JP4846861B2 - Extruder and biodegradable foamed material manufacturing method using the same - Google Patents

Extruder and biodegradable foamed material manufacturing method using the same Download PDF

Info

Publication number
JP4846861B2
JP4846861B2 JP2010085129A JP2010085129A JP4846861B2 JP 4846861 B2 JP4846861 B2 JP 4846861B2 JP 2010085129 A JP2010085129 A JP 2010085129A JP 2010085129 A JP2010085129 A JP 2010085129A JP 4846861 B2 JP4846861 B2 JP 4846861B2
Authority
JP
Japan
Prior art keywords
cylinder
starch
temperature
pulp
pulp dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010085129A
Other languages
Japanese (ja)
Other versions
JP2011000881A5 (en
JP2011000881A (en
Inventor
篤史 中村
秀明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Co Ltd
Original Assignee
Nissei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Co Ltd filed Critical Nissei Co Ltd
Priority to JP2010085129A priority Critical patent/JP4846861B2/en
Publication of JP2011000881A publication Critical patent/JP2011000881A/en
Publication of JP2011000881A5 publication Critical patent/JP2011000881A5/ja
Application granted granted Critical
Publication of JP4846861B2 publication Critical patent/JP4846861B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/465Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft each shaft comprising rotor parts of the Banbury type in addition to screw parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • B29B7/489Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/92Wood chips or wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/54Screws with additional forward-feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/55Screws having reverse-feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/918Thermal treatment of the stream of extruded material, e.g. cooling characterized by differential heating or cooling
    • B29C48/9185Thermal treatment of the stream of extruded material, e.g. cooling characterized by differential heating or cooling in the direction of the stream of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Molding Of Porous Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Glanulating (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

この発明は、エクストルーダーおよびそれを用いた生分解性発泡成形物の原料の製造方法に関する。   The present invention relates to an extruder and a method for producing a raw material for a biodegradable foamed product using the extruder.

この発明に関連する従来技術としては、澱粉質原料を含有するパフ用原料と、水とをエクストルーダーに供給し、前記澱粉質原料がα化するように加熱混練しながら、前記エクストルーダー先端に装着されたノズル部の吐出孔より押し出して切断することにより、平均粒径1.5〜2.2mmのペレットを成形するペレット成形工程と、前記ペレットを加熱して膨化させ、平均粒径1.8〜2.8mmのパフを得る膨化工程とを含むことを特徴とするパフの製造方法が知られている(例えば、特許文献1参照)。   As a prior art related to the present invention, a puff raw material containing a starch raw material and water are supplied to an extruder, and heated and kneaded so that the starch raw material is gelatinized, and at the end of the extruder. A pellet forming step of forming pellets having an average particle diameter of 1.5 to 2.2 mm by extruding from the discharge holes of the mounted nozzle portion and cutting, and the pellets are heated and expanded, and an average particle diameter of 1. There is known a puff manufacturing method including an expansion step of obtaining a puff of 8 to 2.8 mm (see, for example, Patent Document 1).

また、この発明に関連する更なる従来技術としては、澱粉を主原料とする発泡基材層の表面を疎水性のフィルムで被覆した生分解性発泡成形物が知られている(例えば、特許文献2参照)。   Further, as a further conventional technique related to the present invention, a biodegradable foamed molded article in which the surface of a foamed base material layer mainly composed of starch is coated with a hydrophobic film is known (for example, patent document). 2).

特開2004−121067号公報JP 2004-121067 A 国際公開第02/022353号パンフレットInternational Publication No. 02/022353 Pamphlet

食品加工機械として粉砕、混合、加熱、加圧、殺菌、冷却、押出し、成形などの各種工程を連続的に行えるエクストルーダーが注目されている。
エクストルーダーは、温度制御されるシリンダーと、シリンダー内で互いに平行に並んで同方向に軸回転する一対の細長いスクリューとから構成されている。
各スクリューは、材料を搬送するボールスクリューと、材料を撹拌・混合するニーディングスクリューと、材料を逆方向に搬送するリバーススクリューとを、目的に合わせて適宜繋ぎ合せることにより構成されている。
しかし、スクリューの全長はエクストルーダーによって制約があり、その全長の範囲内で目的とする工程が連続的に実施されるようにボールスクリュー、ニーディングスクリューおよびリバーススクリューを組み合わせる必要がある。
As a food processing machine, an extruder capable of continuously performing various processes such as pulverization, mixing, heating, pressurization, sterilization, cooling, extrusion, and molding has been attracting attention.
The extruder is composed of a temperature-controlled cylinder and a pair of elongated screws that rotate parallel to each other in the cylinder and rotate in the same direction.
Each screw is configured by appropriately connecting a ball screw that conveys the material, a kneading screw that stirs and mixes the material, and a reverse screw that conveys the material in the reverse direction according to the purpose.
However, the total length of the screw is limited by the extruder, and it is necessary to combine the ball screw, the kneading screw, and the reverse screw so that the target process is continuously performed within the total length.

ところで、近年はゴミの減量や資源循環型社会の実現が強く求められており、容器の分野においても環境に優しい生分解性のものが求められている。
生分解性の容器としては、澱粉を主原料とする発泡基材層の表面を疎水性の生分解性プラスチックフィルムで被覆したものが提案されている。
このような生分解性容器において、発泡基材層の主原料には、澱粉の他、コストダウンや成形後の強度保持等の目的でパルプやポリビニルアルコールなどの添加物が混ぜられる。
By the way, in recent years, there has been a strong demand for the reduction of garbage and the realization of a resource recycling society.
As a biodegradable container, one in which the surface of a foamed base material layer containing starch as a main raw material is coated with a hydrophobic biodegradable plastic film has been proposed.
In such a biodegradable container, the main raw material of the foam base material layer is mixed with additives such as pulp and polyvinyl alcohol for the purpose of cost reduction and strength maintenance after molding, in addition to starch.

しかしながら、原料段階においてパルプは塊状であり、一方、澱粉およびポリビニルアルコールは粉状または粒状であり性状が異なる。
したがって、主原料としての澱粉、パルプ、ポリビニルアルコールおよび水を上記のエクストルーダーにまとめて供給して撹拌・混合してもパルプがうまく均一に分散しないという問題があった。
さらには、パルプが均一に分散しないまま加熱によりポリビニルアルコールが溶解すれば、溶解したポリビニルアルコールにより粘性が高まる一方で、熱の影響により澱粉がダマになり、均一な撹拌・混合がより一層困難になるという問題があった。
However, in the raw material stage, the pulp is agglomerated, while starch and polyvinyl alcohol are powdered or granular and have different properties.
Therefore, there is a problem that even if starch, pulp, polyvinyl alcohol and water as main raw materials are supplied to the above-mentioned extruder together and stirred and mixed, the pulp does not disperse well uniformly.
Furthermore, if polyvinyl alcohol is dissolved by heating without the pulp being uniformly dispersed, the viscosity will be increased by the dissolved polyvinyl alcohol, while starch will become lumpy due to the effect of heat, making uniform stirring and mixing even more difficult. There was a problem of becoming.

この発明は以上のような事情を考慮してなされたものであり、性状が異なる材料であっても均一に撹拌・混合して押出し成形できるエクストルーダーとそれを用いた生分解性発泡成形物の原料の製造方法を提供するものである。   The present invention has been made in consideration of the above-described circumstances. An extruder that can be uniformly agitated, mixed and extruded even with materials having different properties, and a biodegradable foam molded product using the extruder. A method for producing a raw material is provided.

この発明は、温度制御される細長いシリンダーと、シリンダー内で互いに平行に並び同方向に軸回転する一対の細長いスクリューとを備え、各スクリューは、シリンダーに供給された材料をシリンダーの基端側から先端側へ搬送する複数のボールスクリューと搬送されてきた材料を撹拌・混合する複数のニーディングスクリューが交互に組合されてなるエクストルーダーを用い、パルプ、粉状または粒状のポリビニルアルコールおよび水を撹拌・混合してパルプ分散体を調製し、調製されたパルプ分散体を加熱して前記分散体中のポリビニルアルコールを溶解させ、ポリビニルアルコールが溶解したパルプ分散体を冷却し、冷却されたパルプ分散体を澱粉と混練して澱粉混練体を調製し、調製された澱粉混練体を加熱してα化しα化澱粉混練体を得る工程を備え、パルプ分散体を調製する際にシリンダーの温度を常温から100〜120℃の範囲まで徐々に上昇させ、パルプ分散体を加熱してポリビニルアルコールを溶解させる際にシリンダーの温度を130〜140℃の範囲に維持し、パルプ分散体を冷却する際にシリンダーの温度を100〜120℃の範囲から35〜50℃の範囲まで徐々に低下させると共に前記パルプ分散体に5〜10℃の水をさらに加え、澱粉を投入し澱粉混練体を調製する際にシリンダーの温度25〜35℃の範囲に維持し、澱粉混練体を加熱してα化する際にシリンダーの温度を40〜70℃の範囲に維持する生分解性発泡成形物の原料の製造方法を提供するものである。
また、この発明は、温度制御される細長いシリンダーと、シリンダー内で互いに平行に並び同方向に軸回転する一対の細長いスクリューとを備え、各スクリューは、シリンダーに供給された材料をシリンダーの基端側から先端側へ搬送する複数のボールスクリューと搬送されてきた材料を撹拌・混合する複数のニーディングスクリューが交互に組合されてなるエクストルーダーを用い、パルプ、粉状または粒状のポリビニルアルコールおよび水を撹拌・混合してパルプ分散体を調製し、調製されたパルプ分散体を加熱して前記分散体中のポリビニルアルコールを溶解させ、ポリビニルアルコールが溶解したパルプ分散体を冷却し、冷却されたパルプ分散体を澱粉と混練して澱粉混練体を調製し、調製された澱粉混練体を加熱してα化しα化澱粉混練体を得る工程を備え、パルプ分散体を調製する際にシリンダーの温度を常温から70〜90℃の範囲まで徐々に上昇させ、パルプ分散体を加熱してポリビニルアルコールを溶解させる際にシリンダーの温度を130〜140℃の範囲に維持し、パルプ分散体を冷却する際にシリンダーの温度を35〜50℃の範囲に維持すると共に前記パルプ分散体に5〜10℃の水をさらに加え、澱粉を投入し澱粉混練体を調製する際にシリンダーの温度25〜35℃の範囲に維持し、澱粉混練体を加熱してα化する際にシリンダーの温度を50〜90℃の範囲に維持する生分解性発泡成形物の原料の製造方法を提供するものもある。
The present invention includes a temperature-controlled elongated cylinder and a pair of elongated screws that are parallel to each other in the cylinder and rotate in the same direction, and each screw feeds the material supplied to the cylinder from the proximal end side of the cylinder. Agitate pulp, powdered or granular polyvinyl alcohol and water using an extruder consisting of multiple ball screws that are transported to the tip and multiple kneading screws that stir and mix the material that has been transported. -Mixing to prepare a pulp dispersion, heating the prepared pulp dispersion to dissolve the polyvinyl alcohol in the dispersion, cooling the pulp dispersion in which the polyvinyl alcohol is dissolved, and cooling the pulp dispersion Is kneaded with starch to prepare a starch kneaded body, and the prepared starch kneaded body is heated to pre-gelatinize and pre-gelatinized starch kneaded body The temperature of the cylinder is gradually increased from room temperature to a range of 100 to 120 ° C. when preparing the pulp dispersion, and the temperature of the cylinder is increased when the pulp dispersion is heated to dissolve the polyvinyl alcohol. The temperature of the cylinder is gradually lowered from the range of 100 to 120 ° C. to the range of 35 to 50 ° C. when the pulp dispersion is cooled while maintaining the temperature in the range of 130 to 140 ° C. and 5 to 10 ° C. in the pulp dispersion. When adding starch, adding starch and preparing a starch kneaded body, the temperature of the cylinder is maintained in the range of 25 to 35 ° C., and when the starch kneaded body is heated and gelatinized, the temperature of the cylinder is 40 to 70. The present invention provides a method for producing a raw material for a biodegradable foamed molded product maintained in the range of ° C.
The present invention also includes a temperature-controlled elongated cylinder and a pair of elongated screws that are parallel to each other in the cylinder and rotate in the same direction, and each screw feeds the material supplied to the cylinder to the proximal end of the cylinder. Pulp, powdered or granular polyvinyl alcohol and water using an extruder in which a plurality of ball screws conveyed from the side to the tip side and a plurality of kneading screws for agitating and mixing the conveyed materials are alternately combined The pulp dispersion is prepared by stirring and mixing, the prepared pulp dispersion is heated to dissolve the polyvinyl alcohol in the dispersion, the pulp dispersion in which the polyvinyl alcohol is dissolved is cooled, and the cooled pulp A dispersion is kneaded with starch to prepare a starch kneaded body, and the prepared starch kneaded body is heated to be pregelatinized and pregelatinized starch. A step of obtaining a kneaded body, the temperature of the cylinder is gradually increased from room temperature to a range of 70 to 90 ° C. when preparing the pulp dispersion, and the pulp dispersion is heated to dissolve the polyvinyl alcohol. The temperature is maintained in the range of 130 to 140 ° C., and when the pulp dispersion is cooled, the temperature of the cylinder is maintained in the range of 35 to 50 ° C. and water at 5 to 10 ° C. is further added to the pulp dispersion. The temperature of the cylinder is maintained in the range of 25 to 35 ° C. when preparing the starch kneaded body, and the temperature of the cylinder is maintained in the range of 50 to 90 ° C. when the starch kneaded body is gelatinized by heating. Some provide a method for producing a raw material for a degradable foamed molded product.

この発明に係るエクストルーダーによれば、温度制御されたシリンダー内で軸回転する各スクリューは、材料を搬送する複数のボールスクリューと材料を撹拌・混合する複数のニーディングスクリューが交互に組合されて構成されるので、性状の異なる材料であってもその材料に適した温度に保ちつつ適切に撹拌・混合して押出し成形できる。   According to the extruder according to the present invention, each screw rotating in a temperature-controlled cylinder is composed of a plurality of ball screws that convey materials and a plurality of kneading screws that stir and mix materials alternately. Since it is comprised, even if it is a material from which a property differs, it can extrude by stirring and mixing appropriately, keeping at the temperature suitable for the material.

本発明の実施形態1に係るエクストルーダーの斜視図である。It is a perspective view of the extruder concerning Embodiment 1 of the present invention. 図1に示されるエクストルーダーのシリンダー内に挿入される一対のスクリューを示す説明図である。It is explanatory drawing which shows a pair of screw inserted in the cylinder of the extruder shown by FIG. 図2に示されるスクリューを構成するボールスクリューおよびリバーススクリューを示す説明図である。It is explanatory drawing which shows the ball screw and reverse screw which comprise the screw shown by FIG. 図2に示されるスクリューを構成するニーディングスクリューの平面図である。It is a top view of the kneading screw which comprises the screw shown by FIG. 図4に示されるニーディングスクリューの斜視図である。FIG. 5 is a perspective view of the kneading screw shown in FIG. 4. ニーディングスクリューの組み合わせを示す説明図である。It is explanatory drawing which shows the combination of a kneading screw. 厚さの異なるニーディングスクリューを示す斜視図である。It is a perspective view which shows the kneading screw from which thickness differs. 本発明の実施形態2に係るエクストルーダーの図2対応図である。It is a FIG. 2 corresponding view of the extruder which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係るエクストルーダーの図2対応図である。It is a FIG. 2 corresponding view of the extruder which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係るエクストルーダーの図2対応図である。It is a FIG. 2 corresponding view of the extruder which concerns on Embodiment 4 of this invention. 本発明の実施例で製造された生分解性発泡成形物の断面図である。It is sectional drawing of the biodegradable foaming molding manufactured in the Example of this invention.

この発明によるエクストルーダーは、温度制御される細長いシリンダーと、シリンダー内で互いに平行に並び同方向に軸回転する一対の細長いスクリューとを備え、各スクリューは、シリンダーに供給された材料をシリンダーの基端側から先端側へ搬送する複数のボールスクリューと搬送されてきた材料を撹拌・混合する複数のニーディングスクリューが交互に組合されてなることを特徴とする。   The extruder according to the present invention includes a temperature-controlled elongated cylinder and a pair of elongated screws that are parallel to each other in the cylinder and rotate in the same direction, and each screw feeds the material supplied to the cylinder to the base of the cylinder. A plurality of ball screws conveyed from the end side to the front end side and a plurality of kneading screws for stirring and mixing the conveyed material are alternately combined.

この発明によるエクストルーダーにおいて、各スクリューはその構成中に搬送されてきた材料を先端側から基端側へ押し戻すリバーススクリューをさらに備え、リバーススクリューは一部のニーディングスクリューの先端側に隣接して設けられてもよい。
このような構成によれば、リバーススクリューによって押し戻された材料が材料を撹拌・混合するニーディングスクリューの配置部分に滞留し、シリンダー内で満注状態となるので、ニーディングスクリューによる撹拌・混合が効率よく行われる。また、リバースクリューによって押し戻された材料がシリンダー内で満注状態となることにより、シリンダーとの熱交換も効率よく行われる。
In the extruder according to the present invention, each screw further includes a reverse screw that pushes back the material conveyed in the configuration from the distal end side to the proximal end side, and the reverse screw is adjacent to the distal end side of some kneading screws. It may be provided.
According to such a configuration, the material pushed back by the reverse screw stays in the arrangement portion of the kneading screw that stirs and mixes the material, and is filled in the cylinder. It is done efficiently. Further, since the material pushed back by the river screw is filled in the cylinder, heat exchange with the cylinder is also efficiently performed.

この発明によるエクストルーダーにおいて、シリンダーは複数のシリンダーブロックが繋げられてなり、各シリンダーブロックは独立して温度制御されてもよい。
このような構成によれば、工程に応じてシリンダーの温度を制御でき、加熱・冷却などの工程を連続的に行うことができる。
In the extruder according to the present invention, the cylinder may be formed by connecting a plurality of cylinder blocks, and the temperature of each cylinder block may be controlled independently.
According to such a configuration, the temperature of the cylinder can be controlled according to the process, and processes such as heating and cooling can be performed continuously.

この発明は別の観点からみると、この発明による上記のエクストルーダーを用い、パルプ、粉状のポリビニルアルコールおよび水を撹拌・混合してパルプ分散体を調製し、調製されたパルプ分散体を加熱して前記分散体中のポリビニルアルコールを溶解させ、ポリビニルアルコールが溶解したパルプ分散体を冷却し、冷却されたパルプ分散体を澱粉と混練して澱粉混練体を調製し、調製された澱粉混練体を加熱してα化しα化澱粉混練体を得る生分解性発泡成形物の原料の製造方法を提供するものでもある。   From another viewpoint, the present invention uses the above-described extruder according to the present invention to prepare a pulp dispersion by stirring and mixing pulp, powdered polyvinyl alcohol and water, and heating the prepared pulp dispersion. The polyvinyl alcohol in the dispersion is dissolved, the pulp dispersion in which the polyvinyl alcohol is dissolved is cooled, the cooled pulp dispersion is kneaded with starch to prepare a starch kneaded body, and the prepared starch kneaded body It also provides a method for producing a raw material for a biodegradable foam-molded product that is heated to gelatinize to obtain a gelatinized starch kneaded body.

この発明による上記製造方法によれば、この発明による上述のエクストルーダーを用いることにより、パルプ、ポリビニルアルコール、澱粉および水を均一に撹拌・混合し押出し成形することができるので、生分解性発泡成形物の原料となるα化澱粉混練体を一定の品質で大量生産できるようになる。   According to the manufacturing method of the present invention, by using the above-described extruder according to the present invention, pulp, polyvinyl alcohol, starch and water can be uniformly stirred and mixed, and extrusion molding can be performed. It becomes possible to mass-produce a kneaded starch kneaded body as a raw material of a product with a certain quality.

ここで、パルプとは植物由来の繊維の集合体を意味し、特に限定されるものではないが、例えば、木材パルプ(バージンパルプ)や非木材パルプを挙げることができる。
また、澱粉とは澱粉またはその誘導体を意味し、特に限定されるものではないが、例えば、馬鈴薯、トウモロコシ、タピオカ、米、小麦、さつまいもなど、主用穀物として世界的に生産されている農産物から得られるデンプンを挙げることができ、特定の農産物から製造されたものであってもよいし、複数の農産物から製造されたものを混合したものであってもよい。
Here, the pulp means an aggregate of plant-derived fibers and is not particularly limited, and examples thereof include wood pulp (virgin pulp) and non-wood pulp.
Starch means starch or its derivatives, and is not particularly limited. For example, starch, potato, corn, tapioca, rice, wheat, sweet potato, etc. The obtained starch can be mentioned, The thing manufactured from the specific agricultural product may be used, and the thing manufactured from the several agricultural products may be mixed.

また、上記のデンプンの誘導体は、生分解性を阻害しない範囲でデンプンを修飾したものを指し、例えば、α化デンプン、架橋デンプン、変性デンプン等を挙げることができる。
さらに、上記の修飾されていないデンプンと上記のデンプンの誘導体とを混合した混合物が用いられても構わない。
In addition, the above-mentioned starch derivatives refer to those obtained by modifying starch within a range that does not inhibit biodegradability, and examples thereof include pregelatinized starch, crosslinked starch, and modified starch.
Furthermore, a mixture obtained by mixing the above-mentioned unmodified starch and the above-mentioned starch derivative may be used.

この発明による上記の生分解性発泡成形物の原料の製造方法は、パルプ分散体を調製する際にシリンダーの温度を常温から約100〜120℃の範囲まで徐々に上昇させ、パルプ分散体を加熱してポリビニルアルコールを溶解させる際にシリンダーの温度を約130〜140℃の範囲に維持し、パルプ分散体を冷却する際にシリンダーの温度を約100〜120℃の範囲から約35〜50℃の範囲まで徐々に低下させ、澱粉を投入し澱粉混練体を調製する際にシリンダーの温度を約25〜35℃の範囲に維持し、澱粉混練体を加熱してα化する際にシリンダーの温度を約40〜70℃の範囲に維持してもよい。   In the method for producing the raw material for the biodegradable foamed molding according to the present invention, the temperature of the cylinder is gradually increased from the normal temperature to the range of about 100 to 120 ° C. when the pulp dispersion is prepared, and the pulp dispersion is heated. When the polyvinyl alcohol is dissolved, the temperature of the cylinder is maintained in the range of about 130 to 140 ° C, and when the pulp dispersion is cooled, the temperature of the cylinder is about 100 to 120 ° C to about 35 to 50 ° C. The temperature of the cylinder is maintained in the range of about 25 to 35 ° C. when the starch kneaded body is prepared by introducing starch and the starch kneaded body is heated and pregelatinized. You may maintain in the range of about 40-70 degreeC.

また、この発明による上記の生分解性発泡成形物の原料の製造方法は、パルプ分散体を調製する際にシリンダーの温度を常温から約70〜90℃の範囲まで徐々に上昇させ、パルプ分散体を加熱してポリビニルアルコールを溶解させる際にシリンダーの温度を約130〜140℃の範囲に維持し、パルプ分散体を冷却する際にシリンダーの温度を約35〜50℃の範囲に維持し、澱粉を投入し澱粉混練体を調製する際にシリンダーの温度を約25〜35℃の範囲に維持し、澱粉混練体を加熱してα化する際にシリンダーの温度を約50〜90℃の範囲に維持してもよい。   Further, the method for producing a raw material for the biodegradable foamed molded article according to the present invention comprises the step of gradually increasing the temperature of the cylinder from room temperature to a range of about 70 to 90 ° C. when preparing the pulp dispersion, The temperature of the cylinder is maintained in the range of about 130 to 140 ° C. when the polyvinyl alcohol is dissolved by heating and the temperature of the cylinder is maintained in the range of about 35 to 50 ° C. when the pulp dispersion is cooled. When the starch kneaded body is prepared, the temperature of the cylinder is maintained in the range of about 25 to 35 ° C., and when the starch kneaded body is heated to alpha, the temperature of the cylinder is set in the range of about 50 to 90 ° C. May be maintained.

これらの温度条件は、パルプ、ポリビニルアルコール、澱粉および水をより適切な条件で均一に撹拌・混合し押出し成形するために見出されたシリンダーの温度管理条件である。
但し、このような温度管理条件は材料の質・配分・シリンダー内での搬送速度等、様々な要素によって最適な値が変化するので、必ずしも上記の温度条件が絶対というわけではないが、シリンダーの温度管理条件を考慮するうえで一つの基準となるものである。
These temperature conditions are cylinder temperature control conditions that have been found to uniformly agitate and mix pulp, polyvinyl alcohol, starch and water under more appropriate conditions and extrude.
However, such temperature control conditions vary depending on various factors such as material quality, distribution, and conveyance speed in the cylinder, so the above temperature conditions are not necessarily absolute. This is a standard for considering the temperature control conditions.

この発明による上記の生分解性発泡成形物の原料の製造方法は、パルプ分散体を冷却する際に約5〜10℃の水をさらに加えてもよい。
このような製造方法によれば、約5〜10℃の冷水をパルプ分散体に添加することにより、分散体中のポリビニルアルコールを溶解させるために前工程で加熱されたパルプ分散体を効率よく冷却できる。これにより、パルプ分散体と澱粉が混練される次工程で澱粉が熱の影響を受けてダマになることを防止できる。
In the method for producing a raw material for the biodegradable foamed molded product according to the present invention, water at about 5 to 10 ° C. may be further added when the pulp dispersion is cooled.
According to such a manufacturing method, by adding cold water of about 5 to 10 ° C. to the pulp dispersion, the pulp dispersion heated in the previous step is efficiently cooled in order to dissolve the polyvinyl alcohol in the dispersion. it can. Thereby, it is possible to prevent the starch from being damaged under the influence of heat in the next step in which the pulp dispersion and starch are kneaded.

以下、図面に基づいてこの発明の実施形態に係るエクストルーダーとそれを用いた生分解性発泡成形物の原料の製造方法について説明する。なお、以下に説明する複数の実施形態において同じ部材には同じ符号を付して説明する。   Hereinafter, an extruder according to an embodiment of the present invention and a method for producing a raw material for a biodegradable foamed product using the same will be described with reference to the drawings. In addition, in the several embodiment demonstrated below, the same code | symbol is attached | subjected and demonstrated to the same member.

実施形態1
図1は、本発明の実施形態1に係るエクストルーダーの斜視図、図2は図1に示されるエクストルーダーのシリンダー内に挿入される一対のスクリューを示す説明図、図3は図2に示されるスクリューを構成するボールスクリューおよびリバーススクリューを示す説明図、図4は図2に示されるスクリューを構成するニーディングスクリューの平面図、図5は図4に示されるニーディングスクリューの斜視図、図6はニーディングスクリューの組み合わせを示す説明図、図7は厚さの異なるニーディングスクリューを示す斜視図である。
Embodiment 1
1 is a perspective view of an extruder according to Embodiment 1 of the present invention, FIG. 2 is an explanatory view showing a pair of screws inserted into the cylinder of the extruder shown in FIG. 1, and FIG. 3 is shown in FIG. FIG. 4 is a plan view of the kneading screw constituting the screw shown in FIG. 2, FIG. 5 is a perspective view of the kneading screw shown in FIG. 6 is an explanatory view showing a combination of kneading screws, and FIG. 7 is a perspective view showing kneading screws having different thicknesses.

図1に示されるように、本発明の実施形態1に係るエクストルーダー100は、2軸のシリンダー1と、シリンダー1内に材料を供給するホッパー2と、シリンダー1内に挿入される一対のスクリュー3(図2参照)と、一対のスクリュー3を軸回転させる駆動部4とから主に構成されている。   As shown in FIG. 1, an extruder 100 according to Embodiment 1 of the present invention includes a biaxial cylinder 1, a hopper 2 that supplies material into the cylinder 1, and a pair of screws that are inserted into the cylinder 1. 3 (see FIG. 2) and a drive unit 4 that rotates the pair of screws 3 in the axial direction.

シリンダー1は複数のシリンダーブロックC1〜C11が繋ぎ合わされてなる。各シリンダーブロックC1〜C11には、シリンダー1の周囲を囲うように図示しないウォータージャケットが形成されている。さらに、シリンダーブロックC4〜C8,C11にはウォータージャケットに加え図示しないヒーターが設けられている。
シリンダーブロックC1〜C3,C9,C10はウォータージャケットに温度制御された水が通水されることにより、シリンダーブロックC1〜C3,C9,C10毎に温度制御される。また、シリンダーブロックC4〜C8,C11はウォータージャケットに温度制御された水が通水されることによる作用、又は付設されたヒーターによる作用、或いはそれら両方の作用によりシリンダーブロックC4〜C8,C11毎に温度制御される。これにより、全てのシリンダーブロックC1〜C11がシリンダーブロック毎に所望の温度に温度制御される。
2軸のシリンダー1は、平行に並んだ2つのシリンダーの対向部分を融合させたような8の字状の横断面を有し、このシリンダー1内に一対のスクリュー3(図2参照)がシリンダー1と同軸に挿入される。
The cylinder 1 is formed by connecting a plurality of cylinder blocks C1 to C11. A water jacket (not shown) is formed in each cylinder block C1 to C11 so as to surround the cylinder 1. Further, the cylinder blocks C4 to C8 and C11 are provided with a heater (not shown) in addition to the water jacket.
The cylinder blocks C1 to C3, C9, and C10 are temperature-controlled for each of the cylinder blocks C1 to C3, C9, and C10 by passing water whose temperature is controlled through the water jacket. In addition, the cylinder blocks C4 to C8 and C11 are provided for each of the cylinder blocks C4 to C8 and C11 by the action of the temperature-controlled water passing through the water jacket, the action of the attached heater, or both of them. Temperature controlled. Thereby, all the cylinder blocks C1 to C11 are temperature-controlled to a desired temperature for each cylinder block.
The biaxial cylinder 1 has an eight-shaped cross section obtained by fusing opposite portions of two cylinders arranged in parallel, and a pair of screws 3 (see FIG. 2) are provided in the cylinder 1. 1 is inserted coaxially.

なお、図1において、ホッパー2はシリンダーC2,C3の上にまたがるように描かれているが、ホッパー2はシリンダーC1に材料を供給できるように設けられている。
また、図示されていないが、シリンダーC10の上部にも同様のホッパーが設けられ、シリンダーC10に後述する澱粉を供給できるように構成されている。
In FIG. 1, the hopper 2 is drawn so as to straddle the cylinders C2 and C3. However, the hopper 2 is provided so that the material can be supplied to the cylinder C1.
Moreover, although not shown in figure, the same hopper is provided also in the upper part of the cylinder C10, and it is comprised so that the starch mentioned later can be supplied to the cylinder C10.

図2に示されるように、一対のスクリュー3は、第1スクリュー3a、第2スクリュー3bとからなり、第1および第2スクリュー3a,3bは、基本的に同じ構成を有している。
第1および第2スクリュー3a,3bは、シリンダーブロックC1〜C11によって構成された所定長のシリンダー1内で所望の工程が連続的に実施されるように、その目的に応じて、図3(b)〜(d)に示されるような、螺旋ピッチの異なる複数種のボールスクリュー5a,5b,5cと、図3(e)に示されるリバーススクリュー6と、図4および図5に示される2種類のニーディングスクリュー7a,7bと、図7に示される薄型のニーディングスクリュー8とを適宜組み合わせることにより構成されている。
As shown in FIG. 2, the pair of screws 3 includes a first screw 3a and a second screw 3b, and the first and second screws 3a and 3b have basically the same configuration.
Depending on the purpose, the first and second screws 3a and 3b may be configured as shown in FIG. 3 (b) so that a desired process is continuously performed in the cylinder 1 having a predetermined length constituted by the cylinder blocks C1 to C11. ) To (d), a plurality of types of ball screws 5a, 5b, 5c having different helical pitches, a reverse screw 6 shown in FIG. 3 (e), and two types shown in FIGS. The kneading screws 7a and 7b and the thin kneading screw 8 shown in FIG. 7 are appropriately combined.

ボールスクリュー5a,5b,5cは、シリンダー1内で軸回転することによりシリンダー1内に供給された原料を基端側から先端側(図2参照)へ送るように作用する。リバーススクリュー6は、シリンダー1内で軸回転することによりシリンダー1内に供給された原料を先端側から基端側へ押し戻すように作用する。ニーディングスクリュー7a,7b,8は、シリンダー1内で軸回転することによりシリンダー1内に供給された原料を粉砕・撹拌・混合するように作用する。   The ball screws 5a, 5b, and 5c act so as to feed the raw material supplied into the cylinder 1 from the proximal end side to the distal end side (see FIG. 2) by rotating the shaft within the cylinder 1. The reverse screw 6 acts to push the raw material supplied into the cylinder 1 back from the distal end side to the proximal end side by rotating the shaft within the cylinder 1. The kneading screws 7a, 7b, and 8 act so as to pulverize, stir, and mix the raw material supplied into the cylinder 1 by rotating the shaft within the cylinder 1.

図3(a)に示されるように、ボールスクリュー5にはその中心軸と同軸に六角形の孔が形成されており、図示されないが、これはリバーススクリュー6についても同様である。
また、図4(a)および(b)に示されるように、略楕円形の外観を呈する2種類のニーディングスクリュー7a,7bにもその中心軸と同軸に六角形の孔がそれぞれ形成されている。ニーディングスクリュー7a,7bは六角形の孔の向きが互いに異なる。
ボールスクリュー5a,5b,5c、リバーススクリュー6およびニーディングスクリュー7a,7b,8は、それらの孔に六角形の断面を有する芯棒(図示せず)が通されることにより互いの位置関係が決定され、細長い一体のスクリュー3a,3bとなる。
As shown in FIG. 3A, the ball screw 5 is formed with a hexagonal hole coaxially with the central axis thereof, which is not shown, but the same applies to the reverse screw 6.
Further, as shown in FIGS. 4A and 4B, hexagonal holes are formed on the two types of kneading screws 7a and 7b having a substantially elliptical appearance coaxially with the central axis. Yes. The kneading screws 7a and 7b have different hexagonal hole orientations.
The ball screws 5a, 5b, 5c, the reverse screw 6 and the kneading screws 7a, 7b, 8 have a positional relationship with each other by passing a core rod (not shown) having a hexagonal cross section through the holes. It is determined and becomes the long and thin integrated screws 3a and 3b.

図3(b)〜(d)に示されるように、螺旋ピッチの異なる複数種のボールスクリュー5a,5b,5cは互いに同じ長さを有している。つまり、ボールスクリュー5a,5b,5cは、図3(a)に示されるボールスクリュー5の最大径1Dを基準とした同じ長さ1Dを有している。
図3(e)に示されるリバーススクリュー6は、ボールスクリュー5a,5b,5cの半分の長さ1/2Dを有している。
As shown in FIGS. 3B to 3D, the plurality of types of ball screws 5a, 5b and 5c having different helical pitches have the same length. That is, the ball screws 5a, 5b, and 5c have the same length 1D on the basis of the maximum diameter 1D of the ball screw 5 shown in FIG.
The reverse screw 6 shown in FIG. 3 (e) has a length 1 / 2D that is half of the ball screws 5a, 5b, and 5c.

図3(b)〜(d)において、ボールスクリュー5a,5b,5cの横に「4/4」、「3/4」および「2/4」とそれぞれ記されているが、これは螺旋のピッチを表しており、例えば、螺旋ピッチ「4/4」では1回転で螺旋が長さ1D分進む。このため螺旋ピッチが「4/4」、「3/4」、「2/4」となるにしたがって搬送速度が遅くなる。なお、図3(e)に示されるように、リバーススクリュー6の螺旋ピッチは「4/4」である。   3 (b) to 3 (d), “4/4”, “3/4”, and “2/4” are written next to the ball screws 5a, 5b, and 5c, respectively. The pitch represents the pitch. For example, at the spiral pitch “4/4”, the spiral advances 1D in length by one rotation. For this reason, as the spiral pitch becomes “4/4”, “3/4”, “2/4”, the transport speed becomes slower. As shown in FIG. 3E, the spiral pitch of the reverse screw 6 is “4/4”.

図5(a)および(b)に示されるニーディングスクリュー7a,7bは、KDと呼ばれるタイプのものでボールスクリュー5a,5b,5cの1/4の厚さ1/4Dを有している。すなわち、KDタイプのニーディングスクリュー7a,7bは、4枚重ねられることによってボールスクリュー5a,5b,5cと同じ長さ1Dを有するようになる。
さらに、図7に示されるニーディングスクリュー8は、TKDと呼ばれる薄型のもので、KDタイプのニーディングスクリュー7aの半分の厚さ1/8Dを有している。図示しないが、1/8Dの厚さを有するニーディングスクリュー7にも、図4(a)および(b)に示されるニーディングスクリュー7a,7bと同様に六角形の孔の向きが異なる2種類がある。
The kneading screws 7a and 7b shown in FIGS. 5A and 5B are of a type called KD and have a thickness 1 / 4D that is 1/4 that of the ball screws 5a, 5b, and 5c. That is, the KD type kneading screws 7a and 7b have the same length 1D as the ball screws 5a, 5b, and 5c by being overlapped.
Furthermore, the kneading screw 8 shown in FIG. 7 is a thin type called TKD, and has a thickness 1 / 8D that is half that of the KD type kneading screw 7a. Although not shown, the kneading screw 7 having a thickness of 1 / 8D also has two types of hexagonal holes with different orientations similar to the kneading screws 7a and 7b shown in FIGS. 4 (a) and 4 (b). There is.

図6(a)〜(d)に示されるように、略楕円形の外観を有するニーディングスクリュー7a,7bを、それらの軸芯に形成された六角形の孔が一致するように適宜組み合わせることにより、楕円の頂点が30°、60°および90°のいずれかの角度でずれた組み合わせを作ることができる。
詳しくは、楕円の頂点のずれが30°又は90°となる組み合わせは、図6(a)および図6(d)に示されるように孔の向きが異なるニーディングスクリュー7a,7bを組み合わせることにより作ることができ、楕円の頂点のずれが60°となる組み合わせは、図6(b)および図6(c)に示されるように孔の向きが同じニーディングスクリュー7a,7bどうしを組み合わせることにより作ることができる。
As shown in FIGS. 6A to 6D, kneading screws 7a and 7b having a substantially elliptical appearance are appropriately combined so that hexagonal holes formed in the shaft cores coincide with each other. Thus, it is possible to make a combination in which the vertices of the ellipse are displaced at any angle of 30 °, 60 ° and 90 °.
Specifically, the combination in which the deviation of the vertex of the ellipse is 30 ° or 90 ° is obtained by combining kneading screws 7a and 7b having different hole orientations as shown in FIGS. 6 (a) and 6 (d). The combination in which the deviation of the vertex of the ellipse is 60 ° can be obtained by combining kneading screws 7a and 7b having the same hole direction as shown in FIGS. 6 (b) and 6 (c). Can be made.

芯棒に組み付けられた状態で、楕円の頂点がボールスクリュー5a,5b,5cの螺旋の進行方向と同じ方向にずれていく組み合わせをフォワード(F)と呼び、同じく芯棒に組み付けられた状態で、楕円の頂点がリバーススクリュー6の螺旋の進行方向と同じ方向にずれていく組み合わせをリバース(R)と呼ぶ。したがって、90°の組み合わせにはフォワードとリバースの区別はない。
撹拌力は、30°のフォワード(30F)、60°のフォワード(60F)、90°、60°のリバース(60R)、30°のリバース(30R)の順に強くなる。
A combination in which the vertex of the ellipse is displaced in the same direction as the spiral direction of the ball screws 5a, 5b, 5c in the state assembled to the core rod is referred to as forward (F). The combination in which the vertex of the ellipse is shifted in the same direction as the spiral traveling direction of the reverse screw 6 is called reverse (R). Therefore, there is no distinction between forward and reverse in the 90 ° combination.
The stirring force increases in the order of 30 ° forward (30F), 60 ° forward (60F), 90 °, 60 ° reverse (60R), and 30 ° reverse (30R).

シリンダー1の長さに制約があるなかで、シリンダー1の全長内で一連の工程が連続的に実施されるように、ボールスクリュー5a,5b,5c、リバーススクリュー6、KDタイプのニーディングスクリュー7a,7bおよびTKDタイプのニーディングスクリュー8を組み合わせなければいけないが、この組み合わせにあたっては、ボールスクリュー5の最大径1D(図3(a)参照)を基準に設定された上述の各部材の長さを考慮して組み合わせなければならない。   Ball screw 5a, 5b, 5c, reverse screw 6, KD type kneading screw 7a so that a series of processes are continuously performed within the entire length of cylinder 1 in a limited length of cylinder 1. 7b and a TKD type kneading screw 8 must be combined. In this combination, the length of each of the above-mentioned members set based on the maximum diameter 1D of the ball screw 5 (see FIG. 3A) is used. Must be combined in consideration.

図2に示される第1および第2スクリュー3a,3bの構成と、各シリンダーブロックC1〜C11の温度は、生分解性発泡成形物の原料としてのパルプ、ポリビニルアルコール(PVA)、澱粉および水を、均一に撹拌・混合・混練して押出し成形するうえで好適となる一例である。図2中の上段の表は、表の下に示される第1および第2スクリュー3a,3bに対応したシリンダ位置および当該シリンダの制御温度、並びに、第1および第2スクリュー3a,3bを構成する部材の種類を示している。   The configurations of the first and second screws 3a and 3b shown in FIG. 2 and the temperatures of the cylinder blocks C1 to C11 are obtained by using pulp, polyvinyl alcohol (PVA), starch and water as raw materials for the biodegradable foamed molded product. This is an example suitable for extrusion molding with uniform stirring, mixing and kneading. The upper table in FIG. 2 constitutes cylinder positions and control temperatures of the cylinders corresponding to the first and second screws 3a and 3b shown below the table, and the first and second screws 3a and 3b. The kind of member is shown.

同表のスクリュー構成部材の欄において、「4/4」、「3/4」および「2/4」はボールスクリューの螺旋ピッチを表し、「R」はリバーススクリューを表している。
また同欄において、「KD60F」は、KDタイプのニーディングスクリューが60°ずれでフォワード方向に組まれていることを表し、「KD30R」は、KDタイプのニーディングスクリューが30°ずれでリバース方向に組まれていることを表し、「KD60R」は、KDタイプのニーディングスクリューが60°ずれでリバース方向に組まれていることを表している。
In the column of screw components in the table, “4/4”, “3/4”, and “2/4” represent the helical pitch of the ball screw, and “R” represents the reverse screw.
In the same column, “KD60F” indicates that the KD type kneading screw is assembled in the forward direction with a 60 ° deviation, and “KD30R” indicates that the KD type kneading screw is in the reverse direction with a 30 ° deviation. “KD60R” indicates that the KD type kneading screw is assembled in the reverse direction with a 60 ° deviation.

また同欄において、「TKD30R」は、TKDタイプのニーディングスクリューが30°ずれでリバース方向に組まれていることを表し、「TKD90」は、TKDタイプのニーディングスクリューが90°ずれで組まれていることを表し、「TKD60F」は、TKDタイプのニーディングスクリューが60°ずれでフォワード方向に組まれていることを表し、「TKD60R」は、TKDタイプのニーディングスクリューが60°ずれでリバース方向に組まれていることを表している。   In the same column, “TKD30R” indicates that the TKD type kneading screw is assembled in the reverse direction with a 30 ° offset, and “TKD90” indicates that the TKD type kneading screw is assembled with the 90 ° offset. “TKD60F” indicates that the TKD type kneading screw is assembled in the forward direction with a 60 ° deviation, and “TKD60R” indicates that the TKD type kneading screw is reverse with a 60 ° deviation. Indicates that they are assembled in the direction.

また、同表のシリンダ位置の欄において、「液(1)」および「液(2)」は、当該位置で液添が行われることを示している。なお、同欄において「液(3)」も記されているが、これは当該位置で液添が可能な構成になっていることを示している。しかし、本実施形態において「液(3)」の位置からの液添は行われない。
また、同表の最上欄は、スクリューを組むうえで基準となる長さ1D毎に区切られており、本実施形態では第1および第2スクリュー3a,3bの全長が42Dであることが分かる。
In the column of the cylinder position in the same table, “Liquid (1)” and “Liquid (2)” indicate that liquid addition is performed at the position. In the same column, “Liquid (3)” is also indicated, which indicates that the liquid can be added at that position. However, liquid addition from the position of “Liquid (3)” is not performed in this embodiment.
Further, the top column of the table is divided for each length 1D as a reference for assembling the screws, and in this embodiment, it can be seen that the total length of the first and second screws 3a and 3b is 42D.

図2に示されるように、第1および第2スクリュー3a,3bは、基端側から先端側へ向かって、「第1送り領域」、「パルプ分散領域」、「PVA溶解(加熱)領域」、「先行原料と水混合(冷却)領域」、「第2送り領域」および「α化領域」が連続的に連ねられている。そして、第1および第2スクリュー3a,3bは、全体的にみて複数のボールスクリューと複数のニーディングスクリューが交互に組合された構成となっている。
なお、図2では上記の各領域を便宜的に実線または破線で区切っているが、これは説明を容易にするためである。実際には隣接する領域は相互に影響を与えながら作用しており、図2に示されるように明確に区切られるものではない。特に破線で区切られた領域どおしは互いに強く関連している。これは後述する他の実施形態でも同様である。
As shown in FIG. 2, the first and second screws 3 a and 3 b are “first feeding region”, “pulp dispersion region”, “PVA dissolution (heating) region” from the proximal end side toward the distal end side. The “preceding raw material and water mixing (cooling) region”, the “second feed region”, and the “α-ized region” are continuously connected. The first and second screws 3a and 3b are configured such that a plurality of ball screws and a plurality of kneading screws are alternately combined as a whole.
In FIG. 2, each of the above regions is divided by a solid line or a broken line for convenience, but this is for ease of explanation. Actually, adjacent regions act while affecting each other, and are not clearly separated as shown in FIG. In particular, the areas separated by broken lines are strongly related to each other. The same applies to other embodiments described later.

シリンダーC1に相当する「第1送り領域」では、ホッパー2(図1参照)から供給されたパルプおよびPVA、並びに液(1)から投入された水(約30〜40℃)を、「第1送り領域」に続く「パルプ分散領域」へ送る。なお、シリンダーC1は特に温度制御されず常温とされる。図2上欄の表ではこれを「なりゆき」と示している。
本実施形態において、パルプの供給量は約2.15〜4.78kg/hの範囲から選択でき、PVAの供給量は約2.30〜5.09kg/hの範囲から選択でき、水の供給量は約7.41〜18.00 l/hの範囲から選択できる。
In the “first feeding area” corresponding to the cylinder C1, pulp and PVA supplied from the hopper 2 (see FIG. 1) and water (about 30 to 40 ° C.) supplied from the liquid (1) are used as “first It is sent to “pulp dispersion zone” following “feed zone”. Note that the cylinder C1 is at room temperature without any particular temperature control. This is indicated as “Nariyuki” in the upper table of FIG.
In this embodiment, the supply amount of pulp can be selected from the range of about 2.15 to 4.78 kg / h, the supply amount of PVA can be selected from the range of about 2.30 to 5.09 kg / h, and water supply The amount can be selected from the range of about 7.41 to 18.00 l / h.

「第1送り領域」でシリンダーC1に投入されたパルプは塊状であるので、よく粉砕し、PVAが溶解して粘性を発現する前にPVAと均一に分散するようにしなければならない。
このため、「第1送り領域」に続く、シリンダーC2〜C4に相当する「パルプ分散領域」では長さ2Dにわたる「KD60F」と、長さ1Dにわたる「KD60F」をそれぞれ2箇所ずつ設けている。
Since the pulp charged into the cylinder C1 in the “first feeding area” is agglomerated, it must be crushed well and uniformly dispersed with the PVA before the PVA dissolves and develops viscosity.
For this reason, in the “pulp dispersion region” corresponding to the cylinders C2 to C4 following the “first feed region”, “KD60F” having a length of 2D and “KD60F” having a length of 1D are provided.

また、次工程にあたる「PVA溶解(加熱)領域」でPVAが加熱・溶解されるのに備えて、シリンダーC2〜C4は、約19℃から約118℃まで徐々にシリンダー温度が上昇するように温度制御される。   In addition, the cylinders C2 to C4 are heated so that the cylinder temperature gradually increases from about 19 ° C. to about 118 ° C. in preparation for the PVA to be heated and dissolved in the “PVA melting (heating) region” corresponding to the next step. Be controlled.

シリンダーC5〜C8に相当する「PVA溶解(加熱)領域」では、前工程の「パルプ分散領域」で形成されたパルプ分散体に熱を加え、分散体中のPVAを溶解させる。このため、シリンダーC5〜C7は、133〜134℃の比較的高温を維持するように温度制御される。なお、シリンダーC8は次工程である「先行原料と水混合(冷却)領域」に備えるため、約109℃と若干低めに温度制御される。   In the “PVA dissolution (heating) region” corresponding to the cylinders C5 to C8, heat is applied to the pulp dispersion formed in the “pulp dispersion region” in the previous step to dissolve the PVA in the dispersion. For this reason, the cylinders C5 to C7 are temperature controlled so as to maintain a relatively high temperature of 133 to 134 ° C. Note that the cylinder C8 is temperature-controlled at a slightly lower value of about 109 ° C. in order to prepare for the “preceding raw material and water mixing (cooling) region” as the next step.

パルプ分散体に熱を加え、PVAの溶解により粘性が発現したパルプ分散体を撹拌・混合するにあたっては、シリンダー内にパルプ分散体を滞留させて満注状態とし、満注状態のパルプ分散体を撹拌力の強い組み合わせのニーディングスクリューで撹拌・混合することがシリンダとの熱伝達効率および撹拌・混合効率の観点からみて好ましい。   When applying heat to the pulp dispersion and stirring and mixing the pulp dispersion that has developed viscosity due to the dissolution of PVA, the pulp dispersion is retained in the cylinder to make it fully poured. Stirring and mixing with a kneading screw having a strong stirring force is preferable from the viewpoint of heat transfer efficiency with the cylinder and stirring and mixing efficiency.

このため、「PVA溶解(加熱)領域」では、シリンダーC5およびシリンダーC6に相当する部分に長さ1Dにわたる「KD30R」をそれぞれ1箇所ずつ設け、さらにシリンダーC7に相当する部分に長さ1/2Dにわたる「KD30R」を1箇所設けている。そして、ニーディングスクリューが設けられた箇所の下流側にはそれぞれリバーススクリューが設けられている。   For this reason, in the “PVA melting (heating) region”, “KD30R” having a length of 1D is provided in each of the portions corresponding to the cylinder C5 and C6, and further, the length corresponding to the cylinder C7 is ½D in length. One “KD30R” is provided. And the reverse screw is each provided in the downstream of the location in which the kneading screw was provided.

リバーススクリューは、搬送されてきたパルプ分散材を押し戻すように作用するため、PVAの溶解により粘性が発現したパルプ分散材はニーディングスクリューが設けられた箇所に滞留し、シリンダー内で満注状態となる。満注状態にあるパルプ分散材を、撹拌力の強い「KD30R」で撹拌・混合することにより効率よく撹拌・混合することができる。   Since the reverse screw acts to push back the conveyed pulp dispersion material, the pulp dispersion material that has developed a viscosity due to the dissolution of PVA stays at the place where the kneading screw is provided, and is fully filled in the cylinder. Become. It is possible to efficiently stir and mix the pulp dispersion material in the full-poured state by stirring and mixing with “KD30R” having strong stirring power.

シリンダーC9に相当する「先行原料と水混合(冷却)領域」では、前工程の「PVA溶解(加熱)領域」でPVAを溶解させるために熱せられたパルプ分散体を冷却する。これは、澱粉が投入される後の「第2送り領域」で、澱粉が熱の影響を受けてダマとなり、パルプ分散体と均一に混合しなくなるような事態を防ぐためである。
パルプ分散体を冷却するために、シリンダーC9は約39℃を維持するように温度制御される。
また、冷却をより効率よく行うためにシリンダーC8とシリンダーC9との間にある液(2)で約5℃に温度管理された水が供給される。なお、この冷却用の水の供給量は約6.00〜18.00 l/hの範囲から選択できる。
In the “preceding raw material and water mixing (cooling) region” corresponding to the cylinder C9, the heated pulp dispersion is cooled in order to dissolve the PVA in the “PVA dissolution (heating) region” in the previous step. This is to prevent a situation in which, in the “second feeding region” after the starch is added, the starch becomes lumpy due to the influence of heat and is not uniformly mixed with the pulp dispersion.
In order to cool the pulp dispersion, the cylinder C9 is temperature controlled to maintain about 39 ° C.
Moreover, in order to perform cooling more efficiently, water whose temperature is controlled at about 5 ° C. is supplied by the liquid (2) between the cylinder C8 and the cylinder C9. The supply amount of the cooling water can be selected from the range of about 6.00 to 18.00 l / h.

液(2)で約5℃の水が投入された後、パルプ分散体と水とを撹拌・混合する必要があるため、シリンダーC9に相当する部分には長さ1/2Dにわたる「TKD90」が3箇所設けられている。約5℃の水とパルプ分散体とを約39℃に温度制御されたシリンダーC9内で撹拌・混合することによりパルプ分散体を効率よく冷却することができ、澱粉が投入される「第2送り領域」に備えることができる。   After about 5 ° C. water is added as the liquid (2), it is necessary to stir and mix the pulp dispersion and water. Therefore, the portion corresponding to the cylinder C9 has “TDD90” having a length of 1 / 2D. Three places are provided. The pulp dispersion can be efficiently cooled by stirring and mixing the water at about 5 ° C. and the pulp dispersion in a cylinder C9 whose temperature is controlled at about 39 ° C. It is possible to prepare for “region”.

シリンダーC10に相当する「第2送り領域」では、前工程で冷却されたパルプ分散体と図示しないホッパーから供給された澱粉とを次工程にあたる「α化領域」へ送る。澱粉の供給量は9.30〜20.66kg/hの範囲から選択できる。パルプ分散体と澱粉は「α化領域」へ向けて送られる過程で簡易に混合され澱粉混練体とされる。
「第2送り領域」は前工程で冷却されたパルプ分散体と投入された澱粉を手早く次工程である「α化領域」に送ることを目的としているため、ニーディングスクリューが設けられず、「第2送り領域」は螺旋ピッチ「4/4」、「3/4」などの比較的搬送速度の高いボールスクリューで主に構成される。また、シリンダーC10は約29℃という低い温度に温度制御される。
In the “second feed area” corresponding to the cylinder C10, the pulp dispersion cooled in the previous process and the starch supplied from a hopper (not shown) are sent to the “alpha process area” corresponding to the next process. The supply amount of starch can be selected from the range of 9.30 to 20.66 kg / h. The pulp dispersion and starch are simply mixed in the process of being sent to the “alpha-ized region” to form a starch kneaded body.
The “second feeding area” is intended to quickly send the pulp dispersion cooled in the previous process and the input starch to the “alpha-ized area” which is the next process. The “second feeding area” is mainly composed of a ball screw having a relatively high conveying speed such as a helical pitch “4/4” or “3/4”. The temperature of the cylinder C10 is controlled to a low temperature of about 29 ° C.

なお、ここで投入される澱粉は、生分解性発泡成形物の原料として最適な性質を示すように、澱粉と二酸化チタンとを混合したマスターバッチと呼ばれるものに、さらに澱粉とゼラチンを加えたものであり、便宜上、調合澱粉と呼ぶ。
マスターバッチの配合は、澱粉19830gに対して二酸化チタン850gである。このような配合からなるマスターバッチ6893gに澱粉26440g、ゼラチン2000gを加え、ミキサーで1分程度撹拌して調合澱粉とする。
The starch added here is a master batch in which starch and titanium dioxide are mixed, and starch and gelatin are added to show the optimum properties as a raw material for the biodegradable foamed molded product. For convenience, it is called blended starch.
The masterbatch formulation is 850 g titanium dioxide per 19830 g starch. Add 26440 g of starch and 2000 g of gelatin to 6893 g of the master batch having such a composition, and stir for about 1 minute with a mixer to obtain a blended starch.

シリンダーC11に相当する「α化領域」では、「第2送り領域」で形成された澱粉混練体を加熱してα化し、α化澱粉混練体を得る。
このため、シリンダー11は約68℃に温度制御され、澱粉混練体に均一に熱を加えるために螺旋ピッチ2/4のボールスクリュー4を用い、搬送速度を低く抑えている。また、「α化領域」には、長さ1/2にわたる「TKD60F」が2箇所、長さ1/2Dにわたる「TKD60R」が1箇所設けられ、撹拌・混合効率を上げるために最後のニーディングスクリューにあたる「TKD60R」の下流には、満注状態にするためのリバーススクリューが設けられている。
これにより、満注状態にある澱粉混練体を目の細かな「TKD60F」および「TKD60R」で均一に撹拌・混合でき、澱粉混練体に均一に熱を加えてα化澱粉混練体とすることができる。
In the “α-ized region” corresponding to the cylinder C11, the starch kneaded body formed in the “second feed region” is heated to be α-converted to obtain an α-modified starch kneaded body.
For this reason, the temperature of the cylinder 11 is controlled to about 68 ° C., and a ball screw 4 having a helical pitch 2/4 is used to uniformly apply heat to the starch kneaded body, and the conveying speed is kept low. In addition, the “α-ized zone” has two “TKD60F” with a length of 1/2 and one “TKD60R” with a length of 1 / 2D, which is the last kneading to increase the stirring and mixing efficiency. A reverse screw is provided downstream of “TKD60R”, which is a screw, in order to achieve a full-poured state.
As a result, the starch kneaded body in a fully-poured state can be uniformly stirred and mixed with fine “TKD60F” and “TKD60R”, and the starch kneaded body can be uniformly heated to obtain a pregelatinized starch kneaded body. it can.

このようにして得られたα化澱粉混練体は、その後、成形シリンダー9に搬送され、成形シリンダー9の出口9aから棒状の混練体として押出し成形される。押出し成形された棒状の混練体は所定長毎に切断され、生分解性発泡成形物の原料として利用される。
なお、本実施形態において1Dの長さは約47mmであり、第1および第2スクリュー3a,3bの回転速度は約150〜300rpmである。
The pregelatinized starch kneaded body thus obtained is then conveyed to the forming cylinder 9 and extruded from the outlet 9a of the forming cylinder 9 as a rod-shaped kneaded body. Extruded rod-shaped kneaded bodies are cut at predetermined lengths and used as raw materials for biodegradable foamed products.
In this embodiment, the length of 1D is about 47 mm, and the rotational speeds of the first and second screws 3a and 3b are about 150 to 300 rpm.

実施形態2
本発明の実施形態2に係るエクストルーダーについて図8に基づいて説明する。図8は実施形態2に係るエクストルーダーの図2対応図である。
Embodiment 2
The extruder which concerns on Embodiment 2 of this invention is demonstrated based on FIG. FIG. 8 is a diagram corresponding to FIG. 2 of the extruder according to the second embodiment.

本発明の実施形態2に係るエクストルーダーは、実施形態1に係るエクストルーダー100(図1参照)のシリンダー1内に挿入される一対のスクリュー3(図2参照)の構成を変更したものであり、その他の点は上述の実施形態1に係るエクストルーダー100と同様である。   The extruder according to Embodiment 2 of the present invention is obtained by changing the configuration of a pair of screws 3 (see FIG. 2) inserted into the cylinder 1 of the extruder 100 according to Embodiment 1 (see FIG. 1). The other points are the same as those of the extruder 100 according to the first embodiment.

図8に示されるように、実施形態2に係るエクストルーダーに用いられる一対のスクリュー203は、第1スクリュー203a、第2スクリュー203bとからなり、第1および第2スクリュー203a,203bは基本的に同じ構成を有している。   As shown in FIG. 8, the pair of screws 203 used in the extruder according to the second embodiment includes a first screw 203a and a second screw 203b, and the first and second screws 203a and 203b are basically the same. It has the same configuration.

上述の実施形態1では、パルプ、PVAおよび水を撹拌・混合してパルプ分散体を形成する「パルプ分散領域」において、シリンダーC2〜C3に相当する部分に長さ2Dにわたる「KD60F」を2箇所設けていたが、本実施形態では、より均一な撹拌・混合を行うため、上記「KD60F」をより撹拌力の強い「TKD90」に置換している。
すなわち、本実施形態では、パルプ分散体を形成する「パルプ分散領域」のシリンダーC2〜C3に相当する部分に長さ2Dにわたる「TKD90」を2箇所設けることにより、パルプ、PVAおよび水がより均一に撹拌・混合されるようにしたものである。製造に係るその他の諸条件は実施形態1と同様である。
In Embodiment 1 described above, in the “pulp dispersion region” in which pulp, PVA and water are stirred and mixed to form a pulp dispersion, two portions of “KD60F” having a length of 2D are provided in portions corresponding to the cylinders C2 to C3. However, in the present embodiment, in order to perform more uniform stirring and mixing, the “KD60F” is replaced with “TKD90” having a stronger stirring force.
That is, in this embodiment, two portions of “TDD90” having a length of 2D are provided in the portion corresponding to the cylinders C2 to C3 of the “pulp dispersion region” forming the pulp dispersion, so that the pulp, PVA, and water are more uniform. The mixture is stirred and mixed. Other conditions relating to the manufacturing are the same as those in the first embodiment.

実施形態3
本発明の実施形態3に係るエクストルーダーについて図9に基づいて説明する。図9は実施形態3に係るエクストルーダーの図2対応図である。
Embodiment 3
An extruder according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 9 is a view corresponding to FIG. 2 of the extruder according to the third embodiment.

本発明の実施形態3に係るエクストルーダーは、実施形態1に係るエクストルーダー100(図1参照)のシリンダー1内に挿入される一対のスクリュー3(図2参照)の構成を変更したものであり、その他の点は上述の実施形態1に係るエクストルーダー100と同様である。   The extruder according to Embodiment 3 of the present invention is obtained by changing the configuration of a pair of screws 3 (see FIG. 2) inserted into the cylinder 1 of the extruder 100 according to Embodiment 1 (see FIG. 1). The other points are the same as those of the extruder 100 according to the first embodiment.

図9に示されるように、実施形態3に係るエクストルーダーに用いられる一対のスクリュー303は、第1スクリュー303a、第2スクリュー303bとからなり、第1および第2スクリュー303a,303bは基本的に同じ構成を有している。   As shown in FIG. 9, the pair of screws 303 used in the extruder according to the third embodiment includes a first screw 303a and a second screw 303b, and the first and second screws 303a and 303b are basically the same. It has the same configuration.

上述の実施形態1では、シリンダーC2〜C4に相当する領域を、パルプ、PVAおよび水を撹拌・混合してパルプ分散体を形成する「パルプ分散領域」としていたが、実施形態3では、より均一、かつ、確実な撹拌・混合を行うため、シリンダーC2〜C6に相当する部分が「パルプ分散領域」とされている。
すなわち、実施形態3は、より均一に撹拌混合されたパルプ分散体を得るため、上述の実施形態1よりも「パルプ分散領域」の長さを延長したものである。
In the first embodiment described above, the region corresponding to the cylinders C2 to C4 is a “pulp dispersion region” in which pulp, PVA, and water are stirred and mixed to form a pulp dispersion. However, in the third embodiment, the region is more uniform. And in order to perform reliable stirring and mixing, a portion corresponding to the cylinders C2 to C6 is defined as a “pulp dispersion region”.
That is, in the third embodiment, the length of the “pulp dispersion region” is extended as compared with the first embodiment in order to obtain a pulp dispersion that is more uniformly stirred and mixed.

図9に示されるように、実施形態3では、「パルプ分散領域」に基端側から先端側へ向かって長さ2Dにわたる「TKD90」が2箇所、長さ2Dにわたる「KD90」が3箇所、長さ1/2Dにわたる「KD90」が1箇所設けられている。
このように、実施形態3では、実施形態1よりもシリンダー2つ分延長された「パルプ分散領域」に、合計で長さ10.5D分ものニーディングスクリューが設けられており、パルプ分散体を作製するにあたって、より均一、かつ、確実な撹拌・混合がなされるように配慮されている。
As shown in FIG. 9, in the third embodiment, the “pulp dispersion region” has two “KDD 90” s extending over the length 2D from the proximal end side toward the distal end side, and three “KD90s” extending over the length 2D, One “KD90” is provided over a length of 1 / 2D.
Thus, in Embodiment 3, a kneading screw having a total length of 10.5D is provided in the “pulp dispersion region” extended by two cylinders from Embodiment 1, and the pulp dispersion is In manufacturing, consideration is given to more uniform and reliable stirring and mixing.

また、「パルプ分散領域」の最後に相当するシリンダーC5およびC6は、次工程にあたる「PVA溶解(加熱)領域」でPVAが加熱・溶解されるのに備えて、シリンダー温度が約40℃と約80℃にそれぞれ温度制御される。
これに対し、上述の実施形態1では、「パルプ分散領域」の最後に相当するシリンダーC4で、PVAを加熱・溶解させる「PVA溶解(加熱)領域」のシリンダー温度(約134℃)に近い約118℃まで温度上昇するように温度制御される。
このため実施形態3は、実施形態1よりも「パルプ分散領域」と「PVA溶解(加熱)領域」との温度差が大きく、シリンダーの温度制御の観点からみて、実施形態1よりも「パルプ分散領域」と「PVA溶解(加熱)領域」との境界が明確化されていると言える。
The cylinders C5 and C6 corresponding to the end of the “pulp dispersion region” have a cylinder temperature of about 40 ° C. and about 40 ° C. in preparation for the PVA being heated and dissolved in the “PVA dissolution (heating) region” corresponding to the next step. The temperature is controlled to 80 ° C., respectively.
On the other hand, in the above-described first embodiment, the cylinder C4 corresponding to the end of the “pulp dispersion region” has a cylinder temperature (about 134 ° C.) close to the cylinder temperature (about 134 ° C.) of the “PVA dissolution (heating) region” in which PVA is heated and dissolved. The temperature is controlled so that the temperature rises to 118 ° C.
Therefore, the third embodiment has a larger temperature difference between the “pulp dispersion region” and the “PVA dissolution (heating) region” than the first embodiment, and is more “pulp dispersion than the first embodiment from the viewpoint of temperature control of the cylinder. It can be said that the boundary between the “region” and the “PVA dissolution (heating) region” is clarified.

実施形態3では、上述のとおり「パルプ分散領域」がシリンダー2つ分延長されたことに伴い、PVAを加熱・溶解させる「PVA溶解(加熱)領域」がシリンダー2つ分短縮されている。
すなわち、上述の実施形態1では、シリンダーC5〜C7が約133〜134℃に温度制御され、シリンダーC8が次工程である「先行原料と水混合(冷却)領域」に備えて約109℃に温度制御されていたが、本実施形態では2つのシリンダーC7およびC8のみがPVA溶解(加熱)領域とされ、それぞれ約134℃に温度制御される。
In the third embodiment, as described above, the “pulp dispersion region” is extended by two cylinders, so that the “PVA dissolution (heating) region” for heating and dissolving PVA is shortened by two cylinders.
That is, in Embodiment 1 described above, the temperature of the cylinders C5 to C7 is controlled to about 133 to 134 ° C, and the temperature of the cylinder C8 is about 109 ° C in preparation for the "preceding raw material and water mixing (cooling) region" as the next step. Although controlled, in this embodiment, only the two cylinders C7 and C8 are in the PVA melting (heating) region, and the temperature is controlled to about 134 ° C., respectively.

つまり、上述の実施形態1ではPVAを溶解させるために約133〜134℃に温度制御される区間がシリンダー3つ分設けられ、さらに「先行原料と水混合(冷却)領域」に備えて徐々に温度を下げる区間がシリンダー1つ分設けられていたが、本実施形態では約133〜134℃の高温に温度制御される区間がシリンダー1つ分短縮され、さらに徐々に温度を下げる区間が廃されている。これにより、本実施形態は実施形態1よりも「PVA溶解(加熱)領域」と「先行原料と水混合(冷却)領域」との温度差が大きくなっており、シリンダーの温度制御の観点からみて、実施形態1よりも「PVA溶解(加熱)領域」と「先行原料と水混合(冷却)領域」との境界が明確化されていると言える。   In other words, in the above-described first embodiment, three cylinders are provided with a temperature controlled to about 133 to 134 ° C. in order to dissolve PVA, and further, gradually prepared for the “preceding raw material and water mixing (cooling) region”. The section for lowering the temperature is provided for one cylinder. In this embodiment, the section for temperature control to a high temperature of about 133 to 134 ° C. is shortened by one cylinder, and the section for gradually lowering the temperature is eliminated. ing. As a result, the temperature difference between the “PVA melting (heating) region” and the “preceding raw material and water mixing (cooling) region” is larger than that in the first embodiment, and this embodiment is viewed from the viewpoint of cylinder temperature control. It can be said that the boundary between the “PVA dissolution (heating) region” and the “preceding raw material and water mixing (cooling) region” is clarified as compared with the first embodiment.

「先行原料と水混合(冷却)領域」を経て冷却されたパルプ分散体は「第2送り領域」で澱粉と混合されて澱粉混練体とされ、さらに「α化領域」で加熱されα化澱粉混練体とされるが、「第2送り領域」および「α化領域」については実施形態1と同様である。
また、製造に係るその他の諸条件も、上記した事項以外は基本的に上述の実施形態1と同様である。
The pulp dispersion cooled through the “preceding raw material and water mixing (cooling) region” is mixed with the starch in the “second feeding region” to form a starch kneaded body, and further heated in the “pregelatinized region” to be pregelatinized starch. Although the kneaded body is used, the “second feeding region” and the “alpha-ized region” are the same as those in the first embodiment.
Further, other various conditions relating to the manufacturing are basically the same as those in the first embodiment except for the matters described above.

実施形態4
本発明の実施形態4に係るエクストルーダーについて図10に基づいて説明する。図10は実施形態4に係るエクストルーダーの図2対応図である。
Embodiment 4
The extruder which concerns on Embodiment 4 of this invention is demonstrated based on FIG. FIG. 10 is a view corresponding to FIG. 2 of the extruder according to the fourth embodiment.

本発明の実施形態4に係るエクストルーダーは、実施形態1に係るエクストルーダー100(図1参照)のシリンダー1内に挿入される一対のスクリュー3(図2参照)の構成を変更したものであり、その他の点は上述の実施形態1に係るエクストルーダー100と同様である。   The extruder according to the fourth embodiment of the present invention is obtained by changing the configuration of a pair of screws 3 (see FIG. 2) inserted into the cylinder 1 of the extruder 100 (see FIG. 1) according to the first embodiment. The other points are the same as those of the extruder 100 according to the first embodiment.

図10に示されるように、実施形態4に係るエクストルーダーに用いられる一対のスクリュー403は、第1スクリュー403a、第2スクリュー403bとからなり、第1および第2スクリュー403a,403bは基本的に同じ構成を有している。
第1および第2スクリュー403a,403bは、上述の実施形態3に係るエクストルーダーの第1および第2スクリュー303a,303bと略同一の構成を有している。
As shown in FIG. 10, the pair of screws 403 used in the extruder according to the fourth embodiment includes a first screw 403a and a second screw 403b, and the first and second screws 403a and 403b are basically the same. It has the same configuration.
The first and second screws 403a and 403b have substantially the same configuration as the first and second screws 303a and 303b of the extruder according to the third embodiment.

つまり、上述の実施形態3では、第1および第2スクリュー303a,303bの基端側から3番目と4番目に位置するニーディングスクリューとして、長さ2Dにわたる「KD90」をそれぞれ用いていたが、本実施形態では上記の「KD90」を、より均一な撹拌・混合が可能な「TKD90」に置換している。その他は、製造に係る諸条件を含め上述の実施形態3と同様である。   That is, in the above-described Embodiment 3, “KD90” having a length of 2D is used as the kneading screws located at the third and fourth positions from the proximal ends of the first and second screws 303a and 303b. In the present embodiment, the above “KD90” is replaced with “TKD90” capable of more uniform stirring and mixing. Others are the same as those of the above-described third embodiment, including various conditions relating to manufacturing.

なお、上述の実施形態1〜4で、図2および図8〜10の各図の表に示したシリンダ位置は説明を簡略にするための参考用のものであり、実際のシリンダの長さは、上記各図の表で区分された長さと若干異なる。   In the above-described first to fourth embodiments, the cylinder positions shown in the tables of FIGS. 2 and 8 to 10 are for reference, and the actual cylinder length is The length is slightly different from the length divided in the tables of the above figures.

実施例
実施例では、上述の実施形態1〜4に係るエクストルーダーを用いて生分解性発泡成形物の原料をそれぞれ製造し、製造された原料から生分解性発泡成形物を製造し、パルプの分散性を比較した。詳細は次のとおりである。
In the working examples , the raw materials of the biodegradable foamed molded products are manufactured using the extruders according to the above-described first to fourth embodiments, the biodegradable foamed molded products are manufactured from the manufactured raw materials, and the pulp Dispersibility was compared. Details are as follows.

まず、実施形態1に係るエクストルーダーを用いて生分解性発泡成形物の原料を製造した。なお、パルプの供給量は約3.10kg/h、PVAの供給量は約3.31kg/h、液(1)の位置からの水(約35℃)の供給量は約10.95 l/h、液(2)の位置からの水(約5℃)の供給量は約9.69 l/h、澱粉(調合澱粉)の供給量は約14.22kg/hとした。   First, the raw material of the biodegradable foam molded product was manufactured using the extruder according to Embodiment 1. The supply amount of pulp is about 3.10 kg / h, the supply amount of PVA is about 3.31 kg / h, and the supply amount of water (about 35 ° C.) from the position of the liquid (1) is about 10.95 l / h. h, the supply amount of water (about 5 ° C.) from the position of the liquid (2) was about 9.69 l / h, and the supply amount of starch (prepared starch) was about 14.22 kg / h.

上記のような配合で製造された原料を適量に切り分けて発泡成形用の金型(図示せず)に供給し、金型内で加熱して発泡・焼成し、図11に示されるような容器状の生分解性発泡成形物10を製造した。
その後、製造された複数の生分解性発泡成形物10を光に透かし、パルプの解け残りの有無を目視で判断した。判断基準は光に透かした際に影となって表れる部分の有無とし、僅かでも影となって表れる部分が視認されればパルプの解け残りが発生していると判断した。
The raw material produced by the above blending is cut into an appropriate amount, supplied to a mold for foam molding (not shown), heated in the mold, foamed and fired, and a container as shown in FIG. A biodegradable foamed molded product 10 was produced.
Thereafter, the manufactured biodegradable foamed molded article 10 was watermarked with light, and the presence or absence of unmelted pulp was visually determined. The judgment criterion was the presence or absence of a portion appearing as a shadow when watermarked with light, and if a portion appearing as a shadow was visually recognized, it was determined that unmelted pulp had occurred.

以上の手順を実施形態2〜4に係るエクストルーダーについても行った。なお、原料の配合は各実施形態とも共通である。結果は次の表1の通りである。   The above procedure was also performed for the extruders according to Embodiments 2 to 4. In addition, the mixing | blending of a raw material is common also in each embodiment. The results are shown in Table 1 below.

Figure 0004846861
Figure 0004846861

表1の結果について有意差検定を用い、実施形態1、実施形態2、実施形態3および実施形態4の順でパルプの解け残りが改善されていることを検証した。
なお、以下の説明において式中の添え字A、B、CおよびDは実施形態1、実施形態2、実施形態3および実施形態4をそれぞれ意味する(表1参照)。
Using the significance test for the results shown in Table 1, it was verified that the unmelted pulp was improved in the order of Embodiment 1, Embodiment 2, Embodiment 3 and Embodiment 4.
In the following description, the subscripts A, B, C, and D in the formulas mean Embodiment 1, Embodiment 2, Embodiment 3, and Embodiment 4, respectively (see Table 1).

実施形態1と実施形態2の比較
帰無仮説:実施形態1と実施形態2でパルプの解け残りの発生に差はない。
対立仮説:実施形態2は実施形態1よりもパルプの解け残りが改善されている。
危険率:5%、片側検定
次の式(1)に基づいてZの値を計算する。
Comparison of Embodiments 1 and 2 Null hypothesis: There is no difference in the occurrence of unmelted pulp in Embodiments 1 and 2.
Alternative hypothesis: Embodiment 2 has improved pulp unresolved than Embodiment 1.
Risk factor: 5%, one-sided test Calculate the value of Z based on the following equation (1).

Figure 0004846861
Figure 0004846861

上記の式(1)によれば、ZA/B=10.2となる。片側検定の危険率5%レベルの限界値は1.65であり、算出されたZA/Bはその値よりも大きいため、帰無仮説は棄却される。
よって、実施形態2は実施形態1よりパルプの解け残りが改善されていると判断する。
According to the above equation (1), Z A / B = 10.2. The limit value of the one-sided test at the 5% risk level is 1.65, and the calculated Z A / B is larger than that value, so the null hypothesis is rejected.
Therefore, Embodiment 2 judges that the unmelted pulp is improved compared to Embodiment 1.

実施形態2と実施形態3の比較
実施形態1と実施形態2の検定と同様に検定すると、ZB/C=10.0となるため、実施形態3は実施形態2よりパルプの解け残りが改善されていると判断する。
Comparison between Embodiment 2 and Embodiment 3 When tested in the same manner as in Embodiment 1 and Embodiment 2, Z B / C = 10.0 is obtained, so Embodiment 3 has improved pulp unresolved than Embodiment 2. Judge that it has been.

実施形態3と実施形態4の比較
実施形態1と実施形態2の検定と同様に検定すると、ZC/D=10.9となるため、実施形態4は実施形態3よりパルプの解け残りが改善されていると判断する。
Comparison between Embodiments 3 and 4 When the same tests as those in Embodiments 1 and 2 are performed, Z C / D = 10.9 is obtained, so that the unmelted pulp is improved in Embodiment 4 over Embodiment 3. Judge that it has been.

以上の結果、パルプの解け残りについては、実施形態1、実施形態2、実施形態3および実施形態4の順で改善されていることが検証された。   As a result, it was verified that the remaining unmelted pulp was improved in the order of Embodiment 1, Embodiment 2, Embodiment 3, and Embodiment 4.

1 シリンダー
2 ホッパー
3,203,303,403 一対のスクリュー
3a,203a,303a,403a 第1スクリュー
3b,203b,303b,403b 第2スクリュー
4 駆動部
5,5a,5b,5c ボールスクリュー
6 リバーススクリュー
7a,7b,8 ニーディングスクリュー
9 成形シリンダー
9a 出口
10 生分解性発泡成形物
100 エクストルーダー
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Hopper 3,203,303,403 A pair of screw 3a, 203a, 303a, 403a 1st screw 3b, 203b, 303b, 403b 2nd screw 4 Drive part 5,5a, 5b, 5c Ball screw 6 Reverse screw 7a , 7b, 8 Kneading screw 9 Molding cylinder 9a Outlet 10 Biodegradable foamed molding 100 Extruder

Claims (2)

温度制御される細長いシリンダーと、シリンダー内で互いに平行に並び同方向に軸回転する一対の細長いスクリューとを備え、各スクリューは、シリンダーに供給された材料をシリンダーの基端側から先端側へ搬送する複数のボールスクリューと搬送されてきた材料を撹拌・混合する複数のニーディングスクリューが交互に組合されてなるエクストルーダーを用い、パルプ、粉状または粒状のポリビニルアルコールおよび水を撹拌・混合してパルプ分散体を調製し、調製されたパルプ分散体を加熱して前記分散体中のポリビニルアルコールを溶解させ、ポリビニルアルコールが溶解したパルプ分散体を冷却し、冷却されたパルプ分散体を澱粉と混練して澱粉混練体を調製し、調製された澱粉混練体を加熱してα化しα化澱粉混練体を得る工程を備え、パルプ分散体を調製する際にシリンダーの温度を常温から100〜120℃の範囲まで徐々に上昇させ、パルプ分散体を加熱してポリビニルアルコールを溶解させる際にシリンダーの温度を130〜140℃の範囲に維持し、パルプ分散体を冷却する際にシリンダーの温度を100〜120℃の範囲から35〜50℃の範囲まで徐々に低下させると共に前記パルプ分散体に5〜10℃の水をさらに加え、澱粉を投入し澱粉混練体を調製する際にシリンダーの温度25〜35℃の範囲に維持し、澱粉混練体を加熱してα化する際にシリンダーの温度を40〜70℃の範囲に維持する生分解性発泡成形物の原料の製造方法。 Equipped with a temperature-controlled elongated cylinder and a pair of elongated screws that are parallel to each other in the cylinder and rotate in the same direction, each screw transports the material supplied to the cylinder from the proximal end side to the distal end side of the cylinder Using an extruder in which a plurality of ball screws and a plurality of kneading screws that stir and mix the conveyed material are alternately combined, pulp, powder or granular polyvinyl alcohol and water are stirred and mixed. A pulp dispersion is prepared, the prepared pulp dispersion is heated to dissolve polyvinyl alcohol in the dispersion, the pulp dispersion in which polyvinyl alcohol is dissolved is cooled, and the cooled pulp dispersion is kneaded with starch. was starch kneaded material to prepare, prepared starch kneaded material is heated to α turned into obtaining a α starch kneaded body The temperature of the cylinder is gradually raised from room temperature to a range of 100 to 120 ° C. when preparing the pulp dispersion, and the temperature of the cylinder is 130 to 140 ° C. when the pulp dispersion is heated to dissolve the polyvinyl alcohol. When the pulp dispersion is cooled, the temperature of the cylinder is gradually decreased from the range of 100 to 120 ° C. to the range of 35 to 50 ° C., and water of 5 to 10 ° C. is further added to the pulp dispersion. In addition, when starch is added to prepare a starch kneaded body, the temperature of the cylinder is maintained in a range of 25 to 35 ° C., and when the starch kneaded body is heated to be gelatinized, the temperature of the cylinder is set within a range of 40 to 70 ° C. The manufacturing method of the raw material of the biodegradable foam molding to maintain . 温度制御される細長いシリンダーと、シリンダー内で互いに平行に並び同方向に軸回転する一対の細長いスクリューとを備え、各スクリューは、シリンダーに供給された材料をシリンダーの基端側から先端側へ搬送する複数のボールスクリューと搬送されてきた材料を撹拌・混合する複数のニーディングスクリューが交互に組合されてなるエクストルーダーを用い、パルプ、粉状または粒状のポリビニルアルコールおよび水を撹拌・混合してパルプ分散体を調製し、調製されたパルプ分散体を加熱して前記分散体中のポリビニルアルコールを溶解させ、ポリビニルアルコールが溶解したパルプ分散体を冷却し、冷却されたパルプ分散体を澱粉と混練して澱粉混練体を調製し、調製された澱粉混練体を加熱してα化しα化澱粉混練体を得る工程を備え、パルプ分散体を調製する際にシリンダーの温度を常温から70〜90℃の範囲まで徐々に上昇させ、パルプ分散体を加熱してポリビニルアルコールを溶解させる際にシリンダーの温度を130〜140℃の範囲に維持し、パルプ分散体を冷却する際にシリンダーの温度を35〜50℃の範囲に維持すると共に前記パルプ分散体に5〜10℃の水をさらに加え、澱粉を投入し澱粉混練体を調製する際にシリンダーの温度25〜35℃の範囲に維持し、澱粉混練体を加熱してα化する際にシリンダーの温度を50〜90℃の範囲に維持する生分解性発泡成形物の原料の製造方法。 Equipped with a temperature-controlled elongated cylinder and a pair of elongated screws that are parallel to each other in the cylinder and rotate in the same direction, each screw transports the material supplied to the cylinder from the proximal end side to the distal end side of the cylinder Using an extruder in which a plurality of ball screws and a plurality of kneading screws that stir and mix the conveyed material are alternately combined, pulp, powder or granular polyvinyl alcohol and water are stirred and mixed. A pulp dispersion is prepared, the prepared pulp dispersion is heated to dissolve polyvinyl alcohol in the dispersion, the pulp dispersion in which polyvinyl alcohol is dissolved is cooled, and the cooled pulp dispersion is kneaded with starch. The starch kneaded body is prepared, and the prepared starch kneaded body is heated and pregelatinized to obtain a pregelatinized starch kneaded body. When the pulp dispersion is prepared, the temperature of the cylinder is gradually increased from room temperature to a range of 70 to 90 ° C., and when the pulp dispersion is heated to dissolve the polyvinyl alcohol, the temperature of the cylinder is 130 to 140 ° C. When the pulp dispersion is cooled, the temperature of the cylinder is maintained in the range of 35 to 50 ° C., and water at 5 to 10 ° C. is further added to the pulp dispersion, and starch is added to the starch kneaded body. maintained in the range of temperature 25 to 35 ° C. of the cylinder in preparing the biodegradable expanded molded product that maintain the temperature of the cylinder when α by heating starch kneaded material in the range of 50 to 90 ° C. Raw material manufacturing method.
JP2010085129A 2009-05-20 2010-04-01 Extruder and biodegradable foamed material manufacturing method using the same Expired - Fee Related JP4846861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010085129A JP4846861B2 (en) 2009-05-20 2010-04-01 Extruder and biodegradable foamed material manufacturing method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009122081 2009-05-20
JP2009122081 2009-05-20
JP2010085129A JP4846861B2 (en) 2009-05-20 2010-04-01 Extruder and biodegradable foamed material manufacturing method using the same

Publications (3)

Publication Number Publication Date
JP2011000881A JP2011000881A (en) 2011-01-06
JP2011000881A5 JP2011000881A5 (en) 2011-08-11
JP4846861B2 true JP4846861B2 (en) 2011-12-28

Family

ID=43125903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010085129A Expired - Fee Related JP4846861B2 (en) 2009-05-20 2010-04-01 Extruder and biodegradable foamed material manufacturing method using the same

Country Status (2)

Country Link
JP (1) JP4846861B2 (en)
WO (1) WO2010134208A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130154151A1 (en) * 2011-12-20 2013-06-20 Kimberly-Clark Worldwide, Inc. Method for Forming a Thermoplastic Composition that Contains a Renewable Biopolymer
US20130206035A1 (en) * 2012-02-14 2013-08-15 Weyerhaeuser Nr Company Composite Polymer
CN102650078B (en) * 2012-03-22 2014-12-03 上海罗洋新材料科技有限公司 Water-vapor sealed-type double-screw extruder
CN105263683A (en) * 2013-05-08 2016-01-20 伊莱斯托波利公司 Method and apparatus for the manufacturing of composite material
JP6446235B2 (en) * 2014-10-27 2018-12-26 東芝機械株式会社 Extruder and kneading equipment
KR102089436B1 (en) * 2017-06-07 2020-03-16 (주)현우기공 Detecting Apparatus Capable of Detecting Foreign Materials for Extruder
EP3917749B1 (en) * 2019-01-30 2023-10-11 Basf Se Method for the preparation of starch blends
FR3130183A1 (en) * 2021-12-09 2023-06-16 Universite Jean Monnet Saint Etienne Twin-screw extrusion process for wood pellets

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3344762B2 (en) * 1993-03-19 2002-11-18 日本合成化学工業株式会社 Method for producing biodegradable resin foam
JP2838874B2 (en) * 1995-03-08 1998-12-16 日本製紙株式会社 Method for producing molded article comprising raw material containing plant fiber component, and biodegradable molded article
JP2722056B2 (en) * 1995-08-03 1998-03-04 株式会社幸和工業 Buffer material and method of manufacturing the same
JP4246944B2 (en) * 2000-11-17 2009-04-02 三井化学株式会社 Process for producing olefinic thermoplastic elastomer composition
JP5084078B2 (en) * 2001-09-03 2012-11-28 旭化成ケミカルズ株式会社 Method for producing flame retardant polycarbonate resin composition
JP4572516B2 (en) * 2003-07-18 2010-11-04 東レ株式会社 Method for producing resin composition
JP2005199531A (en) * 2004-01-14 2005-07-28 Kankyo Keiei Sogo Kenkyusho:Kk Pellet, its manufacturing method and molded product comprising the pellet

Also Published As

Publication number Publication date
JP2011000881A (en) 2011-01-06
WO2010134208A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP4846861B2 (en) Extruder and biodegradable foamed material manufacturing method using the same
CN102862282B (en) The method preparing biopolymer nanoparticles
TWI351256B (en) Method of preconditioning a food or feed mixture
JP3600641B2 (en) Extrusion-friendly dog food products with excellent breakage resistance
JP2000201632A (en) Forming of starch for food
JP5165375B2 (en) Dimensionally stable low-carb pet food
US6413567B1 (en) Starch products having hot or cold water dispersibility and hot or cold water swelling viscosity
CN100575029C (en) Be mixed with the preparation method and the resin composition pellet of resin combination of the fibrous filler of high concentration
JP3816282B2 (en) Compound manufacturing method using biaxial continuous kneader
EP2114648A1 (en) Wood-plastic composites using recycled carpet waste and systems and methods of manufacturing
Mościcki et al. Extrusion‐cooking and related technique
JP7442223B2 (en) Method for producing rice-containing resin composition and twin-screw kneading device
JP2001501549A (en) Manufacturing method and equipment for extruded plastic products, and plastic products
JP2003055470A (en) Biodegradable resin composition
Yeung et al. Hot-melt extrusion of sugar-starch-pellets
JP4746288B2 (en) Method for producing starch-containing resin composition
JP2011184520A (en) Method for producing cellulose-based resin composition
TWI790055B (en) Manufacturing method of plastic pellet material and plastic product thereof
JP4402352B2 (en) Extruder and extrusion method
JP2004209878A (en) Biodegradable preform and its manufacturing method
CN216634956U (en) Dosing unit is used in production of nanometer modified high density polyethylene bellows
JP2024006875A (en) Food product manufacturing device and food product manufacturing method
CN115383923A (en) Blending modification method and device for starch and biodegradable material
AU2013201235B2 (en) Process for producing biopolymer nanoparticles
JP2005151918A (en) Noodle and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110628

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110628

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees