JP4848577B2 - Non-aqueous electrolyte battery - Google Patents
Non-aqueous electrolyte battery Download PDFInfo
- Publication number
- JP4848577B2 JP4848577B2 JP2000155401A JP2000155401A JP4848577B2 JP 4848577 B2 JP4848577 B2 JP 4848577B2 JP 2000155401 A JP2000155401 A JP 2000155401A JP 2000155401 A JP2000155401 A JP 2000155401A JP 4848577 B2 JP4848577 B2 JP 4848577B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- battery
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、正極活物質を含有する正極活物質層を備える正極と、負極活物質を含有する負極と、非水電解質とを備える非水電解質電池に関する。
【0002】
【従来の技術】
近年、カメラ一体型のVTR、携帯電話、ラップトップ型のコンピュータ等の携帯可能な電子機器や通信機器の小型化及び軽量化が進行しており、これらの駆動用電源として用いられる電池に対しても、小型化及び軽量化が求められている。これに伴い、電池のエネルギー密度の向上を目指した研究開発が活発に行われている。
【0003】
携帯可能な電子機器や通信機器の駆動用電源としては、従来よりニッケルカドミウム電池や鉛電池等が使用されているが、これらの水溶液系電解液二次電池と比較してエネルギー密度がより大きい電池であるリチウムイオン二次電池が注目されている。
【0004】
リチウムイオン二次電池は、放電電圧が高く、自己放電が少なく、且つサイクル特性が良好で、高エネルギー密度であるという優れた特長を有しているので、様々な電子機器の電源として使用されつつあり、幅広い分野に適用可能な電池として期待が高い。
【0005】
【発明が解決しようとする課題】
ところで、リチウムイオン二次電池は、その使用用途が多様化するにつれて使用条件が多岐にわたり、異常な条件下で使用される可能性が増加している。例えば電池が押しつぶされて電極が変形したり、又は電池に金属物が刺さることがある。このような場合、電池内部では電極のショートが生じてしまう。
【0006】
リチウムイオン二次電池の正極活物質は、Liが脱離した状態である充電時に電極のショート等により加熱された場合、有機電解液との化学反応に由来する発熱を引き起こすことがSolid State Ionics69(1994)265 J.R.Dahnらの報告により広く知られている。つまり、電池内部で電極のショートが生じて電極が加熱されると、電池は高熱を発する可能性がある。
【0007】
そこで、電池が押しつぶされたとしても電極が変形し難いように、電極を金属製の容器に収納している。また、電池の保護装置として温度ヒューズ、PTC素子、電流ヒューズ等を電池内部に配設することで安全性を確保している。
【0008】
その一方で、更なる安全性の確保を目指して、非水電解質電池は、種々の条件下における電池の安定性の向上をより一層求められている。
【0009】
本発明はこのような従来の実情に鑑みて提案されたものであり、電極が変形をするような異常な状況下で使用されて、ショートが生じるといった不測の事態に陥った場合でも、安定性に優れる非水電解質電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
上述の目的を達成するために、本発明に係る非水電解質電池は、正極活物質を含有する正極活物質層が正極集電体上に2層積層されている正極と、負極活物質を含有する負極と、非水電解質とを備え、正極集電体に隣接する正極活物質下層に含有される正極活物質は、LiFePO4であり、正極集電体に隣接しない正極活物質上層に含有される正極活物質は、LiNiO2、LiCoO2又はLiNi0.8Co0.2O2であり、正極活物質下層の厚みを1としたときに、正極活物質上層の厚みは1〜7の比率となっている。
【0011】
以上のように構成された本発明に係る非水電解質電池は、正極活物質の組成がその厚み方向において異なる正極活物質層が正極集電体上に2層積層され、正極集電体に隣接する正極活物質下層に含有される正極活物質は、LiFePO4であり、正極集電体に隣接しない正極活物質上層に含有される正極活物質は、LiNiO2、LiCoO2又はLiNi0.8Co0.2O2であり、正極活物質下層の厚みを1としたときに、正極活物質上層の厚みは1〜7の比率となっている正極を備えるので、ショートが生じるといった不測の事態に陥った場合でも、正極活と非水電解質との化学反応による発熱の時間的及び空間的な集中を防止されている。
【0012】
【発明の実施の形態】
以下、本発明に係る非水電解質電池について、図面を参照しながら詳細に説明する。本発明を適用した非水電解質二次電池はいわゆるリチウムイオン二次電池であり、正極活物質及び結着剤を含有する正極活物質層が正極集電体上に複数積層されている正極と、負極活物質及び結着剤を含有する負極活物質層が負極集電体上に形成されている負極と、非水電解質として液状の非水電解液とを備える。
【0013】
そして、この正極は、図1に示すように、正極集電体1上に正極活物質層2が形成されており、正極集電体1上に隣接する正極活物質層(以下、正極活物質下層2aと称する。)と、正極集電体1に隣接しない正極活物質層、即ち、正極活物質下層2a上に形成される正極活物質層(以下、正極活物質上層2bと称する。)とを備える。また、正極活物質層2に含有される正極活物質の組成は、その厚み方向において異なる。つまり、正極活物質下層2aに含有される正極活物質と、正極活物質上層2bに含有される正極活物質とは、組成が異なる物質である。
【0014】
一般に、リチウムイオン二次電池の電池内部でショートが発生した場合、ショート電流によりジュール熱が発生する。このジュール熱は、熱の良導体である正極集電体を通じて電池内部に拡散し、更に正極集電体から正極活物質層中に拡散して正極活物質を加熱する。そして、ジュール熱により加熱された正極活物質は非水電解質と化学反応を起こすため、この化学反応に起因する高温の発熱が電池内部で生じることがある。
【0015】
ところで、正極活物質は、その組成が異なると非水電解質と化学反応を起こす温度も異なることが知られている。つまり、この非水電解質二次電池において、正極活物質下層2a及び正極活物質上層2bは、含有する正極活物質の組成が異なるので、非水電解質と化学反応を生じる温度が異なる。
【0016】
従って、この非水電解質二次電池は、電池内部でショート等が発生して正極が加熱されたとしても、正極活物質と非水電解質との化学反応による発熱の時間的及び空間的な集中を防止されている。
【0017】
この正極活物質層2は2層以上、4層以下であることが好ましい。言い換えると、正極活物質上層2bは1層以上、3層以下であることが好ましい。正極活物質層2が4層を越える場合、電極を作製する製造コストが高く付く可能性がある。
【0018】
また、正極活物質下層2a及び正極活物質上層2bの厚みとしては、正極活物質下層2aの厚みを1としたときに、正極活物質上層2bの厚みは0.1〜20の比率とすることが好ましい。
【0019】
正極活物質としては、一般式LixMO2(式中、0.05≦x≦1.10範囲であり、Mは各種遷移金属元素のうち、少なくとも1種類以上である。)で表されるリチウム複合酸化物等の使用が可能である。
【0020】
正極活物質下層2aが含有する正極活物質としては、Mn又はFeのうち少なくとも1種類以上を含有するLi含有遷移金属酸化物であることが好ましく、具体的にはLiMn2O4、LiFePO4、LiFe1-xMPO4(式中、0<x≦1であり、MはCo、Ni、Mnのうち何れか1種類以上である。)で表される化合物のうち何れか1つ以上を含有することが好ましい。
【0021】
また、正極活物質上層2bが含有する正極活物質としては、Ni又はCoのうち少なくとも1種類以上を含有するLi含有遷移金属酸化物であることが好ましく、具体的にはLiCoO2、LiNiO2、LiNixCo1-xO2、LiNixCo1-x-yAlyO2(式中、0<x<1、0<y<1である。)で表される化合物のうち何れか1つ以上を含有することが好ましい。
【0022】
正極活物質層2に含有される結着剤としては、この種の電池の結着剤として従来より公知である樹脂が何れも使用可能である。また、正極活物質層2には、従来より公知である導電材や種々添加剤等を含有させても良い。
【0023】
負極は、負極集電体上に、Liのドープ/脱ドープが可能である負極活物質及び結着剤を含有する負極合剤を塗布してなる負極活物質層が形成されている。負極集電体としては、例えば銅箔等が用いられる。
【0024】
負極活物質としては、Liのドープ/脱ドープが可能な炭素材料、難黒鉛化炭素系材料やグラファイト系材料等の炭素材料が使用可能である。より具体的な炭素材料としては、熱分解炭素類、コークス類、(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの。)、炭素繊維、活性炭等が使用可能である。
【0025】
負極合剤を調製する際に負極活物質と混合する結着剤としては、この種の電池の結着剤として従来より公知である樹脂が何れも使用可能である。
【0026】
非水電解質は、非水溶媒に電解質塩を溶解して調製される液状のいわゆる電解液である。
【0027】
非水溶媒としては、炭酸プロピレン、炭酸エチレン等の環状炭酸エステルや、炭酸ジメチル、炭酸ジエチル等の鎖状炭酸エステルや、プロピオン酸メチル、酪酸メチル等のカルボン酸エステル、γ−ブチロラクトン、スルホラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル類が使用可能である。酸化安定性の点からは、特に炭酸エステルを含有させることが好ましい。また、これらの非水溶媒は、1種類を単独で用いても良いし、2種類以上を混合して用いても良い。
【0028】
電解質塩としては、例えばLiPF6、LiBF4、LiAsF6、LiClO4、LiCF3SO3、LiN(SO2CF3)2、LiC(SO2CF3)3、LiAlCl4、LiSiF6等のリチウム塩が使用可能である。酸化に対する安定性の点からは、特にこれらのリチウム塩の中でもLiPF6、LiBF4を使用することが好ましい。これら電解質塩を非水溶媒に溶解する濃度は、0.1mol/l以上、5.0mol/l以下の範囲であることが好ましく、0.5mol/l以上、3.0mol/l以下の範囲であることがより好ましい。また、非水溶媒には、フッ素系高分子化合物を添加してもよい。
【0029】
この非水電解質二次電池は、例えば図2に示すように、正極集電体1上に正極活物質を含有する正極活物質層2が複数積層されている帯状の正極3と、負極集電体4上に負極活物質を含有する負極活物質層が形成されている帯状の負極5とがセパレータ6を介して積層され、長手方向に巻回されてなる渦巻型の電極体が電池缶7に装填され、非水電解質として液状の非水電解液が電池缶7に注入されている。そして、電池蓋8が、絶縁封口ガスケット9を介して電池缶7とかしめて固定されている。また、この非水電解質二次電池は、負極リード10および正極リード11に接続するセンターピン12が設けられているとともに、電池内部の圧力が所定値よりも高くなったときに内部の気体を抜くための安全弁装置13及び電池内部の温度上昇を防止するためのPTC素子14が設けられている。なお、本発明を適用した非水電解質二次電池の形状は、角形、コイン型、ボタン型、シート型等の何れであっても良く、またその大きさも限定されない。
【0030】
以上のように構成された非水電解液二次電池は、電極が変形をするような異常な状況下で使用されて、ショートが生じるといった不測の事態に陥った場合でも、安定性に優れる。
【0031】
【実施例】
以下、本発明について、具体的な実験結果に基づいて詳細に説明する。発明の主旨を越えない限り、本発明は実施例に限定されるものではない。
【0032】
〔正極の作製〕
先ず、正極活物質の組成が異なる正極合剤を複数調製した。
【0033】
正極合剤A
正極活物質としてLiNiO2を91重量部、導電材としてグラファイトを6重量部、及び結着剤としてポリフッ化ビニリデンを3重量部を混合して正極合剤Aを調製した。そして、これをN−メチル−2−ピロリドン中に分散させてスラリー状の正極合剤Aとした。
【0034】
正極合剤B
正極活物質としてLiCoO2を混合したこと以外は正極合剤Aと同様にして、正極合剤Bを調製した。
【0035】
正極合剤C
正極活物質としてLiNi0.8Co0.2O2を混合したこと以外は正極合剤Aと同様にして、正極合剤Cを調製した。
【0036】
正極合剤D
正極活物質としてLiMn2O4を混合したこと以外は正極合剤Aと同様にして、正極合剤Dを調製した。
【0037】
正極合剤E
正極活物質としてLiFePO4を混合したこと以外は正極合剤Aと同様にして、正極合剤Eを調製した。
【0038】
正極合剤F
正極活物質としてLiNiO2を45重量部と、LiMn2O4を46重量部とを混合したこと以外は正極合剤Aと同様にして、正極合剤Fを調製した。
【0039】
次に、上述のように調製したスラリー状の各種正極合剤を表1に示す組み合わせ及び塗布厚みとして、正極集電体上となる厚さが20μmである帯状のアルミニウム箔の両面に正極活物質層を形成した。
【0040】
【表1】
【0041】
実施例1、参考例1〜5の正極は以下に示すようにして作製した。まず、正極活物質下層を形成する正極合剤を正極集電体の両面に均一に塗布して乾燥させた。次に、乾燥させた正極活物質下層上に、正極活物質上層を形成する正極合剤を均一に塗布して乾燥させた。そして、ロールプレス機を用いて圧縮成型した後にスリットすることで、帯状の正極を得た。比較例1〜比較例4の正極は、上記表1に示す正極合剤を正極集電体の両面に均一に塗布して乾燥させ、一定圧力で圧縮成型した後にスリットすることで、帯状の正極を得た。なお、正極活物質下層及び正極活物質上層の塗布厚みは、各正極を圧縮成形した後に、正極の断面を電子顕微鏡を用いて測定した。
【0042】
〔負極の作製〕
負極活物質として人造黒鉛(ロンザ社製 商品名:KS−6)を96重量部と、結着剤としてスチレンブタジエンゴムを3重量部及びカルボキシメチルセルロースを1重量部とを水中で混合して、スラリー状の負極合剤を調製した。
【0043】
そして、負極集電体となる厚さが10μmである帯状の銅箔の両面に、スラリー状の負極合剤を均一に塗布して乾燥させ、ロールプレス機を用いて圧縮成型した後にスリットすることで、帯状の負極を作製した。
【0044】
〔非水電解液の調製〕
非水溶媒として炭酸エチレンを40容量%と炭酸メチルエチルを60容量%として混合した混合溶媒中に、電解質塩としてLiPF6を1.0mol/lの割合で溶解させて非水電解液を調製した。
【0045】
〔非水電解液二次電池の作製〕
上述のようにして作製した実施例1、参考例1〜5及び比較例1〜比較例4の帯状の正極と帯状の負極とを、厚さが25μmであり微孔性ポリプロピレンフィルムからなるセパレータを介して、負極、セパレータ、正極、セパレータの順に積層した後に多数回巻き回して、渦巻型の電極体を複数作製した。
【0046】
次に、ニッケルメッキを施した鉄製の電池缶に、絶縁板を底部に挿入した後に、この電極体を収納した。そして、負極の集電をとるために、ニッケル製の負極リードの一端を負極に圧着し、他端を電池缶に溶接した。また、正極の集電をとるために、アルミニウム製の正極リードの一端を正極に圧着し、他端を電池内圧に応じて電流を遮断する電流遮断用薄板を介して電池蓋に溶接した。そして、電池缶の中に上述のようにして調製した非水電解液を注入した後に、アスファルトを塗布した絶縁封口ガスケットを介して電池缶をかしめることにより電池蓋を固定することで、円筒型であり、直径が18mm、高さが65mmである実施例1、参考例1〜5及び比較例1〜比較例4の非水電解液二次電池を作製した。
【0047】
以上のようにして作製した非水電解液二次電池に対して、はじめに、充電電流を1.0Aとし、終止電圧を4.2Vとして定電流定電圧充電を3時間行った。そして、これら電池の放電特性を評価するために、放電電流を700mAとし、終止電圧を2.5Vとして定電流放電を行って初期容量を測定した。
【0048】
次に、電池内部でショートが生じた場合におけるこれら電池の安定性を評価するために、充電電流を1.0Aとし、終止電圧を4.4Vとして定電流定電圧充電を3時間行った後、直径が5mmである鉄釘を、プレス機を用いて、電池中央に貫通するまで刺し、電池内部でショートを生じさせた。この時、電池缶壁の温度変化を観察し、その最高温度を測定した。なお、何れの電池においてもガス噴出や破裂等は発生せず、電池缶内に充填されている種々の充填物は電池缶外に流出していない。また、これら一連の測定は、23℃環境下において行った。
【0049】
以上のようにして測定した実施例1、参考例1〜5及び比較例1〜比較例4の非水電解液二次電池の初期容量、及び電極ショート時の最高温度を表2に示す。
【0050】
【表2】
【0051】
表2から明らかなように、正極活物質層が正極集電体上に複数積層され、かつ、正極活物質層に含有される正極活物質の組成がその厚み方向において異なる正極を備える実施例1、参考例1〜5の非水電解液二次電池は、電極ショートにより電極が発熱した場合でも発生した熱が電池内部で拡散されるので、電極ショート時の最高温度は90℃以下であり、温度上昇が抑制されていることがわかった。
【0052】
これに対して、正極活物質層が単層である正極を備える比較例1から比較例4の非水電解液二次電池は、電極ショート時の最高温度は100℃を越えてしまうことがわかった。
【0053】
また、実施例1、参考例1〜5の非水電解液二次電池は、比較例1〜比較例4の非水電解液二次電池と比較すると、正極活物質層が正極集電体上に複数積層されている正極を備えていても電池の初期容量は同等であり、所望の放電特性を満たしていることがわかった。
【0054】
従って、非水電解液二次電池は、正極活物質層が正極集電体上に複数積層され、かつ、正極活物質層に含有される正極活物質の組成がその厚み方向において異なる正極を備えることにより、安定性に優れることがわかった。
【0055】
【発明の効果】
以上の説明からも明らかなように、非水電解質電池は、正極活物質層が正極集電体上に複数積層され、かつ、正極活物質層に含有される正極活物質の組成がその厚み方向において異なる正極を備えることにより、電極が変形するような異常な状況下で使用され、ショートが生じるといった不測の事態に陥った場合でも、安定性に優れる。
【図面の簡単な説明】
【図1】 本発明を適用した非水電解質二次電池が備える正極の要部断面図である。
【図2】 非水電解液二次電池の一構成例を示す断面図である。
【符号の説明】
1 正極集電体、2 正極活物質層、2a 正極活物質下層、2b 正極活物質上層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nonaqueous electrolyte battery including a positive electrode including a positive electrode active material layer containing a positive electrode active material, a negative electrode containing a negative electrode active material, and a nonaqueous electrolyte.
[0002]
[Prior art]
In recent years, portable electronic devices and communication devices such as camera-integrated VTRs, mobile phones, and laptop computers have been reduced in size and weight, and the batteries used as power sources for driving these devices have been reduced. However, there is a demand for miniaturization and weight reduction. Along with this, research and development aimed at improving the energy density of batteries has been actively conducted.
[0003]
Conventionally, nickel cadmium batteries and lead batteries have been used as power sources for driving portable electronic devices and communication devices, but batteries with higher energy density than these aqueous electrolyte secondary batteries. Lithium ion secondary batteries are attracting attention.
[0004]
Lithium ion secondary batteries have excellent features such as high discharge voltage, low self-discharge, good cycle characteristics, and high energy density, so they are being used as power sources for various electronic devices. There are high expectations for batteries applicable to a wide range of fields.
[0005]
[Problems to be solved by the invention]
By the way, lithium ion secondary batteries have various usage conditions as their usages are diversified, and the possibility of being used under abnormal conditions is increasing. For example, the battery may be crushed and the electrode may be deformed, or a metal object may be stuck in the battery. In such a case, an electrode short-circuit occurs inside the battery.
[0006]
Solid state Ionics69 (positive electrode active material of lithium ion secondary battery may cause heat generation due to chemical reaction with organic electrolyte when heated due to short circuit of electrode during charging when Li is desorbed. 1994) 265 widely known by JRDahn et al. That is, when an electrode short circuit occurs inside the battery and the electrode is heated, the battery may generate high heat.
[0007]
Therefore, the electrodes are housed in a metal container so that the electrodes are not easily deformed even when the battery is crushed. In addition, safety is ensured by arranging a temperature fuse, a PTC element, a current fuse, etc. as a battery protection device inside the battery.
[0008]
On the other hand, with the aim of further ensuring safety, non-aqueous electrolyte batteries are further required to improve battery stability under various conditions.
[0009]
The present invention has been proposed in view of such a conventional situation, and is used in an abnormal situation in which the electrode is deformed, and even in a case where an unexpected situation such as a short-circuit occurs, the stability is improved. It aims at providing the nonaqueous electrolyte battery which is excellent in.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a non-aqueous electrolyte battery according to the present invention includes a positive electrode in which two positive electrode active material layers containing a positive electrode active material are laminated on a positive electrode current collector, and a negative electrode active material. a negative electrode, and a nonaqueous electrolyte, the positive electrode active material contained in the positive electrode active material lower layer adjacent to the cathode current collector is an L LiFePO 4, contained in the positive electrode active material layer which is not adjacent to the positive electrode current collector The positive electrode active material is LiNiO 2 , LiCoO 2 or LiNi 0.8 Co 0.2 O 2 , and when the thickness of the lower layer of the positive electrode active material is 1, the thickness of the upper layer of the positive electrode active material is 1-7. It is a ratio.
[0011]
In the non-aqueous electrolyte battery according to the present invention configured as described above, two positive electrode active material layers having different positive electrode active material compositions in the thickness direction are laminated on the positive electrode current collector, and adjacent to the positive electrode current collector. positive electrode active material contained in the positive electrode active material lower layer which is, L LiFePO 4, and the positive electrode active material contained in the positive electrode active material layer which is not adjacent to the positive electrode current collector, LiNiO 2, LiCoO 2 or LiNi 0.8 When the thickness of the lower layer of the positive electrode active material is Co 0.2 O 2 and the thickness of the upper layer of the positive electrode active material is 1 to 7, the unexpected situation such that a short circuit occurs is provided. Even in the case of falling into, the temporal and spatial concentration of heat generation due to the chemical reaction between the positive electrode active and the non-aqueous electrolyte is prevented.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the nonaqueous electrolyte battery according to the present invention will be described in detail with reference to the drawings. The non-aqueous electrolyte secondary battery to which the present invention is applied is a so-called lithium ion secondary battery, and a positive electrode in which a plurality of positive electrode active material layers containing a positive electrode active material and a binder are laminated on a positive electrode current collector, A negative electrode active material layer containing a negative electrode active material and a binder is provided with a negative electrode formed on a negative electrode current collector, and a liquid non-aqueous electrolyte as a non-aqueous electrolyte.
[0013]
In the positive electrode, as shown in FIG. 1, a positive electrode
[0014]
Generally, when a short circuit occurs inside the lithium ion secondary battery, Joule heat is generated by the short current. This Joule heat diffuses into the battery through the positive electrode current collector, which is a good heat conductor, and further diffuses from the positive electrode current collector into the positive electrode active material layer to heat the positive electrode active material. Since the positive electrode active material heated by Joule heat causes a chemical reaction with the non-aqueous electrolyte, high temperature heat generation due to this chemical reaction may occur inside the battery.
[0015]
By the way, it is known that the temperature at which a positive electrode active material undergoes a chemical reaction with a non-aqueous electrolyte differs depending on the composition. That is, in this non-aqueous electrolyte secondary battery, the positive electrode active material
[0016]
Therefore, even if a short circuit occurs inside the battery and the positive electrode is heated, this non-aqueous electrolyte secondary battery concentrates the heat and time due to the chemical reaction between the positive electrode active material and the non-aqueous electrolyte. It is prevented.
[0017]
The positive electrode
[0018]
The thickness of the positive electrode active material
[0019]
The positive electrode active material is represented by a general formula Li x MO 2 (wherein 0.05 ≦ x ≦ 1.10, and M is at least one of various transition metal elements). Lithium composite oxide or the like can be used.
[0020]
The positive electrode active material contained in the positive electrode active material
[0021]
The positive electrode active material contained in the positive electrode active material
[0022]
As the binder contained in the positive electrode
[0023]
In the negative electrode, a negative electrode active material layer formed by applying a negative electrode active material capable of doping / dedoping Li and a negative electrode mixture containing a binder is formed on a negative electrode current collector. For example, a copper foil or the like is used as the negative electrode current collector.
[0024]
As the negative electrode active material, a carbon material that can be doped / undoped with Li, a carbon material such as a non-graphitizable carbon material or a graphite material can be used. More specific carbon materials include pyrolytic carbons, cokes, (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organic polymer compound fired bodies (phenol resins, furan resins, etc.) ), Carbon fiber, activated carbon, etc. can be used.
[0025]
As the binder to be mixed with the negative electrode active material when preparing the negative electrode mixture, any conventionally known resin can be used as the binder for this type of battery.
[0026]
The non-aqueous electrolyte is a so-called liquid electrolyte prepared by dissolving an electrolyte salt in a non-aqueous solvent.
[0027]
Non-aqueous solvents include cyclic carbonates such as propylene carbonate and ethylene carbonate, chain carbonates such as dimethyl carbonate and diethyl carbonate, carboxylic acid esters such as methyl propionate and methyl butyrate, γ-butyrolactone, sulfolane, 2 -Ethers such as methyltetrahydrofuran and dimethoxyethane can be used. From the viewpoint of oxidation stability, it is particularly preferable to contain a carbonate ester. Moreover, these non-aqueous solvents may be used individually by 1 type, and may mix and
[0028]
Examples of the electrolyte salt include lithium salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 and LiSiF 6. Can be used. From the viewpoint of stability against oxidation, it is particularly preferable to use LiPF 6 or LiBF 4 among these lithium salts. The concentration at which these electrolyte salts are dissolved in the non-aqueous solvent is preferably in the range of 0.1 mol / l or more and 5.0 mol / l or less, and in the range of 0.5 mol / l or more and 3.0 mol / l or less. More preferably. Further, a fluorine-based polymer compound may be added to the non-aqueous solvent.
[0029]
For example, as shown in FIG. 2, the nonaqueous electrolyte secondary battery includes a strip-like
[0030]
The non-aqueous electrolyte secondary battery configured as described above is excellent in stability even when it is used in an abnormal situation in which the electrode is deformed and a short circuit occurs.
[0031]
【Example】
Hereinafter, the present invention will be described in detail based on specific experimental results. The present invention is not limited to the examples as long as the gist of the invention is not exceeded.
[0032]
[Production of positive electrode]
First, a plurality of positive electrode mixtures having different compositions of the positive electrode active material were prepared.
[0033]
Positive electrode mixture A
A positive electrode mixture A was prepared by mixing 91 parts by weight of LiNiO 2 as a positive electrode active material, 6 parts by weight of graphite as a conductive material, and 3 parts by weight of polyvinylidene fluoride as a binder. And this was disperse | distributed in N-methyl- 2-pyrrolidone, and it was set as the slurry-like positive mix A.
[0034]
Positive electrode mixture B
A positive electrode mixture B was prepared in the same manner as the positive electrode mixture A, except that LiCoO 2 was mixed as the positive electrode active material.
[0035]
Positive electrode mixture C
A positive electrode mixture C was prepared in the same manner as the positive electrode mixture A except that LiNi 0.8 Co 0.2 O 2 was mixed as the positive electrode active material.
[0036]
Positive electrode mixture D
A positive electrode mixture D was prepared in the same manner as the positive electrode mixture A except that LiMn 2 O 4 was mixed as the positive electrode active material.
[0037]
Positive electrode mixture E
A positive electrode mixture E was prepared in the same manner as the positive electrode mixture A, except that LiFePO 4 was mixed as the positive electrode active material.
[0038]
Positive electrode mixture F
A positive electrode mixture F was prepared in the same manner as the positive electrode mixture A, except that 45 parts by weight of LiNiO 2 and 46 parts by weight of LiMn 2 O 4 were mixed as the positive electrode active material.
[0039]
Next, the positive electrode active material on both surfaces of a strip-shaped aluminum foil having a thickness of 20 μm on the positive electrode current collector as a combination and coating thickness shown in Table 1 for the various slurry-like positive electrode mixtures prepared as described above A layer was formed.
[0040]
[Table 1]
[0041]
The positive electrodes of Example 1 and Reference Examples 1 to 5 were produced as follows. First, the positive electrode mixture forming the lower layer of the positive electrode active material was uniformly applied to both surfaces of the positive electrode current collector and dried. Next, a positive electrode mixture for forming a positive electrode active material upper layer was uniformly applied on the dried positive electrode active material lower layer and dried. And after carrying out compression molding using a roll press machine, the strip-shaped positive electrode was obtained by slitting. The positive electrode of Comparative Example 1 to Comparative Example 4 is a belt-shaped positive electrode by slitting after applying the positive electrode mixture shown in Table 1 above uniformly on both sides of the positive electrode current collector, drying, compression molding at a constant pressure. Got. In addition, the coating thickness of the positive electrode active material lower layer and the positive electrode active material upper layer measured the cross section of the positive electrode using the electron microscope, after compression-molding each positive electrode.
[0042]
(Production of negative electrode)
A slurry prepared by mixing 96 parts by weight of artificial graphite (trade name: KS-6, manufactured by Lonza Corporation) as a negative electrode active material, 3 parts by weight of styrene butadiene rubber and 1 part by weight of carboxymethyl cellulose as a binder in water. A negative electrode mixture was prepared.
[0043]
Then, apply a slurry-like negative electrode mixture uniformly on both sides of a strip-shaped copper foil with a thickness of 10 μm to be a negative electrode current collector, dry it, compress it using a roll press, and then slit it. Thus, a strip-shaped negative electrode was produced.
[0044]
(Preparation of non-aqueous electrolyte)
A non-aqueous electrolyte was prepared by dissolving LiPF 6 as an electrolyte salt at a rate of 1.0 mol / l in a mixed solvent in which 40% by volume of ethylene carbonate and 60% by volume of methyl ethyl carbonate were mixed as a non-aqueous solvent. .
[0045]
[Production of non-aqueous electrolyte secondary battery]
A separator made of a microporous polypropylene film having a thickness of 25 μm and the strip-shaped positive electrode and the strip-shaped negative electrode of Example 1, Reference Examples 1 to 5 and Comparative Examples 1 to 4 manufactured as described above. Then, after laminating the negative electrode, the separator, the positive electrode, and the separator in this order, they were wound many times to produce a plurality of spiral electrode bodies.
[0046]
Next, after inserting an insulating plate in the bottom part in the iron battery can which gave nickel plating, this electrode body was accommodated. And in order to collect current of the negative electrode, one end of the negative electrode lead made of nickel was pressure-bonded to the negative electrode, and the other end was welded to the battery can. Further, in order to collect the positive electrode, one end of an aluminum positive electrode lead was pressure-bonded to the positive electrode, and the other end was welded to the battery lid via a current blocking thin plate that cuts off the current according to the battery internal pressure. And after injecting the non-aqueous electrolyte prepared as described above into the battery can, the battery lid is fixed by caulking the battery can through an insulating sealing gasket coated with asphalt. The nonaqueous electrolyte secondary batteries of Example 1, Reference Examples 1 to 5 and Comparative Examples 1 to 4 having a diameter of 18 mm and a height of 65 mm were produced.
[0047]
The non-aqueous electrolyte secondary battery produced as described above was first subjected to constant current and constant voltage charging for 3 hours with a charging current of 1.0 A and a final voltage of 4.2 V. In order to evaluate the discharge characteristics of these batteries, the initial capacity was measured by performing constant current discharge with a discharge current of 700 mA and a final voltage of 2.5V.
[0048]
Next, in order to evaluate the stability of these batteries when a short circuit occurs inside the batteries, the charging current is set to 1.0 A, the end voltage is set to 4.4 V, and the constant current and constant voltage charging is performed for 3 hours. An iron nail having a diameter of 5 mm was pierced using a press machine until it penetrated the center of the battery, thereby causing a short circuit inside the battery. At this time, the temperature change of the battery can wall was observed and the maximum temperature was measured. In any of the batteries, gas ejection, rupture or the like does not occur, and various filling materials filled in the battery can do not flow out of the battery can. These series of measurements were performed in a 23 ° C. environment.
[0049]
Table 2 shows the initial capacities of the nonaqueous electrolyte secondary batteries of Example 1, Reference Examples 1 to 5 and Comparative Examples 1 to 4 and the maximum temperature when the electrodes were short-circuited as measured above.
[0050]
[Table 2]
[0051]
As is apparent from Table 2, Example 1 in which a plurality of positive electrode active material layers are stacked on a positive electrode current collector and the positive electrode active material layers contained in the positive electrode active material layer have different compositions in the thickness direction. In the non-aqueous electrolyte secondary batteries of Reference Examples 1 to 5, since the generated heat is diffused inside the battery even when the electrode generates heat due to the electrode short, the maximum temperature at the time of the electrode short is 90 ° C. or less, It was found that the temperature rise was suppressed.
[0052]
In contrast, in the non-aqueous electrolyte secondary batteries of Comparative Examples 1 to 4 including the positive electrode in which the positive electrode active material layer is a single layer, it was found that the maximum temperature when the electrode was short exceeded 100 ° C. It was.
[0053]
In addition, the non-aqueous electrolyte secondary batteries of Example 1 and Reference Examples 1 to 5 have a positive electrode active material layer on the positive electrode current collector as compared with the non-aqueous electrolyte secondary batteries of Comparative Examples 1 to 4. It was found that even when a plurality of stacked positive electrodes were provided, the initial capacity of the batteries was the same and the desired discharge characteristics were satisfied.
[0054]
Therefore, the non-aqueous electrolyte secondary battery includes a positive electrode in which a plurality of positive electrode active material layers are stacked on a positive electrode current collector and the composition of the positive electrode active material contained in the positive electrode active material layer is different in the thickness direction. Thus, it was found that the stability was excellent.
[0055]
【The invention's effect】
As apparent from the above description, the non-aqueous electrolyte battery has a plurality of positive electrode active material layers stacked on the positive electrode current collector, and the composition of the positive electrode active material contained in the positive electrode active material layer is in the thickness direction. By providing a different positive electrode, the electrode is used in an abnormal situation in which the electrode is deformed, and the stability is excellent even when an unexpected situation such as a short circuit occurs.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of a positive electrode provided in a nonaqueous electrolyte secondary battery to which the present invention is applied.
FIG. 2 is a cross-sectional view showing a configuration example of a non-aqueous electrolyte secondary battery.
[Explanation of symbols]
DESCRIPTION OF
Claims (2)
負極活物質を含有する負極と、
非水電解質とを備え、
上記正極集電体に隣接する正極活物質下層に含有される正極活物質は、LiFePO4であり、上記正極集電体に隣接しない正極活物質上層に含有される正極活物質は、LiNiO2、LiCoO2又はLiNi0.8Co0.2O2であり、
上記正極活物質下層の厚みを1としたときに、上記正極活物質上層の厚みは1〜7の比率となっている非水電解質電池。A positive electrode in which two positive electrode active material layers containing a positive electrode active material are laminated on a positive electrode current collector;
A negative electrode containing a negative electrode active material;
With a non-aqueous electrolyte,
Positive electrode active material contained in the positive electrode active material lower layer adjacent to the positive electrode collector is L LiFePO 4, the positive electrode active material contained in the positive electrode active material layer which is not adjacent to the positive electrode current collector, LiNiO 2 LiCoO 2 or LiNi 0.8 Co 0.2 O 2 ,
A nonaqueous electrolyte battery in which the thickness of the upper layer of the positive electrode active material is 1 to 7 when the thickness of the lower layer of the positive electrode active material is 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000155401A JP4848577B2 (en) | 2000-05-25 | 2000-05-25 | Non-aqueous electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000155401A JP4848577B2 (en) | 2000-05-25 | 2000-05-25 | Non-aqueous electrolyte battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001338639A JP2001338639A (en) | 2001-12-07 |
JP4848577B2 true JP4848577B2 (en) | 2011-12-28 |
Family
ID=18660350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000155401A Expired - Fee Related JP4848577B2 (en) | 2000-05-25 | 2000-05-25 | Non-aqueous electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4848577B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107644968A (en) * | 2017-08-31 | 2018-01-30 | 上海空间电源研究所 | A kind of high security long-life lithium ion accumulator positive electrode piece and its production and use |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100385248C (en) * | 2004-06-01 | 2008-04-30 | 肇庆市风华锂电池有限公司 | Method for testing battery electrode material filling properties |
JP4999292B2 (en) | 2004-07-21 | 2012-08-15 | 三洋電機株式会社 | Non-aqueous electrolyte battery |
JP2006134770A (en) * | 2004-11-08 | 2006-05-25 | Sony Corp | Cathode and battery |
JP5093997B2 (en) | 2005-06-30 | 2012-12-12 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
KR20070009447A (en) * | 2005-07-14 | 2007-01-18 | 마츠시타 덴끼 산교 가부시키가이샤 | Positive electrode for lithium secondary cell and lithium secondary cell using the same |
JP5032800B2 (en) * | 2005-07-14 | 2012-09-26 | パナソニック株式会社 | Positive electrode for lithium secondary battery and lithium secondary battery using the same |
JP5051988B2 (en) * | 2005-07-29 | 2012-10-17 | 三洋電機株式会社 | Electrode manufacturing method, electrode manufacturing apparatus used in the manufacturing method, and battery using an electrode manufactured by the electrode manufacturing method |
JP2008159576A (en) | 2006-11-27 | 2008-07-10 | Nissan Motor Co Ltd | Lithium ion battery, battery pack, battery pack module, vehicle, and method of manufacturing positive electrode of the lithium ion battery |
KR20090106841A (en) | 2008-04-07 | 2009-10-12 | 삼성에스디아이 주식회사 | Electrode assembly and secondary battery using the same |
JP5231166B2 (en) * | 2008-10-28 | 2013-07-10 | 古河電池株式会社 | Method for producing positive plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP5807749B2 (en) | 2011-12-08 | 2015-11-10 | ソニー株式会社 | Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic device |
CN103378344B (en) * | 2012-04-17 | 2016-01-20 | 协鑫动力新材料(盐城)有限公司 | Battery pole piece and preparation method |
CN103378352A (en) * | 2012-04-25 | 2013-10-30 | 协鑫动力新材料(盐城)有限公司 | Lithium ion battery positive pole piece and preparation method thereof |
KR101687190B1 (en) * | 2015-02-16 | 2016-12-16 | 에스케이이노베이션 주식회사 | Cathode for a lithium secondary battery and lithium secondary battery comprising the same |
PL3451421T3 (en) * | 2016-06-14 | 2022-03-21 | Lg Chem, Ltd. | Electrode for secondary battery and lithium secondary battery including same |
KR102237952B1 (en) * | 2017-07-28 | 2021-04-08 | 주식회사 엘지화학 | Positive electorde for secondary battery and lithium secondary battery including the same |
KR102223721B1 (en) * | 2017-07-28 | 2021-03-05 | 주식회사 엘지화학 | Positive electorde for secondary battery and lithium secondary battery including the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0850893A (en) * | 1994-08-04 | 1996-02-20 | Ricoh Co Ltd | Electrode for secondary battery |
JPH08162114A (en) * | 1994-12-02 | 1996-06-21 | Kaageo P-Shingu Res Lab:Kk | Lithium secondary battery |
JP3579989B2 (en) * | 1995-11-01 | 2004-10-20 | 宇部興産株式会社 | Non-aqueous secondary battery |
JP3622383B2 (en) * | 1995-12-11 | 2005-02-23 | 宇部興産株式会社 | Electrode sheet manufacturing method |
JPH09167618A (en) * | 1995-12-19 | 1997-06-24 | Fuji Photo Film Co Ltd | Nonaqueous secondary battery |
JPH09283180A (en) * | 1996-04-16 | 1997-10-31 | Fuji Photo Film Co Ltd | Non-aqueous secondary battery |
JPH09320569A (en) * | 1996-05-30 | 1997-12-12 | Ricoh Co Ltd | Nonaqueous secondary battery |
JP2001313024A (en) * | 2000-04-27 | 2001-11-09 | Shin Kobe Electric Mach Co Ltd | Lithium secondary battery |
-
2000
- 2000-05-25 JP JP2000155401A patent/JP4848577B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107644968A (en) * | 2017-08-31 | 2018-01-30 | 上海空间电源研究所 | A kind of high security long-life lithium ion accumulator positive electrode piece and its production and use |
Also Published As
Publication number | Publication date |
---|---|
JP2001338639A (en) | 2001-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190245184A1 (en) | Separator and battery | |
KR101455663B1 (en) | Lithium-ion secondary battery | |
JP5619620B2 (en) | Pouch-type lithium secondary battery | |
JP4848577B2 (en) | Non-aqueous electrolyte battery | |
JP5298419B2 (en) | Secondary battery | |
JP5103945B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2009048981A (en) | Nonaqueous electrolyte secondary battery | |
JP2001325988A (en) | Charging method of non-aqueous electrolyte secondary battery | |
KR101017305B1 (en) | Nonaqueous electrolyte battery | |
KR102448303B1 (en) | An organic electrolyte, and secondary battery comprising the same | |
JP2005005117A (en) | Battery | |
JP2008108454A (en) | Nonaqueous electrolyte, and nonaqueous electrolyte battery including the same | |
JP2009134970A (en) | Nonaqueous electrolytic battery | |
JP5205863B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2004031131A (en) | Nonaqueous electrolyte liquid secondary battery | |
JP2010186689A (en) | Nonaqueous electrolyte secondary battery | |
JP2009054469A (en) | Nonaqueous secondary battery | |
JP2001283861A (en) | Battery electrode and nonaqueous electrolyte battery | |
JPH10255844A (en) | Nonaqueous electrolyte secondary battery | |
JPH07272756A (en) | Nonaqueous electrolytic secondary battery | |
JP4560854B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2005005118A (en) | Battery | |
US20210242489A1 (en) | Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery | |
JP2004063269A (en) | Nonaqueous electrolyte battery | |
JP4638453B2 (en) | Nonaqueous electrolyte secondary battery operation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100422 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110405 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110705 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110920 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111003 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141028 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |