JP4843400B2 - High-speed imaging device - Google Patents

High-speed imaging device Download PDF

Info

Publication number
JP4843400B2
JP4843400B2 JP2006207806A JP2006207806A JP4843400B2 JP 4843400 B2 JP4843400 B2 JP 4843400B2 JP 2006207806 A JP2006207806 A JP 2006207806A JP 2006207806 A JP2006207806 A JP 2006207806A JP 4843400 B2 JP4843400 B2 JP 4843400B2
Authority
JP
Japan
Prior art keywords
signal
photoelectric conversion
conversion unit
unit
drive signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006207806A
Other languages
Japanese (ja)
Other versions
JP2008035331A (en
Inventor
俊希 新井
和也 北村
浩 大竹
剛治 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Japan Broadcasting Corp
Original Assignee
Kinki University
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University, Japan Broadcasting Corp filed Critical Kinki University
Priority to JP2006207806A priority Critical patent/JP4843400B2/en
Publication of JP2008035331A publication Critical patent/JP2008035331A/en
Application granted granted Critical
Publication of JP4843400B2 publication Critical patent/JP4843400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高速撮像装置に係り、特に、画素周辺記録型撮像素子を使用して高速で撮像することの可能な高速撮像装置に関する。   The present invention relates to a high-speed imaging device, and more particularly to a high-speed imaging device capable of imaging at high speed using a pixel peripheral recording type imaging device.

1秒間に100万フレーム程度の画像を撮影可能な撮像素子として画素周辺記録型撮像素子は既に提案されており、超高速撮影装置に組み込まれて様々な分野で使用されている(例えば、特許文献1参照)。   A pixel peripheral recording type imaging device has already been proposed as an imaging device capable of capturing an image of about 1 million frames per second, and is incorporated in an ultrahigh-speed imaging device and used in various fields (for example, Patent Documents). 1).

しかしながら、従来の画素周辺記録型撮像素子を適用した高速撮像装置は、画素周辺記録型撮像素子自体は百万フレーム/秒で撮像可能な性能を有しているにも係らず、数十万から百万フレーム/秒以上の高速で撮影すると撮像素子に印加される駆動信号の電圧が低下し画質が悪化するという課題があった。   However, the conventional high-speed imaging device to which the pixel peripheral recording type image sensor is applied has a performance of several hundred thousand even though the pixel peripheral recording type image sensor itself has a performance capable of imaging at one million frames / second. When photographing at a high speed of 1 million frames / second or more, there has been a problem that the voltage of the drive signal applied to the image sensor is lowered and the image quality is deteriorated.

図11は、従来の高速撮像装置の構成を示すブロック図であって、従来の高速撮像装置110は、被写体の光学像をアナログ電気信号に変換する光電変換部111と、光電変換部111から出力されるアナログ電気信号からノイズを除去しデジタル電気信号に変換するアナログ電気信号処理部112と、アナログ電気信号処理部112から出力されるデジタル電気信号を処理して画像信号を生成する画像信号生成部113と、撮像速度に応じた周波数の制御信号を生成する制御信号生成部114と、制御信号に基づいて光電変換部111、アナログ電気信号処理部112および画像信号生成部113を駆動する駆動信号を生成する駆動信号生成部115とを含む。   FIG. 11 is a block diagram illustrating the configuration of a conventional high-speed imaging device. The conventional high-speed imaging device 110 converts a subject optical image into an analog electrical signal, and outputs from the photoelectric conversion unit 111. An analog electrical signal processing unit 112 that removes noise from the analog electrical signal to be converted into a digital electrical signal, and an image signal generation unit that processes the digital electrical signal output from the analog electrical signal processing unit 112 to generate an image signal 113, a control signal generation unit 114 that generates a control signal having a frequency corresponding to the imaging speed, and drive signals that drive the photoelectric conversion unit 111, the analog electric signal processing unit 112, and the image signal generation unit 113 based on the control signal. And a drive signal generation unit 115 for generation.

また、図12は駆動信号生成部115の出力(実線)と光電変換部111に実際に印加される電圧波形(破線)であって、10万フレーム/秒の撮像速度(a)であれば光電変換部111には駆動信号生成部115の出力電圧がほぼそのまま印加されるが、100万フレーム/秒の撮像速度(b)となると光電変換部111に実際に印加される電圧の振幅は駆動信号生成部115の出力電圧の振幅よりも小さくなる。   FIG. 12 shows the output (solid line) of the drive signal generation unit 115 and the voltage waveform (broken line) actually applied to the photoelectric conversion unit 111. If the imaging speed (a) is 100,000 frames / sec, Although the output voltage of the drive signal generation unit 115 is applied as it is to the conversion unit 111, the amplitude of the voltage actually applied to the photoelectric conversion unit 111 at the imaging speed (b) of 1 million frames / second is the drive signal. It becomes smaller than the amplitude of the output voltage of the generator 115.

図13は、駆動信号生成部115が矩形波を出力する場合に光電変換部111で実際に測定される電圧(以下、実電圧Vrealという。)の最大電圧Vreal_Hと最小電圧Vreal_Lと撮像速度との関係を示すグラフであって、40万フレーム/秒以上の撮像速度となると最大電圧Vreal_Hと最小電圧Vreal_Lの差電圧は徐々に減少し、数百万フレーム/秒以上の撮像速度となると最大電圧Vreal_Hと最小電圧Vreal_Lの差電圧が減少して、信号対雑音比(S/N)が極端に悪化し、撮像不可能な状態となる。
特開2001−345441号公報([0032]〜[0035]、図2)
FIG. 13 shows the maximum voltage Vreal_H, the minimum voltage Vreal_L, and the imaging speed of the voltage actually measured by the photoelectric conversion unit 111 (hereinafter referred to as the actual voltage Vreal) when the drive signal generation unit 115 outputs a rectangular wave. In the graph showing the relationship, the difference voltage between the maximum voltage Vreal_H and the minimum voltage Vreal_L gradually decreases at an imaging speed of 400,000 frames / second or more, and the maximum voltage Vreal_H at an imaging speed of several million frames / second or more. And the minimum voltage Vreal_L decreases, the signal-to-noise ratio (S / N) is extremely deteriorated, and imaging becomes impossible.
JP 2001-345441 A ([0032] to [0035], FIG. 2)

本発明は、上記の課題を解決するためになされたものであって、画素周辺記録型撮像素子を使用して数十万から百万フレーム/秒以上の高速でもS/Nの劣化のない映像を撮像することの可能な高速撮像装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problem, and uses an image recording device with a peripheral pixel recording so that an image without degradation of S / N even at a high speed of several hundred thousand to one million frames / second or more. An object of the present invention is to provide a high-speed imaging device capable of imaging the image.

本発明の高速撮像装置は、被写体の光学像をアナログ電気信号に変換する光電変換部と、前記光電変換部から出力される前記アナログ電気信号から雑音を除去しデジタル電気信号に変換する信号処理を行うアナログ電気信号処理部と、前記アナログ電気信号処理部から出力される前記デジタル電気信号に基づいて画像信号を生成する画像信号生成部と、撮像速度に応じた周波数の制御信号を生成する制御信号生成部と、前記制御信号に基づいてアナログ電気信号処理部駆動信号、画像信号生成部駆動信号および光電変換部駆動信号を生成する駆動信号生成部と、前記光電変換部駆動信号を入力信号とし、出力信号を前記光電変換部に供給する振幅補正部とを含み、前記振幅補正部は、前記光電変換部のフォトダイオードおよびメモリCCDに印加される実電圧の最大電圧と最小電圧の差を一定値に維持するために、前記制御信号の周波数が高くなるほど、前記出力信号の最大電圧を前記入力信号の最大電圧より上昇させ、前記出力信号の最小電圧を前記入力信号の最小電圧より低下させる構成を有している。 The high-speed imaging device of the present invention includes a photoelectric conversion unit that converts an optical image of a subject into an analog electric signal, and signal processing that removes noise from the analog electric signal output from the photoelectric conversion unit and converts the analog electric signal into a digital electric signal. An analog electrical signal processing unit to perform, an image signal generation unit for generating an image signal based on the digital electrical signal output from the analog electrical signal processing unit, and a control signal for generating a control signal having a frequency corresponding to the imaging speed A generation unit, a drive signal generation unit that generates an analog electric signal processing unit drive signal, an image signal generation unit drive signal, and a photoelectric conversion unit drive signal based on the control signal, and the photoelectric conversion unit drive signal as an input signal, look including the an amplitude corrector for supplying an output signal to said photoelectric conversion unit, the amplitude correction unit includes a photodiode and a memory CCD of the photoelectric conversion portion The difference between the maximum and minimum voltages of the actual voltage in order to maintain a constant value to be applied, as the frequency of the control signal is high, the maximum voltage of the output signal is increased than the maximum voltage of the input signal, the output The minimum voltage of the signal is configured to be lower than the minimum voltage of the input signal .

この構成により、撮像速度が変化した場合においても光電変換部に実際に印加される電圧の振幅を常に一定とすることができることとなる。   With this configuration, even when the imaging speed changes, the amplitude of the voltage actually applied to the photoelectric conversion unit can always be kept constant.

本発明は、制御信号の周波数に応じた光電変換部駆動信号を生成する駆動信号生成部を設けることにより、画素周辺記録型撮像素子を使用して数十万から百万フレーム/秒以上の高速でもS/Nの劣化のない映像を撮像することができるという効果を有する高速撮像装置を提供することができるものである。   The present invention provides a drive signal generation unit that generates a photoelectric conversion unit drive signal in accordance with the frequency of the control signal, thereby using a pixel peripheral recording type image pickup device to achieve a high speed of several hundred thousand to one million frames / second or more. However, it is possible to provide a high-speed imaging device that has an effect of being able to capture an image without S / N degradation.

以下、本発明に係る高速撮像装置の実施形態について、図面を参照しつつ説明する。   Hereinafter, embodiments of a high-speed imaging device according to the present invention will be described with reference to the drawings.

(第1の実施形態)
即ち、本発明に係る高速撮像装置1の第1の実施形態は、図1のブロック図に示すように、被写体の光学像をアナログ電気信号に変換する光電変換部11と、光電変換部11から出力されるアナログ電気信号から雑音を除去しデジタル電気信号に変換する信号処理を行うアナログ電気信号処理部12と、アナログ電気信号処理部12から出力されるデジタル電気信号に基づいて画像信号を生成する画像信号生成部13と、撮像速度に応じた周波数の制御信号を生成する制御信号生成部14と、制御信号に基づいてアナログ電気信号処理部駆動信号、画像信号生成部駆動信号および光電変換部駆動信号を生成する駆動信号生成部15と、制御信号の周波数が高くなるほど光電変換部駆動信号の振幅を大きく補正する振幅補正部16とを含む。
(First embodiment)
That is, the first embodiment of the high-speed imaging device 1 according to the present invention includes a photoelectric conversion unit 11 that converts an optical image of a subject into an analog electrical signal, and a photoelectric conversion unit 11 as shown in the block diagram of FIG. An analog electric signal processing unit 12 that performs signal processing to remove noise from the output analog electric signal and convert it to a digital electric signal, and generates an image signal based on the digital electric signal output from the analog electric signal processing unit 12 An image signal generation unit 13, a control signal generation unit 14 that generates a control signal having a frequency corresponding to the imaging speed, an analog electrical signal processing unit drive signal, an image signal generation unit drive signal, and a photoelectric conversion unit drive based on the control signal A drive signal generation unit 15 that generates a signal and an amplitude correction unit 16 that corrects the amplitude of the photoelectric conversion unit drive signal as the frequency of the control signal increases are included.

図2は、本発明に係る高速撮像装置1を適用した高速カラー撮像装置の構成を示すブロック図であって、高速カラー撮像装置2は、被写体光を取り込むレンズ27と、被写体光の入射および遮断を制御するシャッター機構28と、シャッター機構28を介して高速カラー撮像装置2に入射した被写体光を分光する分光プリズム29と、分光プリズム29により分光された赤色光、緑色光および青色光をそれぞれアナログ電気信号に変換する赤色光光電変換部211、緑色光光電変換部212および青色光光電変換部213と、赤色光光電変換部211、緑色光光電変換部212および青色光光電変換部213から出力される赤色光アナログ電気信号、緑色光アナログ電気信号および青色光アナログ電気信号から雑音を除去し、赤色光デジタル電気信号、緑色光デジタル電気信号および青色光デジタル電気信号に変換する電気信号処理を行う赤色光アナログ電気信号処理部221、緑色光アナログ電気信号処理部222および青色光アナログ電気信号処理部223と、赤色光デジタル電気信号、緑色光デジタル電気信号および青色光デジタル電気信号に基づいてカラー画像信号を生成するカラー画像信号生成部23と、撮像速度に応じた周波数の制御信号を生成する制御信号生成部24と、制御信号に基づいてアナログ電気信号処理部駆動信号、画像信号生成部駆動信号および光電変換部駆動信号を生成する駆動信号生成部25と、制御信号の周波数が高くなるほど光電変換部駆動信号の振幅を大きく補正する振幅補正部26とを含む。   FIG. 2 is a block diagram illustrating a configuration of a high-speed color imaging apparatus to which the high-speed imaging apparatus 1 according to the present invention is applied. The high-speed color imaging apparatus 2 includes a lens 27 that captures subject light, and incidence and interruption of subject light. A shutter mechanism 28 that controls the light, a spectral prism 29 that splits subject light incident on the high-speed color imaging device 2 via the shutter mechanism 28, and red light, green light, and blue light separated by the spectral prism 29 in analog form, respectively. Output from the red light photoelectric conversion unit 211, the green light photoelectric conversion unit 212, and the blue light photoelectric conversion unit 213, and the red light photoelectric conversion unit 211, the green light photoelectric conversion unit 212, and the blue light photoelectric conversion unit 213 that convert into electrical signals. Removes noise from red light analog electrical signal, green light analog electrical signal and blue light analog electrical signal, and red light digital A red light analog electrical signal processing unit 221, a green light analog electrical signal processing unit 222, and a blue light analog electrical signal processing unit 223 that perform electrical signal processing to convert an air signal, a green light digital electrical signal, and a blue light digital electrical signal; A color image signal generation unit 23 that generates a color image signal based on the red light digital electrical signal, the green light digital electrical signal, and the blue light digital electrical signal, and a control signal generation unit that generates a control signal having a frequency corresponding to the imaging speed 24, a drive signal generation unit 25 that generates an analog electrical signal processing unit drive signal, an image signal generation unit drive signal, and a photoelectric conversion unit drive signal based on the control signal, and a photoelectric conversion unit drive signal as the frequency of the control signal increases. And an amplitude correction unit 26 that greatly corrects the amplitude of.

さらに、振幅補正部26は、赤色光光電変換部用振幅補正部261、緑色光光電変換部用振幅補正部262および青色光光電変換部用振幅補正部263とを含んでいる。   Furthermore, the amplitude correction unit 26 includes a red light photoelectric conversion unit amplitude correction unit 261, a green light photoelectric conversion unit amplitude correction unit 262, and a blue light photoelectric conversion unit amplitude correction unit 263.

赤色光光電変換部211、緑色光光電変換部212および青色光光電変換部213、赤色光アナログ電気信号処理部221、緑色光アナログ電気信号処理部222および青色光アナログ電気信号処理部223、ならびに赤色光光電変換部用振幅補正部261、緑色光光電変換部用振幅補正部262および青色光光電変換部用振幅補正部263は、それぞれ同一構成を有するので、以下は赤色光光電変換部211、赤色光アナログ電気信号処理部221および赤色光光電変換部用振幅補正部261について構成と動作を説明する。   Red light photoelectric conversion unit 211, green light photoelectric conversion unit 212 and blue light photoelectric conversion unit 213, red light analog electric signal processing unit 221, green light analog electric signal processing unit 222 and blue light analog electric signal processing unit 223, and red Since the photoelectric correction unit amplitude correction unit 261, the green light photoelectric conversion unit amplitude correction unit 262, and the blue light photoelectric conversion unit amplitude correction unit 263 have the same configuration, the red photoelectric conversion unit 211, red The configuration and operation of the optical analog electric signal processing unit 221 and the red light photoelectric conversion unit amplitude correction unit 261 will be described.

図3は、赤色光光電変換部211として使用される画素周辺記録型撮像素子3の構造図であって、赤色光の強度をアナログ電気信号に変換するフォトダイオード31は、下方に延伸する約100段のメモリCCD32(太い実線で囲んだ領域)を備える。そして、フォトダイオード31は露光のたびに受光量に比例した電荷を発生し、メモリCCD32に順次転送する。   FIG. 3 is a structural diagram of the pixel peripheral recording type image pickup device 3 used as the red light photoelectric conversion unit 211. A photodiode 31 for converting the intensity of red light into an analog electric signal extends downward by about 100. A stage memory CCD 32 (area surrounded by a thick solid line) is provided. The photodiode 31 generates a charge proportional to the amount of light received at each exposure and sequentially transfers it to the memory CCD 32.

メモリCCD32に蓄積された電荷は、垂直読み出し転送路33(太い破線で囲んだ領域)および水平読み出し転送路34(太い一点鎖線で囲んだ領域)を介して赤色光アナログ電気信号処理部221に出力される。   The charges accumulated in the memory CCD 32 are output to the red light analog electrical signal processing unit 221 via the vertical read transfer path 33 (area surrounded by a thick broken line) and the horizontal read transfer path 34 (area surrounded by a thick dashed line). Is done.

赤色光アナログ電気信号処理部221は、赤色光光電変換部211で生じる雑音を除去する信号処理を実行する相関二重サンプリング(CDS)回路およびアナログ電気信号をデジタル電気信号に変換するアナログ/デジタル変換器を含んでおり、赤色光アナログ電気信号から雑音を除去して赤色光デジタル電気信号を生成する。   The red light analog electrical signal processing unit 221 is a correlated double sampling (CDS) circuit that performs signal processing for removing noise generated in the red light photoelectric conversion unit 211 and an analog / digital conversion that converts the analog electrical signal into a digital electrical signal. A red light digital electric signal by removing noise from the red light analog electric signal.

カラー画像信号生成部23は、例えばデジタル・シグナル・プロセッサ(DSP)で構成され、赤色光デジタル電気信号、緑色光デジタル電気信号および青色光デジタル電気信号から例えばNTSC規格のカラー画像信号を生成する。   The color image signal generation unit 23 is configured by, for example, a digital signal processor (DSP), and generates, for example, a color image signal of the NTSC standard from the red light digital electrical signal, the green light digital electrical signal, and the blue light digital electrical signal.

制御信号生成部24は、撮像速度に応じた周波数の制御信号を生成する。   The control signal generator 24 generates a control signal having a frequency corresponding to the imaging speed.

駆動信号生成部25は、例えばフィールド・プログラマブル・ゲート・アレイ(FPGA)を使用して構成され、制御信号に基づいてアナログ電気信号処理部駆動信号、画像信号生成部駆動信号および光電変換部駆動信号を生成する。   The drive signal generation unit 25 is configured using, for example, a field programmable gate array (FPGA), and an analog electric signal processing unit drive signal, an image signal generation unit drive signal, and a photoelectric conversion unit drive signal based on the control signal. Is generated.

赤色光光電変換部用振幅補正部261は、制御信号の周波数が高くなるほど光電変換部駆動信号の振幅を大きく補正する。   The red light photoelectric conversion unit amplitude correction unit 261 corrects the amplitude of the photoelectric conversion unit drive signal to a greater extent as the frequency of the control signal increases.

図4は、赤色光光電変換部用振幅補正部261で生成された赤色光光電変換部駆動信号Vdの最大電圧Vd_Hおよび最小電圧Vd_Lと、赤色光光電変換部211に印加される実電圧Vrealの最大電圧Vreal_Hおよび最小電圧Vreal_Lとの関係を示すグラフである。   FIG. 4 shows the maximum voltage Vd_H and the minimum voltage Vd_L of the red light photoelectric conversion unit drive signal Vd generated by the red light photoelectric conversion unit amplitude correction unit 261 and the actual voltage Vreal applied to the red light photoelectric conversion unit 211. It is a graph which shows the relationship between the maximum voltage Vreal_H and the minimum voltage Vreal_L.

このグラフから判明するように、赤色光光電変換部211に印加される実電圧Vrealの最大電圧Vreal_Hと最小電圧Vreal_Lの差を12ボルトに維持するためには、赤色光光電変換部用振幅補正部261は、赤色光光電変換部駆動信号Vdの最大電圧Vd_Hを制御信号の周波数が高くなるに従って上昇させ、最小電圧Vd_Lを制御信号の周波数が高くなるに従って低下させることが必要である。   As can be seen from this graph, in order to maintain the difference between the maximum voltage Vreal_H and the minimum voltage Vreal_L of the actual voltage Vreal applied to the red light photoelectric conversion unit 211 at 12 volts, the amplitude correction unit for the red light photoelectric conversion unit It is necessary for H.261 to increase the maximum voltage Vd_H of the red photoelectric conversion unit drive signal Vd as the frequency of the control signal increases and to decrease the minimum voltage Vd_L as the frequency of the control signal increases.

なお、赤色光光電変換部用振幅補正部261は、赤色光光電変換部211を駆動する全てのパルスに対して補正を行う。   The red light photoelectric conversion unit amplitude correction unit 261 corrects all the pulses that drive the red light photoelectric conversion unit 211.

図5は、赤色光光電変換部211と赤色光光電変換部用振幅補正部261との接続関係を表すブロック図であって、赤色光光電変換部211のメモリCCD32を4相駆動する場合を示す。ここで、赤色光光電変換部用振幅補正部261は、第1の振幅補正部261a、第2の振幅補正部261b、第3の振幅補正部261c、第4の振幅補正部261d、および第5の振幅補正部261eを有するものとする。   FIG. 5 is a block diagram showing the connection relationship between the red light photoelectric conversion unit 211 and the red light photoelectric conversion unit amplitude correction unit 261, and shows a case where the memory CCD 32 of the red light photoelectric conversion unit 211 is driven in four phases. . Here, the red light photoelectric conversion unit amplitude correction unit 261 includes the first amplitude correction unit 261a, the second amplitude correction unit 261b, the third amplitude correction unit 261c, the fourth amplitude correction unit 261d, and the fifth. The amplitude correction unit 261e is included.

即ち、赤色光光電変換部用振幅補正部261は、赤色光光電変換部211のフォトダイオード31を制御するフォトゲートパルスφPGを生成する第1の振幅補正部261a、メモリCCD32の第1のセル321、第5のセル325、第9のセル329・・・を制御する第1相パルスφ1を生成する第2の振幅補正部261b、メモリCCD32の第2のセル322、第6のセル326・・・を制御する第2相パルスφ2を生成する第3の振幅補正部261c、メモリCCD32の第3のセル323、第7のセル327・・・を制御する第3相パルスφ3を生成する第4の振幅補正部261d、メモリCCD32の第4のセル324、第8のセル328・・・を制御する第4相パルスφ4を生成する第5の振幅補正部261eを含む。 That is, red light photoelectric conversion unit for amplitude correction unit 261, the first amplitude corrector 261a for generating a photo-gate pulse phi PG for controlling the photodiode 31 of the red light photoelectric conversion unit 211, the first cell of the memory CCD32 321, the fifth cell 325, the ninth cell 329..., The second amplitude correction unit 261 b that generates the first phase pulse φ 1 that controls the second cell 322, the sixth cell 326 of the memory CCD 32. third amplitude correction unit 261c for generating a second phase pulse phi 2 for controlling ..., the third cell 323 of the memory CCD 32, a third phase pulse phi 3 for controlling the seventh cell 327 ... of resulting fourth amplitude correction section 261 d, a fifth of the amplitude correction unit 261e to generate a fourth phase pulse phi 4 for controlling the fourth cell 324, cell 328 of the eighth ... memory CCD 32.

図6は、赤色光光電変換部用振幅補正部261が有する電圧補正回路の一例であって、ディスクリート素子によって構成され、入力信号は制御信号と同じ周波数の光電変換部駆動信号Vc、最大電圧Vd_Hおよび最小電圧Vd_Lであり、出力信号である赤色光光電変換部駆動信号Vdは赤色光光電変換部211に供給される。   FIG. 6 shows an example of a voltage correction circuit included in the amplitude correction unit 261 for the red light photoelectric conversion unit, which is configured by a discrete element. The input signal is a photoelectric conversion unit drive signal Vc having the same frequency as the control signal, and the maximum voltage Vd_H. The red light photoelectric conversion unit drive signal Vd that is the minimum voltage Vd_L and is an output signal is supplied to the red light photoelectric conversion unit 211.

図7は上記赤色光光電変換部用振幅補正部261の入力と出力の波形を示すグラフであって、入力信号(光電変換部駆動信号Vc)と出力信号(赤色光光電変換部駆動信号Vd)の位相は反転するものの、波形が歪むことはなく、矩形波状の赤色光光電変換部駆動信号Vdを赤色光光電変換部211に供給することが可能となる。   FIG. 7 is a graph showing the input and output waveforms of the amplitude correcting unit 261 for the red light photoelectric conversion unit, and an input signal (photoelectric conversion unit drive signal Vc) and an output signal (red light photoelectric conversion unit drive signal Vd). However, the waveform is not distorted, and the rectangular-wave red light photoelectric conversion unit drive signal Vd can be supplied to the red light photoelectric conversion unit 211.

なお、駆動信号生成部25はFPGAのようなプログラマブル素子で構成してもよい。   The drive signal generation unit 25 may be configured with a programmable element such as an FPGA.

以下、高速カラー撮像装置2の動作を説明する。   Hereinafter, the operation of the high-speed color imaging device 2 will be described.

即ち、被写体から放射される光はレンズ27を介して高速カラー撮像装置2内に結像する。   That is, the light emitted from the subject forms an image in the high-speed color imaging device 2 through the lens 27.

被写体像は分光プリズム29で赤色光、緑色光および青色光に分光され、赤色光光電変換部211、緑色光光電変換部212および青色光光電変換部213で電気信号に変換される。以下では簡単のため、赤色光の処理について説明する。   The subject image is split into red light, green light, and blue light by the spectral prism 29, and is converted into an electric signal by the red light photoelectric conversion unit 211, the green light photoelectric conversion unit 212, and the blue light photoelectric conversion unit 213. For the sake of simplicity, the red light processing will be described below.

高速カラー撮像装置2で100万フレーム/秒で撮像する場合は、駆動信号生成部25は、周波数が1MHzである制御信号に基づいてデューティ比50%の光電変換部駆動信号Vcを生成し、赤色光光電変換部用振幅補正部261に光電変換部駆動信号Vcを出力する。なお、この光電変換部駆動信号Vcは、例えば、最大電圧Vc_Hが12ボルト、最小電圧Vc_Lが0ボルトの一定振幅を有する。   When the high-speed color imaging device 2 captures an image at 1 million frames / second, the drive signal generation unit 25 generates a photoelectric conversion unit drive signal Vc with a duty ratio of 50% based on a control signal having a frequency of 1 MHz, and the red color The photoelectric conversion unit drive signal Vc is output to the photoelectric correction unit amplitude correction unit 261. The photoelectric conversion unit drive signal Vc has a constant amplitude, for example, the maximum voltage Vc_H is 12 volts and the minimum voltage Vc_L is 0 volts.

また、駆動信号生成部25は、周波数1MHzの制御信号に基づいてアナログ電気信号処理部駆動信号および画像信号生成部駆動信号を生成し、それぞれを赤色光アナログ電気信号処理部221およびカラー画像信号生成部23に供給する。   The drive signal generation unit 25 generates an analog electrical signal processing unit drive signal and an image signal generation unit drive signal based on a control signal having a frequency of 1 MHz, and generates a red light analog electrical signal processing unit 221 and a color image signal generation, respectively. To the unit 23.

また、赤色光光電変換部用振幅補正部261は、実電圧Vrealの最大電圧Vreal_Hを12ボルト、最小電圧Vreal_Lを0ボルトとするために、光電変換部駆動信号Vcを例えば図4の補正特性により補正して、最大電圧Vd_Hが16ボルト、最小電圧Vd_Lが−4ボルト、振幅が20ボルトの赤色光光電変換部駆動信号Vdを発生する。   Also, the red light photoelectric conversion unit amplitude correction unit 261 sets the maximum voltage Vreal_H of the actual voltage Vreal to 12 volts, and the minimum voltage Vreal_L to 0 volts. The red light photoelectric conversion unit drive signal Vd having the maximum voltage Vd_H of 16 volts, the minimum voltage Vd_L of −4 volts, and the amplitude of 20 volts is generated by correction.

図8は、赤色光光電変換部用振幅補正部261で生成された赤色光光電変換部駆動信号Vdの波形と赤色光光電変換部211で観測した実電圧Vrealの波形を示すグラフであって、赤色光光電変換部211においても12ボルトの振幅が確保され、例えば100万フレーム/秒でも鮮明な画像を撮像可能となることが判る。   FIG. 8 is a graph showing the waveform of the red light photoelectric conversion unit drive signal Vd generated by the red light photoelectric conversion unit amplitude correction unit 261 and the waveform of the actual voltage Vreal observed by the red light photoelectric conversion unit 211. The red photoelectric conversion unit 211 also has an amplitude of 12 volts, and it can be seen that, for example, a clear image can be captured even at 1 million frames / second.

なお、赤色光光電変換部駆動信号Vdは、フォトゲートパルスφPG、第1相パルスφ1、第2相パルスφ2、第3相パルスφ3、第4相パルスφ4の5つのパルスを含む。 Note that the red photoelectric conversion unit drive signal Vd includes five pulses of a photogate pulse φ PG , a first phase pulse φ 1 , a second phase pulse φ 2 , a third phase pulse φ 3 , and a fourth phase pulse φ 4. Including.

赤色光光電変換部211は、フォトゲートパルスφPGが最大電圧となるたびに、受光量に比例した電荷を生成し、順次メモリCCDの第1のセル321に転送する。 Each time the photogate pulse φPG reaches the maximum voltage, the red light photoelectric conversion unit 211 generates a charge proportional to the amount of received light, and sequentially transfers it to the first cell 321 of the memory CCD.

そして、第1のセル321に転送された電荷は、第2のセル322、第3のセル323・・・と順次転送され、セル中に記憶される。   Then, the charge transferred to the first cell 321 is sequentially transferred to the second cell 322, the third cell 323,... And stored in the cell.

撮像が終了すると、メモリCCD32に記憶されている電荷は垂直読み出し転送路33および水平読み出し転送路34を介して、赤色光アナログ電気信号処理部221に送出される。   When the imaging is completed, the charges stored in the memory CCD 32 are sent to the red light analog electrical signal processing unit 221 via the vertical readout transfer path 33 and the horizontal readout transfer path 34.

以上説明したように、第1の実施形態によれば、光電変換部を駆動する光電変換部駆動信号の振幅を撮像速度に応じて大きくすることにより数十万から百万フレーム/秒以上の高速での撮像が可能となる。   As described above, according to the first embodiment, the amplitude of the photoelectric conversion unit drive signal for driving the photoelectric conversion unit is increased according to the imaging speed, thereby increasing the speed from several hundred thousand to one million frames / second or more. It is possible to take images with

(第2の実施形態)
第1の実施形態においては、光電変換部駆動信号の振幅を撮像速度に応じて大きくしているが、これは撮像速度が速くなるとリセット動作において光電変換部のフォトダイオードに蓄積された電荷を完全に排出できずブルーミングが発生することを防止するためである。
(Second Embodiment)
In the first embodiment, the amplitude of the photoelectric conversion unit drive signal is increased in accordance with the imaging speed. However, when the imaging speed is increased, the charge accumulated in the photodiode of the photoelectric conversion unit in the reset operation is completely reduced. This is to prevent blooming from occurring due to inability to discharge.

従って、リセット動作における電荷の排出能力を高めることができれば、光電変換部駆動信号の振幅を撮像速度に応じて大きくすることなく高速撮像が可能となる。   Therefore, if the charge discharging capability in the reset operation can be increased, high-speed imaging can be performed without increasing the amplitude of the photoelectric conversion unit drive signal in accordance with the imaging speed.

そして、リセット動作における電荷の排出能力を高めるためには、光電変換部駆動信号が最小電圧を維持する時間を長くすればよい。   In order to increase the charge discharging capability in the reset operation, it is necessary to lengthen the time during which the photoelectric conversion unit drive signal maintains the minimum voltage.

そこで、第2の実施形態にあっては、最大電圧が12ボルト、最小電圧が0ボルトの光電変換部駆動信号Vcのデューティ比を撮像速度に応じて変更する。   Therefore, in the second embodiment, the duty ratio of the photoelectric conversion unit drive signal Vc having the maximum voltage of 12 volts and the minimum voltage of 0 volts is changed according to the imaging speed.

図9は、デューティ比を50%および25%とした場合の赤色光光電変換部211に印加される実電圧Vrealの最大電圧Vreal_H、最小電圧Vreal_Lを示すグラフである。   FIG. 9 is a graph showing the maximum voltage Vreal_H and the minimum voltage Vreal_L of the actual voltage Vreal applied to the red light photoelectric conversion unit 211 when the duty ratio is 50% and 25%.

デューティ比が50%であれば実電圧Vrealの中心電圧は6ボルトであり、撮像速度が数十万フレーム/秒以上となると、画像のダイナミックレンジが低下してしまう。   If the duty ratio is 50%, the center voltage of the actual voltage Vreal is 6 volts, and if the imaging speed is several hundred thousand frames / second or more, the dynamic range of the image is lowered.

一方、デューティ比を25%とすれば中心電圧は3ボルトまで低下し、リセット動作における電荷の排出能力が高まるため、撮像速度が数十万フレーム/秒であっても電荷を転送することができる。   On the other hand, if the duty ratio is 25%, the center voltage decreases to 3 volts and the charge discharging capability in the reset operation increases, so that charges can be transferred even if the imaging speed is several hundred thousand frames / second. .

よって、第2の実施形態にあっては、高速撮像装置1を適用した高速カラー撮像装置2は、デューティ比補正特性が組み込まれたデューティ比補正部17を有する。   Therefore, in the second embodiment, the high-speed color imaging device 2 to which the high-speed imaging device 1 is applied has the duty ratio correction unit 17 in which the duty ratio correction characteristic is incorporated.

図10は、デューティ比補正部17から出力される赤色光光電変換部駆動信号Vd、赤色光光電変換部211に印加された実電圧Vrealを示すグラフであって、デューティ比を50%とした場合(a)と、デューティ比を25%とした場合(b)を示す。   FIG. 10 is a graph showing the red light photoelectric conversion unit drive signal Vd output from the duty ratio correction unit 17 and the actual voltage Vreal applied to the red light photoelectric conversion unit 211, where the duty ratio is 50%. (A) and (b) when the duty ratio is 25% are shown.

このグラフから判るように、デューティ比を50%とした場合は、赤色光光電変換部211に印加された実電圧Vrealは、中心電圧=6ボルトとなり、転送時に電荷が溢れてブルーミングが発生する状態になる。   As can be seen from this graph, when the duty ratio is 50%, the actual voltage Vreal applied to the red-light photoelectric conversion unit 211 is the center voltage = 6 volts, and the charge overflows during transfer and blooming occurs. become.

デューティ比を25%とした場合は、赤色光光電変換部211に印加された実電圧Vrealは最大電圧Vreal_H=6ボルト、最小電圧Vreal_L=1ボルトとなるため、ブルーミングが発生し難い状態となる。   When the duty ratio is 25%, the actual voltage Vreal applied to the red light photoelectric conversion unit 211 is the maximum voltage Vreal_H = 6 volts and the minimum voltage Vreal_L = 1 volt, so that blooming is unlikely to occur.

第2の実施形態の上記以外の構成、動作は第1の実施形態と同一であるので、説明を省略する。なお、高速カラー撮像装置2は、デューティ比補正部17を単独で備えてもよいし、振幅補正部26とデューティ比補正部17とを同時に備えてもよい。   Since the configuration and operation of the second embodiment other than those described above are the same as those of the first embodiment, description thereof will be omitted. The high-speed color imaging device 2 may include the duty ratio correction unit 17 alone, or may include the amplitude correction unit 26 and the duty ratio correction unit 17 at the same time.

以上説明したように、第2の実施形態によれば、光電変換部に印加する光電変換部駆動信号のデューティ比を撮像速度に応じて小さくすることにより数十万から百万フレーム/秒以上の高速での撮像が可能となる。   As described above, according to the second embodiment, the duty ratio of the photoelectric conversion unit drive signal applied to the photoelectric conversion unit is reduced according to the imaging speed, so that it is several hundred thousand to million frames / second or more. High-speed imaging is possible.

以上のように、本発明に係る高速撮像装置は、画素周辺記録型撮像素子を数十万から百万フレーム/秒以上の高速で駆動することができるという効果を有し、撮像装置等として有効である。   As described above, the high-speed imaging device according to the present invention has an effect that the pixel peripheral recording type imaging device can be driven at a high speed of several hundred thousand to one million frames / second or more, and is effective as an imaging device or the like. It is.

本発明の第1の実施形態に係る高速撮像装置のブロック図1 is a block diagram of a high-speed imaging device according to a first embodiment of the present invention. 本発明に係る高速撮像装置を適用した高速カラー撮像装置の構成を示すブロック図The block diagram which shows the structure of the high-speed color imaging device to which the high-speed imaging device which concerns on this invention is applied. 赤色光光電変換部として使用される画素周辺記録型撮像素子の構造図Structure diagram of pixel peripheral recording type image sensor used as red light photoelectric conversion unit 駆動信号生成部で生成された赤色光光電変換部駆動信号Vdの最大電圧Vd_Hおよび最小電圧Vd_Lと赤色光光電変換部に印加される実電圧Vrealの最大電圧Vreal_Hおよび最小電圧Vreal_Lとの関係を示すグラフThe relationship between the maximum voltage Vd_H and the minimum voltage Vd_L of the red light photoelectric conversion unit drive signal Vd generated by the drive signal generation unit and the maximum voltage Vreal_H and the minimum voltage Vreal_L of the actual voltage Vreal applied to the red photoelectric conversion unit is shown. Graph 赤色光光電変換部と駆動信号生成部との接続関係を表すブロック図Block diagram showing the connection relationship between the red photoelectric conversion unit and the drive signal generation unit 赤色光光電変換部用振幅補正部が有する電圧補正回路の一例Example of voltage correction circuit included in amplitude correction unit for red light photoelectric conversion unit 赤色光光電変換部用振幅補正部の入力と出力の波形を示すグラフGraph showing input and output waveforms of amplitude correction unit for red light photoelectric conversion unit 赤色光光電変換部駆動信号Vdの波形と赤色光光電変換部で観測した実電圧Vrealの波形を示すグラフThe graph which shows the waveform of the red voltage photoelectric conversion part drive signal Vd, and the waveform of the actual voltage Vreal observed in the red color photoelectric conversion part デューティ比を50%および25%とした場合の赤色光光電変換部に印加される実電圧Vrealの最大電圧Vreal_H、最小電圧Vreal_Lを示すグラフA graph showing the maximum voltage Vreal_H and the minimum voltage Vreal_L of the actual voltage Vreal applied to the red light photoelectric conversion unit when the duty ratio is 50% and 25% デューティ比補正部から出力される赤色光光電変換部駆動信号Vd、赤色光光電変換部に印加された実電圧Vrealを示すグラフThe graph which shows the red voltage photoelectric conversion part drive signal Vd output from a duty ratio correction | amendment part, and the actual voltage Vreal applied to the red color photoelectric conversion part 従来の高速撮像装置の構成を示すブロック図Block diagram showing the configuration of a conventional high-speed imaging device 駆動信号生成部の出力と光電変換部に実際に印加される電圧波形を示すグラフGraph showing output waveform of drive signal generator and voltage waveform actually applied to photoelectric converter 実電圧Vrealの最大電圧Vreal_Hと最小電圧Vreal_Lと撮像速度との関係を示すグラフA graph showing the relationship between the maximum voltage Vreal_H and the minimum voltage Vreal_L of the actual voltage Vreal and the imaging speed

符号の説明Explanation of symbols

1 高速撮像装置
11 光電変換部
12 アナログ電気信号処理部
13 画像信号生成部
14 制御信号生成部
15 駆動信号生成部
16 振幅補正部
17 デューティ比補正部
DESCRIPTION OF SYMBOLS 1 High-speed imaging device 11 Photoelectric conversion part 12 Analog electric signal processing part 13 Image signal generation part 14 Control signal generation part 15 Drive signal generation part 16 Amplitude correction part 17 Duty ratio correction part

Claims (1)

被写体の光学像をアナログ電気信号に変換する光電変換部と、
前記光電変換部から出力される前記アナログ電気信号から雑音を除去しデジタル電気信号に変換する信号処理を行うアナログ電気信号処理部と、
前記アナログ電気信号処理部から出力される前記デジタル電気信号に基づいて画像信号を生成する画像信号生成部と、
撮像速度に応じた周波数の制御信号を生成する制御信号生成部と、
前記制御信号に基づいてアナログ電気信号処理部駆動信号、画像信号生成部駆動信号および光電変換部駆動信号を生成する駆動信号生成部と、
前記光電変換部駆動信号を入力信号とし、出力信号を前記光電変換部に供給する振幅補正部とを含み、
前記振幅補正部は、前記光電変換部のフォトダイオードおよびメモリCCDに印加される実電圧の最大電圧と最小電圧の差を一定値に維持するために、前記制御信号の周波数が高くなるほど、前記出力信号の最大電圧を前記入力信号の最大電圧より上昇させ、前記出力信号の最小電圧を前記入力信号の最小電圧より低下させることを特徴とする高速撮像装置。
A photoelectric conversion unit that converts an optical image of a subject into an analog electrical signal;
An analog electrical signal processing unit that performs signal processing to remove noise from the analog electrical signal output from the photoelectric conversion unit and convert it to a digital electrical signal;
An image signal generator for generating an image signal based on the digital electric signal output from the analog electric signal processor;
A control signal generation unit that generates a control signal having a frequency according to the imaging speed;
A drive signal generator that generates an analog electrical signal processor drive signal, an image signal generator drive signal, and a photoelectric converter drive signal based on the control signal;
The photoelectric conversion unit driving signal as an input signal, look including the an amplitude corrector for supplying an output signal to said photoelectric conversion unit,
The amplitude correction unit, in order to maintain the difference between the maximum voltage and minimum voltage of the photodiode and the actual voltage applied to the memory CCD of the photoelectric conversion unit to a constant value, as the frequency of the control signal is high, the output A high-speed imaging apparatus , wherein a maximum voltage of a signal is increased above a maximum voltage of the input signal, and a minimum voltage of the output signal is decreased below a minimum voltage of the input signal .
JP2006207806A 2006-07-31 2006-07-31 High-speed imaging device Active JP4843400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006207806A JP4843400B2 (en) 2006-07-31 2006-07-31 High-speed imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006207806A JP4843400B2 (en) 2006-07-31 2006-07-31 High-speed imaging device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011185702A Division JP5140185B2 (en) 2011-08-29 2011-08-29 High-speed imaging device

Publications (2)

Publication Number Publication Date
JP2008035331A JP2008035331A (en) 2008-02-14
JP4843400B2 true JP4843400B2 (en) 2011-12-21

Family

ID=39124268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006207806A Active JP4843400B2 (en) 2006-07-31 2006-07-31 High-speed imaging device

Country Status (1)

Country Link
JP (1) JP4843400B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283193B2 (en) * 2010-02-17 2013-09-04 日本放送協会 Driving device and imaging device including the same
JP5965135B2 (en) * 2011-11-21 2016-08-03 日本放送協会 DRIVE DEVICE, DRIVE METHOD, AND IMAGING DEVICE PROVIDED WITH DRIVE DEVICE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198419A (en) * 1997-09-17 1999-04-09 Sony Corp Ccd image pickup device
JP4199381B2 (en) * 1999-08-18 2008-12-17 富士フイルム株式会社 Solid-state imaging device and solid-state imaging device driving method
JP2003153093A (en) * 2001-11-13 2003-05-23 Sony Corp Solid-state imaging device, electronic still camera, method for driving solid-state image pickup element and control program for driving the solid-state image pickup element
JP2006115413A (en) * 2004-10-18 2006-04-27 Toshiba Corp Imaging apparatus and imaging method

Also Published As

Publication number Publication date
JP2008035331A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
EP2555509B1 (en) Image pickup apparatus comprising a ramp-compare AD converter.
JP5609358B2 (en) IMAGING DEVICE, CONTROL DEVICE, AND IMAGING DEVICE CONTROL METHOD
JP5247007B2 (en) Imaging apparatus and imaging system
US8159582B2 (en) Solid-state imaging apparatus and method of driving the same
US8736717B2 (en) Image pickup apparatus and control method therefor
JP2011055351A (en) Photographing device and control method thereof
JP4843400B2 (en) High-speed imaging device
JP2007174032A (en) Imaging device
JP4807440B2 (en) Video signal processing circuit, imaging apparatus, and video signal processing method
JP2008099174A (en) Signal charge reading method and solid-state imaging apparatus
JP5627728B2 (en) Imaging apparatus and imaging system
JP5140185B2 (en) High-speed imaging device
JP2006303856A (en) Solid state image sensor and imaging apparatus
JP2006222762A (en) Imaging apparatus
JP4814749B2 (en) Solid-state imaging device
JP2006262086A (en) Method for driving image pickup device
JP2010114654A (en) Imaging apparatus and charge transferring method of solid-state imaging element
JP4630715B2 (en) Imaging device
JP4824467B2 (en) Solid-state imaging device
JP5377068B2 (en) Imaging device
JP2004147207A (en) Electronic camera
JP4398082B2 (en) Solid-state imaging device and solid-state imaging apparatus
JP2004072258A (en) Solid-state imaging apparatus and drive method thereof
JP5211072B2 (en) Driving method of solid-state imaging device
JP2009147540A (en) Imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111007

R150 Certificate of patent or registration of utility model

Ref document number: 4843400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250