JP4848695B2 - Heat recovery equipment - Google Patents

Heat recovery equipment Download PDF

Info

Publication number
JP4848695B2
JP4848695B2 JP2005210457A JP2005210457A JP4848695B2 JP 4848695 B2 JP4848695 B2 JP 4848695B2 JP 2005210457 A JP2005210457 A JP 2005210457A JP 2005210457 A JP2005210457 A JP 2005210457A JP 4848695 B2 JP4848695 B2 JP 4848695B2
Authority
JP
Japan
Prior art keywords
heat
temperature
engine
transport medium
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005210457A
Other languages
Japanese (ja)
Other versions
JP2007022452A (en
Inventor
賢二 坪根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005210457A priority Critical patent/JP4848695B2/en
Publication of JP2007022452A publication Critical patent/JP2007022452A/en
Application granted granted Critical
Publication of JP4848695B2 publication Critical patent/JP4848695B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/12Emission reduction of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/44Heat storages, e.g. for cabin heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Description

この発明は、動作することにより発熱する装置から熱を回収し、また利用する装置に関するものである。   The present invention relates to a device that recovers and uses heat from a device that generates heat by operation.

各種の動力装置は、エネルギーを消費して動力を出力するが、そのエネルギー変換効率が100%になることは殆どないから、不可避的に熱が生じ、これがいわゆる廃熱となる。また、建物の内部や車両のキャビンなどを冷暖房する空調装置においても、冷媒を加圧圧縮することに伴って発熱し、その冷媒を断熱膨張させて冷房を行う場合には、その加圧圧縮によって生じた熱が廃熱となる。   Various power devices consume energy and output power. However, since the energy conversion efficiency hardly reaches 100%, heat is inevitably generated, which becomes so-called waste heat. Also, in an air conditioner that cools and heats the interior of a building, a cabin of a vehicle, etc., heat is generated by compressing and compressing the refrigerant. The generated heat becomes waste heat.

この種の廃熱を有効に利用するように構成した暖房装置が、特許文献1に記載されている。この特許文献1に記載された装置は、エンジンや空調装置で生じた発熱を蓄冷器に蓄え、その熱を暖房やエンジンの暖機に利用するように、冷却水の循環経路を適宜に選択するように構成されている。また、特許文献2には、発電用エンジンと低温水との間で熱交換する熱交換器と、そのエンジンの排ガスと低温水との間で熱交換する熱交換器と、これらの熱交換器との間で前記温水を循環させて蓄熱を行う蓄熱器とを備えた排熱回収装置が記載されている。この特許文献2の装置では、エンジン温度が排ガス温度に対して相対的に低温であるから、低温水を、先ず、エンジンの熱で加熱し、その後に排ガスの熱でその温水を更に加熱するようになっている。
特開平6−297933号公報 実開平5−69567号公報
Patent Document 1 discloses a heating apparatus configured to effectively use this type of waste heat. The apparatus described in Patent Document 1 appropriately selects a cooling water circulation path so that heat generated in an engine or air conditioner is stored in a regenerator and the heat is used for heating or warming up the engine. It is configured as follows. Patent Document 2 discloses a heat exchanger that exchanges heat between a power generation engine and low-temperature water, a heat exchanger that exchanges heat between exhaust gas of the engine and low-temperature water, and these heat exchangers. The exhaust heat recovery apparatus provided with the heat storage device which circulates the said warm water between them and performs heat storage is described. In the apparatus of Patent Document 2, since the engine temperature is relatively low with respect to the exhaust gas temperature, the low-temperature water is first heated by the heat of the engine, and then the hot water is further heated by the heat of the exhaust gas. It has become.
JP-A-6-297933 Japanese Utility Model Publication No. 5-69567

上記の特許文献1に記載された発明は、自動車用の暖房装置であり、蓄熱器に蓄えられた熱を暖房とエンジンの暖機とに使用するように構成されている。したがって、蓄熱量が少ない場合には、暖房はもちろんのこと、暖房のための発熱を行うべく駆動するエンジンの早期暖機をも行うことが困難であり、さらには、冷房の際の廃熱を回収する手段がなく、この点で改良すべき余地があった。   The invention described in Patent Document 1 is a heating device for automobiles, and is configured to use heat stored in a heat accumulator for heating and warming up an engine. Therefore, when the amount of stored heat is small, it is difficult to perform not only heating but also early warm-up of the engine that is driven to generate heat for heating, and furthermore, waste heat during cooling is reduced. There was no means to recover and there was room for improvement in this regard.

また、特許文献2の発明では、エンジンとその排ガスとの二つの発熱部から熱を回収し、しかもその熱回収のための温水は、低温の発熱部との熱交換器側から高温の発熱部との熱交換器側に向けて流しているので、蓄熱部に対する熱回収効率が向上する。しかしながら、これらの発熱部は、いずれも、エンジンが運転されることにより熱を発するものであって、熱の発生メカニズムやタイミングがほぼ同等である。そのために、エンジンの始動時にその暖機を促進するように機能させることが困難であり、特に、蓄熱器での蓄熱量が少ない場合には、エンジンの早期暖機を行うことができない。   Further, in the invention of Patent Document 2, heat is recovered from two heat generating portions of the engine and its exhaust gas, and hot water for the heat recovery is from a heat exchanger side with a low temperature heat generating portion from a high temperature heat generating portion. Since it is flowing toward the heat exchanger side, the heat recovery efficiency for the heat storage section is improved. However, all of these heat generating portions generate heat when the engine is operated, and the heat generation mechanism and timing are substantially the same. Therefore, it is difficult to make the engine function so as to promote warm-up when the engine is started. In particular, when the amount of heat stored in the heat accumulator is small, the engine cannot be warmed up early.

この発明は上記の技術的課題に着目してなされたものであり、発熱温度や温度上昇率などが異なる複数の発熱部で生じるいわゆる廃熱を有効に回収して利用することのできる装置を提供することを目的とするものである。   The present invention has been made paying attention to the above technical problem, and provides an apparatus that can effectively recover and use so-called waste heat generated in a plurality of heat generating portions having different heat generation temperatures and temperature rise rates. It is intended to do.

上記目的を達成するため請求項1の発明は、複数の発熱部から熱を回収する熱回収装置において、発熱のメカニズムおよび発熱温度ならびに温度上昇率が互いに異なる複数の発熱部と熱輸送媒体との間で熱交換する複数の熱交換部が設けられるとともに、その熱輸送媒体が、発熱温度が相対的に低くかつ温度上昇率の相対的に大きい第1の発熱部との熱交換部側から発熱温度が相対的に高くかつ温度上昇率が相対的に小さい第2の発熱部との熱交換部に向けて流動するように第1の熱輸送経路が設けられ、さらに前記熱輸送媒体によって運ばれた熱を蓄える蓄熱部が設けられ、前記第1の発熱部の温度が前記第2の発熱部の温度より高い場合に、前記第1の発熱部と熱輸送媒体との熱交換を行う第1の熱交換部から前記第2の発熱部と熱輸送媒体との熱交換を行う第2の熱交換部に熱を伝達する熱伝達手段を更に備え、前記熱伝達手段は、前記熱輸送媒体を、前記蓄熱部をバイパスさせて、前記第1の熱交換部から前記第2の熱交換部に向けて循環流動させる第2の熱輸送経路によって構成されていることを特徴とするものである。
In order to achieve the above object, the invention according to claim 1 is a heat recovery apparatus for recovering heat from a plurality of heat generating portions, wherein the heat generating mechanism, the heat generating temperature, and the temperature transport rate are different from each other. A plurality of heat exchanging parts for exchanging heat between them, and the heat transport medium generates heat from the heat exchanging part side with the first heat generating part having a relatively low heat generation temperature and a relatively large temperature increase rate. A first heat transport path is provided so as to flow toward the heat exchanging portion with the second heat generating portion having a relatively high temperature and a relatively small temperature increase rate, and is further carried by the heat transport medium. heat storage unit for storing the heat provided et the, if the temperature of the first heating portion is higher than the temperature of the second heating section, a heat exchange between the first heating portion and the heat transport medium Heat transfer from the first heat exchanging part to the second heat generating part Heat transfer means for transferring heat to a second heat exchange section that exchanges heat with the body, wherein the heat transfer means bypasses the heat storage section and bypasses the heat storage section to the first heat exchange section. The second heat transfer path is configured to circulate and flow from the exchange section toward the second heat exchange section .

請求項2の発明は、請求項1の発明において、前記第1の発熱部は、車両に搭載された空調装置における発熱部であり、前記第2の発熱部は、車両におけるエンジンと変速機と燃料電池と駆動用モータと駆動用モータの制御機器との少なくともいずれかであることを特徴とする熱回収装置である。   According to a second aspect of the present invention, in the first aspect of the invention, the first heat generating portion is a heat generating portion in an air conditioner mounted on a vehicle, and the second heat generating portion includes an engine and a transmission in the vehicle. A heat recovery apparatus comprising at least one of a fuel cell, a drive motor, and a drive motor control device.

請求項3の発明は、請求項1の発明において、温度が高い場合に低い場合に比較して出力が増大する蓄電手段を備え、前記蓄電手段の温度が低い場合に前記第1の熱交換部で温度の上昇した前記熱輸送媒体の熱を前記蓄電手段に伝達する手段が前記第2の熱輸送経路に設けられていることを特徴とする熱回収装置である。
According to a third aspect of the present invention, in the first aspect of the invention, the first heat exchanging unit is provided with a power storage unit whose output increases when the temperature is high compared to when the temperature is low, and the temperature of the power storage unit is low The heat recovery apparatus is characterized in that means for transmitting the heat of the heat transport medium whose temperature has risen to the power storage means is provided in the second heat transport path.

請求項4の発明は、請求項1ないし3のいずれかの発明において、前記第1の熱輸送経路に前記熱輸送媒体の逆流を防止する逆止弁が設けられていることを特徴とする熱回収装置である。
The invention of claim 4 is the invention according to any one of claims 1 to 3 , wherein a check valve for preventing a backflow of the heat transport medium is provided in the first heat transport path. It is a heat recovery device.

請求項5の発明は、請求項1ないし4のいずれかの発明において、前記蓄熱部から前記第1の熱交換部に到る前記第1の熱輸送経路に、前記熱輸送媒体を流動させるポンプが設けられていることを特徴とする熱回収装置である。
According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the heat transport medium is caused to flow in the first heat transport path from the heat storage section to the first heat exchange section. The heat recovery apparatus is provided with a pump.

請求項1の発明によれば、第1の発熱部に対して第2の発熱部の温度が高く、蓄熱部に熱を運ぶ熱輸送媒体が、これら第1の発熱部と熱交換する第1の熱交換部から第2の発熱部との間で熱交換する第2の熱交換部の順に流動するので、各熱交換部における熱輸送媒体とその周囲との温度差が大きく保たれ、その結果、熱交換効率や熱回収効率を向上させることができる。また、各発熱部は発熱メカニズムが異なり、一方を停止した状態で他方を運転して発熱させ、その熱を利用して停止状態もしくは始動直後の一方の発熱部を加熱することが可能になる。特に請求項1の発明では、輸送媒体の流動方向での下流側に位置する熱交換部に熱を与える発熱部は自らの発熱では温度上昇率が小さく、これに対して上流側の熱交換部に熱を与える発熱部が早期に温度上昇するので、蓄熱部の蓄熱量が少ないなどの場合には、上流側の発熱部の熱を利用して下流側の発熱部を加熱もしくは加温することができる。また、第1の発熱部の温度が第2の発熱部の温度に対して相対的に高い状態では、第1の発熱部の熱を各熱交換器を介して第2の発熱部に伝達でき、その結果、第2の発熱部の暖機を促進することができる。
According to the first aspect of the present invention, the temperature of the second heat generating portion is higher than that of the first heat generating portion, and the heat transport medium carrying heat to the heat storage portion exchanges heat with these first heat generating portions. Since the heat exchange section flows in the order of the second heat exchange section that exchanges heat with the second heat generating section, the temperature difference between the heat transport medium in each heat exchange section and its surroundings is kept large, As a result, heat exchange efficiency and heat recovery efficiency can be improved. In addition, each heat generating part has a different heat generation mechanism, and it is possible to heat the other heat generating part by operating the other while it is stopped and heating one heat generating part in the stopped state or immediately after starting. In particular, in the first aspect of the present invention, the heat generating part that applies heat to the heat exchange part located downstream in the flow direction of the transport medium has a small temperature increase rate due to its own heat generation, whereas the heat exchange part on the upstream side Since the temperature of the heat generating part that heats the heat rises early, when the amount of heat stored in the heat storage part is small, the heat of the heat generating part on the upstream side is used to heat or heat the heat generating part on the downstream side It is Ru can. In addition, when the temperature of the first heat generating portion is relatively high with respect to the temperature of the second heat generating portion, the heat of the first heat generating portion can be transferred to the second heat generating portion via each heat exchanger. As a result, warm-up of the second heat generating part can be promoted.

請求項2の発明によれば、冷房時に生じる熱などを空調装置から廃熱として回収でき、また車両のエンジンや変速機、燃料電池、駆動用モータ、その制御機器などから生じる廃熱を回収することができる。特に、空調装置における発熱部の温度は、エンジンなどの車両の駆動用機器よりも早く上昇するので、車両の始動時に、空調廃熱を利用して駆動用機器の暖機を促進し、早期に運転効率の良好な状態を達成し、ひいては燃費を向上させ、また排ガスの悪化を回避もしくは抑制できる。   According to the second aspect of the present invention, heat generated during cooling can be recovered as waste heat from the air conditioner, and waste heat generated from the vehicle engine, transmission, fuel cell, drive motor, control device, and the like is recovered. be able to. In particular, since the temperature of the heat generating part in the air conditioner rises faster than the driving device for the vehicle such as the engine, when the vehicle starts, the warming-up of the driving device is promoted by using the air conditioning waste heat. It is possible to achieve a good operating efficiency, thereby improving fuel efficiency and avoiding or suppressing deterioration of exhaust gas.

請求項3の発明によれば、第2の発熱部の温度が未だ低い場合、第1の発熱部で生じた熱が第2の熱輸送経路を介して蓄電手段に与えられて蓄電手段が加熱される。したがって始動時における蓄電手段の出力特性が向上し、例えばその電力によってエンジンをクランキングし、あるいはモータ走行するなどの場合、円滑なエンジン始動や走行が可能になる。
According to the invention of claim 3, when the temperature of the second heat generating part is still low, the heat generated in the first heat generating part is given to the power storage means via the second heat transport path, and the power storage means is heated. Is done. Accordingly, the output characteristics of the power storage means at the time of starting are improved. For example, when the engine is cranked by the electric power or the motor is driven, the engine can be started and run smoothly.

請求項4の発明によれば、蓄熱器と各熱交換部との間を循環流動する熱輸送媒体の逆流が、第1の熱輸送経路に介装した逆止弁によって阻止されるので、蓄熱器から不必要に放熱したり、それに伴って熱損失が生じたりすることを防止することができる。
According to the invention of claim 4, since the backflow of the heat transport medium circulating and flowing between the heat accumulator and each heat exchanging part is prevented by the check valve interposed in the first heat transport path, It is possible to prevent the heat from being unnecessarily radiated from the vessel and the accompanying heat loss.

そして、請求項5の発明によれば、熱輸送媒体と外気との両方に接触することになるポンプが、蓄熱器に対して熱を輸送して温度の低下した熱輸送媒体に接触する位置に設けられているので、ポンプを介した放熱を可及的に抑制でき、その結果、装置の全体としての熱効率を向上させることができる。
And according to invention of Claim 5, the pump which will contact both a heat transport medium and external air transports heat with respect to a thermal storage device, and is in the position which contacts the heat transport medium with which temperature fell. Since it is provided, heat dissipation through the pump can be suppressed as much as possible, and as a result, the thermal efficiency of the entire apparatus can be improved.

つぎにこの発明を具体例に基づいて詳細に説明する。この発明の熱回収装置は、固定設置されたものに限られず、車両に搭載されたものであってもよく、以下の説明では、車両用の熱回収装置を例にして説明する。図1は、その一例を模式的に示しており、動作することにより熱を発生する発熱部として空調装置1および動力源2を備えている。その空調装置1は、一例として、冷媒を加熱圧縮した後放熱させて液化し、ついで断熱膨張させて冷却するヒートポンプ式のものであり、したがって冷房時には冷媒を加圧圧縮することに伴う廃熱が生じる。なお、エンジンなどの動力源2の廃熱で暖房を行う構成とすることにより、暖房時には空調装置1から廃熱は殆ど生じない。   Next, the present invention will be described in detail based on specific examples. The heat recovery apparatus of the present invention is not limited to a fixed installation, and may be mounted on a vehicle. In the following description, a heat recovery apparatus for a vehicle will be described as an example. FIG. 1 schematically shows an example thereof, which includes an air conditioner 1 and a power source 2 as a heat generating portion that generates heat by operation. As an example, the air conditioner 1 is of a heat pump type that heats and compresses a refrigerant and then dissipates and liquefies it, and then adiabatically expands and cools. Therefore, during cooling, waste heat accompanying pressure compression of the refrigerant is reduced. Arise. In addition, by setting it as the structure which heats with the waste heat of the power sources 2, such as an engine, waste heat hardly arises from the air conditioner 1 at the time of heating.

動力源2は、走行のための動力だけでなく、車両の全体としての動力を発生する装置であり、ガソリンや軽油もしくは天然ガスなどの燃料を燃焼して動力を出力する内燃機関(エンジン)によって主として構成され、これ以外に例えば水素と空気とを反応させる燃料電池で生じた電力で動作する駆動用モータなどが含まれる。図1には、エンジンを採用した例を示してあり、したがって以下の説明では動力源2をエンジン2と記すことがある。   The power source 2 is a device that generates not only driving power but also the power of the entire vehicle, and is an internal combustion engine (engine) that outputs power by burning fuel such as gasoline, light oil, or natural gas. In addition to this, for example, a driving motor that operates with electric power generated in a fuel cell that reacts hydrogen with air is included. FIG. 1 shows an example in which an engine is employed. Therefore, the power source 2 may be referred to as the engine 2 in the following description.

空調装置1は、エンジン2の動力で直接駆動するように構成してもよく、あるいは図示しないモータによって駆動するように構成してもよい。冷房時におけるその発熱は、冷媒の加圧圧縮に伴うものであり、これに対してエンジン2での発熱は燃料を燃焼させることに伴うものであるから、発熱温度は空調装置1よりエンジン2で高くなる。また、空調装置1は冷媒を加圧圧縮することにより冷媒の温度が直ちに高くなるのに対して、エンジン2はその強度上の要求などによって熱容量が大きく、そのため始動直後では空調装置1のの温度の上昇率が大きくなる。したがって、空調装置1がこの発明の第1の発熱部に相当し、動力源(エンジン)2がこの発明の第2の発熱部に相当する。   The air conditioner 1 may be configured to be directly driven by the power of the engine 2 or may be configured to be driven by a motor (not shown). The heat generation during cooling is accompanied by the compression and compression of the refrigerant. On the other hand, the heat generation in the engine 2 is accompanied by combustion of the fuel. Get higher. In addition, while the air conditioner 1 pressurizes and compresses the refrigerant, the temperature of the refrigerant immediately rises, whereas the engine 2 has a large heat capacity due to strength requirements and the like. The rate of increase will increase. Therefore, the air conditioner 1 corresponds to the first heat generating portion of the present invention, and the power source (engine) 2 corresponds to the second heat generating portion of the present invention.

動力源2でのエネルギー変換効率は100%になることがなく、したがって前記の空調装置1で冷房を行う場合と同様に、不可避的に廃熱が生じる。そこで、これらの発熱部からの発熱を回収するために、熱交換器3,4が設けられている。これらの熱交換器3,4は、要は、熱輸送媒体5と空調装置1あるいはエンジン2との間で熱の伝達を生じさせるためのものであり、その一例を挙げると、空調装置1用の熱交換器3は、その内部に、空調冷媒用流路と熱輸送媒体流路(それぞれ図示せず)とを熱伝導率の良い隔壁などによって区画して形成した構成である。したがってその隔壁を介して空調冷媒と熱輸送媒体との間で熱交換が生じるようになっている。   The energy conversion efficiency in the power source 2 does not become 100%, and therefore waste heat is inevitably generated as in the case where the air conditioner 1 performs cooling. Therefore, heat exchangers 3 and 4 are provided to recover the heat generated from these heat generating portions. The heat exchangers 3 and 4 are for generating heat between the heat transport medium 5 and the air conditioner 1 or the engine 2. For example, the heat exchangers 3 and 4 are for the air conditioner 1. The heat exchanger 3 has a configuration in which an air conditioning refrigerant channel and a heat transport medium channel (each not shown) are partitioned by partition walls having good thermal conductivity. Therefore, heat exchange occurs between the air conditioning refrigerant and the heat transport medium via the partition wall.

なお、空調冷媒は、空調装置1で直接加圧圧縮される冷媒であってもよいが、その冷媒との間で熱交換して熱を熱交換器3に輸送するための水などの媒体であってもよい。したがって、空調装置1とその熱交換器3との間には、空調冷媒を循環流動させるための循環路6が設けられており、その循環路6には、逆止弁7が介装されている。   The air-conditioning refrigerant may be a refrigerant that is directly pressurized and compressed by the air-conditioning apparatus 1, but is a medium such as water for exchanging heat with the refrigerant and transporting the heat to the heat exchanger 3. There may be. Therefore, a circulation path 6 for circulating and flowing the air conditioning refrigerant is provided between the air conditioner 1 and the heat exchanger 3, and a check valve 7 is interposed in the circulation path 6. Yes.

他方、エンジン2用の熱交換器4は、その内部に、エンジン2の冷却水用流路と熱輸送媒体流路(それぞれ図示せず)とを熱伝導率の良い隔壁などによって区画して形成した構成である。したがってその隔壁を介してエンジン冷却水と熱輸送媒体との間で熱交換が生じるようになっている。そして、エンジン2とその熱交換器4との間で冷却水を循環流動させるための循環路8が設けられている。この循環路8のうち、冷却水がエンジン2から熱交換器4に向かう部分に、冷却水の逆流を阻止する逆止弁9が設けられている。また、循環路8のうち、冷却水が熱交換4からエンジン2に向かう部分に、ポンプ10が設けられている。すなわち、ポンプ10は、熱交換器4において熱輸送媒体5に熱を与えて温度の下がった冷却水が接触する位置に設けられている。これは、ポンプ10を介した放熱を回避もしくは抑制するためである。   On the other hand, the heat exchanger 4 for the engine 2 is formed by partitioning the cooling water flow path and the heat transport medium flow path (each not shown) of the engine 2 with a partition wall having good thermal conductivity. This is the configuration. Therefore, heat exchange occurs between the engine cooling water and the heat transport medium through the partition wall. A circulation path 8 for circulating and flowing cooling water between the engine 2 and the heat exchanger 4 is provided. In the circulation path 8, a check valve 9 is provided at a portion where the cooling water is directed from the engine 2 to the heat exchanger 4 to prevent the cooling water from flowing backward. Further, a pump 10 is provided in a portion of the circulation path 8 where the cooling water is directed from the heat exchange 4 to the engine 2. In other words, the pump 10 is provided at a position where the cooling water which has been heated by applying heat to the heat transport medium 5 in the heat exchanger 4 is brought into contact. This is to avoid or suppress heat dissipation through the pump 10.

上記の各熱交換器3,4は、互いに隣接して配置され、もしくは実質的に一体化されて構成されている。これは、各熱交換器3,4の間で熱伝達を生じさせるための構成であり、空調冷媒とエンジン冷却水との間で熱交換が生じるようになっている。このような熱交換機能は、後述するように、それぞれの熱交換器3,4の内部を流通する熱輸送媒体によって生じさせ、あるいはヒートパイプなどの適宜の手段で生じさせることもできるので、そのような手段を採用する場合には、各熱交換器3,4を離隔させて構成してもよい。   The heat exchangers 3 and 4 are arranged adjacent to each other or substantially integrated. This is a structure for generating heat transfer between the heat exchangers 3 and 4, and heat exchange occurs between the air-conditioning refrigerant and the engine coolant. Such a heat exchanging function can be caused by a heat transport medium circulating in the heat exchangers 3 and 4 as described later, or by an appropriate means such as a heat pipe. When such a means is adopted, the heat exchangers 3 and 4 may be separated from each other.

各熱交換器3,4の内部に形成されている熱輸送媒体流路は、この発明における第1の熱輸送経路の一部を構成するものであって、互いに連通されている。そして、その熱輸送媒体流路の空調装置1用の熱交換器3側における外部への開口端が熱交換器3,4の全体としての流入口11となり、またエンジン2用の熱交換器4側における外部への開口端が熱交換器3,4の全体としての流出口12となっている。その流入口11が第一管路13を介して蓄熱器14の流出部に連通され、また前記流出口12が第二管路15を介して蓄熱器14の流入部に連通されている。すなわち、これらの管路13,15によって、各熱交換器3,4と蓄熱器14との間に、この発明における第1の熱輸送経路に相当する循環流路が形成されている。   The heat transport medium flow paths formed in the heat exchangers 3 and 4 constitute a part of the first heat transport path in the present invention and communicate with each other. And the opening end to the outside in the heat exchanger 3 side for the air conditioner 1 of the heat transport medium flow path becomes the inlet 11 as the whole of the heat exchangers 3, 4, and the heat exchanger 4 for the engine 2 The open end to the outside on the side is the outflow port 12 as a whole of the heat exchangers 3 and 4. The inlet 11 is communicated with the outflow part of the heat accumulator 14 via the first pipe line 13, and the outlet 12 is communicated with the inflow part of the heat accumulator 14 via the second pipe line 15. In other words, a circulation flow path corresponding to the first heat transport path in the present invention is formed between the heat exchangers 3 and 4 and the heat accumulator 14 by the pipe lines 13 and 15.

第一管路13には、熱輸送媒体を蓄熱器14から前記熱交換器3に向けて流動させるポンプ16が介装されている。これは、蓄熱器14に熱を蓄える場合、蓄熱器14で熱交換して温度の低下した熱輸送媒体5がポンプ16に接触することにより、ポンプ16を介した外部への放熱を可及的に抑制して熱損失を防止するためである。また、第二管路15には、前記熱交換器4から蓄熱器14に向けた熱輸送媒体5の流動を許容し、これとは反対方向の流動を阻止する逆止弁17が介装されている。熱輸送媒体5の逆流による蓄熱器14からの熱の持ち出しや放熱を防止するためである。   A pump 16 that causes a heat transport medium to flow from the heat accumulator 14 toward the heat exchanger 3 is interposed in the first pipeline 13. This is because when heat is stored in the heat accumulator 14, the heat transport medium 5 whose temperature is lowered by heat exchange in the heat accumulator 14 comes into contact with the pump 16, so that heat can be released to the outside through the pump 16 as much as possible. This is to suppress heat loss and prevent heat loss. The second pipe 15 is provided with a check valve 17 that allows the heat transport medium 5 to flow from the heat exchanger 4 toward the heat accumulator 14 and prevents the flow in the opposite direction. ing. This is to prevent heat from being taken out or radiated from the heat accumulator 14 due to the backflow of the heat transport medium 5.

さらに、第二管路15のうち、エンジン2用の熱交換器4と逆止弁17との間に三方切換弁18が介装されている。そして、この三方切換弁18と前記第一管路13における前記ポンプ16の吸入口側の部分とが、バイパス管19によって連通されている。すなわち、三方切換弁18によって、前記第1の熱輸送経路を熱輸送媒体5が循環流動する状態と、蓄熱器14をバイパスして各熱交換器3,4を熱輸送媒体5が循環流動する状態とを切り替えて設定するように構成されている。熱輸送媒体5がこのバイパス管19を通る経路がこの発明の第2の熱輸送経路に相当している。   Furthermore, a three-way switching valve 18 is interposed between the heat exchanger 4 for the engine 2 and the check valve 17 in the second pipeline 15. The three-way switching valve 18 and the portion of the first pipe 13 on the suction port side of the pump 16 are communicated with each other by a bypass pipe 19. That is, the three-way switching valve 18 circulates and flows the heat transport medium 5 through the first heat transport path, and the heat transport medium 5 circulates and flows through the heat exchangers 3 and 4 bypassing the heat accumulator 14. It is configured to switch and set the state. The path through which the heat transport medium 5 passes through the bypass pipe 19 corresponds to the second heat transport path of the present invention.

前述した蓄熱器14は、顕熱もしくは潜熱の形で熱を蓄えるように構成されており、その蓄熱材としては従来知られている各種のものを使用することができる。この蓄熱器14と一体に蓄冷器20が設けられている。この蓄冷器20は、いわゆる冷熱を蓄えるためのものであって、水やエチレングリコールなどを蓄熱材とし、これを冷却して熱エネルギーの低い状態を維持するように構成されている。そして、この蓄冷器20と前記空調装置1とが、空調装置1で冷却された冷媒を循環させる冷却循環路21によって連通されている。その冷却循環路21には、いわゆる順方向への冷媒の流動を許容し、これとは反対の流動を阻止する逆止弁22が介装されている。また、蓄冷器20と空調装置1との間の冷却循環路21には、ポンプ23が介装されている。   The heat accumulator 14 described above is configured to store heat in the form of sensible heat or latent heat, and various conventionally known heat accumulating materials can be used. A regenerator 20 is provided integrally with the regenerator 14. The regenerator 20 is for storing so-called cold heat, and is configured to use water, ethylene glycol, or the like as a heat storage material, and cool it to maintain a low thermal energy state. And this cool storage 20 and the said air conditioner 1 are connected by the cooling circuit 21 which circulates the refrigerant | coolant cooled with the air conditioner 1. FIG. The cooling circuit 21 is provided with a check valve 22 that allows the flow of the refrigerant in the so-called forward direction and prevents the opposite flow. Further, a pump 23 is interposed in the cooling circuit 21 between the regenerator 20 and the air conditioner 1.

なお、蓄熱器14および蓄冷器20の外側には、熱電変換素子24が密着して取り付けられている。これは、蓄熱器14や蓄冷器20の余剰熱もしくは余剰冷熱を利用して発電し、また蓄熱量が不足しているのに対して電力に余裕がある場合に、その電力によって蓄熱あるいは蓄冷するためである。したがって、その熱電変換素子24としては、P型半導体およびN型半導体からなるπ型構成の公知のものが使用される。   A thermoelectric conversion element 24 is attached in close contact with the outside of the regenerator 14 and the regenerator 20. This is because power is generated by using surplus heat or surplus cold heat of the regenerator 14 or the regenerator 20, and when there is a surplus in power while the heat storage amount is insufficient, heat is stored or stored by the power. Because. Therefore, as the thermoelectric conversion element 24, a known element having a π-type configuration including a P-type semiconductor and an N-type semiconductor is used.

つぎに上記の装置の作用について説明する。先ず、エンジン2が定常運転されている場合について説明する。車両が走行しているなどの状態でエンジン2が定常運転されていると、その冷却水はエンジン2から熱を奪ってその温度が上昇する。その冷却水がポンプ10によって循環路8内を循環するので、エンジン2用の熱交換器4での温度が高くなる。また、車室内の冷房のために空調装置1が動作していると、それに伴う廃熱で循環路6内の冷媒が加熱され、したがって空調装置1用の熱交換器3での温度が高くなるが、その温度は、エンジン2用の熱交換器4での温度より低い。   Next, the operation of the above apparatus will be described. First, a case where the engine 2 is in steady operation will be described. When the engine 2 is in steady operation, such as when the vehicle is running, the cooling water takes heat from the engine 2 and its temperature rises. Since the cooling water circulates in the circulation path 8 by the pump 10, the temperature in the heat exchanger 4 for the engine 2 increases. Further, when the air conditioner 1 is operating for cooling the passenger compartment, the refrigerant in the circulation path 6 is heated by the accompanying waste heat, and thus the temperature in the heat exchanger 3 for the air conditioner 1 is increased. However, the temperature is lower than the temperature in the heat exchanger 4 for the engine 2.

一方、これらの熱交換器3,4を介して熱を回収するべく前述した第1の熱輸送経路を熱輸送媒体5が循環流動している。その流動方向は、図1での下側から上側、すなわち空調装置1用の熱交換器3側からエンジン2用の熱交換器4に向けた方向である。したがって、熱輸送媒体5は、空調装置1の廃熱で温度が高くなっている冷媒との間で熱交換して温度が高くなる。その後、エンジン2の廃熱で温度が高くなった冷却水との間で熱交換して温度が更に高くなる。その場合、熱輸送媒体5の温度が既に高くなっているとしても、冷却水の温度が空調装置1の冷媒温度より更に高いので、熱交換が迅速もしくは効率良く行われる。換言すれば、熱輸送媒体5の温度の上昇に合わせて熱交換器3,4を配置してあるので、いずれの熱交換器3,4においても、熱輸送媒体5と冷媒もしくは冷却水との温度差を大きく設定でき、その結果、いずれの熱交換器3,4においても効率よく熱交換し、ひいては空調装置1およびエンジン2からの排熱回収を効率よく行うことができる。   On the other hand, the heat transport medium 5 circulates and flows through the first heat transport path described above in order to recover heat through these heat exchangers 3 and 4. The flow direction is a direction from the lower side to the upper side in FIG. 1, that is, the direction from the heat exchanger 3 side for the air conditioner 1 to the heat exchanger 4 for the engine 2. Therefore, the heat transport medium 5 is heat exchanged with the refrigerant whose temperature is high due to the waste heat of the air conditioner 1, and the temperature becomes high. Thereafter, the temperature is further increased by exchanging heat with the cooling water whose temperature is increased by the waste heat of the engine 2. In that case, even if the temperature of the heat transport medium 5 is already high, since the temperature of the cooling water is higher than the refrigerant temperature of the air conditioner 1, heat exchange is performed quickly or efficiently. In other words, since the heat exchangers 3 and 4 are arranged in accordance with the temperature rise of the heat transport medium 5, in any heat exchanger 3 or 4, the heat transport medium 5 and the refrigerant or cooling water The temperature difference can be set large, and as a result, heat can be efficiently exchanged in any of the heat exchangers 3 and 4, and exhaust heat recovery from the air conditioner 1 and the engine 2 can be efficiently performed.

こうして回収された熱は、蓄熱器14に蓄えられ、また余剰の熱が生じた場合には、熱電変換素子24によって電力に変換され、図示しないバッテリーに電力として蓄えられる。また、蓄熱器14に蓄えた熱は、適宜に使用することができ、その例を挙げると、温度の低下しているエンジン2を始動する場合に、蓄熱器14から前記熱交換器3,4に熱輸送媒体5を循環流動させて温度の高くなった熱輸送媒体5を熱交換器3に供給し、ここでエンジン冷却水に熱を与えてこれを加熱する。その結果、エンジン2が燃料の燃焼だけでなく、外部の熱によって加熱されるから、エンジン2の温度が早期に上昇し、好適な燃焼状態を達成できる。そのため、排ガスが向上する。なお、その場合、蓄熱器14の有する熱によって排ガス浄化触媒(図示せず)を併せて加熱してもよい。   The heat thus recovered is stored in the heat accumulator 14, and when surplus heat is generated, it is converted into electric power by the thermoelectric conversion element 24 and stored as electric power in a battery (not shown). Further, the heat stored in the regenerator 14 can be used as appropriate. For example, when starting the engine 2 whose temperature has been reduced, the heat exchangers 3 and 4 are connected from the regenerator 14. Then, the heat transport medium 5 circulated and flowed to supply the heat transport medium 5 having a high temperature to the heat exchanger 3, where heat is applied to the engine cooling water to heat it. As a result, since the engine 2 is heated not only by fuel combustion but also by external heat, the temperature of the engine 2 rises early and a suitable combustion state can be achieved. Therefore, exhaust gas improves. In that case, the exhaust gas purification catalyst (not shown) may be heated together with the heat of the heat accumulator 14.

また、蓄熱器14の有する熱を急速暖房に使用することができる。前述したように車室内の暖房には、エンジン2の廃熱を利用するのが一般的であるが、エンジン2を始動した直後は、エンジン冷却水の温度が十分に高くなっていないので、暖房のための熱量が不足する。そこで、上述したエンジン2の暖機の場合と同様に、蓄熱器14から熱交換器4に熱輸送媒体5を流動させて蓄熱器14の有する熱を冷媒に伝達することにより、空調装置1に暖房のための熱を供給でき、その結果、エンジン2の暖機が完了していない状態であっても、急速暖房を行うことができる。その急速暖房を行うために、空調装置1から蓄熱器14に向けた熱輸送媒体の流動を許容する逆止弁22Aと、蓄熱器14から空調装置1に向けて熱輸送媒体を加圧して流動させるポンプ23Aとを有する循環管路を設けてもよい。この循環管路を介して蓄熱器14から空調装置1に直接熱輸送媒体を流動させることにより、急速暖房を行うことができる。   Moreover, the heat which the heat storage device 14 has can be used for rapid heating. As described above, the exhaust heat of the engine 2 is generally used for heating the vehicle interior. However, immediately after the engine 2 is started, the temperature of the engine coolant is not sufficiently high. Lack of heat for Therefore, as in the case of the warm-up of the engine 2 described above, the heat transport medium 5 is caused to flow from the heat accumulator 14 to the heat exchanger 4 and the heat of the heat accumulator 14 is transmitted to the refrigerant, so Heat for heating can be supplied, and as a result, rapid heating can be performed even when the engine 2 has not been warmed up. In order to perform the rapid heating, the check valve 22A that allows the flow of the heat transport medium from the air conditioner 1 toward the heat accumulator 14 and the heat transport medium from the heat accumulator 14 toward the air conditioner 1 are pressurized and flowed. A circulation line having a pump 23A to be operated may be provided. Rapid heating can be performed by causing the heat transport medium to flow directly from the heat accumulator 14 to the air conditioner 1 through this circulation line.

さらに、適宜の被加熱箇所25の加熱のために蓄熱器14の熱を利用することができる。その場合、熱輸送媒体5の温度は、流動途中での不可避的な放熱によって次第に低下するので、熱輸送媒体5との間の熱交換は、可及的に上流側で行うことが好ましい。したがって、例えば、図1に示すように、空調装置1用の熱交換器3に循環路26を介して被加熱箇所25を連通するとともに、その循環路26に制御弁27を設け、その循環路26内を流れる媒体によって熱交換器3から被加熱箇所25に熱を伝達して被加熱箇所25の加温・加熱を行うように構成すればよい。なお、この被加熱箇所25には、エンジン2をクランキングするため電源となるバッテリーを含むことができ、低温時の始動の際にバッテリーを加熱することとすれば、バッテリーの出力電圧が相対的に高くなって、エンジン2のクランキングやエンジン2の始動を円滑に行うことができる。   Furthermore, the heat of the regenerator 14 can be used for heating the appropriate heated portion 25. In that case, the temperature of the heat transport medium 5 gradually decreases due to inevitable heat dissipation during the flow, and therefore heat exchange with the heat transport medium 5 is preferably performed on the upstream side as much as possible. Therefore, for example, as shown in FIG. 1, the heated portion 25 is communicated with the heat exchanger 3 for the air conditioner 1 via the circulation path 26, and a control valve 27 is provided in the circulation path 26, and the circulation path What is necessary is just to comprise so that heat may be transmitted to the to-be-heated location 25 from the heat exchanger 3 with the medium which flows in the inside, and the to-be-heated location 25 may be heated and heated. The heated portion 25 can include a battery serving as a power source for cranking the engine 2. If the battery is heated at the time of starting at a low temperature, the output voltage of the battery is relative. The cranking of the engine 2 and the starting of the engine 2 can be performed smoothly.

つぎに、蓄熱量が少ない状態でエンジン2を始動する場合の作用について説明する。この場合、蓄熱器14を利用できないので、それぞれ発熱部である空調装置1およびエンジン2の熱を相互に利用することになる。そのために、前述した三方切換弁18を切り替えて、エンジン2用の熱交換器4をバイパス管19に連通させ、熱輸送媒体5をポンプ16および各熱交換器3,4の間で循環させる。これと相前後してエンジン2を始動し、また空調装置1によって冷房を行う。エンジン2では、燃料の燃焼によって熱が発生し、また空調装置1では、冷媒の圧縮によって熱が生じるが、エンジン2の熱容量が大きいのに対して、空調装置1では冷房の際に積極的に熱を排出するから、空調装置1に連通している前記循環路6を流れる冷媒の温度がエンジン2の温度より早く上昇する。すなわち、空調装置1での温度上昇率が大きい。   Next, the operation when the engine 2 is started with a small amount of heat storage will be described. In this case, since the heat accumulator 14 cannot be used, the heat of the air-conditioning apparatus 1 and the engine 2 which are heat generating parts are mutually used. For this purpose, the above-described three-way switching valve 18 is switched so that the heat exchanger 4 for the engine 2 communicates with the bypass pipe 19 and the heat transport medium 5 is circulated between the pump 16 and the heat exchangers 3 and 4. At the same time, the engine 2 is started, and the air conditioner 1 performs cooling. In the engine 2, heat is generated by the combustion of fuel, and in the air conditioner 1, heat is generated by compression of the refrigerant. However, while the heat capacity of the engine 2 is large, the air conditioner 1 is positive in cooling. Since the heat is discharged, the temperature of the refrigerant flowing through the circulation path 6 communicating with the air conditioner 1 rises earlier than the temperature of the engine 2. That is, the temperature increase rate in the air conditioner 1 is large.

したがって、各熱交換器3,4の熱輸送媒体流路を流れる熱輸送媒体5は、その流動方向の上流側に位置する熱交換器3において、空調装置1の廃熱で加熱される。その後、下流側の熱交換器4において、熱輸送媒体5がエンジン冷却水に熱を伝達し、その熱によってエンジン2が暖機される。さらに、エンジン2に熱を与えて温度の低下した熱輸送媒体5は、三方切換弁18からバイパス管19に流入し、再度、ポンプ16によって各熱交換器3,4に供給される。このようにして熱輸送媒体5が、この発明における第2の熱輸送経路を循環して流動することにより、空調装置1で生じる廃熱によってエンジン2が暖められ、その温度が次第に上昇する。その結果、エンジン2の温度が予め定めた所定の温度に達した後は、三方切換弁18を切り替えて、蓄熱器14を通って熱輸送媒体5が循環流動するように設定する。   Therefore, the heat transport medium 5 flowing through the heat transport medium flow path of each of the heat exchangers 3 and 4 is heated by the waste heat of the air conditioner 1 in the heat exchanger 3 located on the upstream side in the flow direction. Thereafter, in the heat exchanger 4 on the downstream side, the heat transport medium 5 transfers heat to the engine coolant, and the engine 2 is warmed up by the heat. Further, the heat transport medium 5 whose temperature has been reduced by applying heat to the engine 2 flows into the bypass pipe 19 from the three-way switching valve 18 and is supplied again to the heat exchangers 3 and 4 by the pump 16. Thus, the heat transport medium 5 circulates and flows through the second heat transport path in the present invention, whereby the engine 2 is warmed by the waste heat generated in the air conditioner 1, and the temperature gradually rises. As a result, after the temperature of the engine 2 reaches a predetermined temperature, the three-way switching valve 18 is switched so that the heat transport medium 5 circulates and flows through the heat accumulator 14.

したがって、図1に示す装置によれば、熱の発生メカニズムが異なる空調装置1の廃熱を有効に利用して動力源2を加熱することができ、そのため、エンジン2の温度が低く、また蓄熱量が少ない場合であっても、エンジン2の暖機を早期に完了して、排ガスを向上させることができる。また、空調装置1から積極的に熱を奪うから、迅速に冷房を行うことができ、始動時のいわゆるクールダウンに要する時間を短くして快適性を向上させることができる。   Therefore, according to the apparatus shown in FIG. 1, the power source 2 can be heated by effectively utilizing the waste heat of the air conditioner 1 having different heat generation mechanisms. Even if the amount is small, warm-up of the engine 2 can be completed early and exhaust gas can be improved. Moreover, since heat is actively deprived from the air conditioner 1, it is possible to quickly perform cooling, and it is possible to improve the comfort by shortening the time required for so-called cool-down at the start.

上述した具体例では、空調装置1と動力源2とが発熱部となる例を説明したが、車両の駆動形態によっては更に他の機構あるいは部分が発熱部となり、そのような構成の車両にもこの発明を適用することができる。図2は、ハイブリッド車のパワープラントの一例を模式的に示しており、エンジン30とジェネレータ(発電機)31とが動力分配機構32に連結されている。この動力分配機構32は、一例として相互に差動作用をなす三つの要素を備えた遊星歯車機構によって構成されており、エンジン30が入力要素に連結され、またジェネレータ31が反力要素に連結され、さらに出力軸33が出力要素に連結されている。その出力軸33にモータ34が連結されている。すなわち、モータ34の出力するトルクを出力軸トルクすなわち駆動トルクに付加するように構成されている。そして、この出力軸33が減速機35を介して左右の車軸36に連結されている。   In the specific example described above, an example in which the air conditioner 1 and the power source 2 are heat generating parts has been described. However, depending on the driving mode of the vehicle, another mechanism or part may be a heat generating part. The present invention can be applied. FIG. 2 schematically shows an example of a hybrid vehicle power plant, in which an engine 30 and a generator (generator) 31 are connected to a power distribution mechanism 32. The power distribution mechanism 32 is constituted by a planetary gear mechanism having three elements that make a differential action with each other, for example, the engine 30 is connected to the input element, and the generator 31 is connected to the reaction force element. Further, the output shaft 33 is connected to the output element. A motor 34 is connected to the output shaft 33. That is, the torque output from the motor 34 is added to the output shaft torque, that is, the drive torque. The output shaft 33 is connected to the left and right axles 36 via a speed reducer 35.

一方、上記のジェネレータ31およびモータ34は、例えば永久磁石式の同期電動機によって構成されており、これらの発電量や出力トルクを制御するためのインバータ37が設けられている。すなわち、ハイブリッド(HV)バッテリー38に対する充電量やHVバッテリー38からの出力電力をインバータ37によって制御するように構成されている。これらのインバータ37およびHVバッテリー38などがこの発明の制御機器に相当している。 On the other hand, the generator 31 and the motor 34 is made of, for example, by synchronizing electric motive permanent magnet, an inverter 37 for controlling these power generation amount and the output torque is provided. That is, the inverter 37 controls the amount of charge to the hybrid (HV) battery 38 and the output power from the HV battery 38. The inverter 37 and the HV battery 38 correspond to the control device of the present invention.

この種のハイブリッド車では、エンジン30を駆動して走行している場合、動力分配機構32では、エンジン30からの入力トルクに対してジェネレータ31を駆動するためのトルクが反力トルクとして作用するので、ジェネレータ31が発電を行うとともにその反力トルクに応じてエンジン30の回転数が制御される。したがって、上記のジェネレータ31および動力分配機構32ならびに前記減速機35が、実質上、変速機を構成しており、この変速機においては、ジェネレータ31での発電に伴う発熱や、トルクの伝達に伴う不可避的な摩擦による発熱がある。   In this type of hybrid vehicle, when the engine 30 is driven to travel, the power distribution mechanism 32 has a torque for driving the generator 31 acting as a reaction torque against the input torque from the engine 30. The generator 31 generates electric power and the rotational speed of the engine 30 is controlled according to the reaction torque. Therefore, the generator 31, the power distribution mechanism 32, and the speed reducer 35 substantially constitute a transmission. In this transmission, heat generated by the power generation by the generator 31 and transmission of torque are accompanied. There is heat generated by inevitable friction.

ジェネレータ31で発生した電力は、インバータ37を介してモータ34に供給され、そのモータ34の出力するトルクが出力軸33に付加される。そのため、モータ34においてもジュール熱などによる発熱がある。さらにまた、インバータ37は、電流や電圧、周波数などの制御を行うことに伴って発熱する。そして、HVバッテリー38は、充電と放電とを繰り返すことにより発熱する一方、出力電圧が所定温度範囲で相対的に高くなる温度特性を有しているので、被加熱箇所となることもある。   The electric power generated by the generator 31 is supplied to the motor 34 via the inverter 37, and torque output from the motor 34 is added to the output shaft 33. Therefore, the motor 34 also generates heat due to Joule heat. Furthermore, the inverter 37 generates heat as it controls current, voltage, frequency, and the like. The HV battery 38 generates heat by repeating charging and discharging, and has a temperature characteristic that the output voltage becomes relatively high in a predetermined temperature range, and may be a heated portion.

したがって図2に示す構成のハイブリッド車を対象とする場合には、エンジン30やジェネレータ31あるいは上記の変速機をこの発明における第2の発熱部とし、定常的な運転状態では熱回収を行い、また始動時などの低温時には蓄熱器14の熱で加熱するように構成することができる。また、始動時などの低温時でかつ蓄熱量が少ない場合には、HVバッテリー38をこの発明の第2の発熱部とし、この発明の第1の発熱部に相当する空調装置1やジェネレータ31あるいはモータ34などの熱を前記熱交換器3から熱交換器4に伝達し、その熱でHVバッテリー38を加熱するように構成することができる。このような構成では、低温時であってもHVバッテリー38の出力を増大させることができるので、ハイブリッド車の走行を円滑に行うことができ、またエンジン30を始動する場合には円滑に始動できる。   Therefore, when the hybrid vehicle having the configuration shown in FIG. 2 is targeted, the engine 30, the generator 31, or the above transmission is used as the second heat generating portion in the present invention, and heat recovery is performed in a steady operation state. It can be configured to heat with the heat of the heat accumulator 14 at a low temperature such as at the start. When the temperature is low such as at the time of starting and the amount of heat storage is small, the HV battery 38 is used as the second heat generating portion of the present invention, and the air conditioner 1 or generator 31 corresponding to the first heat generating portion of the present invention or The heat of the motor 34 or the like can be transferred from the heat exchanger 3 to the heat exchanger 4 and the HV battery 38 can be heated by the heat. With such a configuration, the output of the HV battery 38 can be increased even at low temperatures, so that the hybrid vehicle can run smoothly, and when the engine 30 is started, it can be started smoothly. .

この発明に係る熱回収装置は、要は、蓄熱する際に、熱輸送媒体が、相対的に低温の熱交換器側から相対的に高温の熱交換器側に流動し、これが、始動直後の温度の上昇過程では、温度上昇率の相対的に大きい発熱部との熱交換器側から温度上昇率の相対的に小さい熱交換器側に向けて熱輸送媒体が流動することになるように構成されていればよい。したがって、この発明における発熱部や熱交換部は、二つ以上設けられていてもよく、その例を示せば、図3のとおりである。   In the heat recovery apparatus according to the present invention, in short, when storing heat, the heat transport medium flows from the relatively low-temperature heat exchanger side to the relatively high-temperature heat exchanger side. In the temperature rise process, the heat transport medium flows from the heat exchanger side with the heat generating part having a relatively large temperature rise rate toward the heat exchanger side with a relatively small temperature rise rate. It only has to be done. Therefore, two or more heat generating portions and heat exchanging portions in the present invention may be provided, and an example thereof is as shown in FIG.

ここに示す例は、変速機(トランスミッション)40から熱を回収する第3の熱交換器41を、前述したエンジン2と熱輸送媒体5との熱交換器4に隣接して設け、他の構成は図1に示す構成と同様とした例である。なお、図3には、被加熱箇所25およびこれに関連する循環路26ならびに制御弁27は省略してある。すなわち、変速機40は、その変速制御および潤滑のためのオイル(ATF)を有しており、そのオイルの剪断や撹拌あるいはギヤ(図示せず)の摩擦によって発熱する。その温度は、定常運転状態では、エンジン2の冷却水温度より高くなることがあるが、その始動後の温度の上昇率は、エンジン2の冷却水の温度上昇率より小さい。   In the example shown here, a third heat exchanger 41 for recovering heat from the transmission (transmission) 40 is provided adjacent to the heat exchanger 4 between the engine 2 and the heat transport medium 5 described above. Is an example similar to the configuration shown in FIG. In FIG. 3, the heated portion 25 and the circulation path 26 and the control valve 27 related thereto are omitted. That is, the transmission 40 has an oil (ATF) for the gear change control and lubrication, and generates heat due to shearing or stirring of the oil or friction of a gear (not shown). The temperature may be higher than the cooling water temperature of the engine 2 in a steady operation state, but the rate of temperature increase after the start is smaller than the temperature rising rate of the cooling water of the engine 2.

前述した熱輸送媒体5が、空調装置1との熱交換器3側からエンジン2の冷却水との熱交換器4を通って第3の熱交換器41を貫通して流れるように管路が形成されており、したがって前述した流出口12は、第3の熱交換器41に設けられている。他方、変速機40と第3の熱交換器41との間には、オイルを循環させる循環路42が形成されている。そして、変速機40から熱交換器41に到る循環路42に、熱交換器41に向けたオイルの流動のみを許容する逆止弁43が介装され、また熱交換器41から変速機40に到る循環路42には、オイルを流動させるポンプ44が介装されている。ここにポンプ44が設けられているのは、第3の熱交換器41で熱輸送媒体5に熱が奪われて温度の低下したオイルをポンプ44で加圧するように構成することにより、ポンプ44を介した放熱を可及的に抑制するためである。   The pipe line is such that the heat transport medium 5 described above flows through the third heat exchanger 41 through the heat exchanger 4 with the cooling water of the engine 2 from the heat exchanger 3 side with the air conditioner 1. Therefore, the outlet 12 described above is provided in the third heat exchanger 41. On the other hand, a circulation path 42 for circulating oil is formed between the transmission 40 and the third heat exchanger 41. A check valve 43 that allows only the flow of oil toward the heat exchanger 41 is interposed in the circulation path 42 from the transmission 40 to the heat exchanger 41, and from the heat exchanger 41 to the transmission 40. A pump 44 that causes oil to flow is interposed in the circulation path 42 that reaches the center. The pump 44 is provided here because the pump 44 is configured to pressurize the oil whose temperature has been reduced by the heat transport medium 5 being deprived of heat by the third heat exchanger 41. This is to suppress heat dissipation through the gap as much as possible.

したがって図3に示すように構成した装置においては、エンジン2を始動し、また空調装置1で冷房を開始する場合、冷房に伴う廃熱が生じるので、その冷媒の温度が先ず最初に高くなる。これに対してエンジン2を始動することにより、燃料の燃焼で熱が生じるが、エンジン2の熱容量が大きいので、その冷却水の温度は直ちに高くならず、空調装置1の冷媒の温度上昇に遅れて温度が上昇する。さらに、変速機40はエンジン2に連結されていてその入力部材(図示せず)が回転するが、始動後のために未だ発進していない状態では、変速機40での積極的なトルク伝達が生じないので、オイルの温度が直ちに上昇することはなく、エンジン2の冷却水の温度上昇に対して遅れで温度が上昇する。   Therefore, in the apparatus configured as shown in FIG. 3, when the engine 2 is started and cooling is started by the air conditioner 1, waste heat is generated due to cooling, so the temperature of the refrigerant first increases. On the other hand, when the engine 2 is started, heat is generated by the combustion of the fuel. However, since the heat capacity of the engine 2 is large, the temperature of the cooling water does not increase immediately, and the temperature of the refrigerant of the air conditioner 1 is delayed. Temperature rises. Further, the transmission 40 is connected to the engine 2 and its input member (not shown) rotates. However, in the state where the transmission 40 has not started yet because of the start, active transmission of torque in the transmission 40 is performed. Since it does not occur, the temperature of the oil does not rise immediately, and the temperature rises with a delay from the temperature rise of the cooling water of the engine 2.

そして、熱輸送媒体5は、空調装置1用の熱交換器3側から変速機40用の熱交換器41側に向けてこれらの熱交換器3,4,41を貫通するように流動する。すなわち、熱輸送媒体5は、温度上昇率の大きい方から小さい方に向けて流動するので、始動直後は、温度の高い空調装置1の冷媒から熱を奪い、これをエンジン2の冷却水に与えてエンジン2の暖機が促進される。また、第3の熱交換器41では、オイルの温度が未だ十分に上昇していなければ、熱輸送媒体5が空調装置1側あるいはエンジン2側から運んだ熱をオイルに伝達するので、変速機40の暖機が促進され、その結果、オイルの粘度が早期に低下して、動力損失を低減することができる。   The heat transport medium 5 flows from the heat exchanger 3 side for the air conditioner 1 toward the heat exchanger 41 side for the transmission 40 so as to penetrate these heat exchangers 3, 4, 41. That is, since the heat transport medium 5 flows from a higher temperature increasing rate to a smaller one, immediately after the start, heat is taken from the refrigerant of the air conditioner 1 having a high temperature and is given to the cooling water of the engine 2. Thus, warm-up of the engine 2 is promoted. Further, in the third heat exchanger 41, if the oil temperature has not yet risen sufficiently, the heat transport medium 5 transmits the heat carried from the air conditioner 1 side or the engine 2 side to the oil. 40 warm-up is promoted, and as a result, the viscosity of the oil is lowered early, and power loss can be reduced.

これに対して定常走行時(定常運転時)には、空調装置1の冷媒の温度が相対的に低く、エンジン2の冷却水および変速機40のオイルの順に温度が高くなる。したがって熱輸送媒体5は、温度の低い熱交換器3側から温度の高い熱交換器41側に向けて流動することになる。そのため、熱輸送媒体5の温度が各熱交換器3,4,41を流れる間に次第に高くなるが、熱を受け取る相手となる流体の温度も次第に高くなっているので、両者の温度差が下流側の熱交換器41でも維持される。すなわち、熱輸送媒体5とこれに熱を伝達する流体もしくは媒体との間の温度差が上流側と下流側とのいずれでも維持されるので、熱交換器3,4,41での熱交換率が良好になり、その結果、熱回収率を向上させることができる。なお、図3に示す例では、オイルを直接、熱交換器41に循環させずに、冷却水との間で熱交換した後、その冷却水を上記の熱交換器41に循環させるようにしてもよい。   In contrast, during steady running (during steady running), the temperature of the refrigerant in the air conditioner 1 is relatively low, and the temperature increases in the order of the cooling water of the engine 2 and the oil of the transmission 40. Therefore, the heat transport medium 5 flows from the low temperature heat exchanger 3 side toward the high temperature heat exchanger 41 side. Therefore, the temperature of the heat transport medium 5 gradually increases while flowing through the heat exchangers 3, 4, 41, but the temperature of the fluid that receives heat gradually increases, so that the temperature difference between the two becomes downstream. The heat exchanger 41 on the side is also maintained. That is, since the temperature difference between the heat transport medium 5 and the fluid or medium that transfers heat to the heat transport medium 5 is maintained on both the upstream side and the downstream side, the heat exchange rate in the heat exchangers 3, 4, 41 is maintained. As a result, the heat recovery rate can be improved. In the example shown in FIG. 3, the oil is not directly circulated to the heat exchanger 41, but is exchanged with the cooling water, and then the cooling water is circulated to the heat exchanger 41. Also good.

また、図3に示す構成では、エンジン2や変速機40の熱を蓄熱器14に回収するだけでなく、エンジン2や変速機40の温度が低下した場合には、蓄熱器14の熱で加熱もしくは加温できる。このようにした場合には、エンジン2や変速機40の温度変化を抑制できるので、摩擦による動力損失を低減でき、またエンジン2での燃焼を安定させて、出力や排ガスを改善することが可能になる。   Further, in the configuration shown in FIG. 3, not only the heat of the engine 2 or the transmission 40 is recovered by the heat accumulator 14 but also heated by the heat of the heat accumulator 14 when the temperature of the engine 2 or the transmission 40 decreases. Or it can be heated. In such a case, the temperature change of the engine 2 and the transmission 40 can be suppressed, so that power loss due to friction can be reduced, and combustion in the engine 2 can be stabilized to improve output and exhaust gas. become.

なお、この発明は上述した各具体例に限定されないのであって、車両以外の熱回収装置に適用でき、例えば家庭や工場で固定設置されるコージェネレーションシステムにも適用することができる。   The present invention is not limited to the specific examples described above, and can be applied to a heat recovery apparatus other than a vehicle. For example, the present invention can also be applied to a cogeneration system fixedly installed in a home or factory.

この発明に係る装置の全体的な構成を模式的に示すブロック図である。It is a block diagram which shows typically the whole structure of the apparatus which concerns on this invention. この発明を適用できるハイブリッド車のパワートレーンの一例を模式的に示すブロック図である。It is a block diagram which shows typically an example of the power train of the hybrid vehicle which can apply this invention. この発明に係る他の装置の全体的な構成を模式的に示すブロック図である。It is a block diagram which shows typically the whole structure of the other apparatus which concerns on this invention.

符号の説明Explanation of symbols

1…空調装置、 2,30…エンジン(動力源)、 3,4,41…熱交換器、 5…熱輸送媒体、 13…第一管路、 14…蓄熱器、 15…第二管路、 16…ポンプ、 17…逆止弁、 18…三方切換弁、 19…バイパス管、 25…被加熱箇所、 31…ジェネレータ、 32…動力分配機構、 34…モータ、 35…減速機、 37…インバータ、 38…ハイブリッドバッテリー、 40…変速機。   DESCRIPTION OF SYMBOLS 1 ... Air conditioner 2,30 ... Engine (power source) 3, 4, 41 ... Heat exchanger, 5 ... Heat transport medium, 13 ... First pipe, 14 ... Heat storage, 15 ... Second pipe, DESCRIPTION OF SYMBOLS 16 ... Pump, 17 ... Check valve, 18 ... Three-way switching valve, 19 ... Bypass pipe, 25 ... Heated location, 31 ... Generator, 32 ... Power distribution mechanism, 34 ... Motor, 35 ... Reduction gear, 37 ... Inverter, 38 ... hybrid battery, 40 ... transmission.

Claims (5)

複数の発熱部から熱を回収する熱回収装置において、
発熱のメカニズムおよび発熱温度ならびに温度上昇率が互いに異なる複数の発熱部と熱輸送媒体との間でそれぞれ熱交換する複数の熱交換部が設けられるとともに、
その熱輸送媒体が、発熱温度が相対的に低くかつ温度上昇率の相対的に大きい第1の発熱部との熱交換部側から発熱温度が相対的に高くかつ温度上昇率が相対的に小さい第2の発熱部との熱交換部に向けて流動するように第1の熱輸送経路が設けられ、
さらに前記熱輸送媒体によって運ばれた熱を蓄える蓄熱部が設けられ、
前記第1の発熱部の温度が前記第2の発熱部の温度より高い場合に、前記第1の発熱部と熱輸送媒体との熱交換を行う第1の熱交換部から前記第2の発熱部と熱輸送媒体との熱交換を行う第2の熱交換部に熱を伝達する熱伝達手段を更に備え、
前記熱伝達手段は、前記熱輸送媒体を、前記蓄熱部をバイパスさせて、前記第1の熱交換部から前記第2の熱交換部に向けて循環流動させる第2の熱輸送経路によって構成されている
ことを特徴とする熱回収装置。
In a heat recovery device that recovers heat from a plurality of heat generating parts,
There are provided a plurality of heat exchanging units for exchanging heat between a plurality of heat generating units and heat transporting media, each of which has a heat generation mechanism, a heat generation temperature, and a temperature increase rate different from each other,
The heat transport medium has a relatively low exothermic temperature and a relatively high exothermic temperature from the heat exchanging part side with the first exothermic part having a relatively large exothermic temperature and a relatively small rate of temperature increase. The first heat transport path is provided so as to flow toward the heat exchange part with the second heat generating part,
Heat storage unit is provided et al further storing the heat carried by the heat transfer medium,
When the temperature of the first heat generating unit is higher than the temperature of the second heat generating unit, the second heat generation from the first heat exchanging unit that performs heat exchange between the first heat generating unit and the heat transport medium. A heat transfer means for transferring heat to a second heat exchange part that exchanges heat between the part and the heat transport medium;
The heat transfer means is configured by a second heat transport path for circulating and flowing the heat transport medium from the first heat exchange section to the second heat exchange section, bypassing the heat storage section. and heat recovery apparatus, characterized in that are.
前記第1の発熱部は、車両に搭載された空調装置における発熱部であり、前記第2の発熱部は、車両におけるエンジンと変速機と燃料電池と駆動用モータと駆動用モータの制御機器との少なくともいずれかであることを特徴とする請求項1に記載の熱回収装置。   The first heat generating unit is a heat generating unit in an air conditioner mounted on a vehicle, and the second heat generating unit includes an engine, a transmission, a fuel cell, a drive motor, and a drive motor control device in the vehicle. The heat recovery apparatus according to claim 1, wherein the heat recovery apparatus is at least one of the following. 温度が高い場合に低い場合に比較して出力が増大する蓄電手段を備え、
前記蓄電手段の温度が低い場合に前記第1の熱交換部で温度の上昇した前記熱輸送媒体の熱を前記蓄電手段に伝達する手段が前記第2の熱輸送経路に設けられていることを特徴とする請求項1に記載の熱回収装置。
When the temperature is high, provided with a power storage means that increases the output compared to the low case,
Means for transferring the heat of the heat transport medium, whose temperature has risen in the first heat exchange section, to the power storage means when the temperature of the power storage means is low, provided in the second heat transport path; The heat recovery apparatus according to claim 1, wherein
前記第1の熱輸送経路に前記熱輸送媒体の逆流を防止する逆止弁が設けられていることを特徴とする請求項1ないし3のいずれかに記載の熱回収装置。 The heat recovery apparatus according to any one of claims 1 to 3 , wherein a check valve for preventing a back flow of the heat transport medium is provided in the first heat transport path . 前記蓄熱部から前記第1の熱交換部に到る前記第1の熱輸送経路に、前記熱輸送媒体を流動させるポンプが設けられていることを特徴とする請求項1ないし4のいずれかに記載の熱回収装置。 The first heat transporting path from the heat storage unit to the first heat exchange unit, one of the four claims 1, characterized in that a pump for flowing the heat transfer medium is provided The heat recovery apparatus described in 1.
JP2005210457A 2005-07-20 2005-07-20 Heat recovery equipment Expired - Fee Related JP4848695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005210457A JP4848695B2 (en) 2005-07-20 2005-07-20 Heat recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210457A JP4848695B2 (en) 2005-07-20 2005-07-20 Heat recovery equipment

Publications (2)

Publication Number Publication Date
JP2007022452A JP2007022452A (en) 2007-02-01
JP4848695B2 true JP4848695B2 (en) 2011-12-28

Family

ID=37783754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210457A Expired - Fee Related JP4848695B2 (en) 2005-07-20 2005-07-20 Heat recovery equipment

Country Status (1)

Country Link
JP (1) JP4848695B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090748A (en) * 2007-10-05 2009-04-30 Toyota Motor Corp Energy recovery device
JP5299324B2 (en) * 2010-03-15 2013-09-25 トヨタ自動車株式会社 Vehicle thermal management device
KR101186551B1 (en) 2010-08-10 2012-10-08 갑을오토텍(주) A Car Air Conditioning System and controlling method of it
KR101186555B1 (en) 2010-08-10 2012-10-08 갑을오토텍(주) A Car Air Conditioning System and controlling method of it
JP6057245B2 (en) * 2011-04-15 2017-01-11 弘光 安東 Moving body
JP5861495B2 (en) * 2011-04-18 2016-02-16 株式会社デンソー VEHICLE TEMPERATURE CONTROL DEVICE AND IN-VEHICLE HEAT SYSTEM
JP2022109680A (en) * 2021-01-15 2022-07-28 尚士 柴山 Temperature change suppression device and self-propelled vehicle
CN113071286A (en) * 2021-04-21 2021-07-06 吉林大学 Fuel cell automobile integrated thermal management system based on heat pump air conditioner and control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840461A (en) * 1981-07-23 1983-03-09 松下電器産業株式会社 Air-conditioning hot-water supply device driven by engine
JPS6117850A (en) * 1984-07-03 1986-01-25 Shimizu Constr Co Ltd Liquid heating device
JP3112042B2 (en) * 1992-02-28 2000-11-27 株式会社デンソー Electric vehicle heating system
JP3586505B2 (en) * 1995-12-06 2004-11-10 三菱重工業株式会社 Thermoelectric generator
JPH10315750A (en) * 1997-05-21 1998-12-02 Nissan Diesel Motor Co Ltd Heat storage type air conditioner of vehicle

Also Published As

Publication number Publication date
JP2007022452A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4848695B2 (en) Heat recovery equipment
CN109159657B (en) Thermal management system for whole fuel cell vehicle
JP7094908B2 (en) Battery heating device for hybrid vehicles
US11897309B2 (en) Vehicle heat management system
KR101144078B1 (en) Thermal management system and method for hybrid electric vehicle
CN107839433B (en) Whole vehicle thermal management system of plug-in hybrid electric vehicle
JP4891584B2 (en) Automotive heat exchanger
JP7094907B2 (en) Battery temperature riser
EP1574698B1 (en) Vehicle exhaust heat recovery system
CN107839432B (en) Whole vehicle thermal management system of plug-in hybrid electric vehicle
JP2006177265A (en) Thermoelectric power generation device
JP2006321389A (en) Waste heat using device for vehicle
KR102179609B1 (en) Heat exchange system for vehicle
JP2011240777A (en) Cooler
KR20120066340A (en) Battery pack cooling system with preheating fuction
EP2643176B1 (en) A thermal energy administration system
JP2010168926A (en) Vehicle control device
CN207433190U (en) The thermal management system of whole of plug-in hybrid-power automobile
JP2013062349A (en) Thermoelectric power generation module, thermoelectric power generation system, and hybrid vehicle
CN113492643A (en) Thermal management system for electric automobile
CN110774858B (en) Vehicle auxiliary cooling and heating system and vehicle
CN210799121U (en) Vehicle thermal management system and vehicle
CN113733858A (en) Hydrogen fuel cell and power battery hybrid electric vehicle thermal management system
JP2021164368A (en) Heat management device
JP2017044124A (en) Electrothermal warming-up device and vehicle driving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

R151 Written notification of patent or utility model registration

Ref document number: 4848695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees