JP2011184520A - Method for producing cellulose-based resin composition - Google Patents

Method for producing cellulose-based resin composition Download PDF

Info

Publication number
JP2011184520A
JP2011184520A JP2010049321A JP2010049321A JP2011184520A JP 2011184520 A JP2011184520 A JP 2011184520A JP 2010049321 A JP2010049321 A JP 2010049321A JP 2010049321 A JP2010049321 A JP 2010049321A JP 2011184520 A JP2011184520 A JP 2011184520A
Authority
JP
Japan
Prior art keywords
raw material
kneading
resin composition
zone
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010049321A
Other languages
Japanese (ja)
Inventor
崇喜 ▲桑▼原
Takaki Kuwahara
Masahiko Noritsune
雅彦 則常
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010049321A priority Critical patent/JP2011184520A/en
Priority to CN201110057103.8A priority patent/CN102189614B/en
Publication of JP2011184520A publication Critical patent/JP2011184520A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • B29B7/489Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/92Wood chips or wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve all problems relating to discoloring, low molecular weight, remaining of an unmelted material, and failing to obtain desired physical properties, upon producing a cellulose-based resin composition in a kneading machine. <P>SOLUTION: The method for producing a cellulose-based resin composition comprises producing a resin composition by extruding a raw material through a kneader, the raw material containing a plasticizer and a resin material containing at least a granular cellulose-based resin. A twin-screw extruder 10 is used as the kneader in the method, the extruder having two kneading portions in the screws 14, where a shear rate of the kneading portion is adjustable into the range from 140 to 436 sec<SP>-1</SP>. In the two kneading portions, the barrel temperature of the kneading portion in an entrance side is set to be equal to or lower than the softening temperature of the resin material, while the barrel temperature of the kneading portion in an exit side is set to be equal to or higher than the softening temperature of the resin material, so that the kneading portion in the entrance side is used as a pulverizing zone 22 of the raw material while the kneading portion in the exit side is used as a mixing zone 26 of the raw material, and thereby, pulverization and dispersion-mixing of the raw material are continuously carried out in a single kneader. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、セルロース系樹脂組成物の製造方法に係り、特に、射出成形、押出成形、ブロー成形等の溶融成形する原料としての品質を高めることができるセルロース系樹脂組成物の製造方法に関する。   The present invention relates to a method for producing a cellulosic resin composition, and more particularly to a method for producing a cellulosic resin composition capable of enhancing the quality as a raw material for melt molding such as injection molding, extrusion molding, blow molding and the like.

射出成形原料や押出成形原料等の溶融成形する原料としては、ポリエチレン樹脂、ポリプロピレン樹脂、塩化ビニル、ポリアミド、ポリスチレン系樹脂、PET(ポリエチレンテレフタレート)樹脂、ポリカーボネート等の石油系の合成樹脂が広く使用されている。   Petroleum synthetic resins such as polyethylene resin, polypropylene resin, vinyl chloride, polyamide, polystyrene resin, PET (polyethylene terephthalate) resin, and polycarbonate are widely used as raw materials for melt molding such as injection molding raw materials and extrusion molding raw materials. ing.

かかる石油系の合成樹脂で製造された容器やフィルム等の生活必需品や工業製品の廃棄物は、一部はリサイクルされるものの、多くが焼却や埋め立て等によって処分されることで、地球温暖化の原因物質として考えられているCOを多く排出することにつながっている。このような背景から、これ以上COを大気中に増やさないカーボンニュートラルという考え方が重要視され始めており、樹脂材料を石油原料から天然原料に変えて合成された材料への代替が進みつつある。特に、とうもろこしやサトウキビを原料として、発酵・合成されたポリ乳酸樹脂は優れた力学物性を有しており、最も利用が進んでいる。その他にもとうもろこしの発酵によって、得られるエタノールをガソリンの代替として燃料の一部として利用されたりしている。 Although some of the daily necessities such as containers and films and industrial products made of such petroleum-based synthetic resins are recycled, most of them are disposed of by incineration or landfilling, thereby reducing global warming. This leads to the emission of a large amount of CO 2 which is considered as a causative substance. Against this background, the idea of carbon neutral that does not further increase CO 2 into the atmosphere has started to be emphasized, and substitution to a material synthesized by changing the resin material from a petroleum raw material to a natural raw material is progressing. In particular, polylactic acid resins fermented and synthesized from corn and sugarcane as raw materials have excellent mechanical properties and are most widely used. In addition, corn fermentation uses ethanol obtained as part of fuel as an alternative to gasoline.

しかし、原料のとうもろこしは農業用飼料として家畜を育てたり、人が食用として利用したりすることから、今後利用量が増加した場合、食料不足を生じる可能性がある。但し、厳密には食用のとうもろこしと、樹脂原料用のとうもろこしとは種類が異なるため問題にはならないという意見もある。しかし、オーストラリアなどの穀倉地帯での生産量は温暖化による気候変動の影響と考えられる渇水によりとうもろこしの生産量が大幅に減少したり、投機的な取引の影響を受けたりすることで流通量が不足するという問題が発生している。   However, corn as a raw material grows livestock as an agricultural feed or is used for food by humans. If the amount of use is increased in the future, food shortages may occur. However, strictly speaking, there is an opinion that edible corn and corn for resin raw materials are different from each other because they are of different types. However, the production volume in granaries such as Australia is greatly reduced due to drought, which is thought to be the impact of climate change due to global warming, and the distribution volume is affected by speculative transactions. There is a problem of shortage.

このような背景から、非可食性原料を使った天然原料由来の樹脂が求められている。その中でも、セルロース系材料は古くから利用されており、供給に問題がない。また、既にディスプレイ用材料としても多量に利用されており、通常の高分子材料としての利用実績も十分である上、ポリ乳酸がもつ耐熱性の不足や、使用環境化における加水分解などの課題をセルロース系樹脂は解決できる可能性があり、いままでポリ乳酸樹脂が利用できなかった分野へも用途が広げられる可能性がある。   From such a background, a resin derived from a natural raw material using a non-edible raw material is required. Among these, cellulosic materials have been used for a long time, and there is no problem in supply. In addition, it has already been used in large quantities as a display material, has a sufficient track record as a normal polymer material, and has problems such as insufficient heat resistance of polylactic acid and hydrolysis in a use environment. Cellulosic resins have the potential to be solved, and their applications may be extended to fields where polylactic acid resins have not been available.

しかし、セルロース系樹脂は溶融粘度が大きく、単独使用は勿論のこと、他の石油系樹脂と混合しても射出成形等の原料として使用しにくい。このため、セルロース系樹脂を溶融成形するための原料として使用するには、可塑剤を加えて可塑性をもたせる必要がある。   However, cellulosic resins have a large melt viscosity and are difficult to use as raw materials for injection molding and the like even when used alone or mixed with other petroleum resins. For this reason, in order to use a cellulosic resin as a raw material for melt molding, it is necessary to add plasticizer to impart plasticity.

また、セルロース系樹脂は衝撃に弱く破壊され易い。よって、セルロース系樹脂にはない特性を有する石油系樹脂を加えることでセルロース系樹脂の物性を用途に合わせて変えることも重要になる。このため、セルロース系樹脂に可塑剤、更には石油系樹脂を加えたセルロース系樹脂組成物を製造することはセルロース系樹脂の用途拡大にとって極めて重要である。   Cellulosic resins are vulnerable to impact and are easily destroyed. Therefore, it is also important to change the physical properties of the cellulosic resin according to the application by adding a petroleum resin having characteristics not found in the cellulosic resin. For this reason, it is very important for the expansion of the use of a cellulose resin to produce a cellulose resin composition in which a plasticizer and further a petroleum resin are added to a cellulose resin.

ところで、セルロース系樹脂の製造メーカは、セルロース系樹脂の製造方法上の理由から粉状体での供給はしておらず、1mm〜30mm程度の不揃いな粒状体の形態で供給している。このため、セルロース系樹脂を可塑剤あるいは石油系樹脂と混練機で均一に混ぜ合わせるには、混合する前に、セルロース系樹脂を粉状体にするための粉砕工程が必要になる。   By the way, the manufacturer of the cellulose-based resin does not supply the powdery material for the reason of the manufacturing method of the cellulose-based resin, and supplies it in the form of irregular particles of about 1 mm to 30 mm. For this reason, in order to mix a cellulose resin with a plasticizer or a petroleum resin uniformly with a kneader, a pulverization step is required to make the cellulose resin into a powder before mixing.

従来、セルロース系樹脂に可塑剤や他の樹脂を混ぜ合わせたセルロース系樹脂組成物を製造するには、粉砕装置(例えばミル式、パドル式等)で予めセルロース系樹脂原料を粉状体にしてから可塑剤や石油系樹脂と混ぜ合わせ、混ぜ合わせた物を混練機、例えば一軸又は二軸混練機に供給して分散・混合する、又は増粒することによりセルロース系樹脂組成物を製造していた。   Conventionally, in order to produce a cellulosic resin composition in which a plasticizer or other resin is mixed with a cellulosic resin, the cellulosic resin raw material is previously powdered with a pulverizer (eg, a mill type, paddle type, etc.). The cellulose-based resin composition is produced by mixing with a plasticizer or petroleum-based resin, supplying the mixture to a kneader, for example, a uniaxial or biaxial kneader, dispersing, mixing, or increasing the particle size. It was.

混練機に供給する前のセルロース系高分子材料を粉砕装置で予め粉砕する関連技術としては、例えば特許文献1〜4がある。   For example, Patent Documents 1 to 4 include related techniques for previously pulverizing a cellulosic polymer material before being supplied to a kneader with a pulverizer.

特開2007−84713号公報JP 2007-84713 A 特開平11−58483号公報Japanese Patent Laid-Open No. 11-58483 特開2008−93873号公報JP 2008-93873 A 特開2003−128791号公報JP 2003-128791 A

しかしながら、セルロース系樹脂は、加熱により劣化(分子量の低下、着色)し易いため、混練機に供給する前のセルロース系樹脂を粉砕装置で予め粉砕する従来のセルロース系樹脂組成物の製造方法では、混練機から吐出されるまでに熱劣化が生じ、セルロース系樹脂が黄色く着色したり、分子量が低下したりするという欠点がある。一方、セルロース系樹脂と、可塑剤や石油系樹脂との分散・混合が十分に行われないと、組成物中に未溶融物が残存したり、所望の物性の組成物が得られなかったりする等の欠点が生じる。この結果、射出成形や押出成形の原料として溶融成形する分野の成形材料としての品質が低下するという問題がある。   However, since the cellulose-based resin is easily deteriorated by heating (decrease in molecular weight, coloring), in the conventional method for producing a cellulose-based resin composition in which the cellulose-based resin before being supplied to the kneader is pulverized in advance by a pulverizer, There is a drawback in that heat deterioration occurs until the cellulose resin is discharged from the kneader, and the cellulose resin is colored yellow or the molecular weight is lowered. On the other hand, if the cellulose resin and the plasticizer or petroleum resin are not sufficiently dispersed and mixed, an unmelted product may remain in the composition or a composition having desired physical properties may not be obtained. Such disadvantages occur. As a result, there is a problem that the quality as a molding material in the field of melt molding as a raw material for injection molding or extrusion molding is lowered.

本発明はこのような事情に鑑みてなされたもので、混練機でセルロース系樹脂組成物を製造する際に、着色の問題、低分子量化の問題、未溶融物が残存する問題、所望の物性が得られない問題の全てを解決することができるセルロース系樹脂組成物の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances. When a cellulose resin composition is produced with a kneader, the problem of coloring, the problem of lowering the molecular weight, the problem of unmelted matter remaining, the desired physical properties. It aims at providing the manufacturing method of the cellulose resin composition which can solve all the problems which cannot be obtained.

前記目的を達成するために、少なくとも粒状のセルロース系樹脂を含む樹脂材料と、可塑剤とを含む原料を、混練機から押し出して樹脂組成物を製造するセルロース系樹脂組成物の製造方法において、前記混練機として、スクリューに2箇所の混練部を有すると共に該混練部の剪断速度を140〜436sec−1の範囲に調整可能な二軸混練機を用い、前記2箇所の混練部のうち、入口側(前記原料の投入側に近い)の混練部のバレル温度を前記樹脂材料中の樹脂成分の軟化温度以下に設定し、出口側(樹脂排出側)混練部のバレル温度を前記樹脂材料中の樹脂成分の軟化温度以上に設定することにより、前記入口側の混練部を前記原料の粉砕ゾーンとして使用すると共に前記出口側の混練部を前記原料の混合ゾーンとして使用し、前記原料の粉砕と分散・混合とを1つの混練機で連続的に行うことを特徴とするセルロース系樹脂組成物の製造方法を提供する。   In order to achieve the above object, in the method for producing a cellulose resin composition, a raw material containing at least a granular cellulose resin and a plasticizer are extruded from a kneader to produce a resin composition. As the kneading machine, a twin-screw kneading machine having two kneading parts on the screw and capable of adjusting the shear rate of the kneading part in the range of 140 to 436 sec-1 is used. The barrel temperature of the kneading part (close to the raw material charging side) is set to be equal to or lower than the softening temperature of the resin component in the resin material, and the barrel temperature of the outlet side (resin discharge side) kneading part is set to the resin in the resin material. By setting the temperature to be equal to or higher than the softening temperature of the component, the kneading part on the inlet side is used as the pulverization zone for the raw material, and the kneading part on the outlet side is used as the mixing zone for the raw material. To provide a method for manufacturing a cellulose resin composition which is pulverized between the dispersed and mixed, wherein the continuously performing the one kneader.

ここで混練部とは、2本のスクリュー軸にニーディングディスクと呼ばれるスクリューエレメントを備えた処理ゾーンを言う。   Here, the kneading part refers to a processing zone provided with a screw element called a kneading disk on two screw shafts.

本発明では、スクリューに2箇所の混練部を有すると共に該混練部の剪断速度を140〜436sec−1の範囲に調整可能な二軸混練機を用い、入口側の混練部のバレル温度を原料が可塑化しない軟化温度以下に設定することで粉砕ゾーンとして使用する。一方、出口側の混練部を前記樹脂材料の軟化温度以上に設定することで混合ゾーンとして使用することにより、原料の粉砕と分散・混合とを1つの混練機で連続的に行うようにした。   In the present invention, a twin-screw kneader having two kneading sections on the screw and capable of adjusting the shear rate of the kneading section in the range of 140 to 436 sec-1 is used, and the barrel temperature of the kneading section on the inlet side is set as the raw material. It is used as a grinding zone by setting it below the softening temperature at which it does not plasticize. On the other hand, by setting the kneading part on the outlet side to be equal to or higher than the softening temperature of the resin material, the raw material is continuously pulverized and dispersed / mixed by one kneader.

このように、1つの混練機で原料の粉砕と分散・混合とを連続的に行うことにより、粉砕ゾーンで粉砕される際に発生する剪断発熱により原料温度を上昇させ一旦冷やすことなく、そのまま混合ゾーンへ供給する。混合ゾーンでは、粉砕ゾーンで温められた樹脂材料をその軟化温度以上で加熱・保温しながら混合・分散させることができる。したがって、本発明のセルロース系樹脂組成物の製造方法では、粉砕から分散・混合までを一度の熱履歴で行うことができる。   In this way, the raw material is continuously pulverized, dispersed and mixed in one kneader, so that the raw material temperature is raised by the shear heat generated when pulverized in the pulverization zone, and the raw material is mixed without being cooled. Supply to the zone. In the mixing zone, the resin material warmed in the pulverization zone can be mixed and dispersed while being heated and kept warm above its softening temperature. Therefore, in the method for producing a cellulose resin composition of the present invention, the process from pulverization to dispersion / mixing can be performed with a single thermal history.

これに対して、混練機に供給する前にセルロース系樹脂を粉砕装置で予め粉砕する従来のセルロース系樹脂組成物の製造方法では、粉砕装置で原料を予め粉砕してから室温付近まで冷却し、その後混練機で分散・混合することになる。したがって、従来の方法では、粉砕から分散・混合までの間に、粉砕時と分散・混合時の2度の熱履歴(樹脂材料の軟化温度以上の高温)を受けることになる。   In contrast, in the conventional method for producing a cellulose resin composition in which the cellulose resin is pulverized in advance by a pulverizer before being supplied to the kneader, the raw material is preliminarily pulverized by the pulverizer and then cooled to around room temperature. Thereafter, it is dispersed and mixed in a kneader. Therefore, in the conventional method, during the period from pulverization to dispersion / mixing, two thermal histories (high temperature higher than the softening temperature of the resin material) during pulverization and during dispersion / mixing are received.

これにより、本発明では、粉砕開始から分散・混合終了までに原料に加わるトータルの熱量を従来よりも顕著に低減することができる。しかも、粉砕から分散・混合までを1つの混練機で連続して行うことで原料を十分に分散・混合することができるので、未溶融物が残存したりすることもなく、所望の物性の組成物を得ることができる。   Thereby, in this invention, the total calorie | heat amount added to a raw material from a grinding | pulverization start to dispersion | distribution and mixing completion can be reduced notably conventionally. In addition, the raw material can be sufficiently dispersed and mixed by continuously performing from pulverization to dispersion / mixing in one kneader, so that an unmelted product does not remain and a composition having desired physical properties is obtained. You can get things.

したがって、本発明は、混練機でセルロース系樹脂組成物を製造する際に、従来の課題であった樹脂組成物の着色、分子量の低下とそれに伴う物性低下や、未溶融物が残存するなどの問題の全てを解決することができる。   Therefore, in the present invention, when producing a cellulosic resin composition with a kneader, the resin composition, which has been a problem in the past, such as coloring of the resin composition, a decrease in molecular weight and accompanying physical properties, and an unmelted product remain. Can solve all of the problems.

本発明においては、前記粉砕ゾーンにおける最狭部分のチップクリアランスが、前記混合ゾーンにおける最狭部分のチップクリアランスよりも広いことが好ましい。   In the present invention, it is preferable that the narrowest tip clearance in the grinding zone is wider than the narrowest tip clearance in the mixing zone.

これは、粉砕ゾーンの目的が混練を行うゾーンとは異なり、原料を均一粉砕でき、且つ粉砕による発熱は可能な限り小さくする必要があるためである。具体的には、粉砕ゾーンの最狭部分のチップクリアランスは0.03〜2mm、好ましくは0.05〜2mmに設定することが好ましい。一方、混合ゾーンにおける最狭部分のチップクリアランスは0.01〜1mmに設定することが好ましい。   This is because the purpose of the pulverization zone is different from the zone where kneading is performed, and the raw material can be uniformly pulverized, and the heat generated by the pulverization needs to be as small as possible. Specifically, the tip clearance at the narrowest portion of the grinding zone is preferably set to 0.03 to 2 mm, and preferably 0.05 to 2 mm. On the other hand, the tip clearance at the narrowest part in the mixing zone is preferably set to 0.01 to 1 mm.

なお、チップクリアランスとは、スクリューに備えられた楕円形状のニーディングディスクとバレル内面とのクリアランスを意味し、最狭部分とはニーディングディスクの楕円長手方向とバレル内面とのクリアランスを指す。   The tip clearance means the clearance between the elliptical kneading disc provided in the screw and the inner surface of the barrel, and the narrowest portion indicates the clearance between the elliptical longitudinal direction of the kneading disc and the inner surface of the barrel.

本発明においては、前記二軸混練機に投入する前の前記セルロース系樹脂の粒径は1〜30mmの範囲であることを特徴とする。これは、セルロース系樹脂の製造メーカーから供給されるセルロース系樹脂の粒径範囲を示したものであり、このように粒径に分布のあるセルロース系樹脂は可塑剤や石油系樹脂と分散・混合する前に粉状体にしておかないと均一混合ができない。   In the present invention, the particle size of the cellulosic resin before being charged into the biaxial kneader is in the range of 1 to 30 mm. This shows the particle size range of the cellulosic resin supplied from the manufacturer of the cellulosic resin. Cellulose resin with a particle size distribution is dispersed and mixed with plasticizers and petroleum resins. If it is not made into a powdery body, it cannot be mixed uniformly.

本発明においては、前記粉砕ゾーンでは、前記樹脂材料に前記可塑剤が添加された状態で粉砕することが好ましい。これにより、粉砕による発熱で可塑剤の樹脂材料への浸透速度が大きくなり、樹脂材料に可塑剤を均一混合できるばかりでなく、可塑剤が浸透したセルロース系樹脂は軟化するため、粉砕による発熱も小さくすることができる。   In the present invention, the pulverization zone is preferably pulverized with the plasticizer added to the resin material. This increases the penetration rate of the plasticizer into the resin material due to the heat generated by pulverization, and not only can the plasticizer be uniformly mixed into the resin material, but also the cellulose resin that has penetrated the plasticizer softens, so heat generated by pulverization also occurs. Can be small.

また、粉砕ゾーンは元々混練部を粉砕ゾーンとして利用したものなので、混合機能にも優れている。したがって、樹脂材料に可塑剤が添加された状態で粉砕すれば粉砕と混合とを同時に行うことができ、樹脂材料への可塑剤の均一混合を一層促進できる。   Moreover, since the pulverization zone originally uses the kneading part as the pulverization zone, it has an excellent mixing function. Therefore, if it grind | pulverizes in the state in which the plasticizer was added to the resin material, grinding | pulverization and mixing can be performed simultaneously and the uniform mixing of the plasticizer to the resin material can be promoted further.

本発明においては、前記粉砕ゾーンの後部にオープンベントを設け、粉砕された原料からの水蒸気等の揮発物質を脱気することで、原料の粉砕と乾燥を同時に行うことが好ましい。これにより、原料の粉砕と乾燥を同時に進めることができるので、原料を混練機に投入する前に行なう予備乾燥等の工程を削減でき、製造工程を簡素化できる。   In the present invention, it is preferable that the raw material is pulverized and dried at the same time by providing an open vent at the rear of the pulverization zone and degassing volatile substances such as water vapor from the pulverized raw material. Thereby, since pulverization and drying of the raw material can be simultaneously performed, steps such as preliminary drying performed before the raw material is charged into the kneader can be reduced, and the manufacturing process can be simplified.

また、セルロース系樹脂は他の石油系樹脂よりも樹脂の含有水分が多く、混合ゾーンでの分散・混合時に水分が蒸発して樹脂中に気泡として残存し易い。本発明では、粉砕ゾーンの後にオープンベントを設け、粉砕時における剪断熱等で蒸発した樹脂中の水分をオープンベントから外部に逃がすようにしたことにより、樹脂中での気泡の残存や、水分による加水分解を防止できる。   Cellulosic resins contain more water than other petroleum resins, and the water tends to evaporate during dispersion / mixing in the mixing zone and remain as bubbles in the resin. In the present invention, an open vent is provided after the pulverization zone, and moisture in the resin evaporated by shearing heat or the like at the time of pulverization is released to the outside from the open vent. Hydrolysis can be prevented.

本発明においては、前記原料は、前記セルロース系樹脂と前記可塑剤の2種類であることを特徴とする。また、前記原料は、前記セルロース系樹脂とポリカーボネートと前記可塑剤の3種類であることを特徴とする。   In this invention, the said raw material is two types, the said cellulose resin and the said plasticizer, It is characterized by the above-mentioned. Further, the raw material is characterized in that it is three kinds of the cellulosic resin, polycarbonate and the plasticizer.

これは、本発明を適用する原料の好ましい具体例を示したものであり、セルロース系樹脂単独の場合と、セルロース系樹脂とポリカーボネートによる複合樹脂の場合に、特に好ましく適用することができる。   This shows a preferred specific example of the raw material to which the present invention is applied, and can be applied particularly preferably in the case of a cellulose resin alone and in the case of a composite resin composed of a cellulose resin and a polycarbonate.

本発明によれば、混練機でセルロース系樹脂組成物を製造する際に、樹脂組成物の着色、低分子量化とそれに伴う物性低下や、未溶融物が残存するなどの問題の全てを解決することができる。   According to the present invention, when a cellulose resin composition is produced with a kneader, all the problems such as coloring of the resin composition, lowering of the molecular weight and accompanying physical property deterioration, and remaining unmelted material are solved. be able to.

本発明のセルロース系樹脂組成物の製造方法に用いる混練機である二軸押出機の構成を説明する説明図Explanatory drawing explaining the structure of the twin-screw extruder which is a kneading machine used for the manufacturing method of the cellulose resin composition of this invention. 混練部のスクリューセグメント構造を説明する説明図.Explanatory drawing explaining the screw segment structure of a kneading part. 本発明と従来法との原料の熱履歴の違いを説明する説明図Explanatory drawing explaining the difference of the heat history of the raw material of this invention and the conventional method 実施例と比較例の条件及び結果示す表図Table showing conditions and results of Examples and Comparative Examples 混練機の剪断速度とYI値及び分子量との関係を示すグラフThe graph which shows the relationship between the shear rate of a kneading machine, YI value, and molecular weight

以下、添付図面に従ってセルロース系樹脂組成物の製造方法の好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of a method for producing a cellulose resin composition will be described in detail with reference to the accompanying drawings.

図1は、本発明のセルロース系樹脂組成物の製造方法に使用する混練機である二軸混練機の構成を示した概略図である。図1の(A)は側面図、(B)が二軸スクリューを示す上面図である。   FIG. 1 is a schematic view showing the configuration of a biaxial kneader that is a kneader used in the method for producing a cellulose resin composition of the present invention. 1A is a side view, and FIG. 1B is a top view showing a twin screw.

図1に示すように、二軸混練機10のバレル12内部には2本のスクリュー14、14が並列され、各スクリューは図示しないモータにより回転される。2本のスクリュー14、14は同方向回転でも異方向回転でもよいが、同方向回転がより好ましい。   As shown in FIG. 1, two screws 14 and 14 are juxtaposed inside the barrel 12 of the twin-screw kneader 10, and each screw is rotated by a motor (not shown). The two screws 14 and 14 may be rotated in the same direction or in different directions, but are preferably rotated in the same direction.

二軸混練機10のバレル長手方向の一端側上面には、原料供給口16が開口されると共に、原料供給口16に原料投入用のホッパー18が設けられる。バレル12内部は、ホッパー18側から順に、搬送ゾーン20、第1の混練ゾーン(粉砕部)22、加熱・可塑化ゾーン24、第2の混練ゾーン(混練部)26、昇圧・排出ゾーン28に分かれる。なお、図1(B)では、2つの混練ゾーン22、26の位置を明確にするために、黒い四角で示してある。   A raw material supply port 16 is opened on the upper surface of one end side in the barrel longitudinal direction of the biaxial kneader 10, and a raw material charging hopper 18 is provided in the raw material supply port 16. The inside of the barrel 12 is arranged in order from the hopper 18 side into a transport zone 20, a first kneading zone (grinding part) 22, a heating / plasticizing zone 24, a second kneading zone (kneading part) 26, and a pressurization / discharge zone 28. Divided. In FIG. 1B, black squares are shown in order to clarify the positions of the two kneading zones 22 and 26.

上記各ゾーン20〜28を構成するバレル12外部には、各ゾーン20〜28の温度調整を行う温度調整手段(図示せず)がそれぞれ設けられ、各ゾーン20〜28の温度を個別に調整できるようになっている。温度調整手段としては、電気ヒータ、あるいは温水及び冷水が流れるジャケットを好適に使用することができる。   Temperature adjusting means (not shown) for adjusting the temperature of each zone 20 to 28 is provided outside the barrel 12 constituting each of the zones 20 to 28, and the temperature of each zone 20 to 28 can be individually adjusted. It is like that. As the temperature adjusting means, an electric heater or a jacket through which hot water and cold water flow can be suitably used.

また、搬送ゾーン20、加熱・可塑化ゾーン24及び昇圧・排出ゾーン28には、スクリュー軸に2条ネジ又は1条ネジと呼ばれるスクリューエレメントが設けられる。   Further, a screw element called a double thread or a single thread is provided on the screw shaft in the transport zone 20, the heating / plasticizing zone 24 and the pressurizing / discharging zone 28.

一方、第1及び第2の混練ゾーン22、26のスクリュー14には、図2(A)、(B)に示すように、スクリュー軸14Aに楕円状のニーディングディスク14Bと呼ばれるスクリューエレメントが等間隔で複数設定されている。そして、2本のスクリュー14、14に設けられたニーディングディスク14Bの回転方位位相が連続的に、又は周期的に異なるように設定されている。連続的に位相差がずらされており、且つその位相のずれ方が樹脂の排出方向に対して順方向になっているもの(排出されやすい)を図2(B)に示すように順ニーディングという。ニーディングディスク14Bはスクリュー軸14Aの回転方向と同方向に捻じる捩じれ角を有して順次ずらして配設され、捻じれ角は例えば20〜30°程度に設定される。そして、2本のスクリュー軸14Aは、対応するニーディングディスク14B同士が図2(A)に示すように、回転周期を90°ずらした位置関係を保持する状態で回転駆動される。   On the other hand, as shown in FIGS. 2A and 2B, the screw 14 of the first and second kneading zones 22 and 26 has a screw element called an elliptical kneading disk 14B on the screw shaft 14A. Multiple intervals are set. And the rotational azimuth | direction phase of the kneading disk 14B provided in the two screws 14 and 14 is set so that it may differ continuously or periodically. As shown in FIG. 2B, the order kneading is such that the phase difference is continuously shifted and the phase shift direction is forward with respect to the resin discharge direction (easily discharged). That's it. The kneading disk 14B has a twist angle twisted in the same direction as the rotation direction of the screw shaft 14A and is sequentially shifted, and the twist angle is set to about 20 to 30 °, for example. The two screw shafts 14A are rotationally driven in a state in which the corresponding kneading disks 14B maintain a positional relationship in which the rotation period is shifted by 90 ° as shown in FIG.

また、位相差のずれ方が樹脂の排出方向と逆方向になっているもの(樹脂が滞留しやすい)を逆ニーディング(図示せず)といい、周期的にずらされているだけで搬送能力のないものをニュートラルニーディング(図示せず)という。これらにより、ニーディングディスク14Bの面相互間での剪断作用と、不連続なニーディングディスク14Bによる切返し効果による分散作用が発生し、原料の分散・混合を行う。なお、図2(A)の矢印は原料の動きを示す。   Also, the one where the phase difference is opposite to the resin discharge direction (resin tends to stay) is called reverse kneading (not shown). The one without this is called neutral kneading (not shown). As a result, a shearing action between the surfaces of the kneading disk 14B and a dispersing action due to the turning back effect by the discontinuous kneading disk 14B are generated, and the raw materials are dispersed and mixed. In addition, the arrow of FIG. 2 (A) shows the movement of a raw material.

このように、スクリュー14に2箇所の混練ゾーン22、26を有する二軸混練機としては、例えば東芝機械社製のTEMシリーズや日本製鋼社製のTEXシリーズ等を好適に利用することができる。   Thus, as a biaxial kneader having two kneading zones 22 and 26 in the screw 14, for example, a TEM series manufactured by Toshiba Machine Co., Ltd. or a TEX series manufactured by Nippon Steel Co., Ltd. can be suitably used.

そして、本発明では、混練機として上記の如く構成された二軸混練機10を用いて、粒状のセルロース系樹脂を少なくとも含む樹脂材料と、可塑剤と、を含む原料を二軸混練機10から押し出して組成物を製造する際に、入口側の第1の混練ゾーン22のバレル温度を樹脂材料の軟化温度以下に設定することで、粉砕ゾーンとして使用するようにした。この場合、樹脂材料と可塑剤とは共存した状態で粉砕すると、粉砕時の発熱で可塑剤が溶融し、樹脂材料に浸透し易くなるので好ましい。   In the present invention, using the biaxial kneader 10 configured as described above as a kneader, a raw material containing a resin material containing at least a granular cellulose resin and a plasticizer is removed from the biaxial kneader 10. When producing the composition by extrusion, the barrel temperature of the first kneading zone 22 on the inlet side was set to be equal to or lower than the softening temperature of the resin material, so that it was used as a pulverization zone. In this case, it is preferable to grind the resin material and the plasticizer in the coexistence state because the plasticizer melts due to heat generated during the grinding and easily penetrates into the resin material.

また、出口側の第2の混練ゾーン26のバレル温度を樹脂材料の軟化温度以上に設定することで、分散・混合を行う混合ゾーンとして使用するようにした。これにより、原料の粉砕と分散・混合とを1つの混練押出機で連続的に行うようにした。以下、第1の混練ゾーン22を粉砕ゾーン22として説明し、第2の混練ゾーン26を混合ゾーン26として説明する。   Further, by setting the barrel temperature of the second kneading zone 26 on the outlet side to be equal to or higher than the softening temperature of the resin material, it is used as a mixing zone for performing dispersion and mixing. Thus, the raw material was pulverized and dispersed / mixed continuously by one kneading extruder. Hereinafter, the first kneading zone 22 will be described as the pulverizing zone 22, and the second kneading zone 26 will be described as the mixing zone 26.

上記構造の二軸混練機10において、粉砕ゾーン22及び混合ゾーン26の剪断速度は140〜436sec−1の範囲に調整可能であることが必要である。ここでの剪断速度は図2(A)におけるニーディングディスク14BのクリアランスCと垂直な方向のクリアランスDを元に計算した。これは、セルロース系樹脂は熱に弱く、剪断速度が436sec−1を超えて剪断発熱が大きくなると、黄色く着色し易くなる。一方、剪断速度が140sec−1を下回ると、分散・混合が十分に行われず、未溶融物が残存したり、所望の物性が得られなくなったりする。   In the twin-screw kneader 10 having the above structure, the shear rate of the pulverization zone 22 and the mixing zone 26 needs to be adjustable in the range of 140 to 436 sec-1. The shear rate here was calculated based on the clearance D in the direction perpendicular to the clearance C of the kneading disk 14B in FIG. This is because the cellulose resin is weak against heat, and when the shear rate exceeds 436 sec −1 and the shear heat generation becomes large, the cellulose resin is easily colored yellow. On the other hand, when the shear rate is lower than 140 sec-1, dispersion / mixing is not sufficiently performed, and unmelted material remains or desired physical properties cannot be obtained.

また、本発明においては、粉砕ゾーン22における最狭部分のチップクリアランスが、混合ゾーン26における最狭部分のチップクリアランスよりも広いことが好ましい。これは、粉砕ゾーン22は分散・混合を行う混合ゾーン26とは異なり、原料を均一粉砕できる程度にチップクリアランスを確保すれば良いからである。具体的には、粉砕ゾーン22の最狭部分のチップクリアランスは0.03〜2mm、好ましくは0.05〜2mmに設定することが好ましい。一方、混合ゾーンにおける最狭部分のチップクリアランスは0.01〜1mmに設定することが好ましい。   In the present invention, it is preferable that the narrowest tip clearance in the grinding zone 22 is wider than the narrowest tip clearance in the mixing zone 26. This is because, unlike the mixing zone 26 in which the pulverizing zone 22 is dispersed and mixed, it is sufficient to ensure the chip clearance to such an extent that the raw materials can be uniformly pulverized. Specifically, the tip clearance at the narrowest portion of the pulverization zone 22 is set to 0.03 to 2 mm, preferably 0.05 to 2 mm. On the other hand, the tip clearance at the narrowest part in the mixing zone is preferably set to 0.01 to 1 mm.

なお、チップクリアランスとは、図2(A)に示すように、スクリュー14に備えられた楕円形状の混練ディスク14Bとバレル12内壁面とのクリアランスのうち混練ディスク14Bの楕円長手方向とバレル12内壁面とのクリアランスCを指す。   As shown in FIG. 2 (A), the tip clearance refers to the clearance between the elliptical kneading disk 14B provided on the screw 14 and the inner wall surface of the barrel 12, and the elliptical longitudinal direction of the kneading disk 14B and the inside of the barrel 12. The clearance C with the wall surface is indicated.

また、図1(A)に示したように、粉砕ゾーン22の後部にオープンベント30を設け、粉砕された原料からの水蒸気等の揮発物質を脱気することで、粉砕と乾燥とを同時に進めることが好ましい。   Further, as shown in FIG. 1A, an open vent 30 is provided at the rear of the pulverization zone 22 to degas volatile substances such as water vapor from the pulverized raw material, thereby simultaneously pulverizing and drying. It is preferable.

図3(A)は、1つの混練混練機(二軸混練機10)で原料の粉砕と分散・混合とを連続的に行う本発明における原料の温度変化を示したものである。一方、図3(B)は、混練押出機に供給する前のセルロース系樹脂を粉砕装置で予め粉砕する従来における原料の温度変化を示したものである。   FIG. 3A shows the temperature change of the raw material in the present invention in which the raw material is continuously pulverized, dispersed and mixed with one kneading kneader (biaxial kneader 10). On the other hand, FIG. 3 (B) shows the temperature change of a conventional raw material in which the cellulose resin before being supplied to the kneading extruder is pulverized in advance by a pulverizer.

図3(A)に示す本発明では、粉砕ゾーン22で粉砕され剪断発熱等による発熱で品温が上昇した原料を一旦冷やすことなく、そのまま加熱・搬送・可塑化し、混合ゾーン26での分散・混合温度である樹脂材料の軟化温度以上に上昇させることができる。したがって、本発明では、粉砕から分散・混合までを一度の熱履歴で行うことができる。   In the present invention shown in FIG. 3 (A), the raw material which has been pulverized in the pulverization zone 22 and whose product temperature has increased due to heat generated by shearing heat generation, etc. is heated, conveyed and plasticized as it is without being cooled. It can be raised above the softening temperature of the resin material, which is the mixing temperature. Therefore, in the present invention, from pulverization to dispersion / mixing can be performed with a single thermal history.

これに対して、図3(B)に示す従来の方法では、粉砕装置で原料を予め粉砕することにより粉砕熱等の発熱で上昇した品温を一旦室温付近まで冷却し、その後に混練機に投入して加熱・搬送して温度を上昇させて再可塑化し、分散・混合温度に到達させる。そして、混合ゾーンで分散・混合する。この場合、粉砕によりある程度軟化した原料は一旦室温付近まで冷却して硬化しないと、混練機に安定供給することができない。したがって、従来の方法では、粉砕から分散・混合までの間に、粉砕時と分散・混合時の2度の熱履歴を受けることになる。   In contrast, in the conventional method shown in FIG. 3 (B), the raw material is preliminarily pulverized by a pulverizer to cool the product temperature, which has been raised by heat generation such as pulverization heat, to near room temperature. It is charged, heated and conveyed to increase the temperature and replasticize to reach the dispersion / mixing temperature. Then, it is dispersed and mixed in the mixing zone. In this case, the raw material softened to some extent by pulverization cannot be stably supplied to the kneader unless it is once cooled to near room temperature and cured. Therefore, in the conventional method, two thermal histories during pulverization and during dispersion / mixing are received between pulverization and dispersion / mixing.

また、図3(A)と図3(B)の分散・混合処理における樹脂到達温度の対比から分かるように、粉砕と分散・混合を別装置で行った従来の方法は、粉砕から分散・混合までを1つの混練機で行う本発明に比べて高くなる。これは、従来のように粉砕装置で粉砕して一旦冷えた樹脂材料を、混練機で再昇温させる場合には、樹脂材料が非常に高粘度の温度域を超える必要がある。この結果、従来の方法は剪断発熱量が粉砕から分散・混合までを1つの混練機で行う本発明に比べて増加し、これにより樹脂到達温度が高くなる。また、剪断発熱を抑えるために、混練機での剪断速度を低くすると、分散状態が悪くなり物性が低下してしまう。   In addition, as can be seen from the comparison of the resin arrival temperature in the dispersion / mixing process in FIGS. 3 (A) and 3 (B), the conventional method in which pulverization and dispersion / mixing are performed in separate apparatuses is the same as the dispersion / mixing from pulverization. Compared to the present invention in which the above is performed by one kneading machine, it becomes higher. This is because when a resin material that has been crushed by a pulverizer and cooled once as in the prior art is heated again by a kneader, the resin material needs to exceed a temperature range of very high viscosity. As a result, in the conventional method, the shear heating value is increased as compared with the present invention in which the process from pulverization to dispersion / mixing is performed by one kneading machine, thereby increasing the resin reaching temperature. Further, if the shear rate in the kneader is lowered in order to suppress shearing heat generation, the dispersion state becomes worse and the physical properties are lowered.

樹脂材料の着色は、どれだけ高温に達し、どれだけの時間その温度に滞留したかで決まる。したがって、図3(B)に示すように、従来の方法は樹脂到達温度が本発明よりも高くなった分だけ着色の原因となる発熱に曝されることになる。   The coloring of the resin material depends on how high the temperature is reached and how long it stays at that temperature. Therefore, as shown in FIG. 3B, the conventional method is exposed to heat generation that causes coloring by the amount that the resin arrival temperature is higher than that of the present invention.

これにより、従来法では原料が熱を受けている時間が長くなると共に、一度冷却した原料を分散・混合温度まで再度上昇させるための大きな熱量が必要になる。したがって、従来法は粉砕から分散・混合までに受けるトータル熱量が本発明に比べて顕著に大きくなる。換言すると、本発明は、粉砕開始から分散・混合終了までに原料に加わるトータルの熱量を従来法よりも顕著に低減することができる。粉砕時の粉砕熱等による発熱を利用して原料を軟化温度以上にまで加熱できるので、その後の分散・混合温度まで上昇させるのに必要な熱量を小さくすることができる。よって、原料が受ける熱量を従来法に比べて大幅に低減できる。   As a result, in the conventional method, the time during which the raw material is subjected to heat increases, and a large amount of heat is required to raise the once cooled raw material to the dispersion / mixing temperature. Therefore, the total amount of heat received from pulverization to dispersion / mixing in the conventional method is significantly larger than that of the present invention. In other words, the present invention can remarkably reduce the total amount of heat applied to the raw material from the start of pulverization to the end of dispersion / mixing as compared with the conventional method. Since the raw material can be heated to the softening temperature or higher using heat generated by pulverization heat or the like during pulverization, the amount of heat required to raise the subsequent dispersion / mixing temperature can be reduced. Therefore, the amount of heat received by the raw material can be greatly reduced as compared with the conventional method.

したがって、混練機(二軸混練機10)でセルロース系樹脂組成物を製造する際に、樹脂組成物の着色、低分子量化とそれに伴う物性低下や、未溶融物が残存するなどの問題の全てを解決することができる。   Therefore, when a cellulose resin composition is produced with a kneader (biaxial kneader 10), all of the problems such as coloring of the resin composition, lowering the molecular weight and accompanying physical property deterioration, and unmelted matter remaining. Can be solved.

本実施の形態におけるセルロース系樹脂としては特に限定されないが、セルロースエステルが好ましく、特にジアセチルセルロース(DAC)やトリアセチルセルロース(TAC)、トリアセテートブチレート(CAB)、トリアセテートプロピオネート(CAP)を好ましく使用できる。セルロース系樹脂メーカから供給されているセルロース系樹脂の粒径は、一般的に1〜30mmの範囲で不揃いな粒状体としてユーザに供給される。   Although it does not specifically limit as a cellulose resin in this Embodiment, A cellulose ester is preferable and especially a diacetyl cellulose (DAC), a triacetyl cellulose (TAC), a triacetate butyrate (CAB), and a triacetate propionate (CAP) are preferable. Can be used. The particle size of the cellulosic resin supplied from the cellulosic resin manufacturer is generally supplied to the user as an irregular granule in the range of 1 to 30 mm.

本実施の形態における石油系樹脂としては、セルロース系樹脂に不足する物性を補うものを使用することができればどのような樹脂でもよいが、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート、ポリ−1、4―シクロヘキサンジメチレンテレフタレート、これらの共重合体を好ましく使用することができる。石油系樹脂の場合製造メーカからは粉状体、粒状体の両方で供給されることが多い。   As the petroleum-based resin in the present embodiment, any resin can be used as long as it can compensate for the physical properties insufficient for the cellulose-based resin, but polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polybutylene. Naphthalate, poly-1,4-cyclohexanedimethylene terephthalate, and copolymers thereof can be preferably used. In the case of petroleum-based resin, it is often supplied from the manufacturer in both powder and granular form.

本実施の形態における可塑剤としては特に限定されないが、トリメチルリン酸、ジエチレングリコールジベンゾエート、グリセリルポリベンゾエート、アジピン酸系ポリエステル、アジピン酸エステルを好ましく使用できる。可塑剤は常温で粉状体、液状体のいずれもある。   Although it does not specifically limit as a plasticizer in this Embodiment, Trimethyl phosphoric acid, diethylene glycol dibenzoate, glyceryl polybenzoate, adipic acid-type polyester, adipic acid ester can be used preferably. Plasticizers are both powdery and liquid at room temperature.

次に本発明のセルロース系樹脂組成物の製造方法を満足する実施例と、満足しない比較例とで、製造されたセルロース系樹脂組成物(以下、組成物という)の物性及び状態がどのようになるかを試験した。なお、試験は混練機の出口にストランドダイを取り付け、ストランドダイから押し出されるストランド(棒状)の組成物を冷却後にカットしてペレットを製造することにより実施した。   Next, how are the physical properties and state of the produced cellulose resin composition (hereinafter referred to as the composition) in the examples satisfying the production method of the cellulose resin composition of the present invention and the comparative examples not satisfactory? It was tested. The test was carried out by attaching a strand die to the outlet of the kneader and cutting the composition of the strand (bar-shaped) extruded from the strand die after cooling to produce pellets.

[原料]
セルロース系樹脂としてジアセチルセルロース(L−70:ダイセル化学製)を使用し、石油系樹脂としてポリカーボネート(A1700:出光石油化学製)を使用した。また、可塑剤としては、トリメチルリン酸(大八化学製)又はジエチレングリコールジベンゾエート(リカフローLA100:新日本理化製)の何れかを使用した。
[material]
Diacetyl cellulose (L-70: manufactured by Daicel Chemical) was used as the cellulose resin, and polycarbonate (A1700: manufactured by Idemitsu Petrochemical) was used as the petroleum resin. As the plasticizer, either trimethyl phosphoric acid (manufactured by Daihachi Chemical) or diethylene glycol dibenzoate (Rikaflow LA100: manufactured by Shin Nippon Rika) was used.

そして、以下に示す試験条件で実施例1〜4、及び比較例1〜11を行った。   And Examples 1-4 and Comparative Examples 1-11 were performed on the test conditions shown below.

(実施例1)
実施例1では、原料組成として、ジアセチルセルロースを70質量%、トリメチルリン酸を30質量%の組成比率になるようにした。そして、混練機(二軸混練機10)の条件としては、粉砕ゾーン22でのバレル12設定温度をジアセチルセルロースの軟化温度以下である30℃とし、チップクリアランスCを0.05mmとした。一方、混合ゾーン26でのバレル12設定温度をジアセチルセルロースの軟化温度以上である220℃とし、チップクリアランスを0.05mmとした。また、粉砕ゾーン22及び混合ゾーン26における剪断速度を140〜436sec−1の範囲を満足する272sec−1に設定した。実施例1におけるストランドダイ吐出口の吐出樹脂温度は265℃であった。なお、剪断速度はスクリュー14の回転数を変えることにより調整し、以下同様である。
Example 1
In Example 1, the raw material composition was 70% by mass of diacetyl cellulose and 30% by mass of trimethyl phosphoric acid. And as conditions of a kneader (biaxial kneader 10), the barrel 12 set temperature in the pulverization zone 22 was set to 30 ° C. which is lower than the softening temperature of diacetyl cellulose, and the chip clearance C was set to 0.05 mm. On the other hand, the barrel 12 set temperature in the mixing zone 26 was set to 220 ° C., which is higher than the softening temperature of diacetylcellulose, and the tip clearance was set to 0.05 mm. Further, the shear rate in the pulverization zone 22 and the mixing zone 26 was set to 272 sec-1 which satisfies the range of 140 to 436 sec-1. The discharge resin temperature at the strand die discharge port in Example 1 was 265 ° C. The shear rate is adjusted by changing the number of rotations of the screw 14, and so on.

(実施例2)
実施例2は、可塑剤をトリメチルリン酸からジエチレングリコールジベンゾエートに変えただけで、他の条件は実施例1と同様に行った。即ち、可塑剤を変えた場合の影響を調べた。実施例2におけるストランドダイ吐出口の吐出樹脂温度は262℃であった。
(Example 2)
Example 2 was the same as Example 1 except that the plasticizer was changed from trimethyl phosphate to diethylene glycol dibenzoate. That is, the effect of changing the plasticizer was examined. The discharge resin temperature at the strand die discharge port in Example 2 was 262 ° C.

(実施例3)
実施例3は、原料組成として、ジアセチルセルロースを35質量%、ポリカーボネートを50質量%、ジエチレングリコールジベンゾエートを15質量%の組成比率になるようにした。また、混練機(二軸混練機10)の条件としては、剪断速度を本発明の140〜436sec−1の上限である436sec−1に設定した以外は実施例1と同様に行った。実施例3におけるストランドダイ吐出口の吐出樹脂温度は270℃であった。
(Example 3)
In Example 3, the raw material composition was 35% by mass of diacetyl cellulose, 50% by mass of polycarbonate, and 15% by mass of diethylene glycol dibenzoate. The conditions of the kneader (biaxial kneader 10) were the same as in Example 1 except that the shear rate was set to 436 sec-1 which is the upper limit of 140 to 436 sec-1. The discharge resin temperature at the strand die discharge port in Example 3 was 270 ° C.

(実施例4)
実施例4は、原料組成を実施例3と同じものを用い、混練機(二軸混練機10)の剪断速度を本発明の140〜436sec−1の下限である140sec−1に設定した。それ以外の条件は実施例1と同様である。実施例4におけるストランドダイ吐出口の吐出樹脂温度は265℃であった。
Example 4
In Example 4, the same raw material composition as in Example 3 was used, and the shear rate of the kneader (biaxial kneader 10) was set to 140 sec-1 which is the lower limit of 140 to 436 sec-1 of the present invention. The other conditions are the same as in Example 1. The discharge resin temperature at the strand die discharge port in Example 4 was 265 ° C.

(比較例1)
比較例1は、実施例1と同じ組成の原料を用いて、粉砕と分散・混合とを別装置に分けて実施した場合である。即ち、混練部が1つの第1混練機(二軸混練機)で粉砕を行い、混練部が1つの第2混練機(二軸混練機)で分散・混合を行った。第1混練機(粉砕)及び第2混練機(分散・混合)におけるバレル設定温度、チップクリアランスC、及び剪断速度は実施例1と同様に設定した。比較例1は、粉砕と分散・混合とを1つの混練機で行う実施例1との対比のための試験である。比較例1における第1混練機出口での吐出樹脂温度は262℃であり、第2混練機に取り付けたストランドダイ出口での吐出樹脂温度は275℃であった。
(Comparative Example 1)
Comparative Example 1 is a case where pulverization and dispersion / mixing are performed separately in separate apparatuses using raw materials having the same composition as in Example 1. That is, the kneading part pulverized with one first kneader (biaxial kneader), and the kneading part dispersed and mixed with one second kneader (biaxial kneader). The barrel set temperature, the tip clearance C, and the shear rate in the first kneading machine (pulverization) and the second kneading machine (dispersing / mixing) were set in the same manner as in Example 1. Comparative Example 1 is a test for comparison with Example 1 in which pulverization and dispersion / mixing are performed in one kneader. In Comparative Example 1, the discharge resin temperature at the first kneader outlet was 262 ° C., and the discharge resin temperature at the strand die outlet attached to the second kneader was 275 ° C.

(比較例2)
比較例2は、実施例1と同じ組成の原料を用いて、混練機(二軸混練機10)の粉砕ゾーン22のみで処理した場合である。即ち、混練機(二軸混練機10)の混合ゾーン26のニーディングディスク14Bを搬送機能のみの2条ネジに代えて行った。粉砕ゾーン22でのバレル温度、チップクリアランスC、及び剪断速度は実施例1と同様である。比較例2におけるストランドダイ吐出口の吐出樹脂温度は245℃であった。
(Comparative Example 2)
Comparative Example 2 is a case where the raw material having the same composition as Example 1 was used and processed only in the pulverization zone 22 of the kneader (biaxial kneader 10). That is, the kneading disk 14B in the mixing zone 26 of the kneading machine (biaxial kneader 10) was replaced with a double thread having only a conveying function. The barrel temperature, the tip clearance C, and the shear rate in the pulverization zone 22 are the same as those in the first embodiment. The discharge resin temperature at the strand die discharge port in Comparative Example 2 was 245 ° C.

(比較例3)
比較例3は、実施例1と同じ組成の原料を用いて、混練機(二軸混練機10)の混合ゾーン26のみで処理した場合である。即ち、混練機(二軸混練機10)の粉砕ゾーン22のニーディングディスク14Bを搬送機能のみの2条ネジに代えて行った。混合ゾーン26でのバレル温度、チップクリアランスC、及び剪断速度は実施例1と同様である。比較例3におけるストランドダイ吐出口の吐出樹脂温度は255℃であった。
(Comparative Example 3)
Comparative Example 3 is a case where the raw material having the same composition as that of Example 1 was used and processed only in the mixing zone 26 of the kneader (biaxial kneader 10). In other words, the kneading zone 14 of the kneading zone (biaxial kneader 10) of the kneader (biaxial kneader 10) was replaced with a double thread having only a conveying function. The barrel temperature, tip clearance C, and shear rate in the mixing zone 26 are the same as in Example 1. The discharge resin temperature at the strand die discharge port in Comparative Example 3 was 255 ° C.

(比較例4)
比較例4は、剪断速度が本発明の条件範囲である140〜436sec−1の上限を大きく上回って850sec−1の場合であり、その他の条件は実施例1と同様である。比較例4におけるストランドダイ吐出口の吐出樹脂温度は320℃であった。
(Comparative Example 4)
The comparative example 4 is a case where the shear rate is 850 sec-1 which greatly exceeds the upper limit of 140 to 436 sec-1 which is the condition range of the present invention, and other conditions are the same as those of the first embodiment. The discharge resin temperature of the strand die discharge port in Comparative Example 4 was 320 ° C.

(比較例5)
比較例5は、剪断速度が本発明の条件範囲である140〜436sec−1の下限を大きく下回って87sec−1の場合であり、その他の条件は実施例1と同様である。比較例5におけるストランドダイ吐出口の吐出樹脂温度は250℃であった。
(Comparative Example 5)
Comparative Example 5 is a case where the shear rate is significantly lower than the lower limit of 140 to 436 sec-1 which is the condition range of the present invention and is 87 sec-1, and other conditions are the same as in Example 1. The discharge resin temperature of the strand die discharge port in Comparative Example 5 was 250 ° C.

(比較例6)
比較例6は、剪断速度が本発明の条件範囲である140〜436sec−1を大きく下回って87sec−1の場合であると共に原料組成を実施例3に変えた以外は実施例1と同様である。比較例6におけるストランドダイ吐出口の吐出樹脂温度は250℃であった。
(Comparative Example 6)
Comparative Example 6 is the same as Example 1 except that the shear rate is greatly lower than 140 to 436 sec-1 which is the condition range of the present invention and is 87 sec-1, and the raw material composition is changed to Example 3. . The discharge resin temperature at the strand die discharge port in Comparative Example 6 was 250 ° C.

(比較例7)
比較例7は、粉砕ゾーン22のバレル12設定温度をジアセチルセルロースの軟化温度よりも高い220℃に設定した場合であり、その他の条件は実施例1と同様である。即ち、粉砕ゾーン22のバレル12設定温度が本発明を満足しない場合である。比較例7におけるストランドダイ吐出口の吐出樹脂温度は282℃であった。
(Comparative Example 7)
Comparative Example 7 is a case where the barrel 12 set temperature of the pulverization zone 22 is set to 220 ° C., which is higher than the softening temperature of diacetyl cellulose, and other conditions are the same as in Example 1. That is, the barrel 12 set temperature in the grinding zone 22 does not satisfy the present invention. The discharge resin temperature at the strand die discharge port in Comparative Example 7 was 282 ° C.

(比較例8)
比較例8は、粉砕ゾーン22のチップクリアランスCを3mmに設定した場合であり、その他の条件は実施例1と同様である。即ち、粉砕ゾーン22のチップクリアランスCが本発明の条件を満足しない場合である。比較例8におけるストランドダイ吐出口の吐出樹脂温度は240℃であった。
(Comparative Example 8)
Comparative Example 8 is a case where the tip clearance C of the pulverization zone 22 is set to 3 mm, and other conditions are the same as in Example 1. That is, the chip clearance C in the grinding zone 22 does not satisfy the conditions of the present invention. The discharge resin temperature at the strand die discharge port in Comparative Example 8 was 240 ° C.

(比較例9)
比較例9は、混合ゾーン26のバレル12設定温度をジアセチルセルロースの軟化温度よりも低い30℃に設定した場合であり、その他の条件は実施例1と同様である。即ち、混合ゾーン26のバレル12設定温度が本発明を満足しない場合である。比較例9におけるストランドダイ吐出口の吐出樹脂温度は265℃であった。
(Comparative Example 9)
The comparative example 9 is a case where the barrel 12 set temperature of the mixing zone 26 is set to 30 ° C. which is lower than the softening temperature of diacetyl cellulose, and other conditions are the same as in the first embodiment. That is, the barrel 12 set temperature of the mixing zone 26 does not satisfy the present invention. The discharge resin temperature at the strand die discharge port in Comparative Example 9 was 265 ° C.

(比較例10)
比較例10は、粉砕ゾーン22のチップクリアランスCを2mmに設定した場合であり、その他の条件は実施例1と同様である。即ち、粉砕ゾーン22のチップクリアランスCが本発明の条件を満足しない場合である。比較例10におけるストランドダイ吐出口の吐出樹脂温度は238℃であった。
(Comparative Example 10)
Comparative Example 10 is a case where the chip clearance C of the grinding zone 22 is set to 2 mm, and other conditions are the same as in Example 1. That is, the chip clearance C in the grinding zone 22 does not satisfy the conditions of the present invention. The discharge resin temperature at the strand die discharge port in Comparative Example 10 was 238 ° C.

(比較例11)
比較例11は、原料組成として、分散剤を使用せずにジアセチルセルロースを100質量%とした場合であり、その他の条件は実施例1と同様である。即ち可塑剤を使用しないで組成物を製造した場合である。比較例11におけるストランドダイ吐出口の吐出樹脂温度は330℃であった。
(Comparative Example 11)
Comparative Example 11 is a case where the raw material composition is 100% by mass of diacetyl cellulose without using a dispersant, and other conditions are the same as in Example 1. That is, it is a case where a composition is produced without using a plasticizer. The discharge resin temperature of the strand die discharge port in Comparative Example 11 was 330 ° C.

なお、実施例1〜4及び比較例1〜11の上記条件以外は、全て共通である。   In addition, except the said conditions of Examples 1-4 and Comparative Examples 1-11, all are common.

[組成物品質の評価項目]
〈ストランド外観〉
得られた組成物中に未溶融物が有るか無いかを目視にて評価したものであり、未溶融物が無ければ○、有れば×とした。
[Evaluation items for composition quality]
<Strand appearance>
It was evaluated by visual observation whether or not there was an unmelted product in the obtained composition.

〈ペレットカラー〉
ペレットのイエローインデックス(YI値)が原料のときより増加していなければ○、増加していれば×とした。
<Pellet color>
If the yellow index (YI value) of the pellet did not increase compared to that of the raw material, it was marked as ◯, and if it increased, it was marked as x.

〈分子量〉
ペレットの分子量分布(Mw)が原料の値に比べて10%以下の減少量であれば○、10%を超えていれば×とした。
<Molecular weight>
When the molecular weight distribution (Mw) of the pellet was a decrease of 10% or less compared to the value of the raw material, it was evaluated as “B” when it exceeded 10%.

〈シャルピー衝撃強度〉
シャルピー衝撃試験機(JIS7111)を使用してストランド樹脂について測定し、ペレットのシャルピー衝撃強度が5kJ/m2以上であれば○、5kJ/m2であれば×とした。
<Charpy impact strength>
The strand resin was measured using a Charpy impact tester (JIS 7111). If the Charpy impact strength of the pellet was 5 kJ / m 2 or more, the result was ○, and if it was 5 kJ / m 2, the result was ×.

〈総合評価〉
総合評価は、ストランド外観、ペレットカラー、分子量、シャルピー衝撃強度の4項目全てが○の場合に総合評価を○とし、1つでも×がある場合には総合評価を×とした。
<Comprehensive evaluation>
In the comprehensive evaluation, when all the four items of strand appearance, pellet color, molecular weight, and Charpy impact strength are “good”, the comprehensive evaluation is “good”, and when there is even one “x”, the comprehensive evaluation is “poor”.

[試験結果]
試験結果を図4の表に示す。
[Test results]
The test results are shown in the table of FIG.

図4の表から分かるように、本発明のセルロース系樹脂組成物の製造方法を満足する実施例1〜4は、全ての評価項目が○であり、総合評価も○となった。   As can be seen from the table in FIG. 4, in Examples 1 to 4 that satisfy the method for producing the cellulose resin composition of the present invention, all evaluation items were “good” and the overall evaluation was also “good”.

一方、本発明のセルロース系樹脂組成物の製造方法を満足しない比較例1〜11は、4つの評価項目の少なくとも1つが×となった。このため、総合評価が×となった。   On the other hand, in Comparative Examples 1 to 11 which do not satisfy the method for producing a cellulose resin composition of the present invention, at least one of the four evaluation items was x. For this reason, comprehensive evaluation was set to x.

特に注目すべき点は、実施例1と比較例1との対比から分かるように、1つの混練押出機で粉砕と分散・混合とを連続して行った実施例1と、2つの混練押出機で粉砕と分散・混合とを分けて行った場合では、ペレットカラーに違いがでた。即ち、実施例1はペレットカラーの評価が○であり、ペレットのYI値が原料のときより増加していないのに対して、比較例1では×の評価であり、YI値が増加した。   Of particular note, as can be seen from the comparison between Example 1 and Comparative Example 1, Example 1 in which pulverization, dispersion, and mixing were continuously carried out with one kneading extruder, and two kneading extruders When pulverization and dispersion / mixing were performed separately, there was a difference in pellet color. That is, in Example 1, the pellet color was evaluated as ◯, and the YI value of the pellet was not increased as compared with the raw material, whereas in Comparative Example 1, the evaluation was x, and the YI value was increased.

この理由は、図3で説明したように、実施例1では、粉砕ゾーンで粉砕され粉砕熱等により品温が上昇した原料を一旦冷やすことなくそのままゾーンでの温度である樹脂材料の軟化温度以上に上昇させることができる。これに対して、比較例1は第1混練機で粉砕した原料を一旦室温付近まで冷却してから第2混練機に投入して混合するため、2回の熱履歴を経ることになり実施例1の1回の熱履歴よりも原料が熱劣化を受け易いためと考察される。   The reason for this is that, as described in FIG. 3, in Example 1, the raw material that has been pulverized in the pulverization zone and whose product temperature has risen due to the heat of pulverization or the like is not cooled once, but the temperature in the zone is not lower than the softening temperature of the resin material. Can be raised. On the other hand, in Comparative Example 1, since the raw material pulverized by the first kneader is once cooled to near room temperature and then mixed by being introduced into the second kneader, the heat history is repeated twice. It is considered that the raw material is more susceptible to thermal deterioration than the one-time heat history of 1.

また、実施例1〜4の剪断速度と比較例4の剪断速度との対比から分かるように、剪断速度が436sec−1を超えて大きくなり過ぎると、可塑剤を加えた原料であっても混練機の吐出樹脂温度が320℃まで上昇する。この結果、ストランド外観のみは○であるが、その他のペレットカラー、分子量、シャルピー衝撃強度の3項目が×になった。逆に、比較例5のように、剪断速度が140を下回って小さくなり過ぎると、混合ゾーンでの分散・混合が十分に行われない。この結果、原料は熱劣化を受けにくくなることからペレットカラーや分子量は○であるが、未溶融物の評価項目であるストランド外観や物性の評価項目であるシャルピー衝撃強度が×になった。この結果は比較例6のように原料組成を変えた場合も同様であった。   Further, as can be seen from the comparison between the shear rate of Examples 1 to 4 and the shear rate of Comparative Example 4, if the shear rate exceeds 436 sec −1, even a raw material to which a plasticizer is added is kneaded. The discharge resin temperature of the machine rises to 320 ° C. As a result, only the appearance of the strand was ◯, but the other three items of pellet color, molecular weight, and Charpy impact strength were x. On the contrary, as in Comparative Example 5, when the shear rate is too low and lower than 140, the dispersion and mixing in the mixing zone are not sufficiently performed. As a result, since the raw material is less susceptible to thermal deterioration, the pellet color and molecular weight are good, but the Charpy impact strength, which is an evaluation item of strand appearance and physical properties, which is an evaluation item of unmelted material, is x. This result was the same when the raw material composition was changed as in Comparative Example 6.

図5は、剪断速度がペレットカラーや分子量にどのように影響するかを調べたグラフである。図5の横軸は剪断速度を表し、左側の縦軸はペレットカラーのYI値を表し、右側の縦軸は分子量を表す。また、曲線AがYI値の変化を示すと共に、曲線Bが分子量の変化を示す。   FIG. 5 is a graph showing how the shear rate affects the pellet color and molecular weight. The horizontal axis in FIG. 5 represents the shear rate, the left vertical axis represents the YI value of the pellet color, and the right vertical axis represents the molecular weight. Curve A shows a change in YI value, and curve B shows a change in molecular weight.

図5の曲線Aから分かるように、剪断速度を大きくしていき、剪断速度が436sec−1を超えると原料の品温が273℃になりYI値が急激に大きくなる。一方、曲線Bの分子量は剪断速度436sec−1を超えても変化はなく、727sec−1を超えて品温が287℃になった時点で急激に低分子化し始めた。したがって、剪断速度を436sec−1以下にすることでYI値及び分子量の悪化を防止することができる。   As can be seen from the curve A in FIG. 5, when the shear rate is increased and the shear rate exceeds 436 sec-1, the raw material temperature becomes 273 ° C. and the YI value increases rapidly. On the other hand, the molecular weight of curve B did not change even when the shear rate exceeded 436 sec-1, and began to decrease rapidly when the product temperature reached 287 ° C. exceeding 727 sec-1. Therefore, deterioration of the YI value and molecular weight can be prevented by setting the shear rate to 436 sec −1 or less.

また、剪断速度が140sec−1を下回ってもYI値及び分子量に影響はないが、未溶融物が目視にて観察された。したがって、剪断速度の下限は140sec−1に設定することが適切である。   Further, even if the shear rate was less than 140 sec-1, there was no effect on the YI value and molecular weight, but unmelted material was visually observed. Therefore, it is appropriate to set the lower limit of the shear rate to 140 sec-1.

なお、比較例1では、原料の粉砕を混練押出機で行ったが、従来のようにミル式やパドル式等の粉砕装置で行った場合も同様の結果を得ることができる。   In Comparative Example 1, the raw material was pulverized by a kneading extruder, but the same result can be obtained when the pulverization apparatus is a mill type or paddle type as in the prior art.

10…混練機(二軸混練機)、12…バレル、14…スクリュー、14A…スクリュー軸、14B…混練ディスク、16…原料供給口、18…ホッパー、20…搬送ゾーン、22…第1の混練ゾーン(粉砕部)、24…加熱・可塑化ゾーン、26…第2の混練ゾーン(混練部)、28…昇圧・排出ゾーン、30…オープンベント   DESCRIPTION OF SYMBOLS 10 ... Kneading machine (biaxial kneader), 12 ... Barrel, 14 ... Screw, 14A ... Screw shaft, 14B ... Kneading disk, 16 ... Raw material supply port, 18 ... Hopper, 20 ... Conveying zone, 22 ... First kneading Zone (grinding part), 24 ... Heating / plasticizing zone, 26 ... Second kneading zone (kneading part), 28 ... Pressurization / discharge zone, 30 ... Open vent

Claims (7)

少なくとも粒状のセルロース系樹脂を含む樹脂材料と、可塑剤とを含む原料を、混練機から押し出して樹脂組成物を製造するセルロース系樹脂組成物の製造方法において、
前記混練機として、スクリューに2箇所の混練部を有すると共に該混練部の剪断速度を140〜436sec−1の範囲に調整可能な二軸混練機を用い、
前記2箇所の混練部のうち、入口側の混練部のバレル温度を前記樹脂材料の軟化温度以下に設定し、出口側の混練部のバレル温度を前記樹脂材料の軟化温度以上に設定することにより、前記入口側の混練部を前記原料の粉砕ゾーンとして使用すると共に前記出口側の混練部を前記原料の混合ゾーンとして使用し、前記原料の粉砕と分散・混合とを1つの混練機で連続的に行うことを特徴とするセルロース系樹脂組成物の製造方法。
In the method for producing a cellulose resin composition, a resin composition containing at least a granular cellulose resin and a raw material containing a plasticizer are extruded from a kneader to produce a resin composition.
As the kneading machine, a biaxial kneading machine having two kneading parts on the screw and capable of adjusting the shear rate of the kneading part in a range of 140 to 436 sec −1 is used.
By setting the barrel temperature of the kneading part on the inlet side to be equal to or lower than the softening temperature of the resin material, and setting the barrel temperature of the kneading part on the outlet side to be equal to or higher than the softening temperature of the resin material. The inlet side kneading part is used as the raw material pulverization zone and the outlet side kneading part is used as the raw material mixing zone, and the raw material pulverization and dispersion / mixing are continuously performed in one kneader. The manufacturing method of the cellulose resin composition characterized by performing to this.
前記粉砕ゾーンにおける最狭部分のチップクリアランスが、前記混合ゾーンにおける最狭部分のチップクリアランスよりも広いことを特徴とする請求項1のセルロース系樹脂組成物の製造方法。   2. The method for producing a cellulose resin composition according to claim 1, wherein a tip clearance in the narrowest portion in the grinding zone is wider than a tip clearance in the narrowest portion in the mixing zone. 前記二軸混練機に投入する前の前記セルロース系樹脂の粒径は1〜30mmの範囲であることを特徴とする請求項1又は2のセルロース系樹脂組成物の製造方法。   The method for producing a cellulose resin composition according to claim 1 or 2, wherein the particle size of the cellulose resin before being charged into the biaxial kneader is in the range of 1 to 30 mm. 前記粉砕ゾーンでは、前記樹脂材料に前記可塑剤が添加された状態で粉砕することを特徴とする請求項1〜3の何れか1のセルロース系樹脂組成物の製造方法。   In the said grinding | pulverization zone, it grind | pulverizes in the state in which the said plasticizer was added to the said resin material, The manufacturing method of the cellulose resin composition of any one of Claims 1-3 characterized by the above-mentioned. 前記粉砕ゾーンの後部にオープンベントを設け、粉砕された原料からの水蒸気等の揮発物質を脱気することで、前記原料材料の粉砕と乾燥とを同時に行うことを特徴とする請求項1〜4の何れか1のセルロース系樹脂組成物の製造方法。   5. An open vent is provided at the rear of the pulverization zone, and volatile materials such as water vapor from the pulverized raw material are degassed, whereby the raw material is pulverized and dried simultaneously. Any one of these manufacturing methods of the cellulose resin composition. 前記原料は、前記セルロース系樹脂と前記可塑剤の2種類であることを特徴とする請求項1〜5の何れか1のセルロース系樹脂組成物の製造方法。   The said raw material is two types, the said cellulose resin and the said plasticizer, The manufacturing method of the cellulose resin composition of any one of Claims 1-5 characterized by the above-mentioned. 前記原料は、前記セルロース系樹脂とポリカーボネートと前記可塑剤の3種類であることを特徴とする請求項1〜5の何れか1のセルロース系樹脂組成物の製造方法。   The said raw material is three types, the said cellulose resin, a polycarbonate, and the said plasticizer, The manufacturing method of the cellulose resin composition of any one of Claims 1-5 characterized by the above-mentioned.
JP2010049321A 2010-03-05 2010-03-05 Method for producing cellulose-based resin composition Pending JP2011184520A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010049321A JP2011184520A (en) 2010-03-05 2010-03-05 Method for producing cellulose-based resin composition
CN201110057103.8A CN102189614B (en) 2010-03-05 2011-03-03 Manufacturing method of cellulose resin compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010049321A JP2011184520A (en) 2010-03-05 2010-03-05 Method for producing cellulose-based resin composition

Publications (1)

Publication Number Publication Date
JP2011184520A true JP2011184520A (en) 2011-09-22

Family

ID=44598906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010049321A Pending JP2011184520A (en) 2010-03-05 2010-03-05 Method for producing cellulose-based resin composition

Country Status (2)

Country Link
JP (1) JP2011184520A (en)
CN (1) CN102189614B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11247378B2 (en) * 2016-04-22 2022-02-15 Steerlife India Private Limited Processor and a process for granulation of powders
KR102323052B1 (en) * 2017-09-26 2021-11-08 가부시끼가이샤 니혼 세이꼬쇼 Fiber-reinforced thermoplastic resin kneading method, plasticizer and extruder
CN116710507A (en) * 2020-12-25 2023-09-05 旭化成株式会社 Resin raw material composition for molding, resin raw material composition for microporous film, and method for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249567A (en) * 1990-12-28 1992-09-04 Polyplastics Co Polyacetal resin composition structure and its formation
JPH09248453A (en) * 1996-03-18 1997-09-22 Mitsubishi Chem Corp Hydrophilic resin molded body
JP2002030182A (en) * 2000-05-09 2002-01-31 Riken Technos Corp Acetyl cellulose resin composition and its production method
JP2004276598A (en) * 2003-02-24 2004-10-07 Sumika Color Kk Method for manufacturing thermoplastic resin pellet
JP2005162842A (en) * 2003-12-01 2005-06-23 Daicel Chem Ind Ltd Organic solid particle
JP2006328245A (en) * 2005-05-26 2006-12-07 Daicel Chem Ind Ltd Organic solid particle having excellent moisture retention and method for producing the same
JP2009298937A (en) * 2008-06-13 2009-12-24 Sumitomo Electric Fine Polymer Inc Method for producing biodegradable resin material and biodegradable resin material
JP2010270289A (en) * 2008-07-22 2010-12-02 Kao Corp Biodegradable resin composition
JP2011202145A (en) * 2010-03-05 2011-10-13 Fujifilm Corp Method and device for producing cellulose-based resin composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886446A (en) * 2003-09-30 2006-12-27 内山幸助 Screw type processing device and product using the device
JP4602024B2 (en) * 2004-07-28 2010-12-22 ポリプラスチックス株式会社 Method for producing liquid crystalline resin composition
JP4846315B2 (en) * 2005-09-22 2011-12-28 ダイセルポリマー株式会社 Method for producing cellulose fiber-containing thermoplastic resin composition
JP5297808B2 (en) * 2006-10-18 2013-09-25 出光ライオンコンポジット株式会社 Masterbatch and manufacturing method thereof
CN100497457C (en) * 2007-01-26 2009-06-10 中国林业科学研究院林产化学工业研究所 Degradable high polymer material of poplar wood pulp cellulose and its preparation method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249567A (en) * 1990-12-28 1992-09-04 Polyplastics Co Polyacetal resin composition structure and its formation
JPH09248453A (en) * 1996-03-18 1997-09-22 Mitsubishi Chem Corp Hydrophilic resin molded body
JP2002030182A (en) * 2000-05-09 2002-01-31 Riken Technos Corp Acetyl cellulose resin composition and its production method
JP2004276598A (en) * 2003-02-24 2004-10-07 Sumika Color Kk Method for manufacturing thermoplastic resin pellet
JP2005162842A (en) * 2003-12-01 2005-06-23 Daicel Chem Ind Ltd Organic solid particle
JP2006328245A (en) * 2005-05-26 2006-12-07 Daicel Chem Ind Ltd Organic solid particle having excellent moisture retention and method for producing the same
JP2009298937A (en) * 2008-06-13 2009-12-24 Sumitomo Electric Fine Polymer Inc Method for producing biodegradable resin material and biodegradable resin material
JP2010270289A (en) * 2008-07-22 2010-12-02 Kao Corp Biodegradable resin composition
JP2011202145A (en) * 2010-03-05 2011-10-13 Fujifilm Corp Method and device for producing cellulose-based resin composition

Also Published As

Publication number Publication date
CN102189614A (en) 2011-09-21
CN102189614B (en) 2014-12-03

Similar Documents

Publication Publication Date Title
US5851065A (en) Apparatus for recycling resin scrap
Wiedmann et al. Compounding of thermoplastic starch with twin‐screw extruders
JP5380816B2 (en) Method for producing thermoplastic resin composition and method for producing thermoplastic resin molded article
US20090213681A1 (en) Counter-rotating twin screw extruder
TWI547359B (en) Method for producing transparent resin composition
WO2006123824A1 (en) Process for producing resin composition containing fibrous filler in high concentration and resin composition pellet
EP3064542B1 (en) Biodegradable thermoplastic polymer compostion, method for its manufacture and use thereof
DE102007054549A1 (en) Producing natural fiber plastic composite material by drying the natural material such as hemp and/or wood in the form of fiber, shred or flour, crushing the wood raw materials and then compounding with a plastic melt and/or additives
JP5146393B2 (en) Method for producing thermoplastic resin composition
TW202043003A (en) Carbon fiber composite material containing recycled carbon fibers, molded body, and method for producing carbon fiber composite material
JP2011184520A (en) Method for producing cellulose-based resin composition
JP2011000881A (en) Extruder and method for producing material for biodegradable foamed molding by using the extruder
EP2631060A1 (en) A low-pressure process for preparing a polymer film by extrusion-blowing
EP1419041B1 (en) Mixing and kneading device for polymer compositions
JP4746288B2 (en) Method for producing starch-containing resin composition
Thyashan et al. Investigation of the effect of materials and processing conditions in twin-screw extrusion
JP2012102234A (en) Cellulose-based resin composition and method of producing the same
EP3386703B1 (en) Process for manufacturing a precursor material
JP5489217B2 (en) Method for producing flame-retardant resin composition and flame-retardant resin molded article
JP2011202145A (en) Method and device for producing cellulose-based resin composition
JP2023011323A (en) Thermoplastic polymer granule and method for producing thermoplastic polymer granule
JP5294334B2 (en) Flame retardant resin composition and method for producing the same
CN215396788U (en) Screw assembly for producing starch-based full-biodegradable material
US20160167253A9 (en) Just-in-time compounding in an injection molding machine
JPH08118452A (en) Method and apparatus for extrusion molding of hollow resin panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140901