JP5736915B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP5736915B2
JP5736915B2 JP2011082061A JP2011082061A JP5736915B2 JP 5736915 B2 JP5736915 B2 JP 5736915B2 JP 2011082061 A JP2011082061 A JP 2011082061A JP 2011082061 A JP2011082061 A JP 2011082061A JP 5736915 B2 JP5736915 B2 JP 5736915B2
Authority
JP
Japan
Prior art keywords
fuel cell
electrode
electrolyte
fuel
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011082061A
Other languages
Japanese (ja)
Other versions
JP2012216472A (en
Inventor
誉之 岡野
誉之 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2011082061A priority Critical patent/JP5736915B2/en
Publication of JP2012216472A publication Critical patent/JP2012216472A/en
Application granted granted Critical
Publication of JP5736915B2 publication Critical patent/JP5736915B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池に関し、特に、燃料電池セルを支持する支持体を備える燃料電池に関する。   The present invention relates to a fuel cell, and more particularly, to a fuel cell including a support body that supports a fuel cell.

燃料電池は、典型的には、固体ポリマーイオン交換膜を用いた固体高分子電解質膜、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質膜等を、燃料極(アノード)と酸化剤極(カソード)とで両側から挟み込んだものを1つのセル構成としている。そして、燃料極に燃料ガス(例えば水素ガス)を供給する燃料ガス流路と、酸化剤極に酸化剤ガス(例えば酸素や空気)を供給する酸化剤ガス流路とが設けられ、これらの流路を介して燃料ガス、酸化剤ガスがそれぞれ燃料極、酸化剤極に供給されることにより発電が行われる。   A fuel cell typically includes a solid polymer electrolyte membrane using a solid polymer ion exchange membrane, a solid oxide electrolyte membrane using yttria-stabilized zirconia (YSZ), a fuel electrode (anode) and an oxidizer electrode. The one sandwiched from both sides by the (cathode) has a single cell configuration. A fuel gas flow path for supplying fuel gas (for example, hydrogen gas) to the fuel electrode and an oxidant gas flow path for supplying oxidant gas (for example, oxygen or air) to the oxidant electrode are provided. Power generation is performed by supplying fuel gas and oxidant gas to the fuel electrode and oxidant electrode through the passage.

この燃料電池は、水素と酸素から水を生成した際に電力を取り出すものであり、原理的に取り出せる電力エネルギーの効率が高いため、省エネルギーになるだけでなく、発電時の排出物が水のみであるため、環境に優れた発電方式であり、地球規模でのエネルギーや環境問題解決の切り札として期待されている。   This fuel cell is designed to extract electric power when water is generated from hydrogen and oxygen. In principle, the efficiency of the electric power that can be extracted is high, which not only saves energy, but also generates only water when generating electricity. Therefore, it is an environmentally friendly power generation method, and is expected as a trump card for solving global energy and environmental problems.

特開2005−158531号公報(要約、段落0023)Japanese Patent Laying-Open No. 2005-158531 (Summary, paragraph 0023) 特開2007−305539号公報(要約、段落0022及び0023)JP 2007-305539 (Abstract, paragraphs 0022 and 0023)

ここで燃料電池において、燃料ガスが本来想定されているガスの供給流路から漏れだしてしまうと、ある一定量の燃料を投入した際に、漏れた燃料は発電に寄与せず、漏れた燃料が持つ化学エネルギーは無駄になってしまうため、発電効率の低下を招くことになる。さらに、ガスの漏れる場所が燃料極や酸化剤極の近辺に存在する場合、ガス漏れによって燃料極側の燃料ガスの濃度や酸化剤極側の酸化剤ガスの濃度が低下する。この場合、ネルンストの式に従って、電池の起電力が低下するため、さらに発電効率が低下することになる。   Here, in the fuel cell, if the fuel gas leaks from the gas supply channel that is originally assumed, the leaked fuel does not contribute to power generation when a certain amount of fuel is introduced, and the leaked fuel The chemical energy that is possessed is wasted, leading to a reduction in power generation efficiency. Furthermore, when the location where gas leaks exists in the vicinity of the fuel electrode or the oxidant electrode, the concentration of the fuel gas on the fuel electrode side or the concentration of the oxidant gas on the oxidant electrode side decreases due to the gas leak. In this case, since the electromotive force of the battery is reduced according to the Nernst equation, the power generation efficiency is further reduced.

そこで、ガス漏れを防止する方法として、例えば特許文献1で提案されている燃料電池スタックでは、ガス流路を有する複数の燃料電池セルを、厚みが2mm以上のセル支持板に形成された複数のセル挿入孔にそれぞれ挿入接合して立設し、該燃料電池セルが立設したセル支持板をマニホールドに設けている。当該燃料電池スタックでは、燃料電池セルの外周部が酸素側電極(酸素剤電極)であり、この酸素側電極とマニホールドとの間を接合材(封止部)で接合している。   Therefore, as a method for preventing gas leakage, for example, in the fuel cell stack proposed in Patent Document 1, a plurality of fuel cells having gas flow paths are formed on a plurality of cell support plates having a thickness of 2 mm or more. Each of the cell insertion holes is inserted and joined to stand upright, and a cell support plate on which the fuel cell is set up is provided on the manifold. In the fuel cell stack, the outer peripheral portion of the fuel cell is an oxygen side electrode (oxygen agent electrode), and the oxygen side electrode and the manifold are joined by a joining material (sealing portion).

しかしながら、酸素側電極は、その内部に酸化剤ガスを取り込む必要があるため、多孔質になっている。そのため、酸素側電極とマニホールドとの間を接合材で接合したとしても、接合部分の酸素側電極の内部に空隙が残りやすく、その空隙を通して燃料ガスがマニホールドから漏れだしたり、酸化剤ガスがマニホールド内に侵入してしまう可能性がある。   However, the oxygen side electrode is porous because it is necessary to take in the oxidant gas therein. For this reason, even if the oxygen side electrode and the manifold are joined with a joining material, a gap is likely to remain inside the oxygen side electrode at the joined portion, and fuel gas leaks from the manifold through the gap, or oxidant gas flows into the manifold There is a possibility of intrusion.

また、ガス漏れを防止する他の方法として、特許文献2で提案されている燃料電池スタックでは、燃料電池セルの一端部に、該燃料電池セルの一方の面から他方の面まで貫通した貫通孔を有し、前記貫通孔が一方向に並ぶように複数の前記燃料電池セルを束ね、前記貫通孔同士が連通し、前記貫通孔を有する一端部がシール部材にて一体化して被覆封止されている。当該燃料電池スタックでは、燃料電池セルの外周部が空気極層(酸化剤電極)であり、この空気極層が燃料電池セルの一端部においてシール部材にて封止される。   As another method for preventing gas leakage, in the fuel cell stack proposed in Patent Document 2, a through-hole penetrating from one surface of the fuel cell to the other surface is formed in one end of the fuel cell. The fuel cells are bundled so that the through holes are aligned in one direction, the through holes communicate with each other, and one end portion having the through holes is integrated and sealed with a seal member. ing. In the fuel cell stack, the outer periphery of the fuel cell is an air electrode layer (oxidant electrode), and this air electrode layer is sealed with a seal member at one end of the fuel cell.

しかしながら、空気極層は、その内部に酸化剤ガスを取り込む必要があるため、多孔質になっている。そのため、シール部材にて封止される部分であっても、空気極層の内部に空隙が残りやすく、その空隙を通して燃料ガスがシール部材内部の燃料ガス供給路から漏れだしたり、酸化剤ガスがシール部材内部の燃料ガス供給路に侵入してしまう可能性がある。   However, the air electrode layer is porous because it needs to take in the oxidant gas therein. Therefore, even in the portion sealed by the seal member, a gap tends to remain inside the air electrode layer, and fuel gas leaks from the fuel gas supply path inside the seal member through the gap, or oxidant gas flows. There is a possibility of entering the fuel gas supply path inside the seal member.

本発明は、上記の状況に鑑み、ガス漏れを確実に防止することができる燃料電池を提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a fuel cell that can reliably prevent gas leakage.

上記目的を達成するために本発明に係る燃料電池は、燃料電池セルと、前記燃料電池セルを支持する支持部材とを備える燃料電池であって、前記燃料電池セルは、筒形状の電解質と、前記電解質の内側に形成される第1電極と、前記電解質の外側に形成される第2電極とを有し、前記燃料電池セルの少なくとも一方の軸方向端部において、前記第2電極の軸方向長さは前記電解質の軸方向長さよりも短く、前記電解質の軸方向に垂直な断面の外形形状よりも大きく、前記第2電極の軸方向に垂直な断面の外形形状よりも小さい孔が前記支持部材に形成されており、前記第2電極の軸方向長さが前記電解質の軸方向長さよりも短くなっている前記燃料電池セルの軸方向端部が前記孔に挿入されており、その挿入部分において前記電解質の軸方向端部と前記支持部材とが封止部材によって直接接合されており、前記支持部材及び前記封止部材はそれぞれガスを通さない材料である構成(第1の構成)とする。   To achieve the above object, a fuel cell according to the present invention is a fuel cell comprising a fuel cell and a support member that supports the fuel cell, the fuel cell comprising a cylindrical electrolyte, A first electrode formed on the inner side of the electrolyte and a second electrode formed on the outer side of the electrolyte, wherein the axial direction of the second electrode is at least one axial end of the fuel cell. The hole is shorter than the axial length of the electrolyte, larger than the outer shape of the cross section perpendicular to the axial direction of the electrolyte, and smaller than the outer shape of the cross section perpendicular to the axial direction of the second electrode. An axial end portion of the fuel cell, which is formed in the member and has an axial length of the second electrode shorter than an axial length of the electrolyte, is inserted into the hole, and the insertion portion In the axial direction of the electrolyte And the supporting member parts are joined directly by the sealing member, the support member and the sealing member is configured as a material impervious to gas, respectively (first configuration).

このような構成によると、電解質の軸方向端部とガスを通さない材料である支持部材とがガスを通さない材料である封止部材によって直接接合されることになり、さらに、電解質はガスを通さない緻密な材料であるため、電解質の軸方向端部と支持部材との接合部分において、確実にガス漏れを防止することができる。   According to such a configuration, the axial end portion of the electrolyte and the support member, which is a gas-impermeable material, are directly joined by the sealing member, which is a gas-impermeable material. Since it is a dense material that does not pass, gas leakage can be reliably prevented at the joint between the axial end of the electrolyte and the support member.

また、このような構成によると、燃料電池セルの少なくとも一方の軸方向端部において、第2電極の軸方向長さは電解質の軸方向長さよりも短く、電解質の軸方向に垂直な断面の外形形状よりも大きく、第2電極の軸方向に垂直な断面の外形形状よりも小さい孔が支持部材に形成されており、第2電極の軸方向長さが電解質の軸方向長さよりも短くなっている燃料電池セルの軸方向端部が孔に挿入されることになるため、挿入した燃料電池セルは第2電極の軸方向端面の部分で止まる。従って、燃料電池セルと支持部材との位置合わせが簡易に行えるという利点もある。   Further, according to such a configuration, at least one axial end of the fuel cell, the axial length of the second electrode is shorter than the axial length of the electrolyte, and the outer shape of the cross section perpendicular to the axial direction of the electrolyte. A hole larger than the shape and smaller than the outer shape of the cross section perpendicular to the axial direction of the second electrode is formed in the support member, and the axial length of the second electrode is shorter than the axial length of the electrolyte. Since the axial end of the fuel cell is inserted into the hole, the inserted fuel cell stops at the axial end surface of the second electrode. Therefore, there is an advantage that the alignment of the fuel cell and the support member can be easily performed.

また、上記第1の構成の燃料電池において、前記支持部材は内部空間を有しており、前記内部空間に前記燃料電池セルが収容される構成(第2の構成)にしてもよい。   In the fuel cell having the first configuration, the support member may have an internal space, and the fuel cell may be accommodated in the internal space (second configuration).

また、上記第2の構成の燃料電池において、前記支持部材の内壁内側かつ前記燃料電池セルの外周面外側の領域に封入される燃料発生部材を備える構成(第3の構成)にしてもよい。   Further, the fuel cell having the second configuration may be configured to include a fuel generation member (third configuration) sealed in a region inside the inner wall of the support member and outside the outer peripheral surface of the fuel cell.

また、上記第3の構成の燃料電池において、前記電解質は固体酸化物電解質であり、前記第1電極は酸化剤ガスが供給される酸化剤極であり、前記第2電極は燃料ガスが供給される燃料極である構成(第4の構成)にすることが好ましい。   In the fuel cell having the third configuration, the electrolyte is a solid oxide electrolyte, the first electrode is an oxidant electrode to which an oxidant gas is supplied, and the second electrode is supplied with a fuel gas. It is preferable that the fuel electrode has a configuration (fourth configuration).

このような構成によると、発電時に燃料極である第2の電極側に発生した水を用いた化学反応によって燃料発生部材から水素を発生させることができる。   According to such a configuration, hydrogen can be generated from the fuel generating member by a chemical reaction using water generated on the second electrode side that is the fuel electrode during power generation.

また、上記第1の構成の燃料電池において、前記支持部材はマニホールドである構成(第5の構成)にしてもよい。   In the fuel cell having the first configuration, the support member may be a manifold (fifth configuration).

また、上記第5の構成の燃料電池において、前記第1電極は燃料ガスが供給される燃料極であり、前記第2電極は酸化剤ガスが供給される酸化剤極である構成にすることが好ましい。   In the fuel cell having the fifth configuration, the first electrode may be a fuel electrode to which fuel gas is supplied, and the second electrode may be an oxidant electrode to which oxidant gas is supplied. preferable.

このような構成によると、マニホールドを経由して燃料極に燃料ガスを供給することができるので、燃料ガスの圧力や流量の調整が容易になる。   According to such a configuration, since the fuel gas can be supplied to the fuel electrode via the manifold, it is easy to adjust the pressure and flow rate of the fuel gas.

本発明に係る燃料電池によると、燃料電池セルと支持部材との接合部分において、確実にガス漏れを防止することができる。   According to the fuel cell of the present invention, gas leakage can be reliably prevented at the joint portion between the fuel cell and the support member.

本発明の第1実施形態に係る燃料電池が備える燃料電池セルの斜視図である。1 is a perspective view of a fuel cell provided in a fuel cell according to a first embodiment of the present invention. 本発明の第1実施形態に係る燃料電池の斜視図である。1 is a perspective view of a fuel cell according to a first embodiment of the present invention. 本発明の第1実施形態に係る燃料電池の図2Aに示す断面A−A’での断面図である。It is sectional drawing in the cross section A-A 'shown to FIG. 2A of the fuel cell which concerns on 1st Embodiment of this invention. 支持部材の一例である箱体の斜視図である。It is a perspective view of the box which is an example of a supporting member. 本発明の第1実施形態に係る燃料電池の第1工程完了時点での図2Aに示す断面A−A’での断面図である。FIG. 2B is a cross-sectional view taken along a section A-A ′ shown in FIG. 本発明の第1実施形態に係る燃料電池の第2工程完了時点での図2Aに示す断面A−A’での断面図である。It is sectional drawing in the cross section A-A 'shown to FIG. 2A at the time of the 2nd process completion of the fuel cell which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る燃料電池の第3工程完了時点での図2Aに示す断面A−A’での断面図である。It is sectional drawing in the cross section A-A 'shown to FIG. 2A at the time of the 3rd process completion of the fuel cell which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る燃料電池の第4工程完了時点での図2Aに示す断面A−A’での断面図である。It is sectional drawing in the cross section A-A 'shown to FIG. 2A at the time of the 4th process completion of the fuel cell which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る燃料電池の斜視図である。It is a perspective view of the fuel cell concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係る燃料電池の図8Aに示す断面A−A’での断面図である。It is sectional drawing in the cross section A-A 'shown to FIG. 8A of the fuel cell which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る燃料電池の斜視図である。It is a perspective view of the fuel cell which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る燃料電池の図9Aに示す断面A−A’での断面図である。It is sectional drawing in the cross section A-A 'shown to FIG. 9A of the fuel cell which concerns on 3rd Embodiment of this invention. マニホールドの一例を示す断面図である。It is sectional drawing which shows an example of a manifold. 本発明の第1実施形態に係る燃料電池の変形例を示す断面図である。It is sectional drawing which shows the modification of the fuel cell which concerns on 1st Embodiment of this invention.

本発明の実施形態について図面を参照して以下に説明する。なお、本発明は、後述する実施形態に限られない。また、図面中の各断面図では、外部接続口を示す点線以外は断面の形状のみを図示し、断面よりも奥側の形状は図示しない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not restricted to embodiment mentioned later. Moreover, in each sectional view in the drawings, only the shape of the cross section is illustrated except for the dotted line indicating the external connection port, and the shape on the back side of the cross section is not illustrated.

<第1実施形態>
本発明の第1実施形態に係る燃料電池の構造について図1、図2A、及び図2Bを参照して説明する。図1は本発明の第1実施形態に係る燃料電池が備える燃料電池セルの斜視図である。図2Aは本発明の第1実施形態に係る燃料電池の斜視図であり、図2Bは本発明の第1実施形態に係る燃料電池の図2Aに示す断面A−A’での断面図である。
<First Embodiment>
The structure of the fuel cell according to the first embodiment of the present invention will be described with reference to FIGS. 1, 2A, and 2B. FIG. 1 is a perspective view of a fuel cell provided in a fuel cell according to a first embodiment of the present invention. 2A is a perspective view of the fuel cell according to the first embodiment of the present invention, and FIG. 2B is a cross-sectional view of the fuel cell according to the first embodiment of the present invention taken along the section AA ′ shown in FIG. 2A. .

本発明の第1実施形態に係る燃料電池は、円筒状の第1電極1と、円筒状の電解質2と、円筒状の第2電極3と有する燃料電池セル4を備える。円筒状の電解質2の内側に円筒状の第1電極1が形成され、円筒状の電解質2の外側に円筒状の第2電極3が形成される。本実施形態において、第1電極1は酸化剤ガスが供給される酸化剤極であり、第2電極3は燃料ガスが供給される燃料極である。図1に示す通り、燃料電池セル4の両方の軸方向端部において、第2電極3の軸方向長さは電解質2の軸方向長さよりも短い。   The fuel cell according to the first embodiment of the present invention includes a fuel battery cell 4 having a cylindrical first electrode 1, a cylindrical electrolyte 2, and a cylindrical second electrode 3. A cylindrical first electrode 1 is formed inside the cylindrical electrolyte 2, and a cylindrical second electrode 3 is formed outside the cylindrical electrolyte 2. In the present embodiment, the first electrode 1 is an oxidant electrode supplied with oxidant gas, and the second electrode 3 is a fuel electrode supplied with fuel gas. As shown in FIG. 1, the axial length of the second electrode 3 is shorter than the axial length of the electrolyte 2 at both axial ends of the fuel cell 4.

また、本発明の第1実施形態に係る燃料電池は、支持部材5と、封止部材6とを備える。図2Bに示す通り、電解質2の軸方向に垂直な断面の外形形状よりも大きく、第2電極3の軸方向に垂直な断面の外形形状よりも小さい孔が支持部材5の対向する二面に形成されている。支持部材5の一方の面に形成されている孔は支持部材5の他方の面に形成されている孔に対向している。そして、図2Bに示す通り、燃料電池セル4の軸方向端部は支持部材5の孔に挿入され、電解質部2と支持部材5とが封止部材6にて接合されている。また、図2Bに示す通り、支持部材5は内部空間を有しており、その内部空間に燃料電池セル4が収容され、さらに、支持部材5の内壁内側かつ燃料電池セル4の外周面外側の領域には燃料発生部材7が封入されている。   The fuel cell according to the first embodiment of the present invention includes a support member 5 and a sealing member 6. As shown in FIG. 2B, holes that are larger than the outer shape of the cross section perpendicular to the axial direction of the electrolyte 2 and smaller than the outer shape of the cross section perpendicular to the axial direction of the second electrode 3 are formed on the two opposing surfaces of the support member 5. Is formed. The hole formed on one surface of the support member 5 faces the hole formed on the other surface of the support member 5. As shown in FIG. 2B, the axial end of the fuel cell 4 is inserted into the hole of the support member 5, and the electrolyte part 2 and the support member 5 are joined by the sealing member 6. Further, as shown in FIG. 2B, the support member 5 has an internal space in which the fuel cell 4 is accommodated, and further inside the inner wall of the support member 5 and outside the outer peripheral surface of the fuel cell 4. A fuel generating member 7 is enclosed in the region.

ここで燃料電池セル4の形成方法としては、例えば粘土状にした第1電極1の材料を押し出し成型によって円筒状に形成した後、その円筒状の第1電極1の材料の外側にスラリー状にした電解質2の材料、第2電極3の材料をディッピングや塗布によって形成してもよい。あるいは、円柱状の犠牲部材にスラリー状にした第1電極1の材料、電解質2の材料、第2電極3の材料を順次ディッピングや塗布してもよい。各電極、電解質形成後には必要に応じて焼成を行ってもよい。また、犠牲部材を用いる場合は、犠牲部材の材料を、例えば樹脂のように焼成によって分解除去可能な材料にすることが好ましい。また、燃料電池セル4の軸方向端部において、第2電極3の軸方向長さを電解質2の軸方向長さより短くする方法については、例えば電解質2の形成後、レジスト材料を所定の部分(電解質2の外周の軸方向端部)に形成した後に第2電極3を形成し、後にレジスト材料ごとレジスト材料上の第2電極3を除去してもよいし、インクジェット等による塗布で所望の部分(電解質2の外周の軸方向端部を除く部分)にのみ第2電極3を塗布してもよい。   Here, as a method for forming the fuel battery cell 4, for example, the material of the first electrode 1 made into a clay shape is formed into a cylindrical shape by extrusion molding, and then formed into a slurry on the outside of the material of the cylindrical first electrode 1 The material of the electrolyte 2 and the material of the second electrode 3 may be formed by dipping or coating. Alternatively, the material of the first electrode 1, the material of the electrolyte 2, and the material of the second electrode 3 may be sequentially dipped or applied to a cylindrical sacrificial member. After forming each electrode and electrolyte, firing may be performed as necessary. Moreover, when using a sacrificial member, it is preferable that the material of the sacrificial member be a material that can be decomposed and removed by baking, such as a resin. In addition, regarding a method of making the axial length of the second electrode 3 shorter than the axial length of the electrolyte 2 at the axial end portion of the fuel battery cell 4, for example, after forming the electrolyte 2, a resist material is applied to a predetermined portion ( The second electrode 3 may be formed after the electrode 2 is formed on the outer periphery of the electrolyte 2, and then the second electrode 3 on the resist material may be removed together with the resist material. You may apply | coat the 2nd electrode 3 only to (the part except the axial direction edge part of the outer periphery of the electrolyte 2).

また、円筒状の燃料電池セル4にすることで耐圧性が高まるため、燃料電池セル4の形状は円筒状が好ましいが、特に円筒状に限らず、角型などの筒形状でも構わない。また、第1電極1の内部にガスを十分に供給することができるのであれば、第1電極1の内側に柱状の多孔質補強部材を設けたり、第1電極1の形状を柱状に変更したりして、燃料電池セル4を柱形状にしても構わない。   In addition, since the pressure resistance is increased by using the cylindrical fuel cell 4, the shape of the fuel cell 4 is preferably a cylindrical shape, but is not particularly limited to a cylindrical shape, and may be a cylindrical shape such as a square shape. If a sufficient gas can be supplied into the first electrode 1, a columnar porous reinforcing member is provided inside the first electrode 1, or the shape of the first electrode 1 is changed to a columnar shape. Alternatively, the fuel battery cell 4 may be formed in a column shape.

電解質2の材料としては、例えば、安定化イットリアジルコニウム(YSZ)を用いた固体酸化物電解質を用いることができ、また例えば、ナフィオン(デュポン社の商標)、カチオン導電性ポリマー、アニオン導電性ポリマー等の固体高分子電解質を用いることができるが、これらに限定されることなく、水素イオンを通すものや酸素イオンを通すもの、また、水酸化物イオンを通すもの等、燃料電池の電解質としての特性を満たすものであればよい。なお、本実施形態においては、電解質2として、酸素イオン又は水酸化物イオンを通す電解質、例えばYSZを用いた固体酸化物電解質を用い、発電時に燃料極側に水を発生させるようにしている。この場合、発電時に燃料極である第2の電極3側に発生した水を用いた化学反応によって燃料発生部材7から水素を発生させることができる。   As the material of the electrolyte 2, for example, a solid oxide electrolyte using stabilized yttria zirconium (YSZ) can be used. The solid polymer electrolyte can be used, but is not limited to these, and the characteristics as fuel cell electrolytes such as those that pass hydrogen ions, those that pass oxygen ions, and those that pass hydroxide ions It is sufficient if it satisfies. In the present embodiment, an electrolyte that passes oxygen ions or hydroxide ions, for example, a solid oxide electrolyte using YSZ, is used as the electrolyte 2, and water is generated on the fuel electrode side during power generation. In this case, hydrogen can be generated from the fuel generating member 7 by a chemical reaction using water generated on the second electrode 3 side that is the fuel electrode during power generation.

続いて本発明の第1実施形態に係る燃料電池の作製方法例について図3〜図7を参照して説明する。図3は、支持部材の一例である箱体の斜視図である。図4は、本発明の第1実施形態に係る燃料電池の第1工程完了時点での図2Aに示す断面A−A’での断面図である。図5は、本発明の第1実施形態に係る燃料電池の第2工程完了時点での図2Aに示す断面A−A’での断面図である。図6は、本発明の第1実施形態に係る燃料電池の第3工程完了時点での図2Aに示す断面A−A’での断面図である。図7は、本発明の第1実施形態に係る燃料電池の第4工程完了時点での図2Aに示す断面A−A’での断面図である。   Next, an example of a method for manufacturing the fuel cell according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a perspective view of a box that is an example of a support member. FIG. 4 is a sectional view taken along a section A-A ′ shown in FIG. 2A when the first step of the fuel cell according to the first embodiment of the present invention is completed. FIG. 5 is a sectional view taken along a section A-A ′ shown in FIG. 2A when the second step of the fuel cell according to the first embodiment of the present invention is completed. 6 is a cross-sectional view taken along a section A-A ′ shown in FIG. 2A when the third step of the fuel cell according to the first embodiment of the present invention is completed. FIG. 7 is a sectional view taken along a section A-A ′ shown in FIG. 2A when the fourth step of the fuel cell according to the first embodiment of the present invention is completed.

まず、支持部材5として、図3に示すような開口部が設けられた箱本体51と、板状に形成されかつ箱本体51に取り付けられるとともに箱本体51の開口部を塞ぐ蓋体52とを有する箱体を用意する。ここで電解質2の軸方向に垂直な断面の外形形状よりも大きく、第2電極3の軸方向に垂直な断面の外形形状よりも小さい孔53が、蓋体52と、蓋体52が箱本体51に取り付けられた状態で蓋体52と対向する箱本体51の一面(以下、対向面という)とに形成されている。蓋体52が箱本体51に取り付けられた状態において、蓋体52に形成されている孔53は対向面に形成されている孔53に対向している。   First, as the support member 5, a box body 51 provided with an opening as shown in FIG. 3 and a lid body 52 that is formed in a plate shape and attached to the box body 51 and closes the opening of the box body 51. Prepare a box with. Here, a hole 53 larger than the outer shape of the cross section perpendicular to the axial direction of the electrolyte 2 and smaller than the outer shape of the cross section perpendicular to the axial direction of the second electrode 3 is formed by the lid body 52 and the lid body 52 is the box body. In the state attached to 51, it forms in one surface (henceforth an opposing surface) of the box main body 51 which opposes the cover body 52. FIG. In a state where the lid body 52 is attached to the box body 51, the hole 53 formed in the lid body 52 faces the hole 53 formed in the facing surface.

次に、第1工程において、箱本体51の孔53に対して、図4に示す通り燃料電池セル4の一方の軸方向端部を挿入する。このとき、箱本体51の孔53は電解質2の軸方向に垂直な断面の外形形状よりも大きく、第2電極3の軸方向に垂直な断面の外形形状よりも小さいため、挿入した燃料電池セル4は第2電極3の軸方向端面の部分で止まる。従って、燃料電池セル4と箱本体51との位置合わせが簡易に行える。   Next, in the first step, one axial end of the fuel cell 4 is inserted into the hole 53 of the box body 51 as shown in FIG. At this time, the hole 53 of the box body 51 is larger than the outer shape of the cross section perpendicular to the axial direction of the electrolyte 2 and smaller than the outer shape of the cross section perpendicular to the axial direction of the second electrode 3. 4 stops at a portion of the end surface of the second electrode 3 in the axial direction. Therefore, the fuel cell 4 and the box body 51 can be easily aligned.

次に、第2工程において、図5に示す通り電解質2の軸方向端部と箱本体51とを封止部材6で封止する。このとき、上述した燃料電池セル4と箱本体51との位置合わせによって、電解質2の軸方向端部と箱本体51とを間に他の部材を挟むことなく近接させることができるため、封止部材6によって電解質2の軸方向端部と箱本体51とを直接接合できる。電解質2はガスを通さない緻密な材料であるため、箱本体51及び封止部材6をガスを通さない材料にすることで、電解質2の軸方向端部と箱本体51との接合部分において、確実にガス漏れを防止することができる。ここで、封止部材6としては、本発明の第1実施形態に係る燃料電池の動作時に封止部材6の温度が例えば100℃程度の低温にしかならないのであれば、例えば、液状のシリコーン樹脂等を塗布した後に固化させたものであってもよく、高温になるのであれば、例えば、溶融したガラスを塗布した後に冷却固化させたもの、あるいは、銀等の金属ペーストを塗布し、乾燥させたものにするとよい。   Next, in the second step, the axial end of the electrolyte 2 and the box body 51 are sealed with the sealing member 6 as shown in FIG. At this time, the alignment between the fuel battery cell 4 and the box body 51 described above allows the axial end of the electrolyte 2 and the box body 51 to be brought close to each other without interposing another member therebetween. The axial end of the electrolyte 2 and the box body 51 can be directly joined by the member 6. Since the electrolyte 2 is a dense material that does not pass gas, by making the box body 51 and the sealing member 6 a material that does not pass gas, at the joint between the axial end of the electrolyte 2 and the box body 51, Gas leakage can be surely prevented. Here, as the sealing member 6, for example, if the temperature of the sealing member 6 is only about 100 ° C. during the operation of the fuel cell according to the first embodiment of the present invention, for example, a liquid silicone resin It may be solidified after coating, etc., and if it becomes high temperature, for example, a solidified by cooling after coating molten glass, or a metal paste such as silver is applied and dried. It is good to use it.

なお、本実施形態では箱本体51の孔53に燃料電池セル4を挿入後、封止部材6にて封止を行ったが、予め箱本体51の孔53または燃料電池セル4の所望の部分に封止部材6を塗布しておき、箱本体51の孔53に燃料電池セル4を挿入後、封止部材6を固化して封止してもよい。   In this embodiment, the fuel cell 4 is inserted into the hole 53 of the box body 51 and then sealed by the sealing member 6. However, the hole 53 of the box body 51 or a desired portion of the fuel cell 4 is previously stored. Alternatively, the sealing member 6 may be applied in advance, and the fuel cell 4 may be inserted into the hole 53 of the box body 51, and then the sealing member 6 may be solidified and sealed.

次に、第3工程において、図6に示す通り箱本体51の内壁内側かつ燃料電池セル4の外周面外側の領域に燃料発生部材7を充填する。燃料発生部材7としては、例えば、金属を母材として、その表面に金属または金属酸化物が添加されており、化学反応によって燃料を発生するものを用いることができる。母材の金属としては例えば、Ni、Fe、Pd、V、Mgやこれらを基材とする合金が挙げられ、特にFeは安価で、加工も容易なので好ましい。また、添加される金属としては、Al、Rd、Pd、Cr、Ni、Cu、Co、V、Moが挙げられ、添加される金属酸化物としてはSiO、TiOが挙げられる。ただし、母材となる金属と、添加される金属は同一の材料ではない。燃料発生部材7は粒子状の材料を直接上記の領域に充填してもよく、ペレット等に成型してから上記の領域に充填してもよい。また、粘土状にした燃料発生部材7の材料を押し出し成型等によって、燃料電池セル4が存在する部分に対応した場所に貫通穴を形成したブロック体を成型して、そのブロック体を上記の領域に充填してもよい。 Next, in the third step, as shown in FIG. 6, the fuel generating member 7 is filled in the region inside the inner wall of the box body 51 and outside the outer peripheral surface of the fuel cell 4. As the fuel generating member 7, for example, a material in which a metal is used as a base material, a metal or a metal oxide is added to the surface, and fuel is generated by a chemical reaction can be used. Examples of the base metal include Ni, Fe, Pd, V, Mg, and alloys based on these, and Fe is particularly preferable because it is inexpensive and easy to process. Examples of the added metal include Al, Rd, Pd, Cr, Ni, Cu, Co, V, and Mo. Examples of the added metal oxide include SiO 2 and TiO 2 . However, the metal used as a base material and the added metal are not the same material. The fuel generating member 7 may be filled directly with the particulate material in the above-described region, or may be filled into the above-mentioned region after being formed into a pellet or the like. Further, a block body in which a through hole is formed at a location corresponding to a portion where the fuel cell 4 is present is formed by extruding the material of the fuel generating member 7 made into a clay shape, and the block body is formed in the above region. May be filled.

最後に、第4工程において、図7に示す通り蓋体52と燃料電池セル4の封止されていない側の軸方向端部とを、箱本体51と燃料電池セル4とを封止したときと同様の方法にて封止部材6で封止する。第4工程において、さらに、箱本体51と蓋体52との接合部分を、例えば、燃料電池セル4と支持部材5との封止に用いた封止部材の材料や、箱本体51と蓋体52とが互いに金属同士の場合には溶接等によって接合する。   Finally, in the fourth step, when the box body 51 and the fuel cell 4 are sealed with the lid 52 and the axial end of the fuel cell 4 on the unsealed side as shown in FIG. It seals with the sealing member 6 by the same method. In the fourth step, the joint portion between the box body 51 and the lid body 52 is made of, for example, the material of the sealing member used for sealing the fuel cell 4 and the support member 5, or the box body 51 and the lid body. When 52 is metal, it joins by welding etc.

なお、本実施形態では、支持部材5が複数の燃料電池セル4を支持する場合を図示したが、支持部材5が1つの燃料電池セル4のみを支持する構成であっても構わない。また、本実施形態では、説明を簡単にするため、支持部材5を箱形状とし、支持部材5が箱本体51と蓋体52とを有する構成としたが、支持部材5の形状及び支持部材5の分割形態はこれに限定する必要はない。   In the present embodiment, the support member 5 supports the plurality of fuel cells 4, but the support member 5 may support only one fuel cell 4. In the present embodiment, the support member 5 has a box shape and the support member 5 includes a box body 51 and a lid body 52 in order to simplify the description. However, the shape of the support member 5 and the support member 5 are not limited. It is not necessary to limit the division form.

本発明の第1実施形態に係る燃料電池では、燃料発生部材7から発生した燃料ガスが燃料極である第2電極3に供給され、外部から例えば空気のような酸化剤ガスが酸化剤極である第1電極1に供給されることにより発電が行われる。   In the fuel cell according to the first embodiment of the present invention, the fuel gas generated from the fuel generating member 7 is supplied to the second electrode 3 that is the fuel electrode, and an oxidant gas such as air is supplied from the outside at the oxidant electrode. Power is generated by being supplied to a certain first electrode 1.

<第2実施形態>
本発明の第2実施形態に係る燃料電池の構造について図8A及び図8Bを参照して説明する。図8Aは本発明の第2実施形態に係る燃料電池の斜視図であり、図8Bは本発明の第2実施形態に係る燃料電池の図8Aに示す断面A−A’での断面図である。
Second Embodiment
The structure of the fuel cell according to the second embodiment of the present invention will be described with reference to FIGS. 8A and 8B. FIG. 8A is a perspective view of a fuel cell according to the second embodiment of the present invention, and FIG. 8B is a cross-sectional view of the fuel cell according to the second embodiment of the present invention at the section AA ′ shown in FIG. 8A. .

本発明の第2実施形態に係る燃料電池は、燃料電池セル4と支持部材5との封止方法については本発明の第1実施形態に係る燃料電池と同様であるが、図8Bに示す通り燃料発生部材を備えていない点及び支持部材5の一部に外部接続口8が形成されている点において本発明の第1実施形態に係る燃料電池と異なる。   The fuel cell according to the second embodiment of the present invention is the same as the fuel cell according to the first embodiment of the present invention in the method of sealing the fuel cell 4 and the support member 5, but as shown in FIG. 8B. It differs from the fuel cell according to the first embodiment of the present invention in that the fuel generating member is not provided and the external connection port 8 is formed in a part of the support member 5.

外部接続口8は外部の燃料ガス供給ライン(不図示)と接続され、本発明の第2実施形態に係る燃料電池では、当該燃料供給ラインから供給される燃料ガスが燃料極である第2電極3に供給され、外部から例えば空気のような酸化剤ガスが酸化剤極である第1電極1に供給されることにより発電が行われる。   The external connection port 8 is connected to an external fuel gas supply line (not shown), and in the fuel cell according to the second embodiment of the present invention, the second electrode in which the fuel gas supplied from the fuel supply line is a fuel electrode. 3, and an oxidant gas such as air is supplied from the outside to the first electrode 1, which is an oxidant electrode, to generate power.

<第3実施形態>
本発明の第3実施形態に係る燃料電池の構造について図9A及び図9Bを参照して説明する。図9Aは本発明の第3実施形態に係る燃料電池の斜視図であり、図9Bは本発明の第3実施形態に係る燃料電池の図9Aに示す断面A−A’での断面図である。
<Third Embodiment>
The structure of the fuel cell according to the third embodiment of the present invention will be described with reference to FIGS. 9A and 9B. FIG. 9A is a perspective view of a fuel cell according to the third embodiment of the present invention, and FIG. 9B is a cross-sectional view of the fuel cell according to the third embodiment of the present invention at the section AA ′ shown in FIG. 9A. .

本発明の第3実施形態に係る燃料電池は、燃料電池セル4と支持部材5との封止方法については本発明の第2実施形態に係る燃料電池と同様であるが、図9Bに示す通り支持部材5がマニホールドである点及び第1電極1が燃料極であり、第2電極3が酸化剤極である点において本発明の第2実施形態に係る燃料電池と異なる。本発明の第3実施形態に係る燃料電池では、当該マニホールドの外部接続口54がつながる燃料供給ライン(不図示)から供給される燃料ガスが燃料極である第1電極1に供給され、外部から例えば空気のような酸化剤ガスが酸化剤極である第2電極3に供給されることにより発電が行われる。   The fuel cell according to the third embodiment of the present invention is the same as the fuel cell according to the second embodiment of the present invention in the method of sealing the fuel cell 4 and the support member 5, but as shown in FIG. 9B. It differs from the fuel cell according to the second embodiment of the present invention in that the support member 5 is a manifold, the first electrode 1 is a fuel electrode, and the second electrode 3 is an oxidant electrode. In the fuel cell according to the third embodiment of the present invention, fuel gas supplied from a fuel supply line (not shown) to which the external connection port 54 of the manifold is connected is supplied to the first electrode 1 that is a fuel electrode and is externally supplied. For example, power is generated by supplying an oxidant gas such as air to the second electrode 3 that is the oxidant electrode.

例えば図9Cに示す通り当該マニホールドを第1分割部品55と第2分割部品56とで構成することで、燃料電池セル4と第1分割部品55とを封止した後に第1分割部品55と第2分割部品56とを接合することができるので、燃料電池セル4と第1分割部品55との封止を簡単に行える。   For example, as shown in FIG. 9C, the manifold is composed of the first divided component 55 and the second divided component 56, so that the fuel cell 4 and the first divided component 55 are sealed and then the first divided component 55 and the first divided component 55 are sealed. Since the two divided parts 56 can be joined, the fuel cell 4 and the first divided part 55 can be easily sealed.

<その他>
各実施形態において燃料極と酸化剤極を入れ替えることが可能である。また、各実施形態において、燃料電池セル4の一方の軸方向端部で第1電極1、電解質2、第2電極3の各軸方向端面が同一面上にあるようにしてもよい。この変形を例えば第1実施形態に対して行った場合、図10に示すような構成になる。当該構成の場合、電解質2と孔を設けていない蓋体52の内壁とを例えば封止部材で封止するとよい。
<Others>
In each embodiment, the fuel electrode and the oxidant electrode can be interchanged. In each embodiment, the axial end faces of the first electrode 1, the electrolyte 2, and the second electrode 3 may be on the same plane at one axial end of the fuel cell 4. For example, when this modification is performed on the first embodiment, the configuration shown in FIG. 10 is obtained. In the case of the configuration, the electrolyte 2 and the inner wall of the lid body 52 that is not provided with holes may be sealed with, for example, a sealing member.

また、支持部材5の内部を高温にする場合は、温度を監視・制御するための温度計、ヒーター、断熱構造などを設けてもよい。   When the inside of the support member 5 is heated to a high temperature, a thermometer, a heater, a heat insulating structure, etc. for monitoring and controlling the temperature may be provided.

第1電極1を各実施形態のように複数設ける場合、例えば接続線を用いて第1電極1同士を接続して集電すれば良い。第3実施形態の場合には当該接続線を外部接続口54から外部に引き出すようにすればよい。   In the case where a plurality of first electrodes 1 are provided as in each embodiment, for example, the first electrodes 1 may be connected to each other using a connection line to collect current. In the case of the third embodiment, the connection line may be pulled out from the external connection port 54.

第2電極3を各実施形態のように複数設ける場合、例えば接続線を用いて第2電極3同士を接続して集電することができるが、支持部材5の材料が金属であれば第2電極集電用の接続線を設けずに支持部材5を第2電極集電用の集電部材として利用することもできる。   In the case where a plurality of second electrodes 3 are provided as in each embodiment, for example, the second electrodes 3 can be connected to each other using a connection line to collect current, but if the material of the support member 5 is a metal, the second The support member 5 can also be used as a current collecting member for collecting the second electrode without providing a connecting wire for collecting the electrode.

第1実施形態においては、電解質2として固体酸化物電解質を用いて、発電の際に燃料極である第2電極3側で水を発生させるようにする。この構成によれば、燃料発生部材7が設けられた側で水を発生するため、装置の簡素化や小型化に有利である。一方、特開2009−99491号公報に開示された燃料電池のように、電解質2として水素イオンを通す固体高分子電解質を用いることも可能である。但し、この場合には、発電の際に酸化剤極である第1の電極1側で水が発生されることになるため、この水を燃料発生部材7に伝搬する流路を設ければよい。   In the first embodiment, a solid oxide electrolyte is used as the electrolyte 2, and water is generated on the second electrode 3 side that is the fuel electrode during power generation. According to this configuration, water is generated on the side where the fuel generating member 7 is provided, which is advantageous for simplification and miniaturization of the apparatus. On the other hand, as a fuel cell disclosed in JP 2009-99491 A, a solid polymer electrolyte that allows hydrogen ions to pass therethrough can be used as the electrolyte 2. However, in this case, since water is generated on the first electrode 1 side that is the oxidizer electrode during power generation, a flow path for propagating this water to the fuel generating member 7 may be provided. .

1 第1電極
2 電解質
3 第2電極
4 燃料電池セル
5 支持部材
6 封止部材
7 燃料発生部材
8 外部接続口
51 箱本体
52 蓋体
53 孔
54 外部接続口
55 第1分割部品
56 第2分割部品
DESCRIPTION OF SYMBOLS 1 1st electrode 2 Electrolyte 3 2nd electrode 4 Fuel cell 5 Support member 6 Sealing member 7 Fuel generation member 8 External connection port 51 Box body 52 Lid body 53 Hole 54 External connection port 55 1st division | segmentation component 56 2nd division | segmentation parts

Claims (7)

燃料電池セルと、前記燃料電池セルを支持する支持部材とを備える燃料電池であって、
前記燃料電池セルは、筒形状の電解質と、前記電解質の内側に形成される第1電極と、前記電解質の外側に形成される第2電極とを有し、
前記燃料電池セルの少なくとも一方の軸方向端部において、前記第2電極の軸方向長さは前記電解質の軸方向長さよりも短く、
前記電解質の軸方向に垂直な断面の外形形状よりも大きく、前記第2電極の軸方向に垂直な断面の外形形状よりも小さい孔が前記支持部材に形成されており、
前記第2電極の軸方向長さが前記電解質の軸方向長さよりも短くなっている前記燃料電池セルの軸方向端部が前記孔に挿入されており、前記第2電極の軸方向の端面が前記支持部材に当接し、
その挿入部分において前記電解質の軸方向端部と前記支持部材とが封止部材によって直接接合されており、
前記支持部材及び前記封止部材はそれぞれガスを通さない材料であることを特徴とする燃料電池。
A fuel cell comprising a fuel cell and a support member that supports the fuel cell,
The fuel cell includes a cylindrical electrolyte, a first electrode formed inside the electrolyte, and a second electrode formed outside the electrolyte,
At least one axial end of the fuel cell, the axial length of the second electrode is shorter than the axial length of the electrolyte,
A hole larger than the outer shape of the cross section perpendicular to the axial direction of the electrolyte and smaller than the outer shape of the cross section perpendicular to the axial direction of the second electrode is formed in the support member,
The axial end of the fuel cell in which the axial length of the second electrode is shorter than the axial length of the electrolyte is inserted into the hole, and the axial end surface of the second electrode is Abut against the support member;
In the insertion portion, the axial end of the electrolyte and the support member are directly joined by a sealing member,
The fuel cell according to claim 1, wherein the support member and the sealing member are made of a material that does not allow gas to pass through.
前記挿入部分において、前記電解質の軸方向端部の外周面と前記支持部材のとの間に空間が形成されており、In the insertion portion, a space is formed between the outer peripheral surface of the axial end portion of the electrolyte and the support member,
前記封止部材は、前記空間を満たすことにより前記電解質の軸方向端部と前記支持部材とを接合することを特徴とする請求項1に記載の燃料電池。The fuel cell according to claim 1, wherein the sealing member joins the axial end portion of the electrolyte and the support member by filling the space.
前記支持部材は内部空間を有しており、前記内部空間に前記燃料電池セルが収容されることを特徴とする請求項1または請求項2に記載の燃料電池。The fuel cell according to claim 1, wherein the support member has an internal space, and the fuel cell is accommodated in the internal space. 前記支持部材の内壁内側かつ前記燃料電池セルの外周面外側の領域に封入される燃料発生部材を備えることを特徴とする請求項3に記載の燃料電池。4. The fuel cell according to claim 3, further comprising a fuel generation member sealed in a region inside an inner wall of the support member and outside an outer peripheral surface of the fuel cell. 前記電解質は固体酸化物電解質であり、前記第1電極は酸化剤ガスが供給される酸化剤極であり、前記第2電極は燃料ガスが供給される燃料極であることを特徴とする請求項4に記載の燃料電池。The electrolyte is a solid oxide electrolyte, the first electrode is an oxidant electrode to which an oxidant gas is supplied, and the second electrode is a fuel electrode to which a fuel gas is supplied. 5. The fuel cell according to 4. 前記支持部材はマニホールドであることを特徴とする請求項1または請求項2に記載の燃料電池。The fuel cell according to claim 1, wherein the support member is a manifold. 前記第1電極は燃料ガスが供給される燃料極であり、前記第2電極は酸化剤ガスが供給される酸化剤極であることを特徴とする請求項6に記載の燃料電池。The fuel cell according to claim 6, wherein the first electrode is a fuel electrode to which a fuel gas is supplied, and the second electrode is an oxidant electrode to which an oxidant gas is supplied.
JP2011082061A 2011-04-01 2011-04-01 Fuel cell Expired - Fee Related JP5736915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011082061A JP5736915B2 (en) 2011-04-01 2011-04-01 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011082061A JP5736915B2 (en) 2011-04-01 2011-04-01 Fuel cell

Publications (2)

Publication Number Publication Date
JP2012216472A JP2012216472A (en) 2012-11-08
JP5736915B2 true JP5736915B2 (en) 2015-06-17

Family

ID=47269071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011082061A Expired - Fee Related JP5736915B2 (en) 2011-04-01 2011-04-01 Fuel cell

Country Status (1)

Country Link
JP (1) JP5736915B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079995A1 (en) * 2013-11-26 2015-06-04 株式会社村田製作所 Solid oxide fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045454A (en) * 2001-07-27 2003-02-14 Toyota Motor Corp Fuel cell
JP5257974B2 (en) * 2008-02-06 2013-08-07 日本特殊陶業株式会社 Electrochemical reactor module and electrochemical reactor module assembly

Also Published As

Publication number Publication date
JP2012216472A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP6383020B2 (en) Conductive member and cell stack, electrochemical module, electrochemical device
US8486580B2 (en) Integrated seal for high-temperature electrochemical device
EP3534449B1 (en) Cell stack device, module, and module storage device
JP5876944B2 (en) Fuel cell and fuel cell stack
JP2016171064A (en) Stack structure of fuel battery
JP5985769B2 (en) Fuel cell stack structure
EP3065208A1 (en) Separator-fitted single fuel cell, and fuel cell stack
JP2009218110A (en) Solid oxide fuel cell sub-module and solid oxide fuel cell module
JP2015035417A (en) Fuel cell stack structure
JP5176079B2 (en) Solid oxide fuel cell sub-module and solid oxide fuel cell composite module
JP2007265918A (en) Separator for fuel cell, its manufacturing method, and assembling method of fuel cell
JP5736915B2 (en) Fuel cell
JP6043455B1 (en) Fuel cell stack structure
JP6118230B2 (en) Fuel cell stack
JP5985770B2 (en) Fuel cell stack structure
JP4888616B2 (en) Fuel cell
JP3727906B2 (en) Fuel cell module
JP6043456B1 (en) Fuel cell stack structure
JP2526390B2 (en) Solid electrolyte fuel cell power generator
JP5883537B1 (en) Fuel cell stack structure
JP6144241B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2016051688A (en) Stack structure for fuel battery
JP2010049839A (en) Solid polymer fuel battery and its electrode member
JP2013214398A (en) Method of manufacturing fuel cell system
JP2007157664A (en) Solid electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140912

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R150 Certificate of patent or registration of utility model

Ref document number: 5736915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees