JP4848178B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP4848178B2
JP4848178B2 JP2005324259A JP2005324259A JP4848178B2 JP 4848178 B2 JP4848178 B2 JP 4848178B2 JP 2005324259 A JP2005324259 A JP 2005324259A JP 2005324259 A JP2005324259 A JP 2005324259A JP 4848178 B2 JP4848178 B2 JP 4848178B2
Authority
JP
Japan
Prior art keywords
tube
fuel cell
plate
tube plate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005324259A
Other languages
Japanese (ja)
Other versions
JP2007134096A (en
Inventor
久人 加藤
克明 井上
好章 井上
健一郎 小阪
大剛 渡辺
長生 久留
浩二 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Electric Power Development Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2005324259A priority Critical patent/JP4848178B2/en
Publication of JP2007134096A publication Critical patent/JP2007134096A/en
Application granted granted Critical
Publication of JP4848178B2 publication Critical patent/JP4848178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体酸化物形燃料電池(SOFC)に係り、周面に燃料電池セルが形成された複数の燃料電池セルチューブと、前記複数の燃料電池セルチューブ内に燃料ガスを供給するための第1ガス室と、前記燃料電池セルで発電反応済みの燃料ガスを排出するための第2ガス室とが前記燃料電池セルに酸化剤ガスを供給する第3ガス室を介して隔離して配置してなる固体酸化物形燃料電池に関する。   The present invention relates to a solid oxide fuel cell (SOFC), a plurality of fuel cell tubes having fuel cells formed on a peripheral surface thereof, and a fuel gas for supplying fuel gas into the plurality of fuel cell tubes The first gas chamber and the second gas chamber for discharging the fuel gas that has been subjected to the power generation reaction in the fuel cell are separated from each other via a third gas chamber that supplies an oxidant gas to the fuel cell. The present invention relates to a solid oxide fuel cell.

従来から、発電体を多孔性の基体管の表面に形成した固体酸化物形燃料電池(Solid Oxide Fuel Cell、以下SOFCという)は周知であり、発電反応は以下のようにして生じる。例えば、1000℃の温度に保持された基体管の表面に、燃料極、固体電解質、空気極等の各層が形成された燃料電池セルが設けられたセルチューブの内側に燃料ガスを流し、外側に酸化剤としての空気を流すと、電池セル内ではO2-イオンが移動して電気化学反応が起り空気極と燃料極電位差が生じ発電が行なわれる。なお、セルチューブの内側に空気を流し外側に燃料ガスを流すように構成してもよい。 Conventionally, a solid oxide fuel cell (hereinafter referred to as SOFC) in which a power generator is formed on the surface of a porous base tube is well known, and a power generation reaction occurs as follows. For example, the fuel gas is allowed to flow inside the cell tube provided with the fuel cells in which layers such as the fuel electrode, the solid electrolyte, and the air electrode are formed on the surface of the base tube maintained at a temperature of 1000 ° C. When air as an oxidant is flowed, O 2− ions move in the battery cell, an electrochemical reaction occurs, and a potential difference between the air electrode and the fuel electrode is generated to generate power. In addition, you may comprise so that air may be flowed inside a cell tube and fuel gas may be flowed outside.

近年、このようなSOFCは電池セルでの動作温度が約1000℃と高温であるため発電効率が高く、第3世代の発電システムとして期待されている。
一般に、SOFCのセル構造には平板型と円筒型があり、円筒型には円筒縦縞型と円筒横縞型がある。平板型は単位体積当たりの出力が高いという特徴があるが、実用化においてはセル側面のガスシール性やセル内の温度分布の不均一性の問題がある。一方、円筒型は出力密度においては平板型に劣るものの、その形状から機械的強度が高いという特徴がある。
また、円筒型固体酸化物形燃料電池の基体管は開気通気孔率が30%程度のCaO安定化ZrO2等の多孔質セラミックからなり、その外側にLaMnO3系材料からなる多通気孔性の空気極、Y2O3安定化ZrO2等からなる固体電解質、多通気孔性のNi/ZrO2等の燃料極が順次設けられている。
In recent years, such SOFCs are expected to be a third generation power generation system because of their high power generation efficiency because the operating temperature of the battery cells is as high as about 1000 ° C.
In general, the SOFC cell structure includes a flat plate type and a cylindrical type, and the cylindrical type includes a cylindrical vertical stripe type and a cylindrical horizontal stripe type. The flat plate type is characterized in that the output per unit volume is high. However, in practical use, there are problems of gas sealability on the side surface of the cell and nonuniformity of temperature distribution in the cell. On the other hand, the cylindrical type is inferior to the flat plate type in terms of power density, but is characterized by high mechanical strength due to its shape.
The base tube of the cylindrical solid oxide fuel cell is made of a porous ceramic such as CaO-stabilized ZrO 2 having an open air porosity of about 30%, and a multi-porous property made of LaMnO 3 based material on the outside thereof. air electrode, Y 2 O 3 consisting of stabilized ZrO 2 or the like solid electrolyte, a multi-vent of Ni / ZrO 2 such as a fuel electrode of are sequentially provided.

このような構成になる円筒横縞型の燃料電池の例として、円板状の基体部と該基体部に接合された複数の基体管(燃料セル支持管)を有する燃料電池が開示されている(例えば、特許文献1参照。)。また、複数の燃料電池セル管とそれに支持される管板を備えた燃料電池が開示されている(例えば、特許文献2参照。)。   As an example of a cylindrical horizontal stripe type fuel cell having such a configuration, a fuel cell having a disk-shaped base portion and a plurality of base tube (fuel cell support pipe) joined to the base portion is disclosed ( For example, see Patent Document 1.) Further, a fuel cell including a plurality of fuel cell tubes and a tube plate supported by the tube is disclosed (for example, see Patent Document 2).

特開2003−308854号公報JP 2003-308854 A 特開2004−22368号公報JP 2004-22368 A

しかしながら、特許文献1に開示されたものは、基体部と燃料セル支持管の接合部分をガスの不透過膜である電解質で被覆したことを特徴としており、基体部によるセル支持管の支持構造に関しては何らの開示もなされていない。また、特許文献2に開示されたものは、燃料電池セル支持管(セルチューブ)と管板とを締り嵌めにより接合した構造であり、本願はこの特許文献2に記載の燃料電池の改良に関するものである。   However, the one disclosed in Patent Document 1 is characterized in that the joint portion of the base portion and the fuel cell support pipe is covered with an electrolyte that is a gas-impermeable membrane. There is no disclosure. Further, what is disclosed in Patent Document 2 is a structure in which a fuel cell support tube (cell tube) and a tube plate are joined by an interference fit, and the present application relates to an improvement of the fuel cell described in Patent Document 2. It is.

特許文献2に記載の燃料電池モジュールを断熱壁で覆った状態の概略構成を示図8に示す。このような断熱壁で覆ったモジュールを複数個連ねて大容量の燃料電池が構成される。同図において、1はセルチューブ、2は上部ヘッダーで、該上部ヘッダー2は管板5と該管板5を固定支持する額縁部材3、4を含む。2’は下部ヘッダーで、該下部ヘッダー2’は管板5’と該管板5’を固定支持する額縁部材3’、4’を含み、これらは図示しない手段で結合されている。下部ヘッダー2’は支持台8に支持されている。9は断熱材よりなる壁であり、10は上部ヘッダー2を覆うカバーである。前記断熱壁9と額縁部材3、4、3’、4’の間はシールされて複数の燃料電池セルチューブ1が存在する空間が形成されている。燃料電池セルチューブ1は管板5、5’を貫通し、該貫通部で締り嵌めされており、該締り嵌めによる接合によりシール効果と接着効果が保持されている。セルチューブ1の該締り嵌め嵌合部には、例えば酸化アルミニューム等の耐熱性の電気絶縁層が形成されている。断熱壁9及びカバー10を取り除いた内部モジュールの斜視図を図9に示し、図8と同じ構成部材には同じ符号を付してある。21は図8においては省略した断熱部材である。また、31は燃料電池セルである。この燃料電池は各セル31が直列に連結された横縞型の円筒型固体酸化物形燃料電池である。   FIG. 8 shows a schematic configuration in a state where the fuel cell module described in Patent Document 2 is covered with a heat insulating wall. A large-capacity fuel cell is formed by connecting a plurality of modules covered with such heat insulating walls. In the figure, 1 is a cell tube, 2 is an upper header, and the upper header 2 includes a tube plate 5 and frame members 3 and 4 for fixing and supporting the tube plate 5. Reference numeral 2 'denotes a lower header, and the lower header 2' includes a tube plate 5 'and a frame member 3', 4 'for fixing and supporting the tube plate 5', which are coupled by means not shown. The lower header 2 ′ is supported by the support base 8. Reference numeral 9 denotes a wall made of a heat insulating material, and reference numeral 10 denotes a cover that covers the upper header 2. A space between the heat insulating wall 9 and the frame members 3, 4, 3 ′, 4 ′ is sealed to form a plurality of fuel cell tubes 1. The fuel cell tube 1 penetrates through the tube plates 5 and 5 ′ and is interference-fitted at the penetration part, and a sealing effect and an adhesion effect are maintained by joining by the interference fit. A heat-resistant electric insulating layer such as aluminum oxide is formed on the interference fitting portion of the cell tube 1. FIG. 9 shows a perspective view of the internal module with the heat insulating wall 9 and the cover 10 removed, and the same components as those in FIG. 8 are given the same reference numerals. Reference numeral 21 denotes a heat insulating member omitted in FIG. Reference numeral 31 denotes a fuel battery cell. This fuel cell is a horizontal stripe cylindrical solid oxide fuel cell in which the cells 31 are connected in series.

図8に戻って、燃料ガスが、図示しない通路を介して上部ヘッダー2内に供給され、セルチューブ内を通って下部ヘッダーに流され、下部ヘッダーから図示しない通路を介して外部の装置に排出される。一方酸化剤としての空気が図示しない通路を介して管板5、5’と断熱壁9で囲まれた空間に供給され図示しない通路を介して外部の装置に排出される。セルチューブ1は、基体管の外周に燃料極、電解質、空気極の層が順次に形成された燃料電池セル31を含む。供給された空気中の酸素はチューブ外面の空気極(カソード)で電子を受け取ってO2-イオンとなり、電解質層を通過する。一方、セルチューブ1の空洞を通る燃料ガスは多孔質の基体管を通過して燃料極(アノード)で電解質を移動してきたO2-イオンと反応して水と二酸化炭素に変わる。このとき電子が放出され、電流となってセルチューブ先端部で取り出されるが、集電部については図示省略してある。燃料電池セル31は発電中は温度900℃〜1000℃に保持される。未反応の燃料ガスを含んだ排気ガスは下部ヘッダーから図示しない外部装置に送られる。酸素が消費されて未消費の残存酸素を含んだガスも図示しない外部装置に送られる。これらのガスは外部装置で再燃焼されて燃料や空気の予熱や燃料の改質などに利用された後に大気中に排出される。 Returning to FIG. 8, the fuel gas is supplied into the upper header 2 through a passage (not shown), flows into the lower header through the cell tube, and is discharged from the lower header to an external device through a passage (not shown). Is done. On the other hand, air as an oxidant is supplied to a space surrounded by the tube plates 5, 5 ′ and the heat insulating wall 9 through a passage (not shown) and discharged to an external device through a passage (not shown). The cell tube 1 includes a fuel cell 31 in which a fuel electrode layer, an electrolyte layer, and an air electrode layer are sequentially formed on the outer periphery of the base tube. Oxygen in the supplied air receives electrons at the air electrode (cathode) on the outer surface of the tube and becomes O 2− ions, and passes through the electrolyte layer. On the other hand, the fuel gas passing through the cavity of the cell tube 1 reacts with the O 2− ions that have passed through the porous substrate tube and moved through the electrolyte at the fuel electrode (anode) to be changed into water and carbon dioxide. At this time, electrons are emitted and become current, which is taken out at the tip of the cell tube, but the current collector is not shown. The fuel cell 31 is maintained at a temperature of 900 ° C. to 1000 ° C. during power generation. Exhaust gas containing unreacted fuel gas is sent from the lower header to an external device (not shown). Oxygen is consumed and gas containing residual oxygen that has not been consumed is also sent to an external device (not shown). These gases are recombusted by an external device, used for preheating fuel or air, reforming fuel, and the like, and then discharged into the atmosphere.

しかしながら、特許文献2の燃料電池の構成では、上部ヘッダー2及び下部ヘッダー2’の管板5、5’にセルチューブ1が締り嵌めにより接合され、上部ヘッダーはセルチューブにより支持され、上部ヘッダーとセルチューブは下部ヘッダーの管板に支持され、これらが下部ヘッダーを介して支持台8に支持される構成であり、管板の熱変形やヘッダーの重量による変形のためにセルチューブと管板の接合部に曲げモーメントが掛かってセルチューブが折損することがあり、セルチューブに対する荷重を軽減する支持構造が求められている。また、セルチューブが破損に至らなくてもセルチューブと管板との嵌合部の変形により燃料ガス側と空気側の気密が損なわれることがある。   However, in the configuration of the fuel cell of Patent Document 2, the cell tube 1 is joined to the tube plates 5 and 5 ′ of the upper header 2 and the lower header 2 ′ by an interference fit, and the upper header is supported by the cell tube. The cell tube is supported by the tube plate of the lower header, and these are supported by the support base 8 via the lower header. The cell tube and the tube plate are deformed due to thermal deformation of the tube plate and deformation due to the weight of the header. A bending moment is applied to the joint portion and the cell tube may break, and a support structure that reduces the load on the cell tube is required. Even if the cell tube does not break, the fuel gas side and air side airtightness may be impaired by deformation of the fitting portion between the cell tube and the tube sheet.

従って、本発明は、セルチューブに対する荷重を軽減して燃料ガス側と空気側の気密が損なわれるのを防止し、さらにはセルチューブの破損を防止する支持構造の円筒型固体酸化物形燃料電池を提供することを目的とする。   Accordingly, the present invention provides a cylindrical solid oxide fuel cell having a support structure that reduces the load on the cell tube to prevent the airtightness of the fuel gas side and the air side from being impaired, and further prevents the cell tube from being damaged. The purpose is to provide.

本発明は、周面に燃料電池セルが形成された複数の燃料電池セルチューブと、
前記複数の燃料電池セルチューブ内に燃料ガスを供給するための第1ガス室と、前記燃料電池セルで発電反応済みの燃料ガスを排出するための第2ガス室とが前記燃料電池セルに酸化剤ガスを供給する第3ガス室を介して隔離して配置してなる固体酸化物形燃料電池において、前記第1及び第2ガス室はこれらのガス室から前記第3ガス室を区画する管板と、該管板囲繞する側板とを含み、前記複数の燃料電池セルチューブの両端部がそれぞれ前記管板を貫通して該貫通部位で管板に気密に接合されるとともに、該管板前記側板間が、角部が形成されることなく滑らかな曲面をもって接続されてなり、前記第1及び第2ガス室は、管板と、該管板を囲繞する側板と、これらに囲繞される空間を閉鎖する蓋板とからなるとともに、前記管板材料は前記蓋板若しくは側板よりも熱膨張率が小さい材料で形成されていることを特徴とする固体酸化物形燃料電池を提案する。
The present invention includes a plurality of fuel cell tubes each having a fuel cell formed on the peripheral surface;
A first gas chamber for supplying fuel gas into the plurality of fuel cell tubes and a second gas chamber for discharging fuel gas that has been subjected to a power generation reaction in the fuel cells are oxidized to the fuel cells. In the solid oxide fuel cell, which is separated from the third gas chamber for supplying the agent gas, the first and second gas chambers are pipes that divide the third gas chamber from these gas chambers. A plate and a side plate surrounding the tube plate, and both end portions of the plurality of fuel battery cell tubes penetrate the tube plate and are hermetically joined to the tube plate at the penetrating portion, and the tube plate between side plates, Ri Na is connected with a smooth curved surface without corners are formed, the first and second gas chambers, and the tube plate, side plates surrounding the tube plate, are surrounded in these A tube plate for closing the space, and the tube plate material Suggest solid oxide fuel cell characterized that you have been formed by material having a low coefficient of thermal expansion than the cover plate or the side plate.

例えば、前記第1ガス室を上部に、第2ガス室を下部に配置すれば、前記第2ガス室は支持台に支持され、前記第1ガス室はその管板と燃料電池セルチューブとの接合部で該セルチューブに支持されることになり、第1ガス室とセルチューブの接合体が第2ガス室の管板とセルチューブとの接合部で該管板に支持されることになる。発電中は燃料電池セルは900〜1000℃の高温に保たれるので、セルチューブと管板との接合部には第1ガス室の重量や第1ガス室とセルチューブの合計重量による垂直荷重に加えて管板等の熱膨張に起因する荷重が掛かることになる。そしてこれらの荷重はセルチューブに対してその軸方向に沿う力に加え曲げモーメントとして作用し、第1及び第2ガス室の側板に隣接する位置で管板に接合されたセルチューブ接合部で最も大きくなる。   For example, if the first gas chamber is disposed at the top and the second gas chamber is disposed at the bottom, the second gas chamber is supported by a support base, and the first gas chamber is formed between its tube plate and the fuel cell tube. The joint of the first gas chamber and the cell tube will be supported by the tube plate at the joint between the tube plate of the second gas chamber and the cell tube. . During power generation, the fuel cell is maintained at a high temperature of 900 to 1000 ° C., so that the vertical load due to the weight of the first gas chamber or the total weight of the first gas chamber and the cell tube at the joint between the cell tube and the tube sheet. In addition to this, a load due to thermal expansion of the tube sheet or the like is applied. These loads act on the cell tube as a bending moment in addition to the force along the axial direction thereof, and are the most at the cell tube joint joined to the tube plate at a position adjacent to the side plates of the first and second gas chambers. growing.

請求項1記載の発明によれば、第1及び第2ガス室の管板は側板に角部が形成されることなく滑らかな曲面で接続しているので、管板が熱膨張により伸びようとする場合の拘束は前記アール部の存在により緩和され、セルチューブと管板との接合部に掛かる曲げモーメント、特に側板に隣接する位置に配置されたセルチューブに掛かる曲げモーメントが低減する。しかしながら、ガス室部材の肉厚をあまり薄くすると特に垂直荷重による管板の撓みが大きくなるので、その場合は、この垂荷重による撓みの発生を防止するために、第1ガス室、つまり上部に配置されたガス室を支柱で支えるように構成するとよい。   According to the first aspect of the present invention, since the tube plates of the first and second gas chambers are connected with smooth curved surfaces without forming corners on the side plates, the tube plates are likely to be extended by thermal expansion. In this case, the restraint is eased by the presence of the rounded portion, and the bending moment applied to the joint portion between the cell tube and the tube sheet, particularly, the bending moment applied to the cell tube disposed at a position adjacent to the side plate is reduced. However, if the thickness of the gas chamber member is made too thin, the deflection of the tube sheet due to the vertical load increases particularly. In this case, in order to prevent the occurrence of the deflection due to the drooping load, It is good to comprise so that the arrange | positioned gas chamber may be supported by a support | pillar.

このように、第1、第2ガス室の管板と側板を角部を形成することなく滑らかな曲面で接続することにより、図8に示す従来例のように管板の周辺部を固定支持する額縁部材を設ける必要がなくなるので、第1及び第2ガス室の重量軽減を図ることができる。   In this way, by connecting the tube plates and side plates of the first and second gas chambers with smooth curved surfaces without forming corners, the periphery of the tube plate is fixedly supported as in the conventional example shown in FIG. Since there is no need to provide a frame member to be performed, the weight of the first and second gas chambers can be reduced.

また、前記第1ガス室及び第2ガス室の管板は前記ガス室の他の部位よりも熱膨張率が小さい材料で形成されている。セルチューブの表面に設けられた燃料電池セルは900〜1000℃の高温に保持され、管板のセルチューブとの接続部は600℃前後の高温になる。後述するようにセルチューブと管板との接合を管板に設けたフジツボ(富士壷)状の穴における締り嵌めで行なった場合、セラミック材料で作製されるセルチューブと管板の熱膨張差により前記締り嵌め部のシメシロが減少するのをできるだけ避けるとともに管板の熱変形を小さくして前記接合部に掛かる荷重を軽減するために、管板は熱膨張率の小さい材料とするのが望ましい。しかしながら、そのような材料は一般に高価であり、第1、第2ガス室全体をそのような材料で製作するとコストアップを招く。第1、第2ガス室の管板のみを熱膨張率の小さい材料とすることにより、コストアップを抑制することができる。該管板は溶接その他の方法で側板に接合される。 The first gas chamber and the second gas chamber of the tube plate is formed of a material the thermal expansion coefficient is smaller than the other portions of the gas chamber. The fuel cell provided on the surface of the cell tube is kept at a high temperature of 900 to 1000 ° C., and the connection portion of the tube plate with the cell tube becomes a high temperature around 600 ° C. As will be described later, when the cell tube and the tube plate are joined by an interference fitting in a barnacle (Fujitsumi) -shaped hole provided in the tube plate, due to the difference in thermal expansion between the cell tube and the tube plate made of a ceramic material. In order to avoid a reduction in the interference of the interference fitting portion as much as possible and to reduce the thermal deformation of the tube plate and reduce the load applied to the joint portion, the tube plate is preferably made of a material having a low coefficient of thermal expansion. However, such a material is generally expensive, and if the entire first and second gas chambers are made of such a material, the cost increases. By using only the tube plates of the first and second gas chambers as materials having a low coefficient of thermal expansion, it is possible to suppress an increase in cost. The tube sheet is joined to the side plate by welding or other methods.

前記第1、第2ガス室を図8に示した従来例のように、管板の周辺部をガス室(ヘッダー)の側板に固定支持する構成の場合、管板の熱膨張による伸び、実際には第1、第2ガス室における管板とその他の部位との温度差による熱膨張差により管板が相対的に伸びることになるが、この伸びが前記固定支持部で拘束されるので、管板は上下方向に撓み、前記接合部に掛かる荷重が生じる。本発明においては、複数の燃料電池セルチューブの両端部がそれぞれ前記第1及び第2ガス室の管板を貫通して該貫通部位で管板に気密に接合されるとともに、前記第1及び第2ガス室の管板の周縁はそれぞれのガス室の側板に固定支持された固定支持端から該固定支持端に隣接する位置で管板に接合される燃料電池セルチューブまでの間に変形許容部を形成するのもよい。変形許容部としては、前記第1及び第2ガス室の管板は前記固定支持端から該固定支持端に隣接する位置で管板に接合される燃料電池セルチューブまでの間を波状に形成して変形に対する柔軟性を持たせることにより、管板の熱膨張に対する拘束を弱めて前記接合部における荷重を軽減するのも有効な変形許容部の構成である。   In the case where the first and second gas chambers are configured to fix and support the peripheral portion of the tube plate on the side plate of the gas chamber (header) as in the conventional example shown in FIG. In the first and second gas chambers, the tube plate will be relatively stretched due to the difference in thermal expansion due to the temperature difference between the tube plate and other parts, but this elongation is restrained by the fixed support part. The tube sheet bends in the vertical direction, and a load is applied to the joint. In the present invention, both end portions of the plurality of fuel battery cell tubes pass through the tube plates of the first and second gas chambers, respectively, and are hermetically joined to the tube plate at the penetrating portions. 2 The peripheral edge of the tube plate of the gas chamber is a deformation allowing portion between a fixed support end fixedly supported by the side plate of each gas chamber and a fuel cell tube joined to the tube plate at a position adjacent to the fixed support end. It is also possible to form. As the deformation allowing portion, the tube plates of the first and second gas chambers are formed in a wave shape from the fixed support end to a fuel cell tube joined to the tube plate at a position adjacent to the fixed support end. Thus, by providing flexibility against deformation, it is also an effective configuration of the deformation-permitting portion to weaken the constraint on the thermal expansion of the tube sheet and reduce the load at the joint.

また、図8に示した従来例から明らかなように、管板の周辺部はガス室(ヘッダー)の側壁を介して固定支持される。つまり、管板の熱膨張に対する拘束は前記側壁の剛性に依存する。従って、前記側壁を薄くすることによって管板の熱膨張に対する拘束を弱め、前記接合部における荷重を軽減することができる。具体的には、第1、第2のガス室における側壁の厚さを管板が対面する蓋体の肉厚よりも薄くするとよい。   Further, as is clear from the conventional example shown in FIG. 8, the peripheral portion of the tube sheet is fixedly supported through the side wall of the gas chamber (header). That is, the constraint on the thermal expansion of the tube sheet depends on the rigidity of the side wall. Therefore, by reducing the thickness of the side wall, the constraint on the thermal expansion of the tube sheet can be weakened, and the load at the joint can be reduced. Specifically, the thickness of the side walls in the first and second gas chambers may be made thinner than the thickness of the lid body facing the tube sheet.

次に、管板とセルチューブの接合については、セルチューブを管板のフジツボ(富士壷)状に形成された穴に嵌入して締り嵌めにより管板に接合するのがよい。このように、管板のフジツボ状に形成された穴にセルチューブを圧入して締り嵌めで接合すること自体は特許文献2における図に教示されている。本発明では、前記フジツボ(富士壷)状の穴はセルチューブの先端側に向かって窄む形状に形成してある。これによりセルチューブの嵌入が容易になる。即ち、フジツボ(富士壷)状の穴のアール面側からセルチューブ先端側を容易に圧入できる。   Next, regarding the joining of the tube plate and the cell tube, the cell tube is preferably fitted into a hole formed in the shape of a barnacle (Fujitsumi) of the tube plate and joined to the tube plate by an interference fit. Thus, it is taught in the drawing of Patent Document 2 that the cell tube is press-fitted into a hole formed in a barnacle shape of the tube plate and joined by an interference fit. In the present invention, the barnacle (Fuji 壷) -shaped hole is formed in a shape that narrows toward the distal end side of the cell tube. This facilitates the insertion of the cell tube. That is, the tip end side of the cell tube can be easily press-fitted from the rounded surface side of the barnacle (Fuji Aoi) -shaped hole.

セルチューブは多孔質のセラミック材からなり、セルチューブの管板に嵌入される部位の最外周表面には電気絶縁層が形成されるのであるが、その外周の真円度を保証することは必ずしも容易ではない。セルチューブには外周の真円度が保証されたリング部材を固着し、該リング部材の外周を管板のフジツボ状穴に嵌入して管板と接合することにより、接合部におけるガス漏洩をより完全に防止することができる。このことも前記特許文献2に教示されている。前記リング部材のセルチューブへの固着は適切な耐熱性と接着強度を有する無機系接着剤或はその他の手段で行なわれてガスシールされる。   The cell tube is made of a porous ceramic material, and an electrical insulating layer is formed on the outermost surface of the portion to be inserted into the tube plate of the cell tube, but it is not always guaranteed that the roundness of the outer periphery is guaranteed. It's not easy. A ring member with a guaranteed roundness of the outer periphery is fixed to the cell tube, and the outer periphery of the ring member is fitted into a barnacle-like hole in the tube plate and joined to the tube plate, thereby preventing gas leakage at the joint. It can be completely prevented. This is also taught in Patent Document 2. The ring member is fixed to the cell tube by an inorganic adhesive having appropriate heat resistance and adhesive strength or other means and gas-sealed.

前記セルチューブ先端部にリング部材を固着し、該リング部材を前記管板のフジツボ(富士壺)状に形成された穴に嵌入して溶接によりにより管板に接合してもよい。   A ring member may be fixed to the tip of the cell tube, and the ring member may be inserted into a hole formed in a barnacle shape (Fujitsumi) of the tube plate and joined to the tube plate by welding.

周面に燃料電池セルが形成された複数の燃料電池セルチューブと、前記複数の燃料電池セルチューブ内に燃料ガスを供給するための第1ガス室と、前記燃料電池セルで発電反応済みの燃料ガスを排出するための第2ガス室とが前記燃料電池セルに酸化剤ガスを供給する第3ガス室を介して隔離して配置してなる固体酸化物形燃料電池において、第1、第2ガス室や燃料セルチューブの重力及び各部温度差による熱変形により管板からセルチューブに掛かる荷重を軽減でき、セルチューブの破損やセルチューブと管板との接合部におけるガス漏洩の発生を防止できる。   A plurality of fuel battery cell tubes having fuel cells formed on the peripheral surface, a first gas chamber for supplying fuel gas into the plurality of fuel battery cell tubes, and a fuel that has undergone a power generation reaction in the fuel battery cells In a solid oxide fuel cell in which a second gas chamber for discharging gas is disposed separately from a third gas chamber for supplying an oxidant gas to the fuel cell, the first and second The load applied to the cell tube from the tube sheet by thermal deformation due to the gravity of the gas chamber and the fuel cell tube and the temperature difference of each part can be reduced, and the cell tube can be prevented from being broken and the gas leak occurring at the joint between the cell tube and the tube sheet. .

以下、図面を参照して本発明の好適な実施例を例示的に説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特に特定的な記載がない限りはこの発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments of the invention will be described with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は本発明の第1実施例に係る固体酸化物形燃料電池のモジュールの概略構成を示す図である。同図において、1は燃料電池セルチューブ、2は上部ヘッダー、2’は下部ヘッダーである。下部ヘッダー2’は支持台8に支持されている。このような構成の燃料電池の作用については、図8で説明した従来の燃料電池のモジュールと同様であるので、詳細説明は省略するが、上部部ヘッダー2を第1ガス室、下部ヘッダー2’を第2ガス室とすると、燃料ガスが第1ヘッダー2から燃料電池セルチューブ内を通って下部ヘッダー2’に流れる。一方、酸化剤ガスとしての空気が上部ヘッダー2と下部ヘッダー2’間の空間である第3ガス室に流される。先に図8について説明したように、未反応の燃料ガスを含んだ排気ガスは下部ヘッダー2’から排出されて図示しない外部装置に送られ、酸素が消費されて未消費の残存酸素を含んだガスも前記第3ガス室から排出されて図示しない外部装置に送られる。これらのガスは外部装置で再燃焼されて燃料や空気の予熱や燃料の改質などに利用された後に大気中に排出される。   FIG. 1 is a diagram showing a schematic configuration of a module of a solid oxide fuel cell according to a first embodiment of the present invention. In the figure, 1 is a fuel cell tube, 2 is an upper header, and 2 'is a lower header. The lower header 2 ′ is supported by the support base 8. Since the operation of the fuel cell having such a configuration is the same as that of the conventional fuel cell module described with reference to FIG. 8, detailed description thereof is omitted, but the upper header 2 is replaced with the first gas chamber and the lower header 2 ′. Is the second gas chamber, the fuel gas flows from the first header 2 through the fuel cell tube to the lower header 2 ′. On the other hand, air as an oxidant gas flows into the third gas chamber which is a space between the upper header 2 and the lower header 2 '. As described above with reference to FIG. 8, the exhaust gas containing unreacted fuel gas is discharged from the lower header 2 ′ and sent to an external device (not shown), and oxygen is consumed to contain unconsumed residual oxygen. The gas is also discharged from the third gas chamber and sent to an external device (not shown). These gases are recombusted by an external device, used for preheating fuel or air, reforming fuel, and the like, and then discharged into the atmosphere.

前記上部ヘッダー2は側板11と該側板に滑らかな曲面で接続した管板5と蓋板12とからなり、これらは略均等な厚さに形成されている。そして、前記ヘッダー2の管板5に燃料電池セルチューブ1が接合される。該管板5は前記側板11とは異なる材質で側板11に接合されたものでもよい。この場合も管板5は側板11にアール部を介して角部を形成しないように滑らか曲面で接続される。下部ヘッダー2’についても同様である。下部ヘッダー2’は支持台8に支持される。   The upper header 2 includes a side plate 11, a tube plate 5 connected to the side plate with a smooth curved surface, and a lid plate 12, which are formed to have a substantially uniform thickness. The fuel cell tube 1 is joined to the tube plate 5 of the header 2. The tube plate 5 may be joined to the side plate 11 with a material different from that of the side plate 11. Also in this case, the tube plate 5 is connected to the side plate 11 through a rounded portion with a smooth curved surface so as not to form a corner portion. The same applies to the lower header 2 '. The lower header 2 ′ is supported by the support base 8.

このような構成では、上部ヘッダー2はセルチューブ1に支持されることになり、セルチューブ1と管板5の接合部にはヘッダー2の重量による垂直荷重が掛かる。さらに該接合部には管板5の熱変形が拘束されることによる荷重が掛かるが、管板5はアール部を介してヘッダー2の側板11に接続しているので、管板5が熱膨張する際の変形に対する抵抗は小さくなる。即ち管板5の熱膨張による変形、実際には管板5の温度と他の部分の温度との温度差による変形差に対する拘束は弱くなり、その分管板とセルチューブの接合部に掛かる荷重は小さくなる。   In such a configuration, the upper header 2 is supported by the cell tube 1, and a vertical load due to the weight of the header 2 is applied to the joint portion between the cell tube 1 and the tube sheet 5. Furthermore, although a load is applied to the joint portion due to restraint of thermal deformation of the tube plate 5, since the tube plate 5 is connected to the side plate 11 of the header 2 via the rounded portion, the tube plate 5 is thermally expanded. The resistance to deformation when doing so is small. That is, the deformation due to the thermal expansion of the tube plate 5, in practice, the constraint on the deformation difference due to the temperature difference between the temperature of the tube plate 5 and the temperature of the other part is weakened, and the load applied to the junction between the tube plate and the cell tube is reduced accordingly. Get smaller.

図2に、このようなヘッダーの側板と該側板に隣接して管板に接合されたセルチューブ間の撓みが示されており、(A)は通常掛かる垂直荷重による撓みを、(B)は通常生じる温度差による撓み、即ちヘッダーの管板とその他の部位の温度差による熱膨張差による管板の撓みの計算結果である。このようなヘッダーにおいては、上下方向の撓みについては温度差による撓みに比較して垂直荷重による撓みが大きいことが分かる。側板が管板と同じ厚さであり、管板の熱膨張に対する拘束が弱くいので、温度差により側板が外方に広がっており、側板が外方に広がらない場合較べて管板とセルチューブの接合部に生じる荷重が低減される。   FIG. 2 shows the bending between the side plate of such a header and the cell tube joined to the tube plate adjacent to the side plate. (A) shows the bending due to the normal vertical load, (B) shows the bending. It is the calculation result of the bending by the temperature difference which arises normally, ie, the bending of the tube sheet by the thermal expansion difference by the temperature difference of the tube sheet of a header, and another site | part. In such a header, it can be seen that the vertical deflection is greater in the vertical direction than in the temperature difference. Since the side plate is the same thickness as the tube plate, and the restraint against thermal expansion of the tube plate is weak, the side plate spreads outward due to the temperature difference, and compared to the case where the side plate does not spread outward, the tube plate and cell tube The load generated at the joint portion is reduced.

図3は本発明の第2の実施例を示し、図1と同じ構成には同じ符号を付してある。図1との相違は、上部ヘッダー2が支柱9と支持板10を介して支持台8に支持されていることである。このように上部ヘッダーを支持台に対して支持すれば、図2(A)のような垂直荷重による撓みは略なくすことができ、一方温度差による撓みは小さく押えることができ、管板とセルチューブの接合部における荷重を軽減することができる。燃料電池モジュールの構成上、垂直荷重による撓みが許容限度よりも大きくなるような場合には、このように上部ヘッダーも支持台に支持するように構成するとよい。   FIG. 3 shows a second embodiment of the present invention, and the same components as those in FIG. The difference from FIG. 1 is that the upper header 2 is supported by the support base 8 via the support column 9 and the support plate 10. If the upper header is supported with respect to the support base in this way, the deflection due to the vertical load as shown in FIG. 2A can be substantially eliminated, while the deflection due to the temperature difference can be suppressed to a small level. The load at the joint portion of the tube can be reduced. In the configuration of the fuel cell module, when the deflection due to the vertical load is larger than the allowable limit, the upper header is preferably supported on the support base in this way.

また、このようなヘッダーの構成では、図8に示した従来構成のように管板周辺部を固定支持する額縁部材が不要となるので、ヘッダーの構成が簡単になり、軽量化することができる。   In addition, in such a header configuration, a frame member for fixing and supporting the peripheral portion of the tube plate is not required as in the conventional configuration shown in FIG. 8, so that the configuration of the header is simplified and the weight can be reduced. .

図4は本発明の第3の実施例を示す。この実施例は、管板5の周辺部を固定支持する額縁部材3、4の固定支持端と該固定支持端に隣接した位置で管板5に接合されたセルチューブ1との間において管板を波状5aに形成したことと、上部ヘッダー2を支柱9と支持板10を介して支持台8に支持したこと以外は図8の従来例と同じであり、同じ構成には同じ符号が付してある。但し管板5の形状は図8のそれと異なるが、便宜上同一符号で示した。このように管板5に波状部5aを設けることにより、管板は熱変形に対して柔軟性を持つことになり、熱変形に起因する荷重を軽減することができる。しかしながら、垂直荷重に対する撓みは当然増大するので、支柱9と支持板10を設けて上部ヘッダーの額縁部を支持台8に支持するように構成してある。なお、同図において、下部は上部と対称に構成されており、同じ構成には符号に’を付して示し、説明は省略する。このような構成により、管板とセルチューブの接合部に掛かる垂直荷重を排除し、温度差による荷重は低減することができる。   FIG. 4 shows a third embodiment of the present invention. In this embodiment, the tube plate is interposed between the fixed support ends of the frame members 3 and 4 for fixing and supporting the periphery of the tube plate 5 and the cell tube 1 joined to the tube plate 5 at a position adjacent to the fixed support ends. 8 is the same as the prior art example of FIG. 8 except that it is formed in a wavy shape 5a and the upper header 2 is supported on the support base 8 via the support column 9 and the support plate 10. It is. However, the shape of the tube sheet 5 is different from that of FIG. Thus, by providing the corrugated part 5a in the tube sheet 5, the tube sheet has flexibility with respect to thermal deformation, and the load caused by the thermal deformation can be reduced. However, since the deflection with respect to the vertical load naturally increases, the column 9 and the support plate 10 are provided so that the frame portion of the upper header is supported by the support base 8. In the figure, the lower part is configured symmetrically with the upper part, and the same configuration is indicated by a symbol 'and the description is omitted. With such a configuration, the vertical load applied to the joint between the tube sheet and the cell tube can be eliminated, and the load due to the temperature difference can be reduced.

図5は本発明の第4の実施例を示す。この実施例は上部及び下部ヘッダー2、2’の側壁の厚さtを上板の厚さTよりも薄くしたこと以外は図8の従来例と同じであり、同じ構成には同じ符号が付してある。図5において、下部ヘッダー2’の側壁外面と支持台との間は同図では明瞭でないが隙間が設けられている。
図5からわかるように、管板5、5’の熱変形はそれぞれ額縁部材3、4及び3’、4’を介してヘッダー2、2’の側壁により拘束されているので、ヘッダー側壁の厚さtを薄くすることにより拘束を弱めることができ、管板の熱変形に起因するセルチューブへの荷重を低減することができる。具体的にはヘッダーの側壁は管板5、5’が対面する蓋体の厚さTよりも薄厚とする。
FIG. 5 shows a fourth embodiment of the present invention. This embodiment is the same as the conventional example of FIG. 8 except that the thickness t of the side walls of the upper and lower headers 2 and 2 ′ is made thinner than the thickness T of the upper plate. It is. In FIG. 5, a gap is provided between the outer surface of the side wall of the lower header 2 ′ and the support base, although it is not clear in the figure.
As can be seen from FIG. 5, the thermal deformation of the tube plates 5 and 5 ′ is restrained by the side walls of the headers 2 and 2 ′ via the frame members 3, 4 and 3 ′ and 4 ′, respectively. By reducing the thickness t, the restraint can be weakened, and the load on the cell tube due to the thermal deformation of the tube sheet can be reduced. Specifically, the side wall of the header is made thinner than the thickness T of the lid body facing the tube plates 5 and 5 '.

図6及び図7はセルチューブと管板との接合部を説明するための図で、このような接合方法は本発明と同一出願人の出願になる前記特許文献2に開示されているが簡単に説明する。図6において、管板5のセルチューブを圧入して締り嵌めする穴はセルチューブの先端側に向かって窄む形状フジツボ(富士壷)状に形成されていて、このフジツボ(富士壷)状穴の縁がセルチューブ1を締め付けることによりセルチューブ1が管板5に接合されている。   FIGS. 6 and 7 are diagrams for explaining the joint portion between the cell tube and the tube sheet. Such a joint method is disclosed in Patent Document 2 filed by the same applicant as the present invention, but is simple. Explained. In FIG. 6, the hole for press-fitting the cell tube of the tube sheet 5 is formed in a shape barnacle (Fuji 壷) shape that narrows toward the tip side of the cell tube. The cell tube 1 is joined to the tube plate 5 by fastening the cell tube 1 with the edge of the tube.

図7ではリング部材31が接着材32によりセルチューブ1に接着され、前記リング部材31が管板5のフジツボ(富士壷)状穴の縁での締り嵌めによりセルチューブ1に接合されている。接着剤32としては適切な耐熱性と接着強度を有する無機系接着剤などが用いられる。前記リング内径にはショットピーニングを施すと接着剤の接着力が向上する。図6、7に示すように、前記フジツボ(富士壷)状の穴はセルチューブの先端側に向かって窄む形状に形成することによりセルチューブの嵌入が容易になる。即ち、フジツボ(富士壷)状の穴のアール面側からセルチューブ先端側を容易に圧入できる。   In FIG. 7, the ring member 31 is bonded to the cell tube 1 by an adhesive 32, and the ring member 31 is bonded to the cell tube 1 by an interference fit at the edge of a barnacle (Fujitsumi) -shaped hole of the tube plate 5. As the adhesive 32, an inorganic adhesive having appropriate heat resistance and adhesive strength is used. When shot peening is applied to the inner diameter of the ring, the adhesive strength of the adhesive is improved. As shown in FIGS. 6 and 7, the insertion of the cell tube is facilitated by forming the barnacle (Fuji 壷) -shaped hole so as to be narrowed toward the distal end side of the cell tube. That is, the tip end side of the cell tube can be easily press-fitted from the rounded surface side of the barnacle (Fuji Aoi) -shaped hole.

円筒型固体酸化物形燃料電池のセルチューブを上部ヘッダーの及び下部ヘッダーに対する支持部材として利用する構成の燃料電池において、セルチューブと管板の接合部に掛かる垂直力による荷重及びヘッダーと管板の温度差による膨張の差異に起因する荷重を軽減することができ、セルチューブの折損やセルチューブと管板の接合部におけるガス漏洩の発生を防止することができるので、信頼性の高い円筒型固体酸化物形燃料電池を提供できる。   In a fuel cell having a structure in which a cell tube of a cylindrical solid oxide fuel cell is used as a support member for the upper header and the lower header, a load caused by a vertical force applied to a joint portion between the cell tube and the tube sheet, and the header and the tube sheet Highly reliable cylindrical solid because it can reduce the load caused by the difference in expansion due to the temperature difference and prevent the cell tube from breaking and the gas leakage at the joint between the cell tube and the tube sheet. An oxide fuel cell can be provided.

本発明の第1実施例に係る固体酸化物形燃料電池のモジュールの概略構成を示す図である。It is a figure which shows schematic structure of the module of the solid oxide fuel cell which concerns on 1st Example of this invention. 管板が側板に滑らかな曲面で接続する場合の垂直荷重及び温度差による前記連続部の変形を示す図であり、(A)は垂直荷重による変形、(B)は温度差による変形を示す。It is a figure which shows the deformation | transformation of the said continuous part by the vertical load and temperature difference in case a tube plate connects to a side plate with a smooth curved surface, (A) shows the deformation | transformation by a vertical load, (B) shows the deformation | transformation by a temperature difference. 本発明の第2実施例に係る固体酸化物形燃料電池のモジュールの概略構成を示す図である。It is a figure which shows schematic structure of the module of the solid oxide fuel cell which concerns on 2nd Example of this invention. 本発明の第3実施例に係る固体酸化物形燃料電池のモジュールの概略構成を示す図である。It is a figure which shows schematic structure of the module of the solid oxide fuel cell which concerns on 3rd Example of this invention. 本発明の第4実施例に係る固体酸化物形燃料電池のモジュールの概略構成を示す図である。It is a figure which shows schematic structure of the module of the solid oxide fuel cell which concerns on 4th Example of this invention. 固体酸化物形燃料電池におけるセルチューブと管板との結合形態の一実施例の局部断面図である。It is local sectional drawing of one Example of the coupling | bonding form of the cell tube and tube sheet in a solid oxide fuel cell. 固体酸化物形燃料電池におけるセルチューブと管板との結合形態の他の実施例の局部断面図である。It is local sectional drawing of the other Example of the coupling | bonding form of the cell tube and tube sheet in a solid oxide fuel cell. 本発明が適用される従来の円筒型固体酸化物形燃料電池のモジュールを断熱壁で覆った状態の概略構成を示す図である。It is a figure which shows schematic structure of the state which covered the module of the conventional cylindrical solid oxide fuel cell to which this invention is applied with the heat insulation wall. 本発明が適用される従来の円筒型固体酸化物形燃料電池のモジュールの斜視図である。1 is a perspective view of a conventional cylindrical solid oxide fuel cell module to which the present invention is applied. FIG.

符号の説明Explanation of symbols

1 セルチューブ
2 上部ヘッダー
2’ 下部ヘッダー
3、4 額縁部材
5 管板
8 支持台
9 支柱
10 支持板
11 側板
12 蓋板
21 断熱部材
31 リング部材
32 接着剤
41 断熱壁
42 カバー
DESCRIPTION OF SYMBOLS 1 Cell tube 2 Upper header 2 'Lower header 3, 4 Frame member 5 Tube plate 8 Support stand 9 Support column 10 Support plate 11 Side plate 12 Cover plate 21 Heat insulation member 31 Ring member 32 Adhesive 41 Heat insulation wall 42 Cover

Claims (4)

周面に燃料電池セルが形成された複数の燃料電池セルチューブと、
前記複数の燃料電池セルチューブ内に燃料ガスを供給するための第1ガス室と、前記燃料電池セルで発電反応済みの燃料ガスを排出するための第2ガス室とが前記燃料電池セルに酸化剤ガスを供給する第3ガス室を介して隔離して配置してなる固体酸化物形燃料電池において、
前記第1及び第2ガス室はこれらのガス室から前記第3ガス室を区画する管板と、該管板囲繞する側板とを含み、前記複数の燃料電池セルチューブの両端部がそれぞれ前記管板を貫通して該貫通部位で管板に気密に接合されるとともに、該管板前記側板間が、角部が形成されることなく滑らかな曲面をもって接続されてなり、
前記第1及び第2ガス室は、管板と、該管板を囲繞する側板と、これらに囲繞される空間を閉鎖する蓋板とからなるとともに、前記管板材料は前記蓋板若しくは側板よりも熱膨張率が小さい材料で形成されていることを特徴とする固体酸化物形燃料電池。
A plurality of fuel battery cell tubes having fuel cells formed on the peripheral surface;
A first gas chamber for supplying fuel gas into the plurality of fuel cell tubes and a second gas chamber for discharging fuel gas that has been subjected to a power generation reaction in the fuel cells are oxidized to the fuel cells. In the solid oxide fuel cell, which is disposed separately from the third gas chamber for supplying the agent gas,
The first and second gas chambers include a tube plate that divides the third gas chamber from these gas chambers, and a side plate surrounding the tube plate, and both ends of the plurality of fuel cell tubes are respectively connected to the tube. together are joined through the plate sealingly tubesheet at the through portion, between the tube plate the side plates, Ri Na is connected with a smooth curved surface without corners are formed,
The first and second gas chambers include a tube plate, a side plate surrounding the tube plate, and a lid plate for closing a space surrounded by the tube plate, and the tube plate material is formed from the lid plate or the side plate. solid oxide fuel cell according to claim Rukoto also be formed with material having a low coefficient of thermal expansion.
前記燃料電池セルチューブが貫通する管板の穴はフジツボ(富士壺)状に形成され、前記燃料電池セルチューブは該穴に嵌入されて締り嵌めにより管板に気密に接合されていることを特徴とする請求項に記載の固体酸化物形燃料電池。 A hole in the tube plate through which the fuel cell tube penetrates is formed in a barnacle (Fujitsumi) shape, and the fuel cell tube is fitted into the hole and is airtightly joined to the tube plate by an interference fit. The solid oxide fuel cell according to claim 1 . 前記燃料電池セルチューブの両端部にそれぞれリング部材が固着され、該リング部材が前記管板のフジツボ(富士壺)状に形成された穴に嵌入されて締り嵌めによりにより管板に気密に接合されていることを特徴とする請求項に記載の固体酸化物形燃料電池。 Ring members are respectively fixed to both ends of the fuel cell tube, and the ring members are inserted into holes formed in a barnacle (Fujitsumi) shape of the tube plate and are airtightly joined to the tube plate by an interference fit. The solid oxide fuel cell according to claim 1 , wherein 前記燃料電池セルチューブの両端部にそれぞれリング部材が固着され、該リング部材が前記管板のフジツボ(富士壺)状に形成された穴に嵌入されて溶接によりにより管板に気密に接合されていることを特徴とする請求項に記載の固体酸化物形燃料電池。 Ring members are respectively fixed to both ends of the fuel cell tube, and the ring members are fitted into holes formed in a barnacle (Fujitsumi) shape of the tube plate and are hermetically joined to the tube plate by welding. The solid oxide fuel cell according to claim 1 , wherein:
JP2005324259A 2005-11-09 2005-11-09 Solid oxide fuel cell Active JP4848178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005324259A JP4848178B2 (en) 2005-11-09 2005-11-09 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005324259A JP4848178B2 (en) 2005-11-09 2005-11-09 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2007134096A JP2007134096A (en) 2007-05-31
JP4848178B2 true JP4848178B2 (en) 2011-12-28

Family

ID=38155594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324259A Active JP4848178B2 (en) 2005-11-09 2005-11-09 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP4848178B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5288249B2 (en) * 2008-08-22 2013-09-11 Toto株式会社 Fuel cell module
DE102010001800A1 (en) * 2010-02-11 2011-08-11 Robert Bosch GmbH, 70469 The fuel cell system
JP2015165454A (en) * 2014-02-28 2015-09-17 三菱日立パワーシステムズ株式会社 Fuel cell module and manufacturing method of fuel cell module
JP6909691B2 (en) * 2016-12-02 2021-07-28 森村Sofcテクノロジー株式会社 Fuel cell module
JP6452766B1 (en) * 2017-07-07 2019-01-16 日本碍子株式会社 Manifold and cell stack device
JP6588505B2 (en) * 2017-07-11 2019-10-09 日本碍子株式会社 Manifold and cell stack equipment
JP6435035B1 (en) * 2017-10-31 2018-12-05 日本碍子株式会社 Manifold and cell stack equipment
WO2020031467A1 (en) * 2018-08-06 2020-02-13 株式会社村田製作所 Battery holder, battery pack, electronic device and electric vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3487606B2 (en) * 1993-01-08 2004-01-19 株式会社フジクラ Solid oxide fuel cell power reactor
JP4616496B2 (en) * 2001-03-30 2011-01-19 三菱重工業株式会社 Fuel cell system
JP4467831B2 (en) * 2001-04-27 2010-05-26 三菱重工業株式会社 Fuel cell
JP2003086206A (en) * 2001-09-12 2003-03-20 Mitsubishi Heavy Ind Ltd Fuel cell system
JP2003308854A (en) * 2002-04-18 2003-10-31 Nissan Motor Co Ltd Solid oxide fuel cell and its manufacturing method
JP3727899B2 (en) * 2002-04-22 2005-12-21 三菱重工業株式会社 Fuel cell module
JP3727902B2 (en) * 2002-04-30 2005-12-21 三菱重工業株式会社 Fuel cell module
JP3727906B2 (en) * 2002-06-17 2005-12-21 三菱重工業株式会社 Fuel cell module
JP3649708B2 (en) * 2002-07-01 2005-05-18 三菱重工業株式会社 Fuel cell module
JP4052456B2 (en) * 2003-01-14 2008-02-27 三菱重工業株式会社 FUEL BATTERY CELL, FUEL CELL HAVING THE SAME, AND METHOD FOR PRODUCING FUEL BATTERY CELL
JP4043457B2 (en) * 2004-07-06 2008-02-06 三菱重工業株式会社 Bonding structure of ceramic tube and metal, and fuel cell module

Also Published As

Publication number Publication date
JP2007134096A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP4848178B2 (en) Solid oxide fuel cell
US8921001B2 (en) Hermetic high temperature dielectric conduit assemblies
US10164286B2 (en) Separator-fitted single fuel cell inducing joint portion with protruding portion and sealing portion, and fuel cell stack
CN107431231B (en) Unit stacking apparatus, module, and module housing apparatus
JP4885166B2 (en) Insulated container and assembled battery including the same
WO2017135451A1 (en) Fuel cell
JP6377177B2 (en) Airtight high temperature dielectric conduit assembly
JP4616496B2 (en) Fuel cell system
JP2008021636A (en) Fuel cell
JP6847401B2 (en) Cell unit
JP2004119300A (en) Cylindrical solid oxide fuel cell (sofc) generator
JPH10275626A (en) Layered fuel battery
JP4848177B2 (en) Solid oxide fuel cell
JP6953146B2 (en) How to assemble a fuel cell module and a combined power generation system equipped with a fuel cell module and submodules
JP5336159B2 (en) Flat plate type solid oxide fuel cell module and operation method thereof
JP2006049073A (en) Solid oxide fuel cell
JP2004507059A (en) Air supply tube support system for solid oxygen fuel cell power plant
JP6780044B2 (en) How to assemble fuel cell submodule, fuel cell module and combined cycle system and submodule
JP3727906B2 (en) Fuel cell module
JP5318192B2 (en) FUEL CELL STACK AND METHOD FOR MANUFACTURING FUEL CELL STACK
JP5736915B2 (en) Fuel cell
US20150171458A1 (en) Fuel cell module, fuel cell, manufacturing method of fuel cell module, and method for supplying oxidant to fuel cell module
JP2006004759A (en) Connection structure of communication tube of fuel cell
US20120183884A1 (en) Separator and sofc having the same
JP2018206543A (en) Cell stack device, fuel battery module and fuel battery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4848178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250