Reference example )
The same operation as in Example 2 was carried out except that THF (tetrahydrofuran) was used instead of ethanol as a solvent to obtain a compound (3a). The GC yield by the internal standard method was 52%.

(実施例8:参考例とする
溶媒として、エタノールに換えてヘプタンを使用した以外は実施例2と同様の操作を行い、化合物(3a)を得た。内部標準法によるGC収率は29%であった。
(Example 8 : Reference example )
The same operation as in Example 2 was carried out except that heptane was used in place of ethanol as a solvent to obtain compound (3a). The GC yield by the internal standard method was 29%.

(実施例9:参考例とする
溶媒として、エタノールに換えてトルエンを使用した以外は実施例2と同様の操作を行い、化合物(3a)を得た。内部標準法によるGC収率は15%であった。
(Example 9 : Reference example )
The same operation as in Example 2 was carried out except that toluene was used in place of ethanol as a solvent to obtain a compound (3a). The GC yield by the internal standard method was 15%.

水やエタノールを溶媒として使用した場合は、高い収率で置換生成物が得られる。このような溶媒にモンモリロナイト層間固定化サブナノオーダーパラジウム触媒を浸漬すると、モンモリロナイト層間の空間が広げられ、基質がモンモリロナイト層間のパラジウムクラスターに容易に接近できるようになるためと考えられる。モンモリロナイト層間固定化サブナノオーダーパラジウム触媒のモンモリロナイト層間の距離は、水に浸漬することにより、5.3Åから9.6Åへ拡がる。   When water or ethanol is used as a solvent, a substitution product can be obtained with a high yield. It is considered that when the montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst is immersed in such a solvent, the space between the montmorillonite layers is expanded, and the substrate can easily approach the palladium clusters between the montmorillonite layers. The distance between the montmorillonite layers of the montmorillonite interlayer-immobilized sub-nano-order palladium catalyst increases from 5.3 mm to 9.6 mm when immersed in water.

(実施例10:参考例とする
還流冷却器を備えた反応器に、触媒として実施例1で調製したパラジウム型モンモリロナイト(0.18g、Pd:0.63μmol)、溶媒として水1ml、基質としてアリルメチルカーボネート(1a)0.3mmol、求核剤として2−メチルシクロヘキサン−1,3−ジオン(2b)3.6mmolを入れ、アルゴン雰囲気下、80℃にて11時間激しく撹拌し反応させた。その結果、対応するアリル位置換反応生成物(3b)を得た。内部標準法によるGC収率は73%であった。

Figure 0004849547
(Example 10 : Reference example )
In a reactor equipped with a reflux condenser, palladium-type montmorillonite (0.18 g, Pd: 0.63 μmol) prepared in Example 1 as a catalyst, 1 ml of water as a solvent, 0.3 mmol of allyl methyl carbonate (1a) as a substrate, As a nucleophile, 3.6 mmol of 2-methylcyclohexane-1,3-dione (2b) was added, and the mixture was vigorously stirred and reacted at 80 ° C. for 11 hours under an argon atmosphere. As a result, the corresponding allylic substitution product (3b) was obtained. The GC yield by the internal standard method was 73%.
Figure 0004849547

(実施例11:参考例とする
求核剤として2−メチルシクロヘキサン−1,3−ジオン(2b)に換えてベンゾイルアセトン(2c)を使用し、反応時間を25時間とした以外は実施例10と同様の操作を行い、相当するアリル位置換反応生成物(3c)を得た。内部標準法によるGC収率は84%であった。

Figure 0004849547
(Example 11 : Reference example )
The same procedure as in Example 10 was performed, except that benzoylacetone (2c) was used in place of 2-methylcyclohexane-1,3-dione (2b) as the nucleophile and the reaction time was 25 hours. An allylic substitution product (3c) was obtained. The GC yield by the internal standard method was 84%.
Figure 0004849547

(実施例12:参考例とする
求核剤として2−メチルシクロヘキサン−1,3−ジオン(2b)に換えてアセチルアセトン(2)を使用し、反応時間を15時間とした以外は実施例10と同様の操作を行い、相当するアリル位置換反応生成物(3d)を得た。内部標準法によるGC収率は48%であった。

Figure 0004849547
(Example 12 : Reference example )
The same procedure as in Example 10 was performed, except that acetylacetone (2 a ) was used in place of 2-methylcyclohexane-1,3-dione (2b) as the nucleophile and the reaction time was 15 hours. The allylic substitution product (3d) was obtained. The GC yield by the internal standard method was 48%.
Figure 0004849547

(実施例13:参考例とする
求核剤として2−メチルシクロヘキサン−1,3−ジオン(2b)に換えて2−アセチルヘキサン−1−オン(2e)を使用し、反応時間を15時間とした以外は実施例10と同様の操作を行い、相当するアリル位置換反応生成物(3e)を得た。内部標準法によるGC収率は70%であった。

Figure 0004849547
(Example 13 : Reference example )
The same as Example 10 except that 2-acetylhexane-1-one (2e) was used in place of 2-methylcyclohexane-1,3-dione (2b) as the nucleophile and the reaction time was 15 hours. The corresponding allylic substitution product (3e) was obtained. The GC yield by the internal standard method was 70%.
Figure 0004849547

(実施例14:参考例とする
求核剤として、アセチルアセトン(2a)に換えて、2−メチル−1−エトキシブタン−1,3−ジオン(2f)を使用し、反応時間を24時間とした以外は実施例2と同様の操作を行い、相当するアリル位置換反応生成物(3f)を得た。内部標準法によるGC収率は80%であった。

Figure 0004849547
(Example 14 : Reference example )
The same operation as in Example 2 except that 2-methyl-1-ethoxybutane-1,3-dione (2f) was used in place of acetylacetone (2a) as the nucleophile and the reaction time was 24 hours. And the corresponding allylic substitution product (3f) was obtained. The GC yield by the internal standard method was 80%.
Figure 0004849547

(実施例15:参考例とする
求核剤としてアセチルアセトン(2a)に換えて5,5−ジメチルシクロヘキサン−1,3−ジオン(2g)を使用し、反応時間を21時間とした以外は実施例2と同様の操作を行い、相当するアリル位置換反応生成物(3g)を得た。内部標準法によるGC収率は90%であった。

Figure 0004849547
(Example 15 : Reference example )
The same operation as in Example 2 was performed except that 5,5-dimethylcyclohexane-1,3-dione (2 g) was used in place of acetylacetone (2a) as a nucleophilic agent and the reaction time was 21 hours. An allylic substitution reaction product (3 g) was obtained. The GC yield by the internal standard method was 90%.
Figure 0004849547

(実施例16)
還流冷却器を備えた反応器に、触媒として実施例1で調製したモンモリロナイト層間固定化サブナノオーダーパラジウム触媒(0.18g、Pd:0.63μmol)、溶媒としてエタノール2ml、基質としてアリルアセテート(1b)0.3mmol、求核剤としてアセト酢酸エチル(2)3.6mmolを入れ、アルゴン雰囲気下、80℃にて20時間激しく撹拌し反応させた。その結果、対応するアリル位置換反応生成物(3a)を得た。内部標準法によるGC収率は88%であった。

Figure 0004849547
(Example 16)
In a reactor equipped with a reflux condenser, a montmorillonite interlayer-immobilized sub-nano-order palladium catalyst prepared in Example 1 (0.18 g, Pd: 0.63 μmol) as a catalyst, ethanol 2 ml as a solvent, and allyl acetate (1b) as a substrate 0.3 mmol and 3.6 mmol of ethyl acetoacetate (2 j ) as a nucleophile were added, and the mixture was vigorously stirred and reacted at 80 ° C. for 20 hours under an argon atmosphere. As a result, the corresponding allylic substitution product (3a) was obtained. The GC yield by the internal standard method was 88%.
Figure 0004849547

(実施例17)
求核剤としてアセト酢酸エチル(2)に換えてエチルベンゾイルアセテート(2h)を使用し、反応時間を24時間とした以外は実施例16と同様の操作を行い相当するアリル位置換反応生成物(3h)を得た。内部標準法によるGC収率は71%であった。

Figure 0004849547
(Example 17)
The corresponding allylic substitution product was obtained in the same manner as in Example 16 except that ethyl benzoyl acetate (2h) was used in place of ethyl acetoacetate (2 j ) as the nucleophile and the reaction time was 24 hours. (3h) was obtained. The GC yield by the internal standard method was 71%.
Figure 0004849547

(実施例18)
求核剤としてアセト酢酸エチル(2)に換えて5,5−ジメチルシクロヘキサン−1,3−ジオン(2g)を使用し、反応時間を18時間とした以外は、実施例16と同様の操作を行い、相当するアリル位置換反応生成物(3g)を得た。内部標準法によるGC収率は70%であった。

Figure 0004849547
(Example 18)
The same operation as in Example 16 except that 5,5-dimethylcyclohexane-1,3-dione (2 g) was used in place of ethyl acetoacetate (2 j ) as the nucleophile and the reaction time was 18 hours. And the corresponding allylic substitution product (3 g) was obtained. The GC yield by the internal standard method was 70%.
Figure 0004849547

(実施例19)
基質として、アリルアセテート(1b)に換えて、3−フェニル−2−プロペニルアセテート(1c)0.3mmolを使用し、反応時間を20時間とした以外は実施例16と同様の操作を行い、対応するアリル位置換反応生成物(3i)を得た。内部標準法によるGC収率は71%であった。

Figure 0004849547
(Example 19)
The same operation as in Example 16 was performed except that 0.3 mmol of 3-phenyl-2-propenyl acetate (1c) was used instead of allyl acetate (1b) as a substrate, and the reaction time was 20 hours. The allylic substitution reaction product (3i) was obtained. The GC yield by the internal standard method was 71%.
Figure 0004849547

(実施例20)
還流冷却器を備えた反応器に、触媒として実施例1で調製したモンモリロナイト層間固定化サブナノオーダーパラジウム触媒(0.18g、Pd:0.63μmol)、溶媒としてエタノール2ml、基質としてアリルカーボネート(1a)0.3mmol、求核剤としてp−ニトロフェノール(2i)3.6mmolを入れ、アルゴン雰囲気下、80℃にて20時間激しく撹拌し反応させた。その結果、対応するアリル位置換反応生成物(3j)を得た。内部標準法によるGC収率は85%であった。

Figure 0004849547
(Example 20)
In a reactor equipped with a reflux condenser, a montmorillonite interlayer-immobilized sub-nano-order palladium catalyst prepared in Example 1 (0.18 g, Pd: 0.63 μmol) as a catalyst, ethanol 2 ml as a solvent, and allyl carbonate (1a) as a substrate 0.3 mmol and 3.6 mmol of p-nitrophenol (2i) were added as a nucleophile, and the mixture was vigorously stirred and reacted at 80 ° C. for 20 hours under an argon atmosphere. As a result, a corresponding allylic substitution reaction product (3j) was obtained. The GC yield by the internal standard method was 85%.
Figure 0004849547

(比較例6)
触媒としてモンモリロナイト層間固定化サブナノオーダーパラジウム触媒に換えてテトラキストリフェニルホスフィンパラジウムを使用し、反応時間を48時間とした以外は実施例20と同様の操作を行った。対応するアリル位置換反応生成物は痕跡量しか得られなかった。
(Comparative Example 6)
The same operation as in Example 20 was performed except that tetrakistriphenylphosphine palladium was used instead of the montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst, and the reaction time was 48 hours. Only a trace amount of the corresponding allylic substitution reaction product was obtained.

(実施例21)
還流冷却器を備えた反応器に、触媒として実施例1で調製したモンモリロナイト層間固定化サブナノオーダーパラジウム触媒(0.18g、Pd:0.63μmol)、溶媒としてエタノール2ml、基質としてシス−3−アセトキシ−5−カルボメトキシシクロヘキサン−1−エン(1d)0.3mmol、求核剤としてアセト酢酸エチル(2)3.6mmolを入れ、アルゴン雰囲気下、80℃にて9時間激しく撹拌し反応させた。その結果、対応するアリル位置換反応生成物(3k)を得た。得られた化合物(3k)は、シス体:トランス体=96:4の混合物であった。

Figure 0004849547
(Example 21)
In a reactor equipped with a reflux condenser, a montmorillonite interlayer-immobilized sub-nano-order palladium catalyst prepared in Example 1 as a catalyst (0.18 g, Pd: 0.63 μmol), 2 ml of ethanol as a solvent, and cis-3-acetoxy as a substrate. 0.3 mmol of -5-carbomethoxycyclohexane-1-ene (1d) and 3.6 mmol of ethyl acetoacetate (2 j ) as a nucleophile were stirred and reacted vigorously at 80 ° C. for 9 hours in an argon atmosphere. . As a result, a corresponding allylic substitution reaction product (3k) was obtained. The obtained compound (3k) was a mixture of cis isomer: trans isomer = 96: 4.
Figure 0004849547

(比較例7)
触媒としてモンモリロナイト層間固定化サブナノオーダーパラジウム触媒に換えて、テトラキストリフェニルホスフィンパラジウムを使用した以外は実施例21と同様の操作を行い、アリル位置換反応生成物(3k)を得た。化合物(3k)は、シス体:トランス体=75:25の混合物であった。
(Comparative Example 7)
The allylic substitution reaction product (3k) was obtained in the same manner as in Example 21 except that tetrakistriphenylphosphine palladium was used in place of the montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst. Compound (3k) was a mixture of cis form: trans form = 75: 25.

立体選択は、アセト酢酸エチルの求核攻撃に際して、エンド攻撃から強く遮蔽されているサブナノパラジウムクラスター上のp−アリル中間体表面でおこっていると考えられる。   Stereoselection is thought to occur at the surface of the p-allyl intermediate on the sub-nanopalladium cluster, which is strongly shielded from end attack during the nucleophilic attack of ethyl acetoacetate.

〈試験評価〉
実施例2において、アリルメチルカーボネート(1a)と、アセチルアセトン(2a)との反応が、モンモリロナイト層間に固定化されたパラジウムナノクラスター上で起こっていることを確認するために、アリルメチルカーボネートの転化率が40%となった時点で、モンモリロナイト層間固定化サブナノオーダーパラジウム触媒を80℃の温度を保ちながらろ過により除去した。得られたろ液を、触媒除去前と同じ条件で処理したが、アリル位置換反応は進行しなかった。ICP分析によりろ液中のパラジウム含有量は検出限界以下であることを確認した。以上より、アリル位置換反応がモンモリロナイト層間のパラジウムクラスター上で進行していることは明らかである。
<Test evaluation>
In Example 2, in order to confirm that the reaction between allylmethyl carbonate (1a) and acetylacetone (2a) occurs on palladium nanoclusters immobilized between montmorillonite layers, the conversion rate of allylmethyl carbonate At 40%, the montmorillonite interlayer-immobilized sub-nano-order palladium catalyst was removed by filtration while maintaining the temperature at 80 ° C. The obtained filtrate was treated under the same conditions as before removing the catalyst, but the allylic substitution reaction did not proceed. ICP analysis confirmed that the palladium content in the filtrate was below the detection limit. From the above, it is clear that the allylic substitution reaction proceeds on a palladium cluster between montmorillonite layers.

[X線吸収微細構造(XAFS)測定]
本発明のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒の原子レベルの構造を解析するために、K−edge EXAFS測定を行った。測定は、蛍光収量法により、室温において、Si(311)モノクロメーターを有するビームライン01B1により測定し、検出は19素子半導体検出器により行った。EXAFSデータのフーリエ変換により動径構造関数を得て、逆フーリエ変換のカーブフィッティングにより、後方散乱の経験値と、PdO、パラジウム箔及び[PdCl(C35)]2の位相ずれからCN(散乱原子の配位数)、R(吸収原子と散乱原子との距離)、Debye−Waller因子を概算した。なお、(d)及び(e)の測定に使用した試料は、実施例2と同様の条件下で処理を行うことにより調製した。
[X-ray absorption fine structure (XAFS) measurement]
K-edge EXAFS measurement was performed in order to analyze the atomic structure of the montmorillonite interlayer-immobilized sub-nano-order palladium catalyst of the present invention. Measurement was performed by a fluorescence yield method at room temperature with a beam line 01B1 having a Si (311) monochromator, and detection was performed with a 19-element semiconductor detector. The radial structure function is obtained by the Fourier transform of the EXAFS data, and from the empirical value of backscattering and the phase shift of PdO, palladium foil and [PdCl (C 3 H 5 )] 2 by the inverse Fourier transform curve fitting, CN ( The coordination number of the scattering atom), R (distance between the absorbing atom and the scattering atom), and Debye-Waller factor were estimated. In addition, the sample used for the measurement of (d) and (e) was prepared by processing on the same conditions as Example 2.

図1に、EXAFSのフーリエ変換図を示す。図1中、(a)は水素化ホウ素カリウム処理前のパラジウム(II)型モンモリロナイト、(b)は実施例1で製造した本発明のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒、(c)は実施例3において3回再利用した後のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒、(d)はアリルメチルカーボネート(1a)で処理したモンモリロナイト層間固定化サブナノオーダーパラジウム触媒、(e)はアセト酢酸エチル(2)で処理したモンモリロナイト層間固定化サブナノオーダーパラジウム触媒、(f)は対照化合物としての[PdCl(C3H5)]2の測定結果をそれぞれ示す。モンモリロナイト層間固定化サブナノオーダーパラジウム触媒モンモリロナイト層間固定化サブナノオーダーパラジウム触媒において、パラジウム種はおおよそ10のパラジウム原子よりなるサブナノオーダーのクラスターとして存在し、3回再利用後も凝集することなく、サブナノオーダーの粒子径を保持する。(a)及び(b)において、1〜2Å辺りに見られるピークは、配位数が4.5である4つのPd−O結合(2.02Å)を有する化合物の測定結果と一致している。(b)において2.50Å辺りのピークはPd−Pd結合に相当するものであるが、このピークは、水素化ホウ素カリウム処理前のパラジウム(II)型モンモリロナイト(a)では見られない。なお、2.50Å周辺のPd−C結合に帰属されるピークは、パラジウム箔の測定で得られる値を参照した。(d)では、Pd−Pd結合に相当するピークが減少し、2.0Å周辺のPd−C結合に相当するピークが現れている。Pd−C原子間距離は、(f)に示す[PdCl(C3H5)]2を参照した。(d)の測定において使用したサンプルをさらにアセト酢酸エチル(2)で処理した(e)は、Pd−C結合に帰属されるピークが消失し、3回再利用後のスペクトルに類似している。これらの結果は、アルキル化反応がサブナノオーダーパラジウムクラスターにおける配位不飽和パラジウム原子上で起こっていることを強く示唆している。
水素化ホウ素カリウム処理前のパラジウム(II)型モンモリロナイトでは、パラジウム箔では2.50Å辺りに観測されるPd−Pd結合に相当するピークは観測されない。このことより、1〜2Å辺りのピークは、4つの酸素原子に囲まれたII価パラジウム単量体成分が、モンモリロナイト層間において高度に分散した形態で生成していることによると推測される。
図1Aの(b)で、2.5Å辺りに見られるピークは、およそ6個のパラジウム原子よりなる直径0.57ナノメートルのパラジウムクラスターに相当する平均配位数3.77のパラジウムクラスターが形成されたことを示している。
FIG. 1 shows a Fourier transform diagram of EXAFS. 1, (a) is a palladium (II) type montmorillonite before treatment with potassium borohydride, (b) is a montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst of the present invention produced in Example 1, and (c) is an example. 3, the montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst after being reused three times, (d) is a montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst treated with allyl methyl carbonate (1a), and (e) is ethyl acetoacetate (2 j Montmorillonite interlayer-immobilized sub-nano-order palladium catalyst treated with), (f) shows the measurement results of [PdCl (C3H5)] 2 as a control compound. Montmorillonite interlayer-immobilized sub-nano-order palladium catalyst In the montmorillonite interlayer-immobilized sub-nano-order palladium catalyst, the palladium species exists as a sub-nano-order cluster consisting of approximately 10 palladium atoms, and the sub-nano-order palladium is not agglomerated after three reuses. Maintain particle size. In (a) and (b), the peak observed around 1 to 2 Å coincides with the measurement result of the compound having four Pd—O bonds (2.02 Å) having a coordination number of 4.5. . In (b), the peak around 2.50Å corresponds to the Pd—Pd bond, but this peak is not seen in the palladium (II) type montmorillonite (a) before the treatment with potassium borohydride. In addition, the value attributed to the measurement of palladium foil was referred to the peak attributed to the Pd—C bond around 2.50Å. In (d), the peak corresponding to the Pd—Pd bond decreases, and the peak corresponding to the Pd—C bond around 2.0Å appears. For the Pd—C interatomic distance, [PdCl (C3H5)] 2 shown in (f) was referred to. When the sample used in the measurement of (d) was further treated with ethyl acetoacetate (2 j ), the peak attributed to the Pd—C bond disappeared, and the spectrum after three reuses was similar. Yes. These results strongly suggest that the alkylation reaction occurs on coordinated unsaturated palladium atoms in sub-nano-order palladium clusters.
In the palladium (II) type montmorillonite before the treatment with potassium borohydride, no peak corresponding to the Pd—Pd bond observed around 2.50 mm is observed in the palladium foil. From this, it is estimated that the peak around 1 to 2 km is due to the fact that the II-valent palladium monomer component surrounded by four oxygen atoms is generated in a highly dispersed form between the montmorillonite layers.
In FIG. 1A (b), a peak around 2.5 Å is formed by a palladium cluster having an average coordination number of 3.77 corresponding to a palladium cluster having a diameter of 0.57 nanometers composed of approximately 6 palladium atoms. It has been shown.

本発明のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒及びパラジウム(II)型モンモリロナイトのκ3-weighted EXAFSフーリエ変換図である。FIG. 3 is a κ 3 -weighted EXAFS Fourier transform diagram of a sub-nanoorder palladium catalyst and a palladium (II) type montmorillonite immobilized between montmorillonite layers of the present invention.

符号の説明Explanation of symbols

(a) パラジウム(II)型モンモリロナイトのκ3-weighted EXAFSフーリエ変換を示す。
(b) 実施例1で製造した本発明のモンモリロナイト層間固定化サブナノオーダーパラジウムのκ3-weighted EXAFSフーリエ変換を示す。
(c) 実施例3において3回再利用後の本発明のモンモリロナイト層間固定化サブナノオーダーパラジウム触媒のκ3-weighted EXAFSフーリエ変換を示す。
(d) アリルメチルカーボネートで処理したモンモリロナイト層間固定化サブナノオーダーパラジウム触媒のκ3-weighted EXAFSフーリエ変換を示す。
(e) アリルメチルカーボネートで処理した後、アセト酢酸エチルで処理したモンモリロナイト層間固定化サブナノオーダーパラジウム触媒のκ3-weighted EXAFSフーリエ変換を示す。
(f) [PdCl(C35)]2のκ3-weighted EXAFSフーリエ変換を示す。
(A) κ 3 -weighted EXAFS Fourier transform of palladium (II) type montmorillonite.
(B) κ 3 -weighted EXAFS Fourier transform of the montmorillonite interlayer-immobilized sub-nano-order palladium of the present invention produced in Example 1.
(C) shows the κ 3 -weighted EXAFS Fourier transform of the montmorillonite interlayer-immobilized sub-nano-order palladium catalyst of the present invention after three reuses in Example 3.
(D) κ 3 -weighted EXAFS Fourier transform of a montmorillonite interlayer-immobilized sub-nano-order palladium catalyst treated with allyl methyl carbonate.
(E) κ 3 -weighted EXAFS Fourier transform of a montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst treated with allyl methyl carbonate and then with ethyl acetoacetate.
(F) κ 3 -weighted EXAFS Fourier transform of [PdCl (C 3 H 5 )] 2 .

Claims (2)

モンモリロナイト結晶層間に、サブナノオーダーパラジウムクラスターを固定してなるモンモリロナイト層間固定化サブナノオーダーパラジウム触媒の存在下、下記式(1)
Figure 0004849547
(式(1)中、R 1 〜R 5 は同一または異なって、水素原子又は炭化水素基であり、R 6 は炭化水素基を示す。R 1 、R 2 、R 3 、R 4 、R 5 のうち少なくとも2つが結合して隣接する複数の炭素原子と共に環を形成していてもよい)
で表されるアリルカーボネートと、求核剤として下記式(4)
Figure 0004849547
(式(4)中、Yはニトロ基、アシル基、カルボキシル基、又はニトリル基を示し、nは1〜3の整数を示す)
で表されるフェノール誘導体とを反応させて、対応するアリル位置換反応生成物を得ることを特徴とするアリル位置換反応生成物の製造方法
In the presence of a montmorillonite interlayer-immobilized sub-nano-order palladium catalyst in which a sub-nano-order palladium cluster is immobilized between montmorillonite crystal layers, the following formula (1)
Figure 0004849547
(In the formula (1), R 1 ~R 5 are the same or different and each represents a hydrogen atom or a hydrocarbon group, R 6 represents a hydrocarbon group .R 1, R 2, R 3 , R 4, R 5 And at least two of them may combine to form a ring with a plurality of adjacent carbon atoms)
And the following formula (4) as a nucleophile
Figure 0004849547
(In formula (4), Y represents a nitro group, an acyl group, a carboxyl group, or a nitrile group, and n represents an integer of 1 to 3)
A method for producing an allylic substitution reaction product, characterized in that a corresponding allylic substitution reaction product is obtained .
モンモリロナイト結晶層間に、サブナノオーダーパラジウムクラスターを固定してなるモンモリロナイト層間固定化サブナノオーダーパラジウム触媒の存在下、下記式(2)
Figure 0004849547
(式(2)中、R 1 〜R 5 は同一または異なって、水素原子又は炭化水素基を示す。R 1 、R 2 、R 3 、R 4 、R 5 のうち少なくとも2つが結合して隣接する複数の炭素原子と共に環を形成していてもよい)
で表されるアリルアセテートと、求核剤として下記式(3)
Figure 0004849547
(式(3)中、R 7 、R 8 、R 9 は同一又は異なって、水素原子、ハロゲン原子、炭化水素基、複素環式基、カルボキシル基、カルバモイル基、シアノ基、アシル基、ニトロ基、アルキルスルフィニル基、硫黄酸基、硫黄酸エステル基、ヒドロキシル基、置換オキシ基、メルカプト基、又はこれらが複数個結合した基を示す。R 7 、R 8 、R 9 のうち少なくとも2つが結合して隣接する複数の炭素原子と共に環を形成していてもよい)
で表される1,3−ジカルボニル化合物若しくは下記式(4)
Figure 0004849547
(式(4)中、Yはニトロ基、アシル基、カルボキシル基、又はニトリル基を示し、nは1〜3の整数を示す)
で表されるフェノール誘導体とを反応させて、対応するアリル位置換反応生成物を得ることを特徴とするアリル位置換反応生成物の製造方法。
In the presence of a montmorillonite interlayer-immobilized sub-nanoorder palladium catalyst in which a sub-nanoorder palladium cluster is immobilized between montmorillonite crystal layers, the following formula (2)
Figure 0004849547
(In the formula (2), R 1 to R 5 are the same or different and each represents a hydrogen atom or a hydrocarbon group. At least two of R 1 , R 2 , R 3 , R 4 and R 5 are adjacent to each other. And may form a ring with a plurality of carbon atoms
And the following formula (3) as a nucleophile:
Figure 0004849547
(In formula (3), R 7 , R 8 and R 9 are the same or different and are a hydrogen atom, a halogen atom, a hydrocarbon group, a heterocyclic group, a carboxyl group, a carbamoyl group, a cyano group, an acyl group, or a nitro group. , An alkylsulfinyl group, a sulfuric acid group, a sulfuric acid ester group, a hydroxyl group, a substituted oxy group, a mercapto group, or a group in which a plurality of these are bonded, and at least two of R 7 , R 8 , and R 9 are bonded. And may form a ring with a plurality of adjacent carbon atoms)
1,3-dicarbonyl compound represented by the following formula (4)
Figure 0004849547
(In formula (4), Y represents a nitro group, an acyl group, a carboxyl group, or a nitrile group, and n represents an integer of 1 to 3)
A method for producing an allylic substitution reaction product, characterized in that a corresponding allylic substitution reaction product is obtained .
JP2006333785A 2006-12-11 2006-12-11 Montmorillonite interlayer immobilized sub-nano-order palladium catalyst Expired - Fee Related JP4849547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333785A JP4849547B2 (en) 2006-12-11 2006-12-11 Montmorillonite interlayer immobilized sub-nano-order palladium catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333785A JP4849547B2 (en) 2006-12-11 2006-12-11 Montmorillonite interlayer immobilized sub-nano-order palladium catalyst

Publications (2)

Publication Number Publication Date
JP2008142645A JP2008142645A (en) 2008-06-26
JP4849547B2 true JP4849547B2 (en) 2012-01-11

Family

ID=39603415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333785A Expired - Fee Related JP4849547B2 (en) 2006-12-11 2006-12-11 Montmorillonite interlayer immobilized sub-nano-order palladium catalyst

Country Status (1)

Country Link
JP (1) JP4849547B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7303502B2 (en) * 2019-02-18 2023-07-05 学校法人 関西大学 Method for producing allylsilane compound using palladium nanoparticle catalyst

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330446A (en) * 1986-07-23 1988-02-09 Idemitsu Petrochem Co Ltd Production cyclopentanone
JPH0352641A (en) * 1989-07-19 1991-03-06 Matsushita Electric Works Ltd Production of inorganic porous body carrying catalyst
JPH04254408A (en) * 1991-01-31 1992-09-09 Mitsubishi Materials Corp Clay cross-linked porous body and production thereof
JPH10182142A (en) * 1996-10-23 1998-07-07 Osaki Kogyo Kk Metallic fine particle/solid carrier composition, its use and production
DE19810929A1 (en) * 1998-03-13 1999-09-16 Bayer Ag Process for the preparation of 4-aminodiphenylamine
JP2005254035A (en) * 2004-03-09 2005-09-22 Kuraray Co Ltd Palladium cluster exchanger montmorillonite and its use

Also Published As

Publication number Publication date
JP2008142645A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
Upadhyay et al. Selective hydrogenation of CO 2 gas to formic acid over nanostructured Ru-TiO 2 catalysts
Niu et al. Pt nanoparticles loaded on reduced graphene oxide as an effective catalyst for the direct oxidation of 5-hydroxymethylfurfural (HMF) to produce 2, 5-furandicarboxylic acid (FDCA) under mild conditions
JP4559871B2 (en) Solid acid catalyst and method for producing nitrile compound using solid acid catalyst
EP2130583A1 (en) Method for producing carbonyl compound
US11969711B2 (en) Carbon-based, precious metal-transition metal composite catalyst and preparation method therefor
Jadhav et al. Tailoring and exploring the basicity of magnesium oxide nanostructures in ionic liquids for Claisen-Schmidt condensation reaction
Biglione et al. Magnetic Pd nanocatalyst Fe 3 O 4@ Pd for C–C bond formation and hydrogenation reactions
WO2016052476A1 (en) Polyether diol and method for producing same
JP2009090204A (en) Polymer-supported bimetal cluster catalyst
TWI577659B (en) Oxidative esterification process
WO2010032770A1 (en) Catalyst used in an alcohol hydride transfer reaction, manufacturing method therefor, and method for manufacturing a carbonyl group-containing compound
Shaikh et al. Selective oxidation of cyclohexene to adipic acid over CuNPs supported on PLA/TiO2
JP4849547B2 (en) Montmorillonite interlayer immobilized sub-nano-order palladium catalyst
JP2019130468A (en) Manufacturing method of platinum compound-containing composition, and manufacturing method of hexahydroxoplatinic acid (iv) as raw material therefor
Aho et al. Improving the methyl lactate yield from glucose over Sn–Al-Beta zeolite by catalyst promoters
JP2021184985A (en) Nickel phosphide catalyst and method for producing hydrogenated organic compound with the same
Oberhauser et al. Aerobic diol lactonization by Au-nanoparticles supported onto an anion-exchange resin
US4473711A (en) Liquid-phase process for oxidation of tetralin
JP2014088380A (en) Method for producing oxamide compound
JP2764080B2 (en) Method for producing alcohol
US9815758B2 (en) Process of preparing 4-methyl-3-decen-5-one
CN109701565B (en) Bismuth oxyhalide-based metal thermal catalyst suitable for one-step synthesis of benzoin ethyl ether
JP6632049B1 (en) Method for producing Guerbet alcohol
CN110124744B (en) Catalyst for catalytic synthesis of chalcone compounds and application thereof
CN1228415A (en) Process for preparation of aqueous solutions of betaine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees