JP4843794B2 - Measuring system for mechanical properties of blood cells - Google Patents

Measuring system for mechanical properties of blood cells Download PDF

Info

Publication number
JP4843794B2
JP4843794B2 JP2007006090A JP2007006090A JP4843794B2 JP 4843794 B2 JP4843794 B2 JP 4843794B2 JP 2007006090 A JP2007006090 A JP 2007006090A JP 2007006090 A JP2007006090 A JP 2007006090A JP 4843794 B2 JP4843794 B2 JP 4843794B2
Authority
JP
Japan
Prior art keywords
light
blood cells
flat plate
sample
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007006090A
Other languages
Japanese (ja)
Other versions
JP2008170390A (en
Inventor
利貴 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2007006090A priority Critical patent/JP4843794B2/en
Publication of JP2008170390A publication Critical patent/JP2008170390A/en
Application granted granted Critical
Publication of JP4843794B2 publication Critical patent/JP4843794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、血液細胞、特に赤血球の力学的特性を再現性よく、かつ、定量的に測定が可能な計測システム及び方法に関する。   The present invention relates to a measurement system and method capable of quantitatively measuring the mechanical properties of blood cells, particularly erythrocytes, with good reproducibility.

血液細胞の主要な働きを担う赤血球は、自らの直径よりも小さい毛細血管を通過する機能を備えている。この赤血球の変形能は、一般的に、赤血球自身の加齢、浸透圧、さらには血液内に溶解している脂質の影響などを受けると言われている。さらには、人工心臓、人工弁、透析などの循環器系人工臓器を用いた延命・治療において、生体内では生じないような非生理的な大きさのせん断応力が赤血球に加わり、赤血球の瞬時な破壊には至らないものの、膜の損傷が生じて不可逆的な形態変化や変形能の低下をもたらすことがあり、これにより赤血球の寿命を低下させ貧血などを誘発する可能性もある。一方、医薬品による赤血球の変形能機能改善薬なども開発されているため、その効果を測定するためにも赤血球の詳細な変形能計測装置の開発が要求されている。   Red blood cells, which play a major role in blood cells, have the function of passing through capillaries smaller than their own diameter. It is said that the deformability of erythrocytes is generally affected by the aging and osmotic pressure of erythrocytes themselves, and the influence of lipids dissolved in blood. Furthermore, in life-prolonging and treatment using circulatory system artificial organs such as artificial hearts, artificial valves, and dialysis, non-physiological shear stress that does not occur in vivo is applied to red blood cells, and Although it does not lead to destruction, membrane damage may occur, resulting in irreversible morphological changes and reduced deformability. This may reduce the life of red blood cells and induce anemia. On the other hand, since drugs for improving the deformability of erythrocytes by pharmaceuticals have been developed, development of a detailed erythrocyte deformability measuring apparatus is required in order to measure the effect.

従来、赤血球の変形能の評価技術として、赤血球が微細な細孔を通過する時間を測定する膜通過法(特許文献1)、毛細血管相当の流路内を通過する赤血球状態をCCDにより観察、もしくは散乱光(回折光分布)を測定するマイクロフローセル法(特許文献2、特許文献3、特許文献4)、回転粘度計をベースとしたエクトサイト法、赤血球膜を吸引法で測定するマイクロピペット法などがある。また、周期的な流れ場における赤血球の形状変化を高速度カメラで捉える方法もある(非特許文献1)。   Conventionally, as a technique for evaluating the deformability of red blood cells, a membrane passage method (Patent Document 1) for measuring the time required for red blood cells to pass through fine pores, observation of the state of red blood cells passing through a flow path corresponding to capillaries with a CCD, Alternatively, a micro flow cell method (Patent Document 2, Patent Document 3, Patent Document 4) for measuring scattered light (diffracted light distribution), an ectosite method based on a rotational viscometer, or a micropipette method for measuring an erythrocyte membrane by a suction method and so on. There is also a method of capturing a change in the shape of red blood cells in a periodic flow field with a high-speed camera (Non-Patent Document 1).

一方、赤血球の力学的負荷、すなわち耐久性を計測する方法には、異なる2つの内径を備えたフローセル内を通過する赤血球の散乱光強度から推定する方法などもある(特許文献5)。   On the other hand, as a method of measuring the dynamic load of erythrocytes, that is, the durability, there is a method of estimating from the scattered light intensity of erythrocytes passing through the flow cell having two different inner diameters (Patent Document 5).

赤血球の変形能計測は、赤血球の形状を直接的ならびに間接的な方法で測定を行い、その測定結果から赤血球の変形能を推定する方法がある。直接的な方法としては、赤血球が毛細血管などを通過する速度や形状変化などを想定しており、随意な流路形状を備えたフローセル内を随意な条件で流れる状態をCCDカメラで捉えるため、赤血球の形状変化や流路を塞ぐ状態などの主観的な評価となりやすく、定量的な評価は赤血球の移動速度などの情報に留まってしまう。また、平行平板間内の周期的な流れ場における赤血球の形状変化から、変形能を測定する方法もある。しかしながら、この方法では、高せん断応力下での赤血球の形状変化、すなわち楕円体形状、を計測するためには、血漿の粘性に比べ数10〜数100倍の高粘度溶媒に赤血球を浮遊させる必要がある。そのため、赤血球内部の粘性影響などを考慮した変形能の測定は困難となる。   The measurement of deformability of red blood cells includes a method of measuring the shape of red blood cells by direct and indirect methods and estimating the deformability of red blood cells from the measurement results. As a direct method, assuming the speed and shape change of red blood cells passing through capillaries, etc., in order to capture the state of flowing in a flow cell with an optional flow path shape under an arbitrary condition with a CCD camera, It is likely to be a subjective evaluation such as a shape change of the red blood cell or a state of blocking the flow path, and the quantitative evaluation is limited to information such as the moving speed of the red blood cell. There is also a method for measuring deformability from the shape change of red blood cells in a periodic flow field between parallel plates. However, in this method, in order to measure the shape change of erythrocytes under high shear stress, that is, the ellipsoidal shape, it is necessary to suspend erythrocytes in a high viscosity solvent several tens to several hundred times that of plasma. There is. For this reason, it is difficult to measure the deformability in consideration of the viscous effect inside the red blood cells.

一方、間接的な方法としては、フローセルもしくは2重円筒管内を流れている赤血球に光を照射し、その回折像もしくは散乱光を計測し、その光強度特性から変形能を推定する方法がある。この方法では、高せん断応力下の測定であるため、赤血球を高粘度溶媒内に浮遊させるため、前述と同様な問題が生じる.
赤血球の負荷蓄積の測定は、流れ場内における赤血球の形状変化を示す散乱光と、損傷を受けた程度を示す散乱光のデータベースとを比較することで、損傷の程度を推定するシステムがある。従来のシステムでは、別途、負荷を受けた血液試料の損傷を調べていくシステムであり、疲労破壊のような特定試料に対して繰り返し負荷を与える方法には不向きである。
On the other hand, as an indirect method, there is a method of irradiating red blood cells flowing in a flow cell or a double cylindrical tube with light, measuring its diffraction image or scattered light, and estimating the deformability from its light intensity characteristics. In this method, since the measurement is performed under a high shear stress, the red blood cells are suspended in the high-viscosity solvent.
In the measurement of the load accumulation of erythrocytes, there is a system that estimates the degree of damage by comparing scattered light indicating the shape change of erythrocytes in the flow field with a database of scattered light indicating the degree of damage. The conventional system is a system that separately examines the damage of a blood sample that has received a load, and is not suitable for a method of repeatedly applying a load to a specific sample such as fatigue fracture.

赤血球の耐久性を測定する疲労破壊試験では、回転粘度計をベースとした試験機や平行平板を用いた試験機などがある。これらの試験機の多くは、負荷を与えた後の赤血球の状態を観察もしくは遊離ヘモグロビン計測をするため、赤血球の状態をリアルタイムに計測するような方法には適さない。
平行平板間に赤血球試料を浮遊させて、せん断応力を加え、赤血球の形状を可視化する方法があるものの、前述のように高速度カメラを用いた画像処理を用いた方法であるため、装置が大きく、高価になる。
The fatigue fracture test for measuring the durability of erythrocytes includes a tester based on a rotational viscometer and a tester using a parallel plate. Many of these test machines are not suitable for a method for measuring the state of red blood cells in real time because the state of red blood cells after applying a load is observed or free hemoglobin is measured.
Although there is a method of floating red blood cell samples between parallel plates and applying shear stress to visualize the shape of red blood cells, as described above, this method uses image processing using a high-speed camera, so the apparatus is large. Become expensive.

回転粘度計をベースとした装置では、リアルタイムな疲労破壊の計測が可能であるが、回転粘度計をベースとした装置では、一定の応力を与える方法には非常に優れている。しかしながら、周期的な繰り返し負荷を与える方法では、直接の回転軸を動力源としているため振幅の大きさや周期を調整することは困難である。   An apparatus based on a rotational viscometer can measure fatigue fracture in real time, but an apparatus based on a rotational viscometer is very excellent in a method for applying a constant stress. However, in the method of applying a cyclic repetitive load, it is difficult to adjust the amplitude and the cycle because the direct rotation shaft is used as a power source.

特開2001−242166号公報JP 2001-242166 A 特開2006−145345号公報JP 2006-145345 A 特開平8−122328号公報JP-A-8-122328 特表2001−507122号公報Special table 2001-507122 gazette 特開2004−138561号公報JP 2004-138561 A Biophysical Journal、2006年9月発行、Vol.91、No.5、p.1984-1998Biophysical Journal, September 2006, Vol.91, No.5, p.1984-1998

このように従来では、赤血球の力学的特性として、変形能や耐久性などの計測は別個に計測されていたが、採血量を極力減らす方向などを考慮すると、同一試料でかつ同一の計測装置で赤血球の力学的特性を計測できることが望まれる。
また、安価でかつ使用者に依存せずに再現性のある赤血球の力学的特性が計測可能な装置の開発が期待されている。さらには、赤血球内部の粘性の影響を小さくするために、血液と同粘度の溶媒下における赤血球変形能の計測も期待されている。
As described above, conventionally, measurements such as deformability and durability have been separately measured as mechanical characteristics of red blood cells. However, considering the direction of reducing the amount of collected blood as much as possible, the same sample and the same measuring device can be used. It is desirable to be able to measure the mechanical properties of red blood cells.
In addition, it is expected to develop a device that can measure the mechanical properties of red blood cells that is inexpensive and does not depend on the user. Furthermore, in order to reduce the influence of the viscosity inside erythrocytes, it is also expected to measure erythrocyte deformability in a solvent having the same viscosity as blood.

従来、赤血球の変形能や耐久性などの力学的特性を計測するために、赤血球に周期的なせん断応力負荷を与えて、赤血球をカメラで撮影する技術は知られている。しかし、赤血球に対して十分なせん断応力負荷を与えるためには高せん断速度を加える必要があり、これに対応するためには高価な高速度カメラや大きな光源を用いる必要があった。これでも赤血球の形状変化速度が高速度カメラの性能を上回ってしまうため、高速度カメラの性能内で赤血球に十分なせん断応力負荷を与えるためには溶媒の粘性を高くする必要があった。しかし、血液よりも高粘度の溶媒を用いると、実際の血液中での赤血球の運動を再現できないという問題があった。さらに、カメラを用いての解析方法では、個々の赤血球に関する形状変化を画像処理するためのシステムが別途必要になる問題点もあった。また、回転粘度計をベースにしたシステムも知られているが、この様なシステムでは赤血球にかかる力学的負荷は一定になってしまい、力学的負荷の振幅や周期を調整するのが困難であるという問題点もあった。   Conventionally, in order to measure mechanical properties such as deformability and durability of red blood cells, a technique is known in which red blood cells are subjected to periodic shear stress load and red blood cells are photographed with a camera. However, in order to give a sufficient shear stress load to erythrocytes, it is necessary to apply a high shear rate. To cope with this, it is necessary to use an expensive high-speed camera or a large light source. Even in this case, the shape change rate of the red blood cells exceeds the performance of the high-speed camera, so that it is necessary to increase the viscosity of the solvent in order to give a sufficient shear stress load to the red blood cells within the performance of the high-speed camera. However, when a solvent having a viscosity higher than that of blood is used, there has been a problem that red blood cell movement in actual blood cannot be reproduced. Furthermore, the analysis method using a camera has a problem that a system for image processing of shape changes relating to individual red blood cells is required separately. A system based on a rotational viscometer is also known, but in such a system, the mechanical load applied to the red blood cells becomes constant, and it is difficult to adjust the amplitude and period of the mechanical load. There was also a problem.

上記問題点を解決するため、本発明は、高速度カメラや高粘度溶媒を用いなくても、血液細胞、特に赤血球の力学的特性を再現性よく、かつ、定量的に測定が可能な計測システム及び方法を提供することを目的とする。   In order to solve the above problems, the present invention provides a measurement system capable of quantitatively measuring the mechanical characteristics of blood cells, particularly erythrocytes, without using a high-speed camera or a high-viscosity solvent. And to provide a method.

前記目的を達成するため、本発明は以下の構成を有する。
血液細胞に周期的なせん断応力負荷を加えることで血液細胞の力学的特性を計測する、血液細胞の力学的特性計測システムであって、少なくとも一部が透明な第1平板と、前記第1平板に対して隙間を隔てて平行に配置されている第2平板と、前記第1平板と前記第2平板との間の隙間に配置される、血液細胞を含む試料と、前記試料中の血液細胞に周期的なせん断応力負荷を加えるため、前記第1平板と前記第2平板の少なくとも一方を所定の振動周波数で平行振動させる平板振動手段と、前記試料に光を照射する光照射手段と、前記試料からの透過光、反射光又は散乱光を受光する受光手段と、前記受光手段からの信号を解析して前記血液細胞の力学的特性を求める信号解析手段と、を有し、前記信号解析手段は、前記受光手段からの受光信号を周波数解析する手段を有しており、前記周波数解析によって前記受光信号の周波数情報及び位相情報を求め、前記平板振動手段の振動周波数を含む制御情報と、前記受光信号の周波数情報及び位相情報と関係から前記血液細胞の力学的特性を求める、血液細胞の力学的特性計測システム。
In order to achieve the above object, the present invention has the following configuration.
A blood cell mechanical property measurement system for measuring mechanical properties of a blood cell by applying a periodic shear stress load to the blood cell, wherein the first flat plate is at least partially transparent, and the first flat plate. A second flat plate arranged in parallel with a gap therebetween, a sample containing blood cells arranged in a gap between the first flat plate and the second flat plate, and blood cells in the sample In order to apply a periodic shear stress load to the plate, plate vibration means for parallelly vibrating at least one of the first plate and the second plate at a predetermined vibration frequency, light irradiation means for irradiating the sample with light, and A light receiving means for receiving transmitted light, reflected light or scattered light from a sample; and a signal analyzing means for analyzing a signal from the light receiving means to obtain a mechanical characteristic of the blood cell, the signal analyzing means is received from said light receiving means Signal has a means for frequency analysis, determine the frequency and phase information of the light receiving signal by said frequency analysis, and control information including a vibration frequency of the flat plate vibrating means, frequency and phase information of the light receiving signal A blood cell mechanical property measurement system for obtaining the mechanical property of the blood cell from the relationship between the blood cell and the blood cell.

血液細胞に周期的なせん断応力負荷を加えることで血液細胞の力学的特性を計測する、血液細胞の力学的特性計測方法であって、少なくとも一部が透明な第1平板と、前記第1平板に対して隙間を隔てて平行に配置される第2平板との間に、血液細胞を含む試料を配置する、試料準備工程と、前記試料中の血液細胞に周期的なせん断応力負荷を加えるため、前記第1平板と前記第2平板の少なくとも一方を所定の振動周波数で平行振動させる平板振動工程と、前記試料に光を照射する光照射工程と、前記試料からの透過光、反射光又は散乱光を受光手段によって受光する受光工程と、前記受光手段からの信号を解析して前記血液細胞の力学的特性を求める信号解析工程と、を有し、前記信号解析工程は、前記受光手段からの受光信号を周波数解析する工程を有しており、前記周波数解析に前記受光信号の周波数情報及び位相情報を求め、前記平板振動手段の振動周波数を含む制御情報と、前記受光信号の周波数情報及び位相情報と関係から前記血液細胞の力学的特性を求める、血液細胞の力学的特性計測方法。 A blood cell mechanical property measurement method for measuring mechanical properties of a blood cell by applying a periodic shear stress load to the blood cell, wherein the first flat plate is at least partially transparent, and the first flat plate A sample preparation step of arranging a sample containing blood cells between a second flat plate arranged in parallel with a gap therebetween, and for applying a periodic shear stress load to the blood cells in the sample , A flat plate vibration step for causing at least one of the first flat plate and the second flat plate to vibrate in parallel at a predetermined vibration frequency, a light irradiation step for irradiating the sample with light, and transmitted light, reflected light or scattering from the sample. A light receiving step of receiving light by the light receiving means, and a signal analyzing step of analyzing a signal from the light receiving means to obtain a mechanical characteristic of the blood cell, the signal analyzing step from the light receiving means frequency of the received light signal Has a step of analyzing determines the frequency and phase information of the received light signal to said frequency analysis, and control information including a vibration frequency of the flat plate vibrating means, the relationship between the frequency and phase information of the light receiving signal A method for measuring the mechanical properties of blood cells, wherein the mechanical properties of the blood cells are determined from

また、以下の実施態様を有する。
前記第2平板も前記第1平板と同様に少なくとも一部が透明である。試料からの反射光を得る場合には2枚の平板のうち一方のみが透明であれば十分であるが、両方の平板が透明であれば、試料からの反射光や透過光や散乱光をより確実に得ることができる。
前記平板振動手段による振動の周波数は数Hz〜数kHzである。平板の平行振動の振動周波数は特に限定されるものではないが、数Hz〜数kHz程度が好ましい。
前記平板振動手段による振動はアクチュエータにより行われ、前記アクチュエータは更に第1平板と第2平板との間隔を調整する機能も有する。第1平板と第2平板との間隔を調整することで血液細胞を含む試料に対するせん断応力を調整できる。また、試料の導入・交換などの際に前記間隔を大きくすることで、試料の導入・交換を容易にすることができる。
Moreover, it has the following embodiments.
Similar to the first flat plate, the second flat plate is at least partially transparent. When obtaining the reflected light from the sample, it is sufficient if only one of the two flat plates is transparent. You can definitely get.
The frequency of vibration by the flat plate vibration means is several Hz to several kHz. The vibration frequency of the parallel vibration of the flat plate is not particularly limited, but is preferably about several Hz to several kHz.
Vibration by the flat plate vibration means is performed by an actuator, and the actuator further has a function of adjusting a distance between the first flat plate and the second flat plate. By adjusting the distance between the first flat plate and the second flat plate, the shear stress on the sample containing blood cells can be adjusted. In addition, the introduction and exchange of the sample can be facilitated by increasing the interval during the introduction and exchange of the sample.

前記血液細胞は赤血球である。本発明は赤血球以外の血液細胞(例えば白血球など)にも用いることができるが、特に赤血球の力学的特性の計測に好適に用いられ得る。
前記血液細胞を含む試料は血液である。血液細胞を血液以外の溶媒中に含ませても力学的特性を計測できるが、本発明では溶媒として血液をそのまま用いても血液細胞の力学的特性を測定できる。
前記光照射手段は、試料に異なる複数の波長の光を照射可能である。本発明は単一波長の光でも計測可能であるが、異なる複数の波長の光を用いて計測を行うことで、より精密な計測が可能となる。
前記血液細胞を含む試料は、蛍光剤を更に含む。血液細胞を含む試料に蛍光剤を導入することで、血球膜細胞特性変化を膜構造レベルで評価が可能となる。
The blood cells are red blood cells. Although the present invention can be used for blood cells other than red blood cells (for example, white blood cells), it can be suitably used particularly for measuring the mechanical properties of red blood cells.
The sample containing blood cells is blood. The mechanical properties can be measured even if blood cells are contained in a solvent other than blood, but in the present invention, the mechanical properties of blood cells can be measured even if blood is used as it is as a solvent.
The light irradiation unit can irradiate the sample with light having a plurality of different wavelengths. Although the present invention can be measured even with light of a single wavelength, more precise measurement is possible by performing measurement using light of a plurality of different wavelengths.
The sample containing blood cells further contains a fluorescent agent. By introducing a fluorescent agent into a sample containing blood cells, changes in blood cell membrane cell characteristics can be evaluated at the membrane structure level.

本発明は上記構成を採用したことにより、血液細胞、特に赤血球の力学的特性を再現性よく、かつ、定量的に測定が可能である。本発明は、血液細胞を含む試料からの透過光、反射光又は散乱光を受光手段で受光し、受光信号を周波数解析して周波数情報や位相情報から血液細胞の力学的特性を計測しているので、カメラを用いる従来の計測システムに比べて血液細胞を高速で運動させることができる。したがって、粘度の低い溶媒中でも血液細胞に十分なせん断応力負荷を与えることができ、試料として血液そのものを用いることもできる。また、カメラによる観察や回折光パターンを測定する従来技術に比べて装置の構成が簡単で済む。さらに本発明は、平板の平行振動により赤血球に力学的負荷を加えているので、赤血球に加える力学的負荷の周期や振幅を調整することが容易である。   By adopting the above configuration, the present invention can measure the mechanical properties of blood cells, particularly erythrocytes, with good reproducibility and quantitatively. In the present invention, transmitted light, reflected light or scattered light from a sample containing blood cells is received by a light receiving means, and the received light signal is subjected to frequency analysis to measure the mechanical characteristics of the blood cells from frequency information and phase information. Therefore, blood cells can be moved at a higher speed than a conventional measurement system using a camera. Therefore, a sufficient shear stress load can be applied to blood cells even in a solvent having a low viscosity, and blood itself can be used as a sample. In addition, the configuration of the apparatus is simpler than that of the conventional technique for observing with a camera or measuring a diffracted light pattern. Furthermore, in the present invention, the mechanical load is applied to the red blood cells by the parallel vibration of the flat plate, and therefore it is easy to adjust the period and amplitude of the mechanical load applied to the red blood cells.

以下、図面を用いながら本発明の実施形態の一例について説明する。
図1は、血液細胞にせん断応力負荷を加える機構を示す。赤血球にせん断応力を加える機構は、平板を2枚一組とし、2枚の平板が相対的に平行に動くように設計されている。この平板の移動速度をu、稼動する平板と固定されている平板との間隙をhとすると、平行平板間に生じるせん断速度はdu/dhとなる。その間隙に、赤血球を分散した溶液を入れると、その平行平板間で生じるせん断応力は、次式で定義される。
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a mechanism for applying a shear stress load to blood cells. The mechanism for applying a shear stress to erythrocytes is designed so that two flat plates move as a pair in parallel. When the moving speed of the flat plate is u and the gap between the working flat plate and the fixed flat plate is h, the shear rate generated between the parallel flat plates is du / dh. When a solution in which red blood cells are dispersed is placed in the gap, the shear stress generated between the parallel plates is defined by the following equation.

μは赤血球を含んだ溶媒の粘性係数、uは平行板の移動速度、hは間隙の大きさ、ωは平板の角振動数、νは動粘性係数を示す。本発明における赤血球に加えるせん断応力の大きさは、式(1)に示されるように、上記3項(μ,u,h)のパラメータにより調整できる。
特に流れ場をクウエット流れにするには、
μ is the viscosity coefficient of the solvent containing red blood cells, u is the moving speed of the parallel plate, h is the size of the gap, ω is the angular frequency of the plate, and ν is the kinematic viscosity coefficient. The magnitude of the shear stress applied to the red blood cells in the present invention can be adjusted by the parameters of the above three terms (μ, u, h) as shown in the equation (1).
Especially to make the flow field a Kuwait flow

を満たすように上記項目を設定すればよい。 The above items may be set to satisfy

図2は、本発明の実施形態の一例を表す概略図である。透明ガラスなどからなる第1平板1及び第2平板2、血液細胞を含む試料3、試料に光を照射する光照射手段4、試料からの透過光、反射光又は散乱光を受光する受光手段5、固定部6、稼動部7からなる。光照射手段4には、光源や光学フィルタやチョッパなどが含まれる。同様に、受光手段5には、受光素子や光学フィルタなどが含まれる。第1平板1及び稼動部7は、図示されていないアクチュエータによって、固定部6に固定されている第2平板2に対して、平行振動及び高さ制御が可能となっている。第1平板1及び第2平板2の間には、血液細胞を含む試料3が配置される。光照射手段4及び受光手段5は、試料からの透過光、反射光、散乱光のいずれを受光するかにより、適宜配置される。   FIG. 2 is a schematic diagram illustrating an example of an embodiment of the present invention. First flat plate 1 and second flat plate 2 made of transparent glass, sample 3 containing blood cells, light irradiation means 4 for irradiating the sample with light, light receiving means 5 for receiving transmitted light, reflected light or scattered light from the sample. , A fixed part 6 and an operating part 7. The light irradiation means 4 includes a light source, an optical filter, a chopper, and the like. Similarly, the light receiving means 5 includes a light receiving element, an optical filter, and the like. The first flat plate 1 and the operating portion 7 can be controlled in parallel vibration and height with respect to the second flat plate 2 fixed to the fixing portion 6 by an actuator (not shown). A sample 3 containing blood cells is disposed between the first flat plate 1 and the second flat plate 2. The light irradiating means 4 and the light receiving means 5 are appropriately arranged depending on whether transmitted light, reflected light or scattered light from the sample is received.

稼動部7は中空状の円筒形とし、血液試料3との接触面には、ガラス面などの透明な材料(第1平板1)と、固定部となる透明な材料(第2平板2)を用いる。透明な材料を使用することで、直接、赤血球試料3に光を照射することが可能となり、透過光の測定を容易にすることが可能となる。また、稼動部7を中空上の円筒形とすることで、図4のように光素子と受光素子に接続された光ファイバを束ねたセンサ(光ファイババンドル)を容易に設置することが可能となり、稼動部7を絶対座標とした赤血球試料の形状変化状態を容易に計測することもできる。また、光ファイババンドルを固定部に接続することにより、反射光の計測も可能である。   The operating portion 7 is a hollow cylindrical shape, and a transparent material (first flat plate 1) such as a glass surface and a transparent material (second flat plate 2) serving as a fixed portion are provided on the contact surface with the blood sample 3. Use. By using a transparent material, it is possible to directly irradiate the red blood cell sample 3 with light, and the measurement of transmitted light can be facilitated. In addition, by making the operating portion 7 into a hollow cylindrical shape, it becomes possible to easily install a sensor (optical fiber bundle) in which an optical element and an optical fiber connected to a light receiving element are bundled as shown in FIG. In addition, it is possible to easily measure the shape change state of the red blood cell sample with the operating unit 7 as absolute coordinates. Further, the reflected light can be measured by connecting the optical fiber bundle to the fixed portion.

図3に基づいて、計測対象内を通過する光から赤血球の形状を計測する方法を説明する。光照射手段4の光源として、レーザやLEDなどの、計測対象に有効となる波長を備えた光源を使用する。例えば、レーザを光源とする場合は、入射レーザ光を光学部品を使用して、減衰、偏光、分割(参照用と計測用)などを行う。また、LEDの場合は、光ファイバを使用して光を伝送し、分割などを行う。次に、分割、減衰、チョッピングなどが行われた光は、そのまま試料3内を通過し、減光、偏光などの光学フィルタを通過したのち、受光手段5の受光部に到達する。受光された光は光センサで電圧信号に変換され、参照光と同周期の信号強度のみを検出する。同周期の信号検出は、ロックインアンプなどを用いて行われる。   Based on FIG. 3, a method of measuring the shape of red blood cells from light passing through the measurement object will be described. As the light source of the light irradiation means 4, a light source having a wavelength effective for a measurement target, such as a laser or an LED, is used. For example, when a laser is used as a light source, the incident laser light is attenuated, polarized, divided (for reference and measurement) using optical components. In the case of an LED, light is transmitted using an optical fiber, and division is performed. Next, the light that has been divided, attenuated, chopped, etc. passes through the sample 3 as it is, passes through an optical filter such as dimming and polarization, and then reaches the light receiving portion of the light receiving means 5. The received light is converted into a voltage signal by an optical sensor, and only the signal intensity having the same period as the reference light is detected. The signal detection with the same period is performed using a lock-in amplifier or the like.

また、ロックインアンプを通過した光信号は、AD変換回路などを通過してパソコンに取り込まれる。一方、計測中における赤血球へのせん断応力負荷は、第1平板1の稼動部7に接続されたアクチュエータなどで制御される。また、アクチュエータの制御は、信号計測と同期をとるために、パソコン等で行われる。パソコン等により、受光信号を高速フーリエ変換して周波数情報及び位相情報を求めて、アクチュエータの制御情報と合わせて、赤血球の力学的特性を求める。   The optical signal that has passed through the lock-in amplifier passes through an AD conversion circuit or the like and is taken into a personal computer. On the other hand, the shear stress load on the red blood cells during measurement is controlled by an actuator or the like connected to the operating unit 7 of the first flat plate 1. The actuator is controlled by a personal computer or the like in order to synchronize with signal measurement. Using a personal computer or the like, the received light signal is subjected to fast Fourier transform to obtain frequency information and phase information, and together with actuator control information, the mechanical characteristics of red blood cells are obtained.

透過光もしくは反射光を計測するような光軸を設けることにより、透過光では特定の位置を通過する際の赤血球の状態を計測することが可能となり、また、反射光では特定の範囲における赤血球の動きに同期した特性を測定することが可能となる。特に、反射光の測定は、稼動部7の円筒部に発光−受光を備えた光プローブを設置することで可能である。計測対象となる血液細胞を力学的負荷を加える流れ場内に組み込むことで、変形能の計測から耐久性評価までを、別途、血液試料を入れ替えることなく、行うことができる。取り込まれたデータを別途解析することで、振動負荷における赤血球の粘弾特性や、疲労破壊に達する時間を測定することが可能となる。また、光源の波長の変更、血液試料内に蛍光剤を導入することにより、血球膜細胞特性変化を膜構造レベルからの評価が可能となる。   By providing an optical axis that measures transmitted or reflected light, it is possible to measure the state of red blood cells when passing through a specific position with transmitted light. It is possible to measure characteristics synchronized with movement. In particular, the reflected light can be measured by installing an optical probe equipped with light emission and light reception in the cylindrical portion of the operating portion 7. By incorporating the blood cells to be measured in the flow field to which a mechanical load is applied, measurement from deformability to durability evaluation can be performed without separately replacing the blood sample. By separately analyzing the captured data, it becomes possible to measure the viscoelastic properties of red blood cells under vibration load and the time to reach fatigue destruction. Moreover, by changing the wavelength of the light source and introducing a fluorescent agent into the blood sample, changes in blood cell membrane cell characteristics can be evaluated from the membrane structure level.

本実施形態について、平板間の間隙を200μm、稼動部7の駆動周波数を3Hz、振幅を4mmとして実験を行った。計測対象は水、血液試料としてHt8.5%(等張圧でのHt)の等張圧および高浸透圧に赤血球を浮遊させたものを用いた。Htの調整にはPBS溶液を用いた。また、光源のチョッパは150Hzとした。計測結果は、実測値の電圧信号について周波数解析することで求めた。赤血球を含む溶液では、特定の周波数において特徴的な強度が測定された。また、浸透圧の影響については、変形性に優れた赤血球試料(等張圧)では、高浸透圧の条件の赤血球に比べ測定対象の周波数領域における強度が全体的に強く測定された。
以上の結果から、流れ場内を通過する光に対して赤血球の挙動が光の減衰に影響をおよぼし、試料内を通過した光は赤血球の動き、すなわち変形能を示す周期的な光信号となっていることが確認された。このことから、赤血球の変形能診断は、周期的に変動する流れ場内の赤血球の挙動を示す信号を検出することで可能であることがわかる。
In the present embodiment, the experiment was performed with the gap between the flat plates being 200 μm, the driving frequency of the operating unit 7 being 3 Hz, and the amplitude being 4 mm. The measurement objects used were water and blood samples in which erythrocytes were suspended at an isotonic pressure and high osmotic pressure of Ht 8.5% (Ht at isotonic pressure). A PBS solution was used to adjust Ht. The light source chopper was 150 Hz. The measurement result was obtained by performing frequency analysis on the actually measured voltage signal. In solutions containing red blood cells, characteristic intensities were measured at specific frequencies. As for the influence of osmotic pressure, the strength in the frequency region of the measurement target was generally stronger in the erythrocyte sample (isotonic pressure) excellent in deformability than in the erythrocyte under the condition of high osmotic pressure.
From the above results, the behavior of red blood cells affects the attenuation of light relative to the light passing through the flow field, and the light passing through the sample becomes a periodic optical signal indicating the movement of red blood cells, that is, deformability. It was confirmed that From this, it can be seen that red blood cell deformability diagnosis is possible by detecting a signal indicating the behavior of red blood cells in a periodically changing flow field.

以上、本発明の実施形態の一例を説明したが、本発明はこれに限定されるものではなく、特許請求の範囲に記載された技術的思想の範疇において各種の変更が可能であることは言うまでもない。
Although an example of the embodiment of the present invention has been described above, the present invention is not limited to this, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims. Yes.

平行平板によるせん断速度発生の説明図Illustration of shear rate generation by parallel plates 本実施形態の概略図Schematic diagram of this embodiment 本実施形態のブロック図Block diagram of this embodiment 光照射手段及び受光手段の一例Example of light irradiation means and light receiving means

符号の説明Explanation of symbols

1 第1平板(透明ガラスなど)
2 第2平板(透明ガラスなど)
3 血液細胞を含む試料
4 光照射手段
5 受光手段
6 固定部
7 稼動部
1 First flat plate (transparent glass, etc.)
2 Second flat plate (transparent glass, etc.)
3 Sample containing blood cells 4 Light irradiation means 5 Light receiving means 6 Fixed part 7 Working part

Claims (2)

血液細胞に周期的なせん断応力負荷を加えることで血液細胞の力学的特性を計測する、血液細胞の力学的特性計測システムであって、
少なくとも一部が透明な第1平板と、
前記第1平板に対して隙間を隔てて平行に配置されている第2平板と、
前記第1平板と前記第2平板との間の隙間に配置される、血液細胞を含む試料と、
前記試料中の血液細胞に周期的なせん断応力負荷を加えるため、前記第1平板と前記第2平板の少なくとも一方を所定の振動周波数で平行振動させる平板振動手段と、
前記試料に光を照射する光照射手段と、
前記試料からの透過光、反射光又は散乱光を受光する受光手段と、
前記受光手段からの信号を解析して前記血液細胞の力学的特性を求める信号解析手段と、を有し、
前記信号解析手段は、前記受光手段からの受光信号を周波数解析する手段を有しており、前記周波数解析によって前記受光信号の周波数情報及び位相情報を求め、前記平板振動手段の振動周波数を含む制御情報と、前記受光信号の周波数情報及び位相情報と関係から前記血液細胞の力学的特性を求める、血液細胞の力学的特性計測システム。
A blood cell mechanical property measurement system that measures mechanical properties of blood cells by applying periodic shear stress load to the blood cells,
A first flat plate at least partially transparent;
A second flat plate disposed parallel to the first flat plate with a gap therebetween;
A sample containing blood cells disposed in a gap between the first flat plate and the second flat plate;
In order to apply a periodic shear stress load to the blood cells in the sample, flat plate vibration means for parallelly vibrating at least one of the first flat plate and the second flat plate at a predetermined vibration frequency ;
Light irradiation means for irradiating the sample with light;
A light receiving means for receiving transmitted light, reflected light or scattered light from the sample;
Signal analyzing means for analyzing the signal from the light receiving means to determine the mechanical properties of the blood cells,
The signal analyzing means has means for analyzing the frequency of the received light signal from the light receiving means, and obtains frequency information and phase information of the received light signal by the frequency analysis, and includes a vibration frequency of the flat plate vibrating means. A blood cell mechanical property measurement system that obtains a mechanical property of the blood cell from information and the relationship between frequency information and phase information of the received light signal .
血液細胞に周期的なせん断応力負荷を加えることで血液細胞の力学的特性を計測する、血液細胞の力学的特性計測方法であって、
少なくとも一部が透明な第1平板と、前記第1平板に対して隙間を隔てて平行に配置される第2平板との間に、血液細胞を含む試料を配置する、試料準備工程と、
前記試料中の血液細胞に周期的なせん断応力負荷を加えるため、前記第1平板と前記第2平板の少なくとも一方を所定の振動周波数で平行振動させる平板振動工程と、
前記試料に光を照射する光照射工程と、
前記試料からの透過光、反射光又は散乱光を受光手段によって受光する受光工程と、
前記受光手段からの信号を解析して前記血液細胞の力学的特性を求める信号解析工程と、を有し、
前記信号解析工程は、前記受光手段からの受光信号を周波数解析する工程を有しており、前記周波数解析に前記受光信号の周波数情報及び位相情報を求め、前記平板振動手段の振動周波数を含む制御情報と、前記受光信号の周波数情報及び位相情報と関係から前記血液細胞の力学的特性を求める、血液細胞の力学的特性計測方法。
A method for measuring the mechanical properties of blood cells by measuring the mechanical properties of blood cells by applying periodic shear stress load to the blood cells,
A sample preparation step of arranging a sample containing blood cells between a first flat plate at least partially transparent and a second flat plate arranged parallel to the first flat plate with a gap;
A plate vibration step of causing at least one of the first plate and the second plate to vibrate at a predetermined vibration frequency in order to apply a periodic shear stress load to the blood cells in the sample;
A light irradiation step of irradiating the sample with light;
A light receiving step of receiving light transmitted from the sample, reflected light or scattered light by a light receiving means;
Analyzing the signal from the light receiving means to determine the mechanical properties of the blood cells, and
The signal analyzing step includes a step of analyzing a frequency of a light reception signal from the light receiving means, and obtaining frequency information and phase information of the light reception signal in the frequency analysis, and including a vibration frequency of the flat plate vibration means. A blood cell mechanical property measuring method for obtaining a mechanical property of the blood cell from a relationship between information and frequency information and phase information of the received light signal .
JP2007006090A 2007-01-15 2007-01-15 Measuring system for mechanical properties of blood cells Active JP4843794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006090A JP4843794B2 (en) 2007-01-15 2007-01-15 Measuring system for mechanical properties of blood cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007006090A JP4843794B2 (en) 2007-01-15 2007-01-15 Measuring system for mechanical properties of blood cells

Publications (2)

Publication Number Publication Date
JP2008170390A JP2008170390A (en) 2008-07-24
JP4843794B2 true JP4843794B2 (en) 2011-12-21

Family

ID=39698612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006090A Active JP4843794B2 (en) 2007-01-15 2007-01-15 Measuring system for mechanical properties of blood cells

Country Status (1)

Country Link
JP (1) JP4843794B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5137129B2 (en) * 2008-07-23 2013-02-06 国立大学法人山口大学 Measuring device for mechanical properties of blood cells
JP5400815B2 (en) * 2011-01-28 2014-01-29 独立行政法人国立高等専門学校機構 Mechanical load device for cells
CN110320150A (en) * 2019-06-08 2019-10-11 潍坊医学院 A kind of device for cell in microscopic fluid

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685544B2 (en) * 1988-11-11 1997-12-03 株式会社日立製作所 Blood filter, blood test method, and blood test apparatus
AUPM934994A0 (en) * 1994-11-09 1994-12-01 Commonwealth Scientific And Industrial Research Organisation Particle property measurement
US5798827A (en) * 1996-11-26 1998-08-25 Coulter International Corp. Apparatus and method for determination of individual red blood cell shape
JP2003137760A (en) * 2001-10-29 2003-05-14 Asahi Glass Co Ltd Skin cosmetic
JP2004138561A (en) * 2002-10-18 2004-05-13 Setsuo Takatani Erythrocyte accumulation load state measurement method and device
JP4277785B2 (en) * 2004-11-18 2009-06-10 佑二 菊池 Fluid fluidity measuring method and measuring apparatus used therefor

Also Published As

Publication number Publication date
JP2008170390A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
US10265705B2 (en) Apparatus for measurement of spinning forces relating to molecules
EP2713878B1 (en) Optical thromboelastography system and method for evaluation of blood coagulation metrics
EP2576074B1 (en) Apparatus for measurement of spinning forces relating to molecules
JP5137129B2 (en) Measuring device for mechanical properties of blood cells
Hajjarian et al. Evaluating the viscoelastic properties of tissue from laser speckle fluctuations
JP2013531787A (en) Holographic fluctuation microscope apparatus and method for determining particle motility and / or cell dispersion
JP2013531787A5 (en) Holographic fluctuation microscope apparatus, method and program for determining particle mobility and / or cell dispersion
WO2007088947A1 (en) Circular dichroism fluorescent microscope
JP4843794B2 (en) Measuring system for mechanical properties of blood cells
US20150122977A1 (en) Centrifuge force microscope modules and systems for use in a bucket of a centrifuge
Riquelme et al. Linear and non-linear viscoelasticity of red blood cells using a new optical erythrocyte rheometer
JP2013502568A (en) Dynamic light scattering microrheology of composite fluids with improved single scattering mode detection
Paul et al. Quantitative absorption imaging of red blood cells to determine physical and mechanical properties
JP4618341B2 (en) A method for measuring the amount of substances in a living body using coherent anti-Stokes Raman scattering light
US9885644B2 (en) Dynamic viscoelasticity as a rapid single-cell biomarker
JP2021534433A (en) Systems and methods for measuring vibration spectra of living cells and tissues over time
CA3006909A1 (en) Early cancer biomarker detection using combined nanoparticle-optical fibre, tunable optical hetrodyning, fluorescence and sensor system
AU2015268306B2 (en) Viscosity measuring method
JP2023512659A (en) Devices, systems and methods for in vitro screening of complex biological fluids
CN113092369A (en) Optical device and method for monitoring dynamic process of blood coagulation
CN113686735B (en) Method and device for measuring blood coagulation properties
JP2011164058A (en) Method and apparatus for evaluating degree of accumulated damage of red blood cell
KR100984183B1 (en) Apparatus for measuring blood cell aggregation and method thereof
RU169521U1 (en) Device for assessing the intensity of light-scattering ability of biological tissue
Altendorf Microfabrication-based ektacytometer for blood cell deformability measurements

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150