JP4845697B2 - Continuous casting mold - Google Patents

Continuous casting mold Download PDF

Info

Publication number
JP4845697B2
JP4845697B2 JP2006328493A JP2006328493A JP4845697B2 JP 4845697 B2 JP4845697 B2 JP 4845697B2 JP 2006328493 A JP2006328493 A JP 2006328493A JP 2006328493 A JP2006328493 A JP 2006328493A JP 4845697 B2 JP4845697 B2 JP 4845697B2
Authority
JP
Japan
Prior art keywords
plating layer
cooling member
plating
mold
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006328493A
Other languages
Japanese (ja)
Other versions
JP2008137057A (en
Inventor
信洋 渡邉
秀雄 大久保
正昭 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP2006328493A priority Critical patent/JP4845697B2/en
Publication of JP2008137057A publication Critical patent/JP2008137057A/en
Application granted granted Critical
Publication of JP4845697B2 publication Critical patent/JP4845697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

本発明は、鋳片を製造するために使用する連続鋳造用鋳型に関する。 The present invention relates to a continuous casting mold used for producing a slab.

従来、鋳片は、上下方向に貫通した空間部を形成する冷却部材を有する連続鋳造用鋳型(以下、単に鋳型ともいう)に、溶鋼を流し込み凝固させることにより製造している。
この溶鋼と溶鋼の表面(湯面)を覆うパウダーには、金属と低融点合金を形成する不純物(例えば、亜鉛、カドミウム、鉛など)が含まれているため、冷却部材の表面に不純物が直接接触することで、冷却部材の表層部が、これら不純物と反応して脆い合金層を形成し、クラックの起点となったり、また溶損して、鋳型の寿命が短くなっていた。このため、冷却部材の溶鋼接触面にCrめっきを施すことで、不純物から冷却部材を保護することも試みられた。しかし、形成されたCrめっき層には多数のマイクロクラックが存在するため、このマイクロクラックを介して不純物が冷却部材に直接接触し、冷却部材が損傷して、期待以上の寿命延長には至らなかった。
このマイクロクラックによる損傷を防止するため、例えば、特許文献1には、めっき処理条件とめっき浴組成を調整することにより、マイクロクラックをなくしたクラックレスのCrめっき層を形成する方法が開示されている。
Conventionally, slabs are manufactured by pouring molten steel into a continuous casting mold (hereinafter also simply referred to as a mold) having a cooling member that forms a space portion penetrating in the vertical direction and solidifying the molten steel.
Since the powder that covers the molten steel and the surface of the molten steel (metal surface) contains impurities that form a low-melting alloy with the metal (for example, zinc, cadmium, lead, etc.), the impurities are directly present on the surface of the cooling member. By contact, the surface layer portion of the cooling member reacts with these impurities to form a brittle alloy layer, which becomes a starting point of a crack or melts, and the life of the mold is shortened. For this reason, it was also attempted to protect the cooling member from impurities by applying Cr plating to the molten steel contact surface of the cooling member. However, since the formed Cr plating layer has a large number of microcracks, the impurities directly contact the cooling member through the microcracks, and the cooling member is damaged, so that the service life is not extended more than expected. It was.
In order to prevent damage due to the microcracks, for example, Patent Document 1 discloses a method of forming a crackless Cr plating layer that eliminates microcracks by adjusting the plating process conditions and the plating bath composition. Yes.

このクラックレスのCrめっき層により冷却部材は保護され、冷却部材の寿命は従来よりも伸びるが、一方、使用の長期化とともにCrめっき層に割れが生じるため、この割れた部分を介して不純物が冷却部材に接触し、冷却部材が損傷していた。
このような、Crめっき層の割れの要因について検討すると、めっき表面にブラスト処理によって適度な圧縮の残留応力を付与することが有効であることが分かった。即ち、鋳型内に供給された溶鋼により、Crめっき層に熱がかかると、Crめっき層に圧縮の応力が加わり、その応力次第では、皮膜の弾性域を超えて塑性歪が蓄積される。また、Crめっき層が冷えたときには、引張りの応力が加わり、この繰り返しによる熱サイクル疲労により、Crめっき層に割れが発生する。
そこで、例えば、特許文献2には、Crめっき層に対して350MPa以上の圧縮の残留応力を付与することで、Crめっき層の割れを抑制する鋳型が開示されている。
The cooling member is protected by the crackless Cr plating layer, and the life of the cooling member is longer than the conventional one. On the other hand, cracks occur in the Cr plating layer as the use is prolonged, so impurities are introduced through the cracked portion. The cooling member was in contact with the cooling member and was damaged.
Examining the cause of such cracking of the Cr plating layer, it has been found that it is effective to apply an appropriate compressive residual stress to the plating surface by blasting. That is, when heat is applied to the Cr plating layer by the molten steel supplied into the mold, compressive stress is applied to the Cr plating layer, and depending on the stress, plastic strain is accumulated beyond the elastic region of the coating. Further, when the Cr plating layer is cooled, a tensile stress is applied, and cracks are generated in the Cr plating layer due to thermal cycle fatigue due to this repetition.
Thus, for example, Patent Document 2 discloses a mold that suppresses cracking of the Cr plating layer by applying a compressive residual stress of 350 MPa or more to the Cr plating layer.

特開平1−271033号公報Japanese Patent Laid-Open No. 1-271033 特開平10−156490号公報Japanese Patent Laid-Open No. 10-156490

しかしながら、特許文献2に記載された350MPa以上の圧縮の残留応力は、加える応力としては非常に大きく、ブラスト法により圧縮の残留応力を付与する際に、冷却部材の表面からCrめっき層が剥がれ易くなるという問題がある。
このため、Crめっき層が剥がれた部分に不純物が接触し、冷却部材の表層部が損傷するため、冷却部材を十分に保護できず、鋳型の寿命低下に繋がる恐れがある。
However, the compressive residual stress of 350 MPa or more described in Patent Document 2 is very large as the stress to be applied, and when the compressive residual stress is applied by the blast method, the Cr plating layer is easily peeled off from the surface of the cooling member. There is a problem of becoming.
For this reason, impurities come into contact with the portion where the Cr plating layer is peeled off, and the surface layer portion of the cooling member is damaged. Therefore, the cooling member cannot be sufficiently protected, and the mold life may be shortened.

本発明はかかる事情に鑑みてなされたもので、冷却部材からのCrめっき層の剥がれを抑制、更には防止して、冷却部材を保護することにより、従来よりも長寿命化を図ることが可能な連続鋳造用鋳型を提供することを目的とする。 The present invention has been made in view of such circumstances, and by suppressing and further preventing the peeling of the Cr plating layer from the cooling member and protecting the cooling member, it is possible to achieve a longer life than before. An object of the present invention is to provide a continuous casting mold.

前記目的に沿う本発明に係る連続鋳造用鋳型は、上下方向に貫通した空間部を形成する冷却部材を有し、該空間部に溶鋼を供給して冷却しながら鋳片を製造する連続鋳造用鋳型において、
前記冷却部材の溶鋼接触面側で、前記溶鋼の湯面位置を基準として前記冷却部材の上端までまたは上方向に少なくとも100mmまで、かつ下方向に少なくとも100mmまでの範囲内には、複数層のCrめっき層が設けられ、しかも積層された該Crめっき層のうち少なくとも最表層のCrめっき層に、50MPa以上300MPa以下の圧縮の残留応力が加えられ、更に、該最表層のCrめっき層の表面粗度Raが1.0以上2.0以下である
The continuous casting mold according to the present invention that meets the above-described object has a cooling member that forms a space portion penetrating in the vertical direction, and supplies a molten steel to the space portion to manufacture a slab while cooling it. In the mold,
On the molten steel contact surface side of the cooling member, with respect to the position of the molten steel surface, the upper end of the cooling member or within the range of at least 100 mm upward and at least 100 mm downward, a plurality of layers of Cr In addition, a compressive residual stress of 50 MPa or more and 300 MPa or less is applied to at least the outermost Cr plating layer of the laminated Cr plating layers, and the surface roughness of the outermost Cr plating layer is further increased. The degree Ra is 1.0 or more and 2.0 or less .

本発明に係る連続鋳造用鋳型において、前記Crめっき層は2または3層であることが好ましい。
本発明に係る連続鋳造用鋳型において、前記積層されたCrめっき層の厚みは5μm以上100μm以下であることが好ましい
In the continuous casting mold according to the present invention, the Cr plating layer is preferably two or three layers.
In the continuous casting mold according to the present invention, the thickness of the laminated Cr plating layer is preferably 5 μm or more and 100 μm or less .

本発明に係る連続鋳造用鋳型において、前記圧縮の残留応力は、ブラスト処理を行って付与されたことが好ましい。
本発明に係る連続鋳造用鋳型において、前記ブラスト処理には、75μm以上210μm以下の粒度が80質量%以上のセラミックス製の粒状物を使用したことが好ましい
In the continuous casting mold according to the present invention, it is preferable that the compressive residual stress is applied by blasting.
In the continuous casting mold according to the present invention, it is preferable that a granular material made of ceramics having a particle size of 75 μm to 210 μm of 80% by mass or more is used for the blast treatment .

請求項1〜記載の連続鋳造用鋳型は、溶鋼の湯面位置を基準として所定の範囲内に、Crめっき層が設けられているので、溶鋼中とパウダー中の不純物、例えば、亜鉛およびカドミウム等から、鋳型を保護できる。
また、冷却部材には、複数層のCrめっき層が設けられ、下地となるCrめっき層に存在するマイクロクラックを、その表面に配置されるCrめっき層が覆うため、マイクロクラックを介して冷却部材が溶鋼と直接接触することを防止できる。
特に、積層されたCrめっき層のうち最表層のCrめっき層には、50MPa以上300MPa以下の圧縮の残留応力が加えられているので、冷却部材に発生する応力により、クロムめっきが割れることを防ぎ、冷却部材自体を保護できる。また、過剰な残留応力が付与されず、冷却部材からCrめっき層が剥がれることを抑制、更には防止できる。これにより、鋳型の長寿命化を図ることができる。
更に、最表層のCrめっき層の表面粗度Raを規定するので、Crめっき層表面への亜鉛の付着を抑制できる。
In the casting mold for continuous casting according to claims 1 to 5 , since the Cr plating layer is provided within a predetermined range based on the position of the molten steel surface, impurities in the molten steel and powder, for example, zinc and cadmium From this, the mold can be protected.
Also, the cooling member is provided with a plurality of Cr plating layers, and since the Cr plating layer disposed on the surface covers the microcracks existing in the underlying Cr plating layer, the cooling member is provided via the microcracks. Can be prevented from coming into direct contact with molten steel.
In particular, the outermost Cr plating layer of the laminated Cr plating layer is subjected to compressive residual stress of 50 MPa or more and 300 MPa or less, so that the chromium plating is prevented from cracking due to the stress generated in the cooling member. The cooling member itself can be protected. Moreover, excessive residual stress is not provided, and it can suppress and further prevent that the Cr plating layer is peeled off from the cooling member. Thereby, the lifetime of a casting_mold | template can be achieved.
Furthermore, since the surface roughness Ra of the outermost Cr plating layer is specified, adhesion of zinc to the surface of the Cr plating layer can be suppressed.

特に、請求項2記載の連続鋳造用鋳型は、Crめっき層の層数を規定するので、経済的でしかも冷却部材の保護効果が十分に得られる層数のCrめっき層を形成することができる。
請求項3記載の連続鋳造用鋳型は、積層されたCrめっき層全体の厚みを規定するので、積層されたCrめっき層の効果を経済的に得ることが可能な層厚を確保できる
In particular, since the continuous casting mold according to claim 2 defines the number of Cr plating layers, it is possible to form a Cr plating layer having a number of layers that is economical and sufficiently provides a protective effect for the cooling member. .
Since the continuous casting mold according to the third aspect regulates the thickness of the entire laminated Cr plating layer, it is possible to secure a layer thickness capable of economically obtaining the effect of the laminated Cr plating layer .

請求項記載の連続鋳造用鋳型は、Crめっき層への圧縮の残留応力の付与を、ブラスト処理により行っているので、例えば、冷却部材単体でも、またバックプレート付きの冷却部材でも、施工が可能であり、鋳型の製造が容易である。
請求項記載の連続鋳造用鋳型は、ブラスト処理に使用する粒状物の粒度を規定しているので、目標とする残留応力の付与を容易にできる
Since the continuous casting mold according to claim 4 imparts compressive residual stress to the Cr plating layer by blasting, for example, the cooling member alone or the cooling member with the back plate can be applied. This is possible and the mold is easy to manufacture.
Since the continuous casting mold according to the fifth aspect regulates the particle size of the granular material used for the blast treatment, it is possible to easily apply the target residual stress .

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1、図2(A)に示すように、本発明の一実施の形態に係る連続鋳造用鋳型(以下、単に鋳型ともいう)10は、上下方向に貫通した空間部11を形成する冷却部材12を有し、空間部11に溶鋼を供給して冷却しながら図示しないスラブ(鋳片の一例)を製造するものであり、冷却部材12の溶鋼接触面側13に、複数層のCrめっき層14、15が設けられている。本実施の形態では、4つ組の鋳型10に設けられた冷却部材12を構成する一対の短片部材(短辺部材ともいう)16、17と、間隔を有して対向配置された短片部材16、17を幅方向両側から挟み込んだ状態で対向配置された一対の長片部材(長辺部材ともいう)18、19それぞれに、Crめっきを施す場合について説明するが、冷却部材12の一部である短片部材16、17のみ、または長片部材18、19のみに、Crめっき層を形成してもよい。以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1 and 2A, a continuous casting mold (hereinafter also simply referred to as a mold) 10 according to an embodiment of the present invention is a cooling member that forms a space portion 11 penetrating in the vertical direction. The slab (not shown) is manufactured while supplying molten steel to the space 11 and cooling it, and a plurality of Cr plating layers are formed on the molten steel contact surface side 13 of the cooling member 12. 14 and 15 are provided. In the present embodiment, a pair of short piece members (also referred to as short side members) 16 and 17 constituting a cooling member 12 provided in a set of four molds 10 and a short piece member 16 disposed to face each other with a gap therebetween. , 17 will be described with respect to a case where Cr plating is applied to each of a pair of long piece members (also referred to as long side members) 18, 19 which are opposed to each other while being sandwiched from both sides in the width direction. A Cr plating layer may be formed only on some short piece members 16 and 17 or only on the long piece members 18 and 19. This will be described in detail below.

短片部材16、17と長片部材18、19の裏面側には、締結手段(図示しない)によってそれぞれ固定された支持部材の一例であるバックプレート(冷却箱または水箱ともいう)20〜23が設けられている。対向配置される長片部材18、19に固定されたバックプレート22、23の両端部には、それぞれボルト24が取付けられ、ばね(図示しない)を介してナット25で固定されている。
冷却部材12は、銅または銅合金で構成され、例えば、上下方向(鋳造方向)の長さが600mm以上1200mm以下程度である。なお、各短片部材16、17は、例えば、厚みが10mm以上100mm以下程度、幅が50mm以上300mm以下程度であり、また、各長片部材18、19は、例えば、厚みが10mm以上100mm以下程度、幅(スラブと接触する幅)が600mm以上3000mm以下程度である。
Back plates (also referred to as cooling boxes or water boxes) 20 to 23, which are examples of support members fixed by fastening means (not shown), are provided on the back surfaces of the short piece members 16 and 17 and the long piece members 18 and 19, respectively. It has been. Bolts 24 are respectively attached to both ends of the back plates 22 and 23 fixed to the long piece members 18 and 19 arranged to face each other, and are fixed with nuts 25 via springs (not shown).
The cooling member 12 is made of copper or a copper alloy, and has a length in the vertical direction (casting direction) of about 600 mm or more and 1200 mm or less, for example. Each short piece member 16, 17 has a thickness of about 10 mm to 100 mm and a width of about 50 mm to 300 mm, and each long piece member 18, 19 has a thickness of about 10 mm to 100 mm, for example. The width (the width in contact with the slab) is about 600 mm to 3000 mm.

冷却部材12の溶鋼接触面側13で、溶鋼の湯面(メニスカスともいう)位置を基準として上方向に少なくとも100mmまで、かつ下方向に少なくとも100mmまでの範囲内には、複数層(本実施の形態では2層であるが3層以上でもよい)のCrめっき層14、15が設けられている。
上記した範囲のうち、湯面を中心として上下方向にそれぞれ100mmまでの範囲は、特に熱間と冷間との繰り返しにより生じる熱応力の影響を最も受け易い領域であるため、この範囲にCrめっき層14、15を形成することで、冷却部材12の損傷を抑制、更には防止できる。
In the molten steel contact surface side 13 of the cooling member 12, a plurality of layers (in this embodiment) are within the range of at least 100 mm upward and at least 100 mm downward with respect to the position of the molten steel surface (also referred to as meniscus). In this embodiment, Cr plating layers 14 and 15 having two layers but three or more layers may be provided.
Among the above-mentioned ranges, the range up to 100 mm in the vertical direction with respect to the molten metal surface is the region most susceptible to thermal stress caused by repeated hot and cold, so this range is Cr plated. By forming the layers 14 and 15, damage to the cooling member 12 can be suppressed and further prevented.

このため、Crめっき層による効果をより顕著に受けるには、下限を、冷却部材12の湯面位置を基準として下方向に200mmまで、更には300mmまでの範囲とすることが好ましく、更には施工上からも上記した下限位置から冷却部材の上端までにCrめっきを施すことが好ましい。
なお、冷却部材の上下方向の長さが600mmを超える場合、その下限を、冷却部材の長さの1/3、更には1/2とすることが好ましい。また、湯面位置から冷却部材の上端までの長さが100mm未満の場合、湯面位置から上方向のCrめっきを施す範囲は、冷却部材の上端までとなる。
更に、図2(B)に示すように、複数層のCrめっき層26、27を、冷却部材12の溶鋼接触面側28の全面に形成してもよい。
For this reason, in order to receive the effect by the Cr plating layer more remarkably, it is preferable that the lower limit is set to a range of up to 200 mm, further up to 300 mm, based on the position of the molten metal surface of the cooling member 12. From the top, it is preferable to apply Cr plating from the lower limit position to the upper end of the cooling member.
In addition, when the length of the cooling member in the vertical direction exceeds 600 mm, the lower limit is preferably set to 1/3, more preferably 1/2 of the length of the cooling member. In addition, when the length from the molten metal surface position to the upper end of the cooling member is less than 100 mm, the range in which the upward Cr plating is performed from the molten metal surface position is to the upper end of the cooling member.
Furthermore, as shown in FIG. 2B, a plurality of Cr plated layers 26 and 27 may be formed on the entire surface of the molten steel contact surface side 28 of the cooling member 12.

積層されたCrめっき層14、15の合計厚みは、5μm以上100μm以下である。
ここで、積層されたCrめっき層の全厚みが、5μm未満の場合、このCrめっき層が薄くなり過ぎるため、鋳型の使用期間が長くなるに伴ってCrめっき層が損傷し、その損傷部を介して冷却部材が溶鋼に直接接触し易くなる。一方、積層されたCrめっき層の全厚みが、100μmを超える場合、Crめっき層が厚くなり過ぎ、使用中にクラックを生じ易くなり、また経済的でない。
このため、積層されたCrめっき層の厚みを、5μm以上100μm以下としたが、下限を10μmとし、上限を50μmとすることが好ましい。
この積層されたCrめっき層の各層の層厚は、その使用用途に応じて、同じでもよく、また異なっていてもよい。
The total thickness of the laminated Cr plating layers 14 and 15 is not less than 5 μm and not more than 100 μm.
Here, when the total thickness of the laminated Cr plating layer is less than 5 μm, this Cr plating layer becomes too thin, so that the Cr plating layer is damaged as the mold usage period becomes longer, and the damaged portion is removed. Therefore, the cooling member can easily come into direct contact with the molten steel. On the other hand, when the total thickness of the laminated Cr plating layer exceeds 100 μm, the Cr plating layer becomes too thick, and cracks are likely to occur during use, and it is not economical.
For this reason, although the thickness of the laminated Cr plating layer is 5 μm or more and 100 μm or less, it is preferable that the lower limit is 10 μm and the upper limit is 50 μm.
The layer thickness of each of the laminated Cr plating layers may be the same or different depending on the intended use.

最表層のCrめっき層14には、ブラスト処理によって、50MPa以上300MPa以下の圧縮の残留応力が付与されている。
ここで、圧縮の残留応力が50MPa未満の場合、Crめっき層に付与する圧縮の残留応力が小さくなり過ぎ、前記した鋳型損傷防止効果が得られず、従来のように、Crめっき層に割れが発生する。一方、圧縮の残留応力が300MPaを超える場合、Crめっき層に付与する圧縮の残留応力が大きくなり過ぎ、冷却部材の表面からCrめっき層が剥がれ易くなる。
このため、最表層のCrめっき層に、50MPa以上300MPa以下の圧縮の残留応力を付与したが、下限を100MPa、上限を200MPaとすることが好ましい。
なお、前記したブラスト処理は、最表層のCrめっき層のみに行ったが、その下層に配置されたCrめっき層にブラスト処理を行った後、その表面に更にCrめっき層を形成して、ブラスト処理を行ってもよい。
A compressive residual stress of 50 MPa or more and 300 MPa or less is applied to the outermost Cr plating layer 14 by blasting.
Here, when the compressive residual stress is less than 50 MPa, the compressive residual stress applied to the Cr plating layer becomes too small, and the above-described mold damage prevention effect cannot be obtained, and the Cr plating layer is cracked as in the past. appear. On the other hand, when the compressive residual stress exceeds 300 MPa, the compressive residual stress applied to the Cr plating layer becomes too large, and the Cr plating layer is easily peeled off from the surface of the cooling member.
For this reason, although the compressive residual stress of 50 MPa or more and 300 MPa or less was given to the outermost Cr plating layer, it is preferable that the lower limit is 100 MPa and the upper limit is 200 MPa.
The blasting process described above was performed only on the outermost Cr plating layer. However, after the blasting process was performed on the Cr plating layer disposed on the lower layer, a Cr plating layer was further formed on the surface, and the blasting process was performed. Processing may be performed.

上記したブラスト処理を行うことで、最表層のCrめっき層14の表面粗度Raを、1.0以上2.0以下にする。
このように、表面粗度Raを1.0以上2.0以下にすることで、Crめっき層に形成される凹凸状態を、Crめっき層表面に付着しようとする不純物(特に亜鉛)が付着しずらい状態にでき、Crめっき層表面への不純物の付着を抑制できる。
このため、表面粗度Raの下限を1.3とすることが好ましく、上限を1.8とすることが好ましい。
この表面粗度Raを得るためのブラスト処理には、セラミックス製(砂も含む)または鉄製の粒状物を使用できるが、特には、75μm以上210μm以下の粒度が80質量%以上のセラミックス製の粒状物を使用することが好ましい。
By performing the blast treatment described above, the surface roughness Ra of the outermost Cr plating layer 14 is set to 1.0 or more and 2.0 or less.
In this way, by setting the surface roughness Ra to 1.0 or more and 2.0 or less, impurities (particularly zinc) that intend to adhere to the surface of the Cr plating layer adhere to the uneven state formed in the Cr plating layer. It is possible to prevent the adhesion of impurities on the surface of the Cr plating layer.
For this reason, the lower limit of the surface roughness Ra is preferably 1.3, and the upper limit is preferably 1.8.
For the blasting treatment for obtaining the surface roughness Ra, ceramic (including sand) or iron granular materials can be used. In particular, ceramic granular particles having a particle size of 75 μm or more and 210 μm or less are 80% by mass or more. It is preferable to use a product.

このように、粒状物の粒度を75μm以上210μm以下とし、最表層のCrめっき層14に対する粒状物の投射速度を250mm/秒以上450mm/秒以下とすることで、前記した表面粗度Raを得ることができる。なお、Crめっき層までの投射距離は、例えば、100mm以上300mm以下程度である。
この表面粗度Raの形成精度を高めるには、粒状物の粒度の下限を90μm、更には100μmとすることが好ましく、上限を170μm、更には150μmとすることが好ましい。なお、前記した表面粗度Raを得るためには、この粒度の粒状物を、85質量%以上、更には90質量%以上含むことが好ましい。ここで、上限値については規定していないが、これは、全ての粒状物が前記した粒度であってもよいためである。
また、表面粗度Raの形成精度を更に高めるには、粒状物の投射速度の下限を280mm/秒、更には300mm/秒とすることが好ましく、上限を420mm/秒、更には400mm/秒とすることが好ましい。
Thus, the above-mentioned surface roughness Ra is obtained by setting the particle size of the granular material to 75 μm or more and 210 μm or less and setting the projection speed of the granular material to the outermost Cr plating layer 14 to 250 mm / second or more and 450 mm / second or less. be able to. In addition, the projection distance to the Cr plating layer is, for example, about 100 mm or more and 300 mm or less.
In order to increase the formation accuracy of the surface roughness Ra, the lower limit of the particle size of the granular material is preferably 90 μm, more preferably 100 μm, and the upper limit is preferably 170 μm, more preferably 150 μm. In order to obtain the above-described surface roughness Ra, it is preferable that the granular material having this particle size is contained in an amount of 85% by mass or more, and more preferably 90% by mass or more. Here, the upper limit value is not defined, but this is because all the granular materials may have the above-described particle size.
Further, in order to further increase the formation accuracy of the surface roughness Ra, the lower limit of the projection speed of the granular material is preferably 280 mm / second, more preferably 300 mm / second, and the upper limit is 420 mm / second, further 400 mm / second. It is preferable to do.

以上に示した積層されたCrめっき層14、15は、冷却部材12の溶鋼接触面側13に、冷却部材12を構成する銅の拡散を抑制、更には防止する下地めっき層29(例えば、Co−NiのようなCo合金、Ni−FeのようなNi合金、またはNiめっき)を介して形成できるが、この下地めっき層を形成することなく、冷却部材の溶鋼接触面側に直接形成してもよい。
また、下地めっき層29は、冷却部材12の溶鋼接触面側13全面に形成しているが、例えば冷却部材の損耗状況に応じて、部分的に形成することもできる。
この下地めっき層29を冷却部材12の溶鋼接触面側13全面に形成する場合、その厚みを、例えば、1μm以上100μm以下程度とし、部分的に形成する場合、その厚みを、例えば、0.05mm以上50mm以下程度としているが、例えば、従来使用されている鋳型コーティングまたはめっきの厚みで構わない。
The above-described laminated Cr plating layers 14 and 15 are provided on the molten steel contact surface side 13 of the cooling member 12 so as to suppress and further prevent the diffusion of copper constituting the cooling member 12 (for example, Co -Co alloy such as Ni, Ni alloy such as Ni-Fe, or Ni plating), but without forming this base plating layer, it is formed directly on the molten steel contact surface side of the cooling member. Also good.
Moreover, although the base plating layer 29 is formed on the entire surface of the molten steel contact surface 13 of the cooling member 12, it can also be partially formed according to, for example, the wear state of the cooling member.
When this base plating layer 29 is formed on the entire surface of the molten steel contact surface 13 of the cooling member 12, the thickness is, for example, about 1 μm to 100 μm, and when partially formed, the thickness is, for example, 0.05 mm. The thickness is about 50 mm or less, but may be, for example, a conventionally used mold coating or plating thickness.

続いて、本発明の一実施の形態に係る連続鋳造用鋳型10の製造方法について説明する。
まず、前記した長片部材18,19、短片部材16,17の大きさに切断した長片銅板と短片銅板(以下、単に銅板という)を準備し、積層されたCrめっき層14、15を形成するための処理を行う。
このCrめっき処理に際しては、以下に示す事前処理工程を予め実施する。
準備した銅板の表面(めっき処理面)を、ディスクペーパー(例えば、♯180)を使用して研磨する。なお、銅製のブロックに上下方向に貫通した空間部を形成して製造されるチューブ型の鋳型の場合は、機械加工によって研磨されているため、研磨が不要となるが、研磨をしてもよい。
Then, the manufacturing method of the casting mold 10 for continuous casting which concerns on one embodiment of this invention is demonstrated.
First, a long piece copper plate and a short piece copper plate (hereinafter simply referred to as a copper plate) cut to the size of the long piece members 18 and 19 and the short piece members 16 and 17 are prepared, and the laminated Cr plating layers 14 and 15 are formed. Process to do.
In the Cr plating process, the following pretreatment process is performed in advance.
The surface (plated surface) of the prepared copper plate is polished using disk paper (for example, # 180). In the case of a tube-type mold manufactured by forming a space portion penetrating in a vertical direction in a copper block, since polishing is performed by machining, polishing is unnecessary, but polishing may be performed. .

次に、めっき処理の際に、銅板の外周部に発生するCrの盛り上がりを抑制するため、銅板のめっき処理を行う領域の周囲に、補助陰極となる銅製の管を取付ける。このとき、Crめっき層14、15を形成する領域以外はマスキングする。なお、前記したチューブ型の鋳型の場合は、銅製の管を使用することなく、Crめっき層を形成する領域とそれ以外の部分との間にAl製のテープを貼り付け、前記した領域以外をマスキングする。
そして、めっき処理を行う領域に従来公知の脱脂処理を行った後水洗し、酸洗(例えば、硝酸)処理を行った後水洗して、この領域に例えば希硫酸溶液をかけ流して活性化処理する。
Next, in order to suppress the rise of Cr generated on the outer peripheral portion of the copper plate during the plating process, a copper tube serving as an auxiliary cathode is attached around the area where the copper plate is subjected to the plating process. At this time, areas other than the areas where the Cr plating layers 14 and 15 are formed are masked. In the case of the tube-type mold described above, without using a copper tube, an Al tape is applied between the region where the Cr plating layer is formed and the other portion, and the regions other than those described above are used. Mask.
Then, after performing a conventionally known degreasing process on the area where the plating process is to be performed, washing with water, performing an acid wash (for example, nitric acid), and then rinsing with water, for example, pouring a diluted sulfuric acid solution over the area to activate the area. To do.

上記した事前処理方法は、従来公知のCrめっき処理と同様の方法により実施できる。
このように、事前処理が終了した銅板に、Crめっき処理を行う。なお、このCrめっき処理の前に、従来公知の方法で下地めっき層29の形成を事前に行っているが、行わなくてもよい。
まず、Crめっき施工前に、めっき浴中のCr酸の濃度分析を行い、予め設定した基準範囲(管理範囲)内にあることを確認する。ここで、使用するめっき浴組成を表1に示す。
The pretreatment method described above can be performed by a method similar to a conventionally known Cr plating treatment.
Thus, the Cr plating process is performed on the copper plate that has been pre-processed. In addition, although the formation of the base plating layer 29 is performed in advance by a conventionally known method before the Cr plating treatment, it may not be performed.
First, before Cr plating construction, the concentration analysis of Cr acid in the plating bath is performed to confirm that it is within a preset reference range (management range). Here, the plating bath composition to be used is shown in Table 1.

Figure 0004845697
Figure 0004845697

なお、めっき浴中のクロム酸と硫酸の比(クロム酸:硫酸)は、めっき処理開始前に、少なくとも100:1以上150:1以下の範囲に調整する。
ここで、クロム酸に対する硫酸の量が過剰な場合、Crめっき層にクラックが発生し易くなり、一方、硫酸の量が少な過ぎる場合、Crめっき層の表面性状が悪くなる(突起物が発生し易くなる)。
また、めっき浴温度は、銅板の入槽後の液温低下を考慮して、めっき処理前は高め(例えば、60℃以上)に調整しておく。このめっき浴温度が低くなり過ぎると、Crめっき層にクラックが発生し易くなる。
Note that the ratio of chromic acid to sulfuric acid in the plating bath (chromic acid: sulfuric acid) is adjusted to a range of at least 100: 1 and 150: 1 before starting the plating treatment.
Here, when the amount of sulfuric acid with respect to chromic acid is excessive, cracks are likely to occur in the Cr plating layer, while when the amount of sulfuric acid is too small, the surface properties of the Cr plating layer are deteriorated (protrusions occur). Easier).
Moreover, the plating bath temperature is adjusted to be higher (for example, 60 ° C. or higher) before the plating process in consideration of a decrease in the liquid temperature after entering the copper plate. If the plating bath temperature is too low, cracks are likely to occur in the Cr plating layer.

次に、上記した組成のめっき浴中に銅板を浸漬させ、従来公知のめっき層の形成条件(例えば、電流密度Dk:5A/dm以上20A/dm)により、前記した層厚のめっき層を形成する。なお、複数層のCrめっき層の形成は、一層のCrめっき層の形成が終了するたびに、その表層部を耐水ペーパーで研磨し、脱脂処理と陽極処理を順次行った後、次のCrめっき層を形成することが好ましい。これにより、Crめっき層に存在するマイクロクラックが、その上層に積層されるCrめっき層によって覆われる。
このようにして、Crめっき層14、15の形成が終了した後、銅板の平坦度を調整するため、銅板の外周部(例えば、銅板の周縁から20mm以上30mm以下程度の範囲)を、ディスクサンダー(研磨手段)によって研磨処理し、所定の平坦度基準内にする。
そして、積層されたCrめっき層14、15の最表層のCrめっき層14に対して、ブラスト処理工程を行う。
ブラスト処理に際しては、処理する領域以外を予めマスキングし(例えば、ガムテープで覆い)、銅板の側面を例えば鉄板で保護する。
そして、Crめっき層14の表面を、シンナーで拭き上げた後、前記した条件で処理する。
Next, the copper plate is immersed in the plating bath having the above-described composition, and the plating layer having the above-described layer thickness is formed according to a conventionally known plating layer forming condition (for example, current density Dk: 5 A / dm 2 or more and 20 A / dm 2 ). Form. In addition, the formation of a plurality of Cr plating layers is carried out by polishing the surface layer portion with water-resistant paper every time the formation of one Cr plating layer is completed, and sequentially performing degreasing and anodizing, followed by the next Cr plating. It is preferable to form a layer. Thereby, the micro crack which exists in Cr plating layer is covered with the Cr plating layer laminated | stacked on the upper layer.
After the formation of the Cr plating layers 14 and 15 is completed in this way, in order to adjust the flatness of the copper plate, the outer peripheral portion of the copper plate (for example, a range of about 20 mm to 30 mm from the periphery of the copper plate) Polishing is performed by (polishing means) to be within a predetermined flatness standard.
Then, a blasting process is performed on the outermost Cr plating layer 14 of the Cr plating layers 14 and 15 laminated.
In the blasting process, areas other than the area to be processed are masked in advance (for example, covered with gummed tape), and the side surfaces of the copper plate are protected with, for example, an iron plate.
And after wiping off the surface of the Cr plating layer 14 with a thinner, it processes on the above-mentioned conditions.

ブラスト処理が終了した後、面粗度計を使用して、Crめっき層14の表面粗度Raが前記した範囲内になっているか否かを確認する。なお、計測値が前記した範囲外の場合は、再度ブラスト処理を行う。
これにより、最表層のCrめっき層14に、50MPa以上300MPa以下の圧縮の残留応力を付与できる。
このようにして作製した銅板は、ブラスト処理したCrめっき層14の部分をカバーで覆って、次工程へ送る。これは、ブラスト処理面が、他の部分と比較して汚れが付着し易いためである。
そして、以上に示した構成の幅の異なる2対の銅板を組み立てて冷却部材12とし、図1に示す形状に組立て、連続鋳造用鋳型10として使用する。
After the blasting process is finished, a surface roughness meter is used to check whether the surface roughness Ra of the Cr plating layer 14 is within the above-described range. If the measured value is outside the above range, the blasting process is performed again.
Thereby, compressive residual stress of 50 MPa or more and 300 MPa or less can be applied to the outermost Cr plating layer 14.
The copper plate thus produced is covered with a cover for the blasted Cr plating layer 14 and sent to the next step. This is because dirt is likely to adhere to the blasted surface as compared with other portions.
Then, two pairs of copper plates having different widths as described above are assembled into the cooling member 12 and assembled into the shape shown in FIG. 1 and used as the continuous casting mold 10.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、銅製の板の表面に、厚み100μmの下地めっき層(Co−Ni系のCo合金)を介して、2層のCrめっき層を形成したものを使用し、ブラスト処理を行った実施例と、ブラスト処理を行っていない比較例とで、発生した残留応力を測定した結果について説明する。この残留応力の測定はX線応力測定装置により測定した。
なお、積層されたCrめっき層の合計厚みは60μmであり、下層が45μm、表層が15μm(層厚比は、下層:表層=3:1)である。そして、実施例のブラスト処理は、75μm以上210μm以下の粒度を80質量%以上有するアルミナ製の粒状物を、Crめっき層に対して直交する方向から、175mmの距離を開けて、400mm/秒の投射速度で投射している。この銅板の幅方向をX方向とし、これに直交する方向をY方向とした場合の、X方向とY方向の残留応力を測定した結果を、表2に示す。
Next, examples carried out for confirming the effects of the present invention will be described.
In this example, the surface of a copper plate was blasted using a 100 μm thick base plating layer (Co—Ni-based Co alloy) formed with two Cr plating layers. And the result of having measured the generated residual stress with the comparative example which has not performed blasting is explained. This residual stress was measured by an X-ray stress measuring device.
In addition, the total thickness of the laminated Cr plating layers is 60 μm, the lower layer is 45 μm, and the surface layer is 15 μm (layer thickness ratio is lower layer: surface layer = 3: 1). And, the blasting treatment of the example, the granular material made of alumina having a particle size of 75 μm or more and 210 μm or less 80 mass% or more is opened at a distance of 175 mm from the direction orthogonal to the Cr plating layer, and is 400 mm / second. Projecting at the projection speed. Table 2 shows the results of measuring the residual stress in the X direction and the Y direction when the width direction of the copper plate is the X direction and the direction perpendicular thereto is the Y direction.

Figure 0004845697
Figure 0004845697

表2に示す比較例のように、Crめっき層にブラスト処理を行っていない場合、Crめっき層には引張り(+)の残留応力が発生していることが確認された。従って、前記したように、鋳型の使用に伴って、Crめっき層に割れが発生する。
一方、実施例のように、Crめっき層にブラスト処理を行っている場合、Crめっき層には、前記した範囲内の圧縮(−)の残留応力が発生していることが確認された。従って、Crめっき層に割れが発生することを抑制、更には防止でき、従来よりも鋳型の寿命を延ばすことができることを確認できた。
When the Cr plating layer was not subjected to blasting as in the comparative example shown in Table 2, it was confirmed that tensile (+) residual stress was generated in the Cr plating layer. Therefore, as described above, cracks occur in the Cr plating layer as the mold is used.
On the other hand, when blasting was performed on the Cr plating layer as in the example, it was confirmed that compressive (−) residual stress within the above-described range was generated in the Cr plating layer. Therefore, it was confirmed that the cracking of the Cr plating layer can be suppressed and further prevented, and the life of the mold can be extended as compared with the conventional case.

次に、上記したCrめっき層を形成した冷却部材を備える鋳型を使用して、その効果を検討した結果について説明する。
まず、130角(空間部の対向する間隔、即ち内幅が130mm)チューブ型鋳型(モールド)を使用した場合の結果について、図3(A)〜(C)を参照しながら説明する。図3(A)に示すように、実施例として使用した鋳型の冷却部材の縦方向の長さは750mmであり、その溶鋼接触面側にはNi合金のめっき層(冷却部材の上端の厚みが0.06mmで下端の厚みが0.10mmで構成された傾斜めっき層)が形成されており、更に冷却部材の上部300mm範囲(湯面を基準として下方へ200mmの範囲)には、前記実施の形態で示した厚みが30μmのCrめっき層(圧縮の残留応力あり)が形成されている。このCrめっき層が形成されていない鋳型の使用前後の内幅寸法変化を比較例として図3(B)に示し、厚みが30μmのCrめっき層が形成された鋳型の使用前後の内幅寸法変化を実施例として図3(C)に示す。なお、図3(B)、(C)において、内幅寸法とは、冷却部材を構成する4つの銅板のうち、対向位置に配置された銅板(最も損耗が激しくなる側)の間隔を意味している。
Next, the result of examining the effect using the mold provided with the cooling member on which the Cr plating layer is formed will be described.
First, the results in the case of using a 130-type tube mold (mold) in which 130 corners (spaces facing each other, that is, the inner width is 130 mm) will be described with reference to FIGS. As shown in FIG. 3A, the longitudinal length of the cooling member of the mold used as an example is 750 mm, and the Ni alloy plating layer (the thickness of the upper end of the cooling member is on the molten steel contact surface side). An inclined plating layer having a lower end thickness of 0.06 mm and a thickness of 0.10 mm) is formed, and in the upper 300 mm range of the cooling member (a range of 200 mm downward from the molten metal surface) A Cr plating layer (with compressive residual stress) having a thickness of 30 μm shown in the form is formed. FIG. 3B shows the change in the inner width before and after use of the mold on which the Cr plating layer is not formed as a comparative example, and the change in the inner width before and after use of the mold on which the Cr plating layer having a thickness of 30 μm is formed. Is shown as an example in FIG. 3 (B) and 3 (C), the inner width dimension means the interval between the copper plates (the side where the wear is most severe) arranged at the facing position among the four copper plates constituting the cooling member. ing.

図3(B)の結果から明らかなように、Ni合金のめっき層のみを形成した比較例の鋳型の使用前後においては、鋳型の内幅寸法が大きく変化していることがわかる。特に、鋳型の湯面レベル(鋳型上端からの距離が100mm)の内幅寸法が大きくばらつき、他の部分と比較しても、大きく損耗していることが明らかである。
一方、図3(C)の結果から明らかなように、Crめっき層を形成した実施例の鋳型の使用前後においては、鋳型の内幅寸法がほとんど変化していないことがわかる。
以上のことから、前記した範囲の圧縮の残留応力が付与されたCrめっき層を形成することで、鋳型の損耗を従来よりも大幅に低減でき、鋳型寿命を延ばすことができることを確認できた。
As is clear from the results of FIG. 3B, it can be seen that the inner width dimension of the mold changes greatly before and after the use of the comparative mold in which only the Ni alloy plating layer is formed. In particular, it is clear that the inner width dimension of the mold surface level (distance from the upper end of the mold is 100 mm) varies greatly and is greatly worn compared to other parts.
On the other hand, as is apparent from the results of FIG. 3C, it can be seen that the inner width dimension of the mold hardly changed before and after the use of the mold of the example in which the Cr plating layer was formed.
From the above, it has been confirmed that by forming the Cr plating layer to which the compressive residual stress in the above-described range is applied, the wear of the mold can be greatly reduced as compared with the conventional case and the mold life can be extended.

次に、4つ組鋳型を使用した場合の結果について、図4(A)、(B)を参照しながら説明する。使用した鋳型の冷却部材の溶鋼接触面側には、全面にCo−Ni合金のめっき層が形成されている。このように、Crめっき層が形成されていない鋳型の結果を比較例とした(図4(B)の点線)。一方、図4(A)に示すように、このCo−Ni合金のめっき層が形成された鋳型の上端から下方へ300mmまでの範囲(湯面を基準として下方へ200mmまでの範囲)に、厚みが40μmのCrめっき層(圧縮の残留応力あり)が形成された鋳型の結果を実施例とした(図4(B)の実線)。なお、図4(B)において、Niレベルとは、冷却部材の溶鋼接触面側にNiのめっき層を形成した場合の結果である。また、チャージ数とは、鋳型により連続鋳造を行った回数であり、凹み深さとは、使用後の冷却部材の溶鋼接触面側に発生する凹みの深さである。 Next, the results when using a quadruple mold will be described with reference to FIGS. 4 (A) and 4 (B). A Co—Ni alloy plating layer is formed on the entire surface of the mold cooling member used on the molten steel contact surface side. Thus, the result of the casting mold in which the Cr plating layer was not formed was used as a comparative example (dotted line in FIG. 4B). On the other hand, as shown in FIG. 4A, the thickness is within a range of 300 mm downward from the upper end of the mold on which the Co—Ni alloy plating layer is formed (a range of 200 mm downward with respect to the molten metal surface). The result of the mold in which a Cr plating layer (with compressive residual stress) of 40 μm was formed was taken as an example (solid line in FIG. 4B). In FIG. 4B, the Ni level is the result when a Ni plating layer is formed on the molten steel contact surface side of the cooling member. The number of charges is the number of times continuous casting is performed using a mold, and the depth of dent is the depth of the dent generated on the molten steel contact surface side of the cooling member after use.

各めっき層を形成したときの冷却部材の凹み深さを比較すると、図4(B)から明らかなように、Niのめっき層では3mm程度の深さの凹みが発生していたが、比較例のように、Co−Ni合金のめっき層を形成することでその凹み深さを大幅に低減でき、更に、Crめっき層を形成することで、その凹み深さを更に低減できることが確認できた。
以上のことから、前記した範囲の圧縮の残留応力が付与されたCrめっき層を形成することで、鋳型の損耗を従来よりも大幅に低減でき、鋳型寿命を延ばすことができることを確認できた。
When comparing the depth of the recess of the cooling member when forming each plating layer, as is apparent from FIG. 4B, the Ni plating layer had a recess with a depth of about 3 mm. Thus, it was confirmed that the depth of the dent can be significantly reduced by forming the plated layer of the Co—Ni alloy, and that the depth of the dent can be further reduced by forming the Cr plated layer.
From the above, it has been confirmed that by forming the Cr plating layer to which the compressive residual stress in the above-described range is applied, the wear of the mold can be greatly reduced as compared with the conventional case and the mold life can be extended.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部または全部を組合せて本発明の連続鋳造用鋳型を構成する場合も本発明の権利範囲に含まれる。
また、冷却部材の溶鋼接触面側の形状を、例えば、従来公知の1段テーパ、2段テーパ、または溶鋼の凝固収縮形状に対応したマルチテーパとすることも可能である。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the continuous casting mold of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
The shape of the cooling member on the molten steel contact surface side can be, for example, a conventionally known one-step taper, two-step taper, or a multitaper corresponding to the solidification shrinkage shape of the molten steel.

また、前記実施の形態においては、鋳片の一例であるスラブを製造する鋳型の構成について説明したが、形状と寸法の異なる他の鋳片、例えば、ビレット(例えば、幅および厚みが100〜200mm程度)、ブルーム(例えば、幅および厚みが200〜400mm程度)、またはビームブランク(H型鋼用に使用)を製造する鋳型、更には、鍛造または鍛造した銅ブロックに導水孔を穿孔したブロック鋳型に、本願発明を適用することも勿論可能である。
更に、前記実施の形態においては、空間部の平断面形状が、実質的に長方形となった鋳型について説明したが、空間部の断面形状を、例えば、凸形、凹形、多角形(例えば、長方形、六角形、または八角形)とすることも可能である。
Moreover, in the said embodiment, although the structure of the casting_mold | template which manufactures the slab which is an example of a slab was demonstrated, other slabs from which a shape and a dimension differ, for example, billets (for example, width and thickness are 100-200 mm). Grade), bloom (for example, about 200 to 400 mm in width and thickness), or a mold for manufacturing a beam blank (used for H-shaped steel), and further to a block mold in which water-perforated holes are drilled in a forged or forged copper block Of course, it is possible to apply the present invention.
Furthermore, in the above-described embodiment, the mold in which the planar cross-sectional shape of the space portion is substantially rectangular has been described, but the cross-sectional shape of the space portion may be, for example, a convex shape, a concave shape, or a polygonal shape (for example, (Rectangular, hexagonal, or octagonal).

本発明の一実施の形態に係る連続鋳造用鋳型の平面図である。1 is a plan view of a continuous casting mold according to an embodiment of the present invention. (A)は同連続鋳造用鋳型の冷却部材の部分縦断面図、(B)は変形例に係る冷却部材の部分縦断面図である。(A) is the fragmentary longitudinal cross-sectional view of the cooling member of the casting mold for continuous casting, (B) is the fragmentary longitudinal cross-sectional view of the cooling member which concerns on a modification. (A)は鋳型を構成する冷却部材の部分側断面図、(B)、(C)はそれぞれ比較例と実施例に係る鋳型の鋳造方向の内幅寸法を示す説明図である。(A) is a partial sectional side view of the cooling member constituting the mold, and (B) and (C) are explanatory views showing inner width dimensions in the casting direction of the mold according to the comparative example and the example, respectively. (A)は鋳型を構成する冷却部材の部分正面図、(B)は鋳型の使用回数とそれに伴う冷却部材の凹み深さとの関係を示す説明図である。(A) is a partial front view of the cooling member which comprises a casting_mold | template, (B) is explanatory drawing which shows the relationship between the frequency | count of use of a casting_mold | template, and the dent depth of the cooling member accompanying it.

10:連続鋳造用鋳型、11:空間部、12:冷却部材、13:溶鋼接触面側、14、15:Crめっき層、16、17:短片部材、18、19:長片部材、20〜23:バックプレート、24:ボルト、25:ナット、26、27:Crめっき層、28:溶鋼接触面側、29:下地めっき層 10: mold for continuous casting, 11: space portion, 12: cooling member, 13: molten steel contact surface side, 14, 15: Cr plating layer, 16, 17: short piece member, 18, 19: long piece member, 20-23 : Back plate, 24: Bolt, 25: Nut, 26, 27: Cr plating layer, 28: Molten steel contact surface side, 29: Base plating layer

Claims (5)

上下方向に貫通した空間部を形成する冷却部材を有し、該空間部に溶鋼を供給して冷却しながら鋳片を製造する連続鋳造用鋳型において、
前記冷却部材の溶鋼接触面側で、前記溶鋼の湯面位置を基準として前記冷却部材の上端までまたは上方向に少なくとも100mmまで、かつ下方向に少なくとも100mmまでの範囲内には、複数層のCrめっき層が設けられ、しかも積層された該Crめっき層のうち少なくとも最表層のCrめっき層に、50MPa以上300MPa以下の圧縮の残留応力が加えられ、更に、該最表層のCrめっき層の表面粗度Raが1.0以上2.0以下であることを特徴とする連続鋳造用鋳型。
In a continuous casting mold that has a cooling member that forms a space portion penetrating in the vertical direction, and supplies a molten steel to the space portion to produce a slab while cooling,
On the molten steel contact surface side of the cooling member, with respect to the position of the molten steel surface, the upper end of the cooling member or within the range of at least 100 mm upward and at least 100 mm downward, a plurality of layers of Cr In addition, a compressive residual stress of 50 MPa or more and 300 MPa or less is applied to at least the outermost Cr plating layer of the laminated Cr plating layers, and the surface roughness of the outermost Cr plating layer is further increased. The continuous casting mold, wherein the degree Ra is 1.0 or more and 2.0 or less .
請求項1記載の連続鋳造用鋳型において、前記Crめっき層は2または3層であることを特徴とする連続鋳造用鋳型。 2. The continuous casting mold according to claim 1, wherein the Cr plating layer has two or three layers. 請求項1および2のいずれか1項に記載の連続鋳造用鋳型において、前記積層されたCrめっき層の厚みは5μm以上100μm以下であることを特徴とする連続鋳造用鋳型。 3. The continuous casting mold according to claim 1, wherein the thickness of the laminated Cr plating layer is 5 μm or more and 100 μm or less. 4. 請求項1〜のいずれか1項に記載の連続鋳造用鋳型において、前記圧縮の残留応力は、ブラスト処理を行って付与されたことを特徴とする連続鋳造用鋳型。 The continuous casting mold according to any one of claims 1 to 3 , wherein the compressive residual stress is applied by blasting. 請求項記載の連続鋳造用鋳型において、前記ブラスト処理には、75μm以上210μm以下の粒度が80質量%以上のセラミックス製の粒状物を使用したことを特徴とする連続鋳造用鋳型。 5. The continuous casting mold according to claim 4 , wherein a granular material made of ceramics having a particle size of 75 μm or more and 210 μm or less of 80% by mass or more is used for the blasting process.
JP2006328493A 2006-12-05 2006-12-05 Continuous casting mold Active JP4845697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006328493A JP4845697B2 (en) 2006-12-05 2006-12-05 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006328493A JP4845697B2 (en) 2006-12-05 2006-12-05 Continuous casting mold

Publications (2)

Publication Number Publication Date
JP2008137057A JP2008137057A (en) 2008-06-19
JP4845697B2 true JP4845697B2 (en) 2011-12-28

Family

ID=39599062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006328493A Active JP4845697B2 (en) 2006-12-05 2006-12-05 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP4845697B2 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168605A (en) * 1986-01-17 1987-07-24 Sumitomo Metal Ind Ltd Dull roll having excellent wear resistance and its production
JPS63104762A (en) * 1986-10-21 1988-05-10 Nippon Steel Corp Submerged nozzle for continuous casting
JPH01271033A (en) * 1988-04-23 1989-10-30 Kobe Steel Ltd Mold for continuous casting
JP3424263B2 (en) * 1993-05-27 2003-07-07 住友電気工業株式会社 Coated hard alloy members
JP3004870B2 (en) * 1994-04-13 2000-01-31 新日本製鐵株式会社 Continuous casting mold for casting molten steel containing zinc as an impurity
JPH08225917A (en) * 1994-10-06 1996-09-03 Nippon Steel Corp Thermal spraying method onto mold for continuous casting
JP3709038B2 (en) * 1996-03-21 2005-10-19 株式会社神戸製鋼所 Mold for casting of metal containing Zn
JP3896185B2 (en) * 1996-03-29 2007-03-22 株式会社神戸製鋼所 Durable continuous casting mold
JP2000517246A (en) * 1996-09-03 2000-12-26 エイジー インダストリーズ インコーポレイテッド Improved mold surface for continuous casting and method of making same
JP3918142B2 (en) * 1998-11-06 2007-05-23 株式会社日立製作所 Chrome-plated parts, chromium-plating method, and method of manufacturing chromium-plated parts
JP4096627B2 (en) * 2002-05-29 2008-06-04 Jfeスチール株式会社 Temper rolling mill and method for temper rolling of ultra-thin steel sheet
JP2004068140A (en) * 2002-08-06 2004-03-04 Jfe Steel Kk Steel sheet for electrogalvanizing and method for producing the same
JP4264271B2 (en) * 2003-02-06 2009-05-13 新日本製鐵株式会社 Continuous casting mold and manufacturing method
JP2005118902A (en) * 2003-10-14 2005-05-12 Jfe Steel Kk Surface roughness imparting method of metallic plate
JP2005240165A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Method for forming chromium plating film
JP2006130545A (en) * 2004-11-09 2006-05-25 Sumitomo Light Metal Ind Ltd TWIN ROLL TYPE CONTINUOUS CASTING-ROLLING METHOD FOR Al-Mg-Si-BASED ALLOY PLATE, Al-Mg-Si-BASED ALLOY PLATE, AND AUTOMOBILE OUTER PLATE PRODUCED BY CONTINUOUS CASTING-ROLLING METHOD, AND CASTING ROLL

Also Published As

Publication number Publication date
JP2008137057A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
KR102362400B1 (en) Sputtering target and manufacturing method therefor
KR20080089388A (en) Components of a steelworks, such as a continuous casting installation or a rolling mill, method for producing such a component and installation for creating or processing semifinished metallic products
JP3176975U (en) Chamfered short side copper plate for mold with funnel-shaped curved surface
JP2009056490A (en) Casting mold for continuous casting
JP4845697B2 (en) Continuous casting mold
JP4659796B2 (en) Method for repairing continuous casting mold and repaired continuous casting mold
KR20190029757A (en) Continuous casting method of steel
JP6787359B2 (en) Continuous steel casting method
JPH02165849A (en) Cooling roll for reducing twin roll type rapidly cooled strip
JP2003507190A (en) Molds for continuous casting of steel billets and blooms
KR101152678B1 (en) Method for producing a continuous casting mold and corresponding continuous casting mold
JPH08150442A (en) Roll for continuously casting metallic strip
KR100971971B1 (en) A twin roll of strip casting apparatus
JP4055522B2 (en) Molded copper plate for continuous casting mold and manufacturing method thereof
JP3908902B2 (en) Cooling drum for continuous casting of thin-walled slab and continuous casting method of thin-walled slab
JP2011218401A (en) Method for repairing mold for continuous casting, and repaired mold for continuous casting
JPS5953142B2 (en) Continuous casting mold
JP5566972B2 (en) Continuous casting mold
JPS61129257A (en) Manufacture of continuous casting mold
JP3908901B2 (en) Cooling drum for continuous casting of thin-walled slab, thin-walled slab and its continuous casting method
KR101010631B1 (en) apparatus and method for roll in twin roll strip casting machine
RU2333087C2 (en) Method of restoration of working walls of crystalliser made of copper or its alloys
KR100737392B1 (en) Apparatus for casting strip of magnesium alloy with excellent solidification uniformity
JPH09103850A (en) Recessed part forming method for cooling roll of thin slab casting machine
JPH0413053B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4845697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250