JP2004068140A - Steel sheet for electrogalvanizing and method for producing the same - Google Patents

Steel sheet for electrogalvanizing and method for producing the same Download PDF

Info

Publication number
JP2004068140A
JP2004068140A JP2002263368A JP2002263368A JP2004068140A JP 2004068140 A JP2004068140 A JP 2004068140A JP 2002263368 A JP2002263368 A JP 2002263368A JP 2002263368 A JP2002263368 A JP 2002263368A JP 2004068140 A JP2004068140 A JP 2004068140A
Authority
JP
Japan
Prior art keywords
steel sheet
unevenness
plating
fine particles
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002263368A
Other languages
Japanese (ja)
Inventor
Etsuo Hamada
濱田 悦男
Hisato Noro
野呂 寿人
Kaoru Sato
佐藤 馨
Toru Imokawa
妹川 透
Yoshiharu Sugimoto
杉本 芳春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002263368A priority Critical patent/JP2004068140A/en
Publication of JP2004068140A publication Critical patent/JP2004068140A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet for electrogalvanizing in which the occurrence of unevenness caused by the surface defects of an original sheet after plating can be prevented, and to provide a method for producing an electrogalvanized steel sheet which has no surface defects such as unevenness and has excellent surface appearance. <P>SOLUTION: In the steel sheet for electrogalvanizing, a layer changed in properties is present on the surface, and the area ratio of the layer changed in properties occupied in the surface is ≥80%. The steel sheet for electrogalvanizing is produced by projecting fine particles on the surface of the steel sheet, and thereafter applying electrogalvanizing to the steel sheet. The mean particle diameter of the fine particles to be projected is preferably controlled to 10 to 300 μm. Further, the projection velocity of the fine particles is preferably controlled to ≥30 m/s, and the projection density of the fine particles to 0.2 to 60 kg/m<SP>2</SP>. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、電気亜鉛系めっき用鋼板およびその製造方法、より具体的には、めっき後に原板欠陥に起因する表面欠陥の発生を防止できる電気亜鉛系めっき用鋼板、およびムラ等の表面欠陥が無く、外観均一性に優れる電気亜鉛系めっき鋼板の製造方法に関する。
【0002】
【従来の技術】
電気亜鉛めっき鋼板は家電製品、自動車、建材等の広範な用途で使用されている。近年、家電用途で無塗装で使用される各種クロメート処理電気亜鉛めっきの需要が増大しており、重要な用途分野となっている。この用途では無塗装で使用されるために表面外観に優れることが要求される。優れた表面外観の条件としては、ムラ等の表面欠陥が無いことが第一である。
【0003】
めっき鋼板のムラに関しては、めっき装置の不具合によって生ずるムラとめっき原板の表面欠陥に起因するムラがある。前者のムラについてはめっき装置の不具合を直すことにより改善される。しかし、後者のムラについては原板の表面欠陥を改善すれば当然解消されるはずであり、そのために種々の工夫が試みられているが、工業的には原板の表面欠陥を完全に取り除くには至っていない。
【0004】
原板の表面欠陥に起因する電気亜鉛めっき鋼板のムラ発生防止に関する発明としては、特開平8−120483号公報に示されているようにめっき初期に通常よりもZnイオン濃度を低くしためっき液を用い、通常の電流密度よりも高い電流密度で少量のめっきを行った後に通常のZnイオン濃度、通常の電流密度でめっきを行う方法、特開平8−120484号公報に示されているように電流密度を変えて3層めっきを行い、かつ、その第2層を逆電解で溶解する方法等が開示されている。しかしながら、いずれの方法も非実用的手法であり、工業生産に適用することは困難である。
【0005】
めっき浴へ各種添加剤を添加することによるムラ発生防止方法の検討も行われている。特開平9−256192号公報にはフルオロ錯イオンを100〜5000ppm添加する方法、特開平9−195082号公報にはタリウムを0.01〜10ppm添加する方法、特開平8−188899号公報にはSn、In、Bi、Sbを添加する方法等が開示されている。しかしながら、これらの方法では十分な効果は期待できない。さらに、光沢剤芳香族アルデヒド、クマロン、アミン、イミノ化合物、デキストリン、グルコン酸、ポリアクリルアミド等の光沢剤を添加する方法が多数開示されている(例えば、特開昭61−127887号公報、特開平8−158090号公報等)。しかし、これらの方法では、アノードで有機添加剤が分解されるため、添加剤の濃度を一定に保つのが困難で、ムラの防止効果を安定して得ることはできない。更に、アノードの寿命が短くなり、コストアップを招くという問題がある。
【0006】
特開平9−59788号公報には、カチオンを形成する窒素含有有機化合物を含む酸洗液中で酸洗処理する方法が開示されている。この方法では、酸洗時に有機化合物が鋼板の活性点に吸着して活性部の溶解を抑制し、カーボン・酸化物等が濃化した不活性部を優先的に溶解させることにより、原板の不均一を若干軽減する効果があるが、外観ムラの防止効果は不十分である。特に、酸洗終了後に水洗を行なってから電気めっきを行なうと、ムラの防止効果は更に小さくなる。これは、鋼板表面に吸着した有機化合物が水洗時に脱離してしまい、電気めっき開始時には吸着による均一被覆効果が得られていないことが原因と推定される。
【0007】
めっきプロセス以前に原板表面の状態を制御することも行われている。特開昭63−100193号公報には原板表面に薄い酸化皮膜を形成させる方法が開示されているが、酸化皮膜を均一に生成させることが難しく、酸化皮膜が不均一であると逆にめっき表面外観が損なわれる。また、めっき後の加工密着性に劣る。特公平3−31795号公報では、原板表面のフェライト結晶粒径を10〜35μmと小さくするとともに電気亜鉛めっき浴のpHを1.0〜2.5の範囲に規定することでめっき光沢を上げている。しかしながら、電気めっき原板に用いる通常の鋼板のフェライト粒径はこの程度であるにもかかわらずムラが生じることから、この手法もムラの解消には効果が無い。
【0008】
以上のように、電気亜鉛めっきの外観を向上させるべく様々な検討がなされているが、めっき原板の表面欠陥に起因するムラ等の表面欠陥を完全に防止できる電気亜鉛めっき鋼板の製造方法は未だ見出されていない。
【0009】
めっき原板の表面欠陥に起因するムラは、ムラ部とその周辺部とでめっき形態が異なることにより生じる。ムラ部とその周辺部とのめっき形態が具体的にどのように異なるかは、めっき条件や原板の違いによるムラの種類(形状、大きさの違い)に依存するため一概には言えない。ムラ部とその周辺部でめっき結晶の形態が異なる理由もムラの種類により当然異なる。一例として、幅0.1〜1mm、長さ数cmの線状に現れるムラについては、ムラ周辺部と比較して、ムラ部で亜鉛めっき結晶のステップの幅が広い。そのためにムラ部で白色度が減少し、ムラとして観察される。この線状のムラ部では原板表面の酸化物組成が周辺部と異なるために、亜鉛イオンの還元反応、結晶核生成、結晶成長が影響を受け、非濃化部とは亜鉛結晶の形態が異なるものと推定される。別の種類のムラではめっき結晶形態の特徴、ムラが生じる原因も異なるため、すべてのムラをもれなく解消する技術はこれまで見出されていない。
【0010】
【発明が解決しようとする課題】
本願発明の目的は、めっき後に原板の表面欠陥に起因するムラの発生を防止できる電気亜鉛系めっき用鋼板を提供することである。また、本発明の目的は、ムラ等の表面欠陥が無く、優れた表面外観を有する電気亜鉛系めっき鋼板の製造方法を提供することである。
【0011】
【課題を解決するための手段】
本願発明者らは、めっき原板にムラの発生因子が存在していても、電気めっき後にムラを発生させない手法を鋭意検討した結果、めっき原板の表層に変質層を導入することで、電気めっき後のムラが解消されることを見出した。変質層は、鋼板表面を機械的に加工することで鋼板表層に導入された、鋼板内部組織とは異なる組織を有する層である。前記変質層は、SIM(Scanning IonMicroscope)像で、図1(b)のように鋼板表層に観察される鋼板内部とは異なる組織のことである。表層に変質層が導入された鋼板に電気亜鉛めっきすると、変質層上では亜鉛めっき結晶が微細化するために、原板の欠陥部とその周辺部の亜鉛めっき結晶形態が均一化し、外観ムラが解消されるものと推定される。
【0012】
本願発明は、前記知見から得られたものであり、前記課題を解決するための本願発明の手段は以下の通りである。
(1)鋼板の表面に変質層が存在し、鋼板表面に占める該変質層の面積率が80%以上であることを特徴とする電気亜鉛系めっき用鋼板。
【0013】
(2)鋼板表面に微粒子を投射し、その後に、鋼板に電気亜鉛系めっきを行うこと特徴とする電気亜鉛系めっき鋼板の製造方法。
(3)投射する微粒子の平均粒子径が、10〜300μmであることを特徴とする(2)に記載の電気亜鉛系めっき鋼板の製造方法。
(4)微粒子の投射速度が、30m/s以上であることを特徴とする(2)または(3)に記載の電気亜鉛めっき鋼板の製造方法。
(5)微粒子の投射密度が、0.2〜60kg/mであることを特徴とする(2)〜(4)のいずれかに記載の電気亜鉛めっき鋼板の製造方法。
【0014】
(6)めっき付着量が2.5〜75g/mであることを特徴とする(2)〜(5)のいずれかに記載の電気亜鉛めっき鋼板の製造方法。
【0015】
【発明の実施の形態】
本願発明者らは、電気亜鉛めっき鋼板の原板欠陥に起因する各種ムラを調査した結果、いずれのムラにおいても、その原因は、ムラ部とその周辺部とでめっき結晶形態が異なることに起因していることが明らかになった。つまり、めっき外観を均一化するには、ムラ部とその周辺部とのめっき結晶粒径、結晶方位の違いを同時になくせば良く、そのためには鋼板結晶粒とめっき結晶とのエピタキシャル成長を阻害すること、さらにめっき結晶核生成サイトを鋼板表面に均一に存在させることが有効であると考えられる。
【0016】
本願発明者らは、鋼板表面を機械的に加工して鋼板表層組織の結晶構造を乱すことで、鋼板表層組織を鋼板内部組織とは異なる組織としてエピタキシャル成長を阻害し、さらに結晶核生成サイトを増加できると考えた。具体的な手法として、ショットピーニング処理や異周速ロールによる圧延を行い鋼板表層組織に変質層を導入した。これらの処理を行った鋼板を用いて電気亜鉛めっきを行ったところ、めっき外観が均一になり、原板欠陥に起因するムラが発生しやすい鋼板であってもめっき後のムラが解消され、優れた表面外観が得られた。
【0017】
図1は鋼板断面のSIM像で、(a)は通常の鋼板の表層組織、(b)は微粒子投射により表層に変質層が導入された鋼板の表層組織を示す。いずれも、鋼板表面に垂直に箱形の穴をあけ、45度傾斜状態で断面を観察したものであり、従って、(a)および(b)では、上下方向(鋼板厚さ方向)は左右方向(鋼板表面と水平方向)に対して、1/(21/2)縮尺されている。図中、白い線で示した場所が最表層である。
【0018】
(a)では、鋼板表層の組織は、鋼板内部の組織とほぼ同じ組織である。(b)では、鋼板表面を機械的に加工することで鋼板表層組織の結晶構造が乱され、鋼板表層に、鋼板内部組織とは異なる組織を有する層が存在する。本発明では、(b)のSIM像に示されるような、機械加工で形成された、鋼板内部組織とは異なる組織を有する鋼板表層に存在する層を、変質層という。SIM像で鋼板内部組織と異なる組織になる理由は明確でないが、歪み、転位、結晶粒の微細化などによりチャネリングコントラストが異なるためであると考えられる。
【0019】
ショットピーニング処理や異周速ロールによる調質圧延を行った鋼板を用いためっき外観が均一な電気亜鉛めっき鋼板を調査したところ、鋼板表層に変質層が存在しており、変質層が存在している領域ではめっき結晶粒が1μm以下に微細化していた。また、鋼板表面にショットやロールが接触せず、鋼板表層組織が何の影響も受けていない領域が部分的に観察されたが、これらの部分では、めっき結晶粒は1μm以上の大きさになっていることが多かった。
【0020】
そして、変質層によるめっき結晶粒の微細化効果によってめっき後のムラ発生を防止する観点からは、変質層は必ずしも鋼板表層全面に均一に存在している必要はなく、ミクロ的には不連続に存在していても良い。ここで、ミクロ的に不連続というのは、微粒子やロールが接触しなかったために変質層が生成していない領域が存在し、変質層が存在する領域と変質層が生成していない領域が目視では識別できない微小な大きさで混在して分布していることを意味する。
【0021】
以上のことは、鋼板内部組織とは異なる組織である、鋼板表層の変質層により、鋼板結晶粒とめっき結晶とのエピタキシャル成長が阻害され、まためっき結晶核密度が増加することで、めっき結晶形態の均一化が実現されていることを示しているものと考えられる。また、前記によって、原板の表面欠陥部とその周辺部とのめっき結晶形態の違いがなくなり、原板欠陥に起因するめっき後のムラの発生が防止されると考えられる。
【0022】
前記したように、鋼板表層の変質層は鋼板表面全体にもれなく分布している必要はなく、ミクロ的には不連続に分布していても良い。ただし、鋼板表面に占める変質層の面積率は80%以上でないと、ムラ等の欠陥防止効果が少なくなる。また、単に電気亜鉛めっきの核生成サイトを与えれば良いだけなので、変質層は鋼板最表層にのみ存在していれば良く、材質に影響のない範囲の厚みで導入すれば良い。ただし、電気亜鉛めっき工程前の酸洗工程でわずかながらも鋼板表層が溶解するため、変質層は酸洗工程の酸洗で残存する程度の厚さで導入する必要がある。
【0023】
機械加工によって、変質層を鋼板最表層にのみ導入するためには、鋼板にショットピーニング処理や異周速ロールによる調質圧延を行うことが好適である。
【0024】
ショットピーニング処理によって鋼板表層に変質層を導入した場合、電気めっき結晶の成長形態が変化する効果に加えて、鋼板表面に微細な凹凸が付与され、めっき結晶の形態の違いが遮蔽される効果もあることで、原板欠陥に起因するめっき後のムラ発生を防止する効果がより優れる。
【0025】
ショットピーニング処理によって鋼板表層に変質層を導入する場合、微粒子の投射条件は下記の条件が好ましい。
【0026】
鋼板表面に投射する微粒子の平均粒子径が10μm未満になると、鋼板に衝突する際の運動エネルギーが低いために、鋼板表層に変質層を形成する効果が小さくなり、ムラの発生を防止する効果が認められなくなる。平均粒子径が300μm超になると微細形状付与の効果が小さくなること、また衝突のエネルギーが広い面積に分散することで鋼板表層部に変質層を形成する効果が低下し、ムラの発生を防止する効果が認められなくなる。従って、微粒子の平均粒子径は10〜300μmであることが好ましい。
【0027】
微粒子の投射速度が30m/s未満になると、粒子の運動エネルギーが小さくなり、鋼板表層部に変質層を形成する効果が低下し、ムラの発生を防止する効果が認められなくなる。従って、微粒子の投射速度は30m/s以上とすることが好ましい。投射速度の上限は明らかではないが、本発明者らが用いた微粒子投射装置の投射速度の上限は300m/s程度であり、この投射速度においてもムラの発生を防止する効果が認められた。
【0028】
微粒子の投射密度が0.2kg/m未満になると鋼板表面にまばらに固体粒子が投射されるため、鋼板表層部に変質層を形成する効果が低下し、ムラの発生を防止する効果が認められなくなる。従って、微粒子の投射密度は0.2kg/m以上とすることが好ましい。投射密度の上限に制約は無いが、コストを考慮した場合、60kg/m以下が好ましい。
【0029】
微粒子としては、通常、金属系材料もしくはセラミックス系材料の固体微粒子を用いることが好ましい。具体的には、鋼球、鋼グリッド、ステンレス鋼、ハイス、アルミナ、酸化けい素、ダイヤモンド、酸化ジルコニア、タングステンカーバイドなどが挙げられる。衝突による固体微粒子の破壊を抑制するためには、セラミックスより金属系の微粒子が好ましい。
【0030】
めっき付着量が2.5g/mを下回る場合、75g/mを上回る場合には、めっきムラが明瞭に現れない。従って、本願発明では、めっき付着量を2.5〜75g/mに規定した。なお、めっき付着量は、鋼板の片面あたりの付着量である。
【0031】
本発明によれば、下地鋼板(めっき原板)の鋼種、製造履歴の違いにかかわらず、原板に起因するムラの発生が無い、優れた外観を有する電気亜鉛系めっき鋼板が得られる。
【0032】
本発明は、電気亜鉛めっき鋼板に限定されず、Zn−Niなどの電気亜鉛系めっき鋼板について本発明の効果が奏される。
【0033】
亜鉛系めっき後にクロメート処理(塗布型、反応型、電解型)や、更にその上に樹脂被覆処理等を実施した鋼板についてもめっき後の外観ムラが問題となるが、これらの鋼板に対しても、本願発明の効果が奏される。
【0034】
【実施例】
(実施例1)
めっき原板として、通常の電気亜鉛めっきを行なうと線状のムラを生じる冷延鋼板(鋼板A:厚さ0.8mm×幅70mm×長さ170mm)、点状のムラを生じる冷延鋼板(鋼板B:厚さ0.8mm×幅70mm×長さ170mm)を用意し、空気式加速装置を用いて、以下の条件で前記各鋼板表面に微粒子を投射し、鋼板表層に面積率の異なる変質層を形成した。変質層の面積率は、鋼板表面に投射する微粒子の密度(投射密度)を変えることで調整した。
・ショット粒子:平均粒子径55μmのハイス
・投射密度:1〜9kg/m
・投射速度:190m/s
上記処理を施した鋼板をアルカリで脱脂し、水洗した後、30℃の10%硫酸で5秒の酸洗処理を実施した。引き続き水洗をした後、以下の条件で電気亜鉛めっきを実施した。
・めっき浴:Zn2+イオン1.5mol/l含有する硫酸酸性浴(pH2.0,温度50℃)
・相対流速:1.5m/s
・電流密度:50A/dm
・亜鉛めっき付着量:22g/m
以上の条件で作製した電気亜鉛めっき鋼板について、鋼板表面に占める変質層の面積率およびムラの発生状況を調査した。鋼板表面に占める変質層の面積率は、図1で説明したのと同様の手法で観察した鋼板断面のSIM像により判定した。具体的には、鋼板表面に平行な方向に48μmの大きさの視野で断面のSIM像を5箇所撮影し、全体の長さに占める変質層の長さ(鋼板表面に平行な方向の長さ)の割合で求めた。ムラの発生状況は、電気亜鉛めっき鋼板の表面外観を目視観察し、ムラの有無を評価し、ムラのあるものはその形態を観察した。調査結果を表1に示す。
【0035】
【表1】

Figure 2004068140
【0036】
表1に示すように、変質層の面積率が本発明範囲内にある発明例の鋼板は、いずれもムラの発生がなく、美麗で均一なめっき外観が得られた。変質層の面積率が本発明範囲を外れる比較例の鋼板は、線状ムラまたは点状ムラが発生し、表面外観に劣る。
【0037】
(実施例2)
めっき原板として、通常の電気亜鉛めっきを行なうと線状のムラを生じる冷延鋼板(鋼板A:厚さ0.8mm×幅70mm×長さ170mm)、点状のムラを生じる冷延鋼板(鋼板B:厚さ0.8mm×幅70mm×長さ170mm)を用意し、空気式加速装置を用いて、前記各鋼板表面に微粒子を投射し、鋼板表層に変質層を形成した。投射した微粒子の種別投射条件を表2に示す。
【0038】
微粒子を投射した鋼板をアルカリで脱脂し、水洗した後,30℃の10%硫酸で5秒の酸洗処理を実施した。引き続き水洗をした後、以下の条件で電気亜鉛めっきを実施した。
【0039】
・めっき浴:Zn2+イオン1.5mol/l含有する硫酸酸性浴(pH2.0、温度50℃)
・相対流速:1.5m/s
・電流密度:50A/dm
・亜鉛めっき付着量:22g/m
以上の条件で作製した電気亜鉛めっき鋼板について、実施例1と同様にして、鋼板表面に占める変質層の面積率およびムラの発生状況を調査した。調査結果を表2に併せて示す。
【0040】
【表2】
Figure 2004068140
【0041】
表2に示すように、微粒子の投射条件が本発明範囲内の条件で投射された発明例の鋼板は、いずれも変質層の面積率は本発明範囲内であり、ムラの発生がなく、良好な表面外観である。一方、微粒子の投射条件が本発明範囲外の条件で投射された比較例の鋼板は、いずれも変質層の面積率は本発明範囲外であり、ムラが発生しており、表面外観に劣る。
【0042】
前記実施例では、ショットピーニング処理によって鋼板表層に変質層を付与したが、本発明は、前記実施例に限定されず、異周速ロールによる圧延などで鋼板表層に変質層を付与しても同等の効果が得られる。
【0043】
【発明の効果】
本願発明によれば、下地鋼板の鋼種、製造履歴の違いにかかわらず、鋼板に起因するムラの発生が無い、優れた外観を有する電気亜鉛系めっき鋼板が得られる。
【0044】
なお、めっき後にクロメート処理や、更にその上に樹脂被覆処理等を実施した鋼板についてもめっき後の外観ムラが問題となるが、これらの鋼板に対しても、本願発明の効果が奏される。
【図面の簡単な説明】
【図1】鋼板断面組織を示す図面代用のSIM像の写真で、(a)は通常の鋼板の表層組織、(b)は表層に改質層を導入した鋼板の表層組織を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a steel sheet for electrogalvanizing and a method for producing the same, more specifically, a steel sheet for electrogalvanizing that can prevent the occurrence of surface defects due to defects in the original sheet after plating, and has no surface defects such as unevenness. The present invention relates to a method for producing an electrogalvanized steel sheet having excellent uniformity in appearance.
[0002]
[Prior art]
Electrogalvanized steel sheets are used in a wide range of applications such as home appliances, automobiles, and building materials. In recent years, there has been an increasing demand for various chromate-treated electrogalvanized coatings that are used without painting in home appliances, and have become an important application field. In this application, it is required to have excellent surface appearance because it is used without painting. The first condition for excellent surface appearance is that there is no surface defect such as unevenness.
[0003]
Regarding the unevenness of the plated steel sheet, there are unevenness caused by a failure of the plating apparatus and unevenness caused by a surface defect of the plated original sheet. The former unevenness can be improved by correcting the defect of the plating apparatus. However, the latter non-uniformity should of course be eliminated by improving the surface defects of the original plate, and various attempts have been made for that purpose. Not in.
[0004]
As an invention relating to the prevention of unevenness of an electrogalvanized steel sheet caused by surface defects of an original sheet, as disclosed in JP-A-8-120483, a plating solution having a Zn ion concentration lower than usual in the initial stage of plating is used. A method in which a small amount of plating is performed at a higher current density than a normal current density, and then plating is performed at a normal Zn ion concentration and a normal current density, as disclosed in JP-A-8-120484. And a method of dissolving the second layer by reverse electrolysis, and the like. However, any of these methods is impractical and difficult to apply to industrial production.
[0005]
A method of preventing unevenness by adding various additives to a plating bath is also being studied. JP-A-9-256192 discloses a method of adding 100 to 5000 ppm of a fluoro complex ion, JP-A-9-195082 discloses a method of adding 0.01 to 10 ppm of thallium, and JP-A-8-188899 discloses a method of adding Sn. , In, Bi, and Sb are disclosed. However, these methods cannot expect a sufficient effect. Further, there have been disclosed many methods for adding a brightener such as aromatic aldehyde, coumarone, amine, imino compound, dextrin, gluconic acid, polyacrylamide, etc. (for example, JP-A-61-1227887, JP-A-Hei. 8-158090). However, in these methods, since the organic additive is decomposed at the anode, it is difficult to keep the concentration of the additive constant, and the effect of preventing unevenness cannot be stably obtained. Further, there is a problem in that the life of the anode is shortened and the cost is increased.
[0006]
JP-A-9-59788 discloses a method of performing a pickling treatment in a pickling solution containing a nitrogen-containing organic compound forming a cation. In this method, the organic compound is adsorbed on the active site of the steel sheet during pickling to suppress the dissolution of the active part, and preferentially dissolves the inactive part in which carbon, oxides, etc. are enriched, so that the original sheet is not impregnated. Although the effect of slightly reducing the uniformity is obtained, the effect of preventing appearance unevenness is insufficient. In particular, if electroplating is performed after washing with water after the completion of pickling, the effect of preventing unevenness is further reduced. This is presumably because the organic compound adsorbed on the steel sheet surface was desorbed at the time of washing with water, and the uniform coating effect by adsorption was not obtained at the start of electroplating.
[0007]
Control of the state of the original plate surface is also performed before the plating process. Japanese Patent Application Laid-Open No. 63-100193 discloses a method of forming a thin oxide film on the surface of an original plate. However, it is difficult to form an oxide film uniformly. The appearance is impaired. Further, the processing adhesion after plating is poor. In Japanese Patent Publication No. 3-31795, the brightness of the plating is increased by reducing the ferrite crystal grain size on the surface of the original plate to 10 to 35 μm and specifying the pH of the electrogalvanizing bath in the range of 1.0 to 2.5. I have. However, even though the ferrite grain size of a normal steel sheet used for an electroplated base plate is at this level, unevenness occurs, and thus this method is also ineffective for eliminating unevenness.
[0008]
As described above, various studies have been made to improve the appearance of electrogalvanized steel sheets.However, there is still no method for producing an electrogalvanized steel sheet that can completely prevent surface defects such as unevenness due to surface defects of an original plate. Not found.
[0009]
The unevenness due to the surface defect of the original plating plate is caused by the difference in the plating form between the uneven portion and the peripheral portion. The specific difference in the plating form between the uneven portion and the peripheral portion depends on the plating conditions and the type of unevenness (difference in shape and size) due to the difference in the original plate, and cannot be said unconditionally. The reason why the form of the plating crystal is different between the uneven portion and the peripheral portion naturally depends on the type of unevenness. As an example, for the unevenness that appears in a linear shape having a width of 0.1 to 1 mm and a length of several cm, the step width of the zinc plating crystal is wider in the unevenness portion than in the unevenness peripheral portion. For this reason, the whiteness decreases at the uneven portion, and the unevenness is observed. Since the oxide composition on the surface of the original sheet is different from that of the peripheral part in this linear uneven part, the reduction reaction of zinc ions, crystal nucleation, and crystal growth are affected, and the form of zinc crystal is different from the non-concentrated part. It is presumed that. Since different types of unevenness have different characteristics of the plating crystal form and causes of the unevenness, no technique has been found so far to completely eliminate all the unevenness.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a galvanized steel sheet that can prevent the occurrence of unevenness due to surface defects of an original sheet after plating. Another object of the present invention is to provide a method for producing an electrogalvanized steel sheet having no surface defects such as unevenness and having an excellent surface appearance.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on a technique for preventing the occurrence of unevenness even after the electroplating, even if there is an occurrence factor of unevenness in the original plate. Was found to be eliminated. The altered layer is a layer having a structure different from the internal structure of the steel sheet introduced into the surface layer of the steel sheet by mechanically processing the surface of the steel sheet. The altered layer is a SIM (Scanning Ion Microscope) image and has a structure different from the inside of the steel sheet observed on the surface layer of the steel sheet as shown in FIG. 1B. When electrogalvanizing a steel sheet with a deteriorated layer introduced to the surface layer, the zinc-plated crystals on the deteriorated layer become finer, so the defects in the original sheet and the zinc-plated crystal morphology in the surrounding area are uniformed, eliminating uneven appearance. It is estimated that
[0012]
The invention of the present application has been obtained from the above findings, and the means of the present invention for solving the above problems are as follows.
(1) An electrogalvanized steel sheet wherein an altered layer exists on the surface of the steel sheet, and the area ratio of the altered layer in the steel sheet surface is 80% or more.
[0013]
(2) A method for producing an electro-galvanized steel sheet, which comprises projecting fine particles on the surface of the steel sheet, and thereafter subjecting the steel sheet to electro-zinc plating.
(3) The method for producing an electrogalvanized steel sheet according to (2), wherein the average particle diameter of the fine particles to be projected is 10 to 300 µm.
(4) The method for producing an electrogalvanized steel sheet according to (2) or (3), wherein the projection speed of the fine particles is 30 m / s or more.
(5) The method for producing an electrogalvanized steel sheet according to any one of (2) to (4), wherein the projection density of the fine particles is 0.2 to 60 kg / m 2 .
[0014]
(6) The method for producing an electrogalvanized steel sheet according to any one of (2) to (5), wherein the coating weight is 2.5 to 75 g / m 2 .
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The inventors of the present application have investigated various unevennesses caused by defects in the original sheet of the galvanized steel sheet, and found that any of the unevennesses was caused by the difference in the plating crystal morphology between the unevenness portion and its peripheral portion. It became clear that. In other words, in order to make the plating appearance uniform, it is only necessary to eliminate differences in the plating crystal grain size and crystal orientation between the uneven part and the peripheral part at the same time. For that purpose, it is necessary to inhibit the epitaxial growth between the steel sheet crystal grain and the plating crystal. Further, it is considered effective to make plating crystal nucleation sites uniformly exist on the steel sheet surface.
[0016]
The present inventors mechanically process the steel sheet surface to disturb the crystal structure of the steel sheet surface structure, thereby inhibiting the epitaxial growth of the steel sheet surface structure as a structure different from the steel plate internal structure and further increasing the number of crystal nucleation sites. I thought I could. As a specific method, a deteriorated layer was introduced into the surface layer structure of the steel sheet by performing a shot peening treatment or rolling with a different peripheral speed roll. When electrogalvanizing was performed using a steel sheet that had undergone these treatments, the plating appearance became uniform, and even a steel sheet in which unevenness due to defects in the original sheet was likely to occur was eliminated, and unevenness after plating was eliminated. The surface appearance was obtained.
[0017]
FIG. 1 is a SIM image of a cross section of a steel sheet. FIG. 1 (a) shows the surface layer structure of a normal steel sheet, and FIG. 1 (b) shows the surface layer structure of a steel sheet having an altered layer introduced into the surface layer by fine particle projection. In each case, a box-shaped hole was made perpendicularly to the surface of the steel sheet, and the cross section was observed at a 45-degree inclination. Therefore, in (a) and (b), the vertical direction (the thickness direction of the steel sheet) was the horizontal direction. The scale is 1 / (2 1/2 ) with respect to (in the horizontal direction with respect to the steel sheet surface). In the figure, the place indicated by the white line is the outermost layer.
[0018]
In (a), the structure of the surface layer of the steel sheet is substantially the same as the structure inside the steel sheet. In (b), by mechanically processing the steel sheet surface, the crystal structure of the steel sheet surface structure is disturbed, and a layer having a structure different from the steel sheet internal structure exists on the steel sheet surface layer. In the present invention, a layer formed by machining and having a structure different from the internal structure of the steel sheet and present in the surface layer of the steel sheet, as shown in the SIM image of FIG. The reason why the SIM image has a structure different from the internal structure of the steel sheet is not clear, but it is considered that the channeling contrast is different due to distortion, dislocation, refinement of crystal grains, and the like.
[0019]
Investigation of electrogalvanized steel sheet with uniform plating appearance using steel sheet that has been subjected to shot peening treatment and temper rolling by different peripheral speed rolls shows that a deteriorated layer exists on the steel sheet surface layer, In the region where the plating was present, the plating crystal grains were refined to 1 μm or less. In addition, shots and rolls did not come into contact with the steel sheet surface, and areas where the surface layer structure of the steel sheet was not affected at all were partially observed, but in these areas, the plating crystal grains had a size of 1 μm or more. Was often.
[0020]
From the viewpoint of preventing the occurrence of unevenness after plating by the effect of refining the plating crystal grains by the deteriorated layer, the deteriorated layer does not necessarily need to be present uniformly over the entire surface layer of the steel sheet, and is discontinuous microscopically. May be present. Here, the term “microscopic discontinuity” means that there is a region where the deteriorated layer is not generated because the fine particles and the roll do not contact, and the region where the deteriorated layer exists and the region where the deteriorated layer is not generated are visually observed. Means that they are distributed in a small size that cannot be identified.
[0021]
The above is a structure different from the internal structure of the steel sheet.Epitaxial growth of the steel sheet crystal grains and plating crystals is inhibited by the altered layer of the steel sheet surface, and the plating crystal nucleus density is increased. This is considered to indicate that the uniformization has been achieved. Further, it is considered that the above eliminates the difference in the plating crystal form between the surface defect portion of the original plate and the peripheral portion thereof, thereby preventing the occurrence of unevenness after plating due to the original plate defect.
[0022]
As described above, the altered layer on the surface of the steel sheet does not need to be distributed over the entire surface of the steel sheet, but may be discontinuously distributed microscopically. However, if the area ratio of the altered layer to the steel sheet surface is not 80% or more, the effect of preventing defects such as unevenness is reduced. In addition, since it is only necessary to provide a nucleation site for electrogalvanizing, the altered layer only needs to be present only on the outermost layer of the steel sheet, and may be introduced in a thickness that does not affect the material. However, since the surface layer of the steel sheet is slightly dissolved in the pickling step before the electrogalvanizing step, it is necessary to introduce the altered layer to such a thickness as to remain in the pickling step in the pickling step.
[0023]
In order to introduce the deteriorated layer only to the outermost layer of the steel sheet by machining, it is preferable that the steel sheet be subjected to a shot peening treatment or a temper rolling with a different peripheral speed roll.
[0024]
When an altered layer is introduced into the surface layer of the steel sheet by shot peening, in addition to the effect of changing the growth form of the electroplated crystal, fine irregularities are given to the steel sheet surface, and the effect of shielding the difference in the form of the plated crystal is also reduced. By virtue of this, the effect of preventing the occurrence of unevenness after plating caused by defects in the original plate is more excellent.
[0025]
When the altered layer is introduced into the surface layer of the steel sheet by the shot peening treatment, the conditions for projecting the fine particles are preferably as follows.
[0026]
When the average particle diameter of the fine particles projected on the surface of the steel sheet is less than 10 μm, the effect of forming an altered layer on the surface layer of the steel sheet is reduced due to low kinetic energy when colliding with the steel sheet, and the effect of preventing the occurrence of unevenness is reduced. Will not be recognized. When the average particle diameter exceeds 300 μm, the effect of imparting a fine shape is reduced, and the effect of dispersing the collision energy over a wide area reduces the effect of forming an altered layer on the surface layer of the steel sheet, thereby preventing the occurrence of unevenness. No effect is observed. Therefore, the average particle diameter of the fine particles is preferably from 10 to 300 μm.
[0027]
If the projection speed of the fine particles is less than 30 m / s, the kinetic energy of the particles becomes small, the effect of forming the altered layer on the surface layer of the steel sheet is reduced, and the effect of preventing the occurrence of unevenness is not recognized. Therefore, the projection speed of the fine particles is preferably set to 30 m / s or more. Although the upper limit of the projection speed is not clear, the upper limit of the projection speed of the fine particle projector used by the present inventors is about 300 m / s, and the effect of preventing the occurrence of unevenness at this projection speed was also recognized.
[0028]
When the projection density of the fine particles is less than 0.2 kg / m 2 , the solid particles are sparsely projected on the surface of the steel sheet, so that the effect of forming the altered layer on the surface layer of the steel sheet is reduced and the effect of preventing the occurrence of unevenness is recognized. Can not be. Therefore, the projection density of the fine particles is preferably set to 0.2 kg / m 2 or more. The upper limit of the projection density is not limited, but is preferably 60 kg / m 2 or less in consideration of cost.
[0029]
Usually, it is preferable to use solid fine particles of a metal material or a ceramic material as the fine particles. Specific examples include steel balls, steel grids, stainless steel, high-speed steel, alumina, silicon oxide, diamond, zirconia oxide, and tungsten carbide. In order to suppress destruction of solid fine particles due to collision, metal-based fine particles are preferable to ceramics.
[0030]
When the coating weight is less than 2.5 g / m 2 or more than 75 g / m 2 , plating unevenness does not clearly appear. Therefore, in the present invention, the coating weight is specified to be 2.5 to 75 g / m 2 . The plating adhesion amount is an adhesion amount per one side of the steel sheet.
[0031]
According to the present invention, it is possible to obtain an electrogalvanized steel sheet having an excellent appearance without unevenness due to the base sheet, regardless of the difference in the steel type and the manufacturing history of the base steel sheet (plated base sheet).
[0032]
The present invention is not limited to the electrogalvanized steel sheet, and the effect of the present invention is exerted on an electrogalvanized steel sheet such as Zn-Ni.
[0033]
Chromate treatment (coating type, reaction type, electrolytic type) after zinc-based plating, and furthermore, the appearance unevenness after plating is also a problem for steel sheets that have been subjected to resin coating treatment, etc. Thus, the effects of the present invention are exhibited.
[0034]
【Example】
(Example 1)
Cold rolled steel sheet (steel A: 0.8 mm thick x 70 mm wide x 170 mm long) that produces linear unevenness when subjected to normal electrogalvanization, and cold rolled steel sheet (steel sheet that causes point unevenness) B: 0.8 mm thick × 70 mm wide × 170 mm long) are prepared, and fine particles are projected on the surface of each of the steel sheets under the following conditions using an air-based accelerator, and the altered layer having a different area ratio on the surface layer of the steel sheets. Was formed. The area ratio of the altered layer was adjusted by changing the density (projection density) of the fine particles projected on the steel sheet surface.
Shot particles: high-speed steel with an average particle diameter of 55 μm Projection density: 1 to 9 kg / m 2
・ Projection speed: 190 m / s
The steel sheet subjected to the above treatment was degreased with an alkali, washed with water, and then pickled with 10% sulfuric acid at 30 ° C. for 5 seconds. After washing with water, electrogalvanizing was performed under the following conditions.
・ Plating bath: Sulfuric acid bath containing 1.5 mol / l of Zn 2+ ions (pH 2.0, temperature 50 ° C.)
・ Relative flow velocity: 1.5 m / s
-Current density: 50 A / dm 2
Zinc coating weight: 22 g / m 2
With respect to the electrogalvanized steel sheet manufactured under the above conditions, the area ratio of the altered layer in the steel sheet surface and the occurrence of unevenness were investigated. The area ratio of the altered layer in the steel sheet surface was determined based on the SIM image of the cross section of the steel sheet observed by the same method as described with reference to FIG. Specifically, five SIM images of the cross section were taken at a field of view of 48 μm in a direction parallel to the steel plate surface, and the length of the altered layer occupying the entire length (length in the direction parallel to the steel plate surface) ). Regarding the state of occurrence of unevenness, the surface appearance of the electrogalvanized steel sheet was visually observed, and the presence or absence of unevenness was evaluated. Table 1 shows the survey results.
[0035]
[Table 1]
Figure 2004068140
[0036]
As shown in Table 1, each of the steel sheets of the invention examples in which the area ratio of the altered layer was within the range of the present invention had no unevenness, and a beautiful and uniform plating appearance was obtained. In the steel sheet of the comparative example in which the area ratio of the altered layer is out of the range of the present invention, linear unevenness or dot unevenness occurs and the surface appearance is inferior.
[0037]
(Example 2)
Cold rolled steel sheet (steel sheet A: thickness 0.8 mm x width 70 mm x length 170 mm) that produces linear unevenness when ordinary electrogalvanizing is performed, and cold rolled steel sheet (steel sheet B: 0.8 mm in thickness × 70 mm in width × 170 mm in length) were prepared, and fine particles were projected on the surface of each of the steel plates using an air accelerator to form an altered layer on the surface layer of the steel plates. Table 2 shows the types and conditions of the projected fine particles.
[0038]
The steel sheet on which the fine particles were projected was degreased with an alkali, washed with water, and then pickled with 10% sulfuric acid at 30 ° C. for 5 seconds. After washing with water, electrogalvanizing was performed under the following conditions.
[0039]
・ Plating bath: sulfuric acid bath containing 1.5 mol / l of Zn 2+ ions (pH 2.0, temperature 50 ° C.)
・ Relative flow velocity: 1.5 m / s
-Current density: 50 A / dm 2
Zinc coating weight: 22 g / m 2
With respect to the electrogalvanized steel sheet manufactured under the above conditions, the area ratio of the altered layer in the steel sheet surface and the occurrence of unevenness were examined in the same manner as in Example 1. The results of the survey are shown in Table 2.
[0040]
[Table 2]
Figure 2004068140
[0041]
As shown in Table 2, each of the steel sheets of the invention examples in which the projection conditions of the fine particles were within the range of the present invention, the area ratio of the altered layer was within the range of the present invention, and no unevenness was generated. Surface appearance. On the other hand, in the steel sheets of Comparative Examples in which the projection conditions of the fine particles were out of the range of the present invention, the area ratio of the altered layer was out of the range of the present invention, unevenness occurred, and the surface appearance was poor.
[0042]
In the above-described embodiment, the deteriorated layer is applied to the steel sheet surface layer by the shot peening treatment.However, the present invention is not limited to the above-described embodiment, and the same applies even when the deteriorated layer is applied to the steel sheet surface layer by rolling with a different peripheral speed roll or the like. The effect of is obtained.
[0043]
【The invention's effect】
According to the present invention, it is possible to obtain an electrogalvanized steel sheet having excellent appearance without unevenness caused by the steel sheet regardless of the difference in the steel type and the manufacturing history of the base steel sheet.
[0044]
In addition, the appearance unevenness after plating also causes a problem with a steel sheet subjected to chromate treatment after plating and further a resin coating treatment thereon, but the effect of the present invention is exerted also on these steel sheets.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a photograph of a SIM image as a substitute for a drawing showing a cross-sectional structure of a steel sheet, where (a) shows a surface layer structure of a normal steel sheet and (b) shows a surface layer structure of a steel sheet having a modified layer introduced into the surface layer.

Claims (6)

鋼板の表面に変質層が存在し、鋼板表面に占める該変質層の面積率が80%以上であることを特徴とする電気亜鉛系めっき用鋼板。A steel sheet for electrogalvanizing, wherein an altered layer is present on the surface of the steel sheet, and the area ratio of the altered layer in the steel sheet surface is 80% or more. 鋼板表面に微粒子を投射し、その後に、鋼板に電気亜鉛系めっきを行うこと特徴とする電気亜鉛系めっき鋼板の製造方法。A method for producing an electro-galvanized steel sheet, which comprises projecting fine particles on a steel sheet surface, and thereafter subjecting the steel sheet to electro-zinc plating. 投射する微粒子の平均粒子径が、10〜300μmであることを特徴とする請求項2に記載の電気亜鉛系めっき鋼板の製造方法。The method for producing an electrogalvanized steel sheet according to claim 2, wherein the average particle diameter of the fine particles to be projected is 10 to 300 µm. 微粒子の投射速度が、30m/s以上であることを特徴とする請求項2または3に記載の電気亜鉛系めっき鋼板の製造方法。The method for producing a galvanized steel sheet according to claim 2 or 3, wherein the projection speed of the fine particles is 30 m / s or more. 微粒子の投射密度が、0.2〜60kg/mであることを特徴とする請求項2〜4のいずれかの項に記載の電気亜鉛系めっき鋼板の製造方法。Projection density of the fine particles, the method of manufacturing an electro-galvanized steel sheet according to any one of claims 2-4, characterized in that the 0.2~60kg / m 2. めっき付着量が2.5〜75g/mであることを特徴とする請求項2〜5のいずれかの項に記載の電気亜鉛系めっき鋼板の製造方法。Method of manufacturing an electro-galvanized steel sheet according to any one of claims 2-5, wherein the amount of plating deposition is 2.5~75g / m 2.
JP2002263368A 2002-08-06 2002-08-06 Steel sheet for electrogalvanizing and method for producing the same Pending JP2004068140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263368A JP2004068140A (en) 2002-08-06 2002-08-06 Steel sheet for electrogalvanizing and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263368A JP2004068140A (en) 2002-08-06 2002-08-06 Steel sheet for electrogalvanizing and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004068140A true JP2004068140A (en) 2004-03-04

Family

ID=32024662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263368A Pending JP2004068140A (en) 2002-08-06 2002-08-06 Steel sheet for electrogalvanizing and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004068140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137057A (en) * 2006-12-05 2008-06-19 Mishima Kosan Co Ltd Continuous casting mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137057A (en) * 2006-12-05 2008-06-19 Mishima Kosan Co Ltd Continuous casting mold

Similar Documents

Publication Publication Date Title
KR0175967B1 (en) Steel plate plated with zinc and method for preparation of the same
JP2007297646A (en) Method for manufacturing electrogalvanized steel sheet
JPH08188898A (en) Electrogalvanized steel sheet and its production
JP2004068140A (en) Steel sheet for electrogalvanizing and method for producing the same
JPH07331483A (en) Production of electrogalvanized steel sheet
KR20170043106A (en) Zinc flash plating solution for electro-galvanized steel sheet having excellent surface appearance and method for manufacturing electro-galvanized steel sheet using the same and electro-galvanized steel sheet produced by the same
JP4120497B2 (en) Electro-galvanized steel sheet
JP4862484B2 (en) Method for producing electrogalvanized steel sheet
JP3267797B2 (en) Manufacturing method of electrogalvanized steel sheet with excellent surface appearance
JP2003064493A (en) Electrogalvanized steel sheet having excellent appearance
JP3867199B2 (en) Method for producing electrogalvanized steel sheet
JPH0776794A (en) Electrogalvanized steel sheet excellent in uniform appearance
JPH07316842A (en) Steel sheet for hot dip galvanizing
JPH08104995A (en) Production of electrogalvanized steel sheet excellent in appearance
KR100498099B1 (en) Method for manufacturing alloying galvanizing steel sheet free of dross
JP3817945B2 (en) Electrogalvanized steel sheet and manufacturing method thereof
JP3212842B2 (en) Electrogalvanized steel sheet and surface treated electrogalvanized steel sheet with excellent surface appearance uniformity
JP3122632B2 (en) Electrogalvanized steel sheet with excellent surface appearance
JP2000256890A (en) Production of electrogalvanized steel sheet
JP3319461B2 (en) Electrogalvanized steel sheet having excellent appearance and method for producing the same
JP3293465B2 (en) Electrogalvanized steel sheet with excellent surface appearance uniformity
JPH09316681A (en) Water-soluble organic additive in electrogalvanizing bath and production of electrogalvanized steel sheet and surface-treated glavanized steel sheet excellent in appearance uniformity
JPH055912B2 (en)
JPH04268078A (en) Treatment before coating of al series sheet for automobile body
JPH0995795A (en) Zinc-nickel alloy electroplated steel sheet excellent in plating adhesion and chemical convertibility