JP4841791B2 - 溶融金属混入物センサープローブ - Google Patents

溶融金属混入物センサープローブ Download PDF

Info

Publication number
JP4841791B2
JP4841791B2 JP2001571074A JP2001571074A JP4841791B2 JP 4841791 B2 JP4841791 B2 JP 4841791B2 JP 2001571074 A JP2001571074 A JP 2001571074A JP 2001571074 A JP2001571074 A JP 2001571074A JP 4841791 B2 JP4841791 B2 JP 4841791B2
Authority
JP
Japan
Prior art keywords
sensing
sensor probe
passage
molten metal
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001571074A
Other languages
English (en)
Other versions
JP2003529073A (ja
JP2003529073A5 (ja
Inventor
リー,メイ
ガスリー,ロデリツク,アール.,エル.
Original Assignee
リムカ リサーチ インコーポレーテツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リムカ リサーチ インコーポレーテツド filed Critical リムカ リサーチ インコーポレーテツド
Publication of JP2003529073A publication Critical patent/JP2003529073A/ja
Publication of JP2003529073A5 publication Critical patent/JP2003529073A5/ja
Application granted granted Critical
Publication of JP4841791B2 publication Critical patent/JP4841791B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • G01N15/12Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle
    • G01N15/13Details pertaining to apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/205Metals in liquid state, e.g. molten metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • G01N15/12Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle
    • G01N15/131Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Continuous Casting (AREA)

Description

【0001】
【技術分野】
本発明は溶融金属混入物センサープローブ、すなわち、溶融金属混入物の数、サイズ、およびサイズ分布を検出する装置、今やESZ(Electric Sensing Zone電気的センシングゾーン) 法として知られる方法を採用した装置での、または、それに関連しての改良に関する。発明はまた溶融金属混入物センサープローブの製造法での、または、それに関連しての改良に関する。このようなセンサープローブはアルミニウム、マグネシウム、鉄のような液体金属の品質管理に、また、特に、流動性の溶融金属の迅速なオンラインモニタリングを可能とするような目的に有用である。
【0002】
【背景技術】
原鉱からの金属の生産、精製においては、沈殿2次相粒子、微量の鉱滓、気泡など、ここでは便宜上「混入物」と呼んでいるものの発生は避けられず、それらはいずれも、金属の技術上の性質に多かれ少なかれ有害な影響を及ぼす。スクラップ金属が、それだけで精製されるか、あるいは金属原鉱石に加えられたりしてリサイクルされ精製されるときには、スクラップ材に混入している各種の酸化物、腐食物、泥土、油脂、塗料、その他のものの存在によって、多量の各種の混入物が見られるはずである。生産された圧延物また鋳造物中のこのような混入物の存在は、疲労寿命、強靱性、腐食、亀裂、分裂、面品質、ピンホール、等々の観点からは、特にそれらが大形の(たとえば、大きさ15ミクロン以上)場合、非常に望ましくないものである。たとえば、アルミニウム製の飲料用缶の主要部は、その厚さが80ミクロンのオーダーであって、その缶壁内での何らかの混入物の存在に対して非常に敏感であり、混入物が60ミクロン程度の大形である場合には、深絞り工程中に金属亀裂を発生したり、あるいは内容物が加圧された場合、缶に穴があくこともあり得る。クリーン度が最重要視される他の応用には極薄板やリソグラフ用プレートの製造がある。したがって、所要の目的に対して、その金属が十分に「クリーン」であるかどうかを知り、また、採用した精製工程が十分にクリーンな金属を製造しているかどうかを示すことが、最重要な課題となる。
【0003】
オンラインで動作できる、特に溶融アルミニウム中のこのような混入物に対する定量的な測定法と装置は、今日、アルミニウム産業では十分確立されてきていて、LiMCAシステム(Limca Research Inc. の商標)として知られている。これらは、たとえば米国特許第4,555,662号、第4,600,880号および第4,763,065号に記述されており、特許が請求されている。商品として出ている装置はカナダ、ケベック州、ケベック市のボーメン(Bomen)による実施許諾のもとに製造されている。他の金属の精製とリサイクル工程の間に生ずる混入物の検出に対する本方法と装置の適用については、現在開発中である。
【0004】
ESZ法は、溶融金属に適用される以前には、クールター(Coulter)カウンターとして知られている水溶液中の混入物を測定するのに用いられたものであって、それは、どのような混入物も、通常、それが混入している高い電気伝導度を持つ液体金属とは、異なる電気伝導度(通常、ずっと低い)を持つという事実にもとづくものである。電気絶縁材料でできたチューブの管壁または底部に設けられ、通常、壁内部に真空を接続する指定サイズ(アルミニウムに対しては通常300ミクロン直径)の開口部を持ち、その開口部の対向する両側に配設された2つの電極間のセンシングゾーンを通して一定電流が維持される上記開口部からなるセンシングゾーンを測定すべき体積の溶融金属材料が通過する。混入粒子が開口部を通過すると、開口部を通過する電流通路の電気抵抗が混入物の体積に比例して変化し、この変化が2電極間の、あるいは、より一般的には、その目的のために別に設けられた電流通路中の別の2個の電極間の、電圧パルスとして検出される。各パルスの振幅は、個々の混入物のサイズを示しており、一方、パルスの数は、サンプル体積中の混入物の数を示している。低電導度の混入物の数とサイズの分布で表した流動性材料の品質モニタリング以外に、LiMCAシステムは、アルミニウムシリコン鋳造合金に粒子精製材として加えられてきた二硼化チタン(TiB粒子の検出と分析にも用いることができる。二硼化チタンは溶融金属アルミニウムよりも大きい電気伝導度を持っており、したがって、逆の極性を持つ電圧パルスが観測された。
【0005】
現在使われているアルミニウムテスト用のオンラインセンシングプローブは金属中に降ろされた電気絶縁性で耐熱性の材料でできたサンプリングチューブでできており、そのチューブはその低端部かその付近に設けられたセンシングゾーン開口部を通じて溶融金属が吸入されるチャンバーを形成している。開口部を形成するのにここで用いている通常の方法は、適当な直径の孔をチューブ壁にあけることであり、当該金属を溶融するに充分な温度の強力なマイクロフレーム(火炎)を用いて入口開口部を熱し、有効になった表面エネルギー力の作用で直ちに、丸いエッジを形成することである。本発明の電流供給電極、および/または、センシング用電極は、一方はチューブの内側に、他方は外側に配設された2本の棒のような形とか、あるいは、適当な電導度の材料をチューブの内壁と外壁にかぶせた同心チューブのような形をとってもかまわない。本発明のESZ法をうまく働かせるためには、電流通路がすべて電気的センシングゾーンを通過していることが必要であり、サンプリングチューブ内側の液体金属と外側のそれとの間に望まれない漏れ電流があってはならない。
【0006】
これらすべての粒子はそれらがESZを通過するときパルスを記録し、また、同一サイズだがタイプの違う、たとえば、密度の異なる非電導性粒子は、同じ大きさの電圧パルスを発生するので、融解物中の異種の混入物間の区別を付けることは初期には不可能であった。アルミニウム産業においては、その業界独特の脱ガス装置が溶融アルミニウム中に塩(えん)のマイクロバブルとマイクロドロップレットを発生する。これらのマイクロバブルとマイクロドロップレットは、LiMCAプローブの動作を妨害し、その混入物カウントに不正確さを引き起こす。実際には、マイクロバブルは硬い固形の混入物に比べて、比較的その害は少なく、したがって、金属の品質管理の観点からは、個々のパルスを見分ける必要がある。より良好な粒子弁別は、パルス高以外のパラメータらを考慮することによって信号からより多くの情報を引き出すことのできるDSP(Digital Signal Processing ディジタル信号処理)技術の適用によって達成可能となるだろう。McGill DSPシステムを用いると、各パルスはまた、6個のその他のパラメータ、すなわち、スタート勾配、エンド勾配、最大電圧までの時間、全信号計測時間、開始時間、終了時間などで特徴付けることができる。
【0007】
LiMCAシステムのごく初期の段階で、インライン連続動作の成功が、溶融金属の流入レートの減少が観測されるか、電圧のベースラインに不安定性が観測されるときには、新しいサンプルを導入する前に約300msの間、通常の約60アンペアのセンシング電流に比べて大きい200から300アンペアの電流を開口部を通じて通すことを含む「条件調整」と呼ばれる過程(プロセデュア)に依存していることがわかった。この大電流の印加は通常これらの問題を補正することがわかっており、それは開口部壁に堆積し開口部を通しての溶融金属アルミニウムの流れを阻害している粒子を除去することにより達成されている、と推定されている。この条件調整の効果のメカニズムは、アルミニウムの融解物について、また、他の金属の融解物について、LiMCAの実行が成功の鍵であるが、しかしなお明確にする必要がある。主要なメカニズムが同定され、ここで提案される新しいセンシングプローブの構造とそれらの製造法がそれの実行を従来よりも、より効果的なものにすると考えられる。
【0008】
【発明の開示】
溶融金属材料に対する新しい構造の混入物センサープローブを提供することが本発明の主要な目的である。
【0009】
溶融金属材料に対する混入物センサープローブの新しい製造法を提供することが本発明のもう一つの主要な目的である。
【0010】
センシングゾーンを通過する粒子のモニタリング機能を促進させ、また、センシングゾーンを通過して流れる高電流の短パルスを用いることによって条件調整機能を改善する、改良された形状のセンシング開口部を持つプローブおよびその製造法を提供すること、が本発明のさらにもう一つの主要な目的である。
【0011】
本発明によれば、溶融金属に沈められその中にある混入物を電気的センシングゾーン法によって検出するタイプの溶融金属混入物センサープローブが提供される。そのプローブは、少なくともその壁部の一部に、そのセンサープローブ本体の一方の側から他方の側へと流れる溶融金属の流れに対してセンシング通路を持つような電気絶縁性の耐熱材料からなるセンサープローブ本体を具備し、そのセンシング通路は、その中に電気的センシングゾーンを備え、縦軸のまわりに存在する
【0012】
そのプローブにおいて、そのセンシング通路は、その流れの断面積を流入口から電気的センシングゾーンにかけて漸進的に(プログレッシブリーに)減少するものである。
【0013】
そしてその流入口から電気的センシングゾーンにかけてのセンシング通路の形状は、センシング通路の縦軸に一致する放物の準線を持ち、その焦点がセンサープローブ本体内のセンシング通路から離れた位置にあるごとき放物線と、センシング通路の縦軸に並行で、センサープローブ本体内に一方の軸を持ち、他方の軸の延長線が電気的センシングゾーンを通るところの楕円面、から選ばれることを特徴とする。
【0014】
また、本発明によれば、上のパラグラフで述べたような溶融金属混入物センサープローブを、そのセンシング通路を指定の形状に形成する工程を含んで、機械加工で製作する製造法が提供される。
【0015】
さらに、本発明によれば、溶融金属に沈められその中にある混入物を電気的センシングゾーン法によって検出するタイプの溶融金属混入物センサープローブが提供される。そのプローブは、少なくともその壁部の一部に、その本体の一方の側から他方の側へと流れる溶融金属の流れに対してセンシング通路を持つような電気絶縁性の耐熱材料からなるセンサープローブ本体を含んでおり、そのセンシング通路は、その中に電気的センシングゾーンを備え、縦方向軸に沿って延びている。
【0016】
そのセンシング通路は、その流れの断面積を流入口から電気的センシングゾーンにかけて漸進的に減少することを特徴とする。
【0017】
そしてその通路の壁表面が、1.016マイクロメーター(40マイクロインチ)より良好な平滑性を持つように機械加工によって製作された、
【0018】
本発明の好適実施例である溶融金属混入物センサープローブと、その中のセンシング通路の製作法が、以下に、添付の図式化された以下の図面を参照した例示によって説明される。
【0019】
【発明を実施する最良のモードと産業上の利用性】
LiMCAシステムを採用した先行技術は図1に非常に模式的に図示されている。たとえば、樋状の溝10は、テストすべき溶融金属12を、それに引き続く脱ガス、フィルターベッド、および鋳型などの後続の処理過程のために金属を溶解する溶融炉から溶融金属12を搬出する。流れている状態であれ、テスト容器中での静止状態(図示されていない)であれ、ふつう細長い交換可能なチューブなどでできていた、その下端が閉じられた、上蓋16中に設けられた上部開口端に取り外し可能に取り付けられたサンプル導入テスト容器14へと、通常、圧力を下げることによって、サンプルは引き出されて、溶融金属のクリーン度が、直ちに、あるいは、オンラインでテストできる。蓋は、チューブが垂直方向に上下運動して、チューブを任意に流れ12中に漬けたり、そこから引き上げたりできるようにマウントされており、そのマウント方法は、ここではスタンダード(垂直の支柱)18として模式的に示されている。動作中に、上蓋はそこから下方に突出する4本の電極を持っていて、そのうちの3本はチューブの内部に入り、4番目は外側にある。3本の内側の電極のうちの1本は、金属棒でできた電流導入電極20であって、その上部は熱絶縁材料22で覆われていて、容器壁に設けられたセンシング通路26に直接隣接するその露出下側先端部24だけが容器に入ってくる溶融金属と電気的に接触するようになっている。外側の電極28もまた電流導入電極であって、上蓋16によって第1の電極20と並行に配設されて、その裸の下側先端部29もまた、通路26に直接隣接するようにマウントされている。次に、電極20と28の間にセンシング通路26を通してできた電流通路は、「条件調整」の値にまで電流を増やすことが必要なときにスイッチ33によってシャントすることのできる安定抵抗32を経て、電池30から電流が供給される。電池からのリード線の1本にはオンオフスイッチ31と電流計34が含まれている。上蓋16はまた、テスト容器内部を減圧源へ、またはアルゴンのような適切な遮蔽性不活性気体源へ、あるいは、大気へと接続することのできる三方バルブ36へ流体を接続する機能を提供している。減圧源は、ポンプ40によってバルブ36を通してテストの合間に必要に応じて排出できるリザーバー38からなっている。2本の電極20と28は差動増幅器42に、次に、対数増幅器44に、さらにピーク検出器46、レコーダーの機能をも持つマルチチャンネルアナライザー48へと接続されている。
【0020】
容器14内部を使用するに先立って、容器をアルゴンまたは窒素のようなガスでフラッシュ(洗浄)してから金属12中に降下させる。バルブ36を働かせて、減圧されたリザーバーに容器の内部を接続することによって、溶融金属を通路26を通してスムーズにまた迅速に吸入する。充分の金属が容器に入って、電極20の先端部24に接触するやいなや、電極20と28の間にその通路を通して電流通路が形成される。アナライザー兼レコーダー48は、充分の金属が容器に入ってきて金属レベル検出電極52の下側レベル検出器50に接触したときスイッチオンとなり、金属が上側レベル検出器54に接触したときスイッチオフとなる。流体金属12と電極20との間の接触エリアは先端部24と29に限られるので、測定される電圧の少しだけの変換はセンシング通路26を通過する混入物による金属の変位から発生するものである。これらの混入物の各々が検知されたとき、定常値以上か以下かの電圧パルスを発生する。したがって、各粒子が通路26を通過すると、それが流体金属それ自身の体積を変化させ電極20と28との間の電気抵抗に変化を引き起こし、そのパルスの大きさは既知の関係によって通路の断面フロー面積と粒子のサイズとの間の比に関係する。電圧パルスは直流信号に重畳した比較的低い振幅のものであり、また、それらのパルスは差動前置増幅器42に供給され、フィルターを通して大きい直流成分と避けられない高周波ノイズが除去される。高いノイズレベル中でのこれらのパルスの正確で信頼性のある検出と測定は非常に困難であり、確実に検出できる混入物のサイズは約15から20マイクロメーターのものに制限する。対数増幅器44は信号のダイナミックレンジを広げ、その出力は信号をサンプリングし、アナライザー48による処理が可能な一定長の離散的パルスを発生するピーク検出器に供給される。アナライザーはこれらのパルスの数をカウントし、また、その大きさにしたがって分析する。アナライザーの出力は、したがって粒子数のヒストグラムであり、それからその標本の粒子濃度と粒子サイズの分布が決定される。
【0021】
センシング通路の直径の推奨範囲は100から5000マイクロメーターであり、よりふつうには、アルミニウムやマグネシウムのような融点のより低い金属に対しては200から500マイクロメーターであり、その値は、第一に、溶融物中に含まれる混入物の、また、測定すべき代表的な混入物のサイズに依存して選ばれる。アルミニウム中のサンプリングのためには、容器14は、代表的には、たとえば、1mmの壁厚を持つ硼珪酸塩ガラスのような耐熱材料でできた26で同じ長さを持つチューブである。アルミニウムをサンプリングするのに用いるときには、センシング通路は直径約300マイクロメーターのものが用いられる。図2は、たとえば、溶融スチールをテストするのに用いた、長さ方向に沿っての均一な直径の穿孔からなる先行技術装置の通路に使われた一つの形を示している。図3は、通路を通過するところのより層流となる流れを与えるために、図2の穿孔に対する入り口部分に通路の中に延びる円錐形の入り口を穿つことによって拡大したもう一つの変形を示している。図4は、アルミニウムのためのセンサープローブに通常採用されている通路のタイプを示しており、そこでは、チューブは加熱によって容易に軟化する材料からなっている。したがって、図2に示すように円筒形の孔に十分の温度と孔の周囲の材料を溶かすだけの熱量の火炎があてられると、表面エネルギーの作用のもとに、そのエッジ、特に丸い入り口のエッジが多かれ少なかれ、滑らかにランダムに丸められたそれぞれのプロファイルに変形されるまで、材料のフローが起こる。最小の直径、あるいは、もしそれがたとえば溶解の不均一性などのために真性の円形でないときには最小直径に等価な直径、を持つ通路の一部がセンシングゾーンを構成する。センシングゾーンの直径はゲージロッドを通路に挿入して容易に測ることができるが、しかしそれによって得られるセンシング通路のプロファイルは、チューブがつくられている材料、製作者の技量も含めて、それぞれの通路が形成された比熱条件に依存して変化するだろうが、壁がフローの軸に沿って真に滑らかで一様であるという何の保証もない。このようなチューブの市販用バージョンのオリフィスを詳しく調べてみると、その形状はいくらか不規則であったので、このようなオリフィスを通過するフローの解析に使うための数式か、その実際的な妥協案として、観測形状に対して少なくとも2次のオーダーの多項式でのフィッティングを試みること必要であった。実際、このような丸めが比較的安定な信号を得ることを可能とすることがわかったので、これで十分であると思われる。より小さな混入物の通過も明瞭な検出が可能となるパルスを発生するよう実効断面積は可能なかぎり小さくすべきであるが、しかし、あまりに小さすぎると流入フロー速度が急速に減少してしまい、電圧のベースラインが不安定になることがわかっているので、それは小さすぎてもいけない。このような不安定性などを引き起こす原因は、以下により詳しく述べるように、非電導性材料の混入物が、通路中に発生する電磁力によって通路の壁面に向けられ、そして壁面にはりつけられ、通路を通過する金属の所望のスムーズな層流を減少させたり妨害させたりするだろうからであろうと信じられている。大きい混入物は、もちろん穴を通過することができず、穴をほとんどふさいでしまうだろう。テストごとの、また、1回のテスト中にも起こるテスト精度の緩やかな低下やベースラインの読みとりの不安定性はLiMCAシステムの最初の段階から見出されていた。幸運なことには、先に述べたような、そのような障害物をすべて除去して行う「条件調整」のプロセスによって、テストをはじめる前に、その装置を実質的にもとの精度と安定性に回復させことが可能であることも早い時期に見出されていた。
【0022】
この問題を軽減するためになされた1つの提案が、Doutreに与えられた米国特許番号5,834,928号中に含まれており、この特許によれば、金属は金属をセンシング通路に放出される直前にセンシング通路の上流のより広い通路を通って搬送され、このより広い通路は電流通路中に電気的に非電導性の表面が位置することによって規定され、センシング通路の直径の2から10倍の一定の流体力学的な直径を提供している。本発明は、混入物は、溶融金属とは異なる電導度を持つ粒子であるので、粒子は自己誘導的な磁束とそれから生じる電磁力に支配されるという事実に依存している。粒子が低電導度のものである(通常の状態である)ときには、この電磁力は粒子をフローの軸から外向きの半径方向へと押しやろうとし、一方、高電導度の粒子はフローの軸方向へと押しやられる。このような最初のより広い通路の設置は、実質的にすべての液体と気体の混入物を、それがセンシング通路を通過する以前に溶融金属から取り除く効果を持っている。一般的に、このような液体と気体の混入物は、固体の混入物が金属の品質を損なうほど有害な影響を与えない。最初の通路はまた大きい混入物をトラップし、それらがセンシング通路に入ってゆくのを防がなければならず、それによって、より小さい開口部を持つサンプリングチューブをより小さい混入物を正確に検出するのに使うことができ、一方、より大きいオリフィスを持ち、最初の通路を持たないサンプリングチューブは、より大きい混入物を測定する他のテストに用いることができる。
【0023】
電流に並流するフローに支配される一方で、液体金属のフローに乗る粒子の動きの詳しい数学的な議論が、本発明者、Mei LI と Roderick R. L. GUTHRIEにより、 Metallurgical and Materials Transaction B (注:冶金と材料,報告B)31B巻、357−364ページに、2000年4月号に発表された「円形パイプ中を流れる電流運搬液体金属中の粒子の運動の数値計算研究」と題する論文の主題であり、この論文を参照されたい。以下のこれらの運動についての数学を用いない議論は、当該技術に精通した人にとって本発明の原理を理解し、応用することを可能とするのに充分なものと考えられるが、もし、より詳細な数学的説明が必要であれば、上の論文を参照することができる。
【0024】
測定を成功させるのに必要な相対的に大きい定常的な直流信号に対して、センシングゾーンを通る混入物の移動によって発生する小さい信号パルスの正確な検出と測定が本来持っている困難性のゆえに、背景「ノイズ」をできるだけ減らそうとして付属装置の設計に多大の注意を払わなければならなかった。たとえば、テストの間、ポンプのスイッチを切って、それを動作させるときの電気的な干渉を起こさないようにするために、あらかじめ排気された真空リザーバー38が準備されている。同じ理由で、交流電源から供給されて常時オンの直流電源のかわりにバッテリー30は充電可能なものを使っている。できるだけ多くの電子的なスムージングを供給できるように、また、ノイズの主なソースとなるいかなる接地ループも減らすように、電子回路の設計には多大の注意が払われる。
【0025】
以下に、より詳細に示すように、また、たとえば、先に引用したDoutreの特許からもよく知られるように、センシング通路それ自体が本質的に電磁的要素を構成している。したがって、テスト中の金属は、強力な電界中のセンシング通路を通って移動する高電導度の「ワイヤー」であり、したがって、対応する比較的大きい磁束とそれによって生じる強い電磁力を発生し、それはESZ内の粒子フローの場に機械的な影響を与える。したがって、非常に狭いセンシング通路を通る溶融金属の速いフローができるだけスムーズになることを確実にするよう最大限の注意が払われなければ、センシング通路それ自体は有害な背景ノイズの発生源となるばかりである。このようなノイズは、たとえば、ESZ内の流体フローに働く電磁界の作用の結果として発生されたフロー中の渦とゆらぎ、通路のプロファイルおよび通路壁の表面状態、微小な、しかし、強力な電磁ノイズ発生源を潜在的に構成する何等かのこのような渦とゆらぎなどの結果として発生するのだろうと考えられる。溶融金属のフロー速度は、比較的高く、システムがうまく働くために、たとえば、2から5m/sが必要であり、これらの高い速度はフローが容易に完全に中断されて乱流となる値であり、有用な読みとりがもはや得られなくなる点である。たとえば、渦流となった流体は、その流体の粘性と温度によって決められるサイズの渦流を含んでおり、また、このような渦は、検出すべき粒子のサイズ、すなわち、15から50マイクロメーターのサイズであろう。
【0026】
したがって、「スムーズ」なフローを得るのに、単にセンシング通路への流入を「スムーズ」にするという従来の提案は適当ではなく、かわりに、少なくとも、センシング通路の壁の入り口部分はもちろんのこと、好ましくは、その出口部分も、放物線か楕円面のいずれかに選んだ精密に漸進的(プログレッシブ)なプロファイルに形成されていなければならず、それによってはじめてできるだけ層流に保たれ、ゆらぎや内部渦流の発生の可能性を最小限に抑えたフローが達成できるものと考えられる。用いられた高いフロー速度で、ふつう流体の遅いフローのコラムを伴って存在する淀みの境界層は消滅するほど薄くなり、関係している動作温度も原因となって、通路壁の摩耗による比較的大きい消耗が起こり、チューブが使えなくなるまでに通路のサイズが増大してしまう。したがって、通路壁の使用開始時のスムーズさもまた予想以上に重要であり、以前に用いられていたいわゆる「スムーズ」な壁面と呼ばれる壁面の標準的な粗さでさえ、金属がそこを通過する際に背景ノイズに寄与するゆらぎと渦流を発生させる原因となるのに十分な大きさであると考えられる。この目的のために、センシング通路26の好ましい製作法は、まず、適当な直径の補助孔を開け、次に、その孔を必要とされる最大の初期直径に拡げることであり、同時に、その間、充分精密に形成された放物線または楕円のプロファイルを形成することである。このことは、たとえば、相補関係にあるプロファイルを持つ回転研磨工具84を、まず、補助孔の一方の側から、次に他方の側から挿入し、この追加の研磨具によって生じる研磨と、さらに必要ならば、同様のプロファイルの研磨具による仕上げ工程によってなされる。このようにして得られる高品質機械加工の標準的な表面仕上げは1.016マイクロメーター(40マイクロインチ)程度のものであるが、このような仕上げ面は、顕微鏡検査によってリッジや突起が見られる程度のものであり、それらはノイズを誘発するゆらぎや渦の潜在的な発生源となり得るという点で十分なものとは言えず、それにかわって、0.254マイクロメーター(10マイクロインチ)、望ましくは、0.127マイクロメーター(5マイクロインチ)よりも良い仕上げを達成することが好ましい。このような仕上げは現今入手可能な研磨ならびにラッピング工具によって容易に達成可能である。センシング通路壁に対する超平滑面の問題は、必ずしも放物面や楕円面とは限らず、それ以外のこれまでに提案されてきた「スムーズ」な任意曲面に対しても当てはまる非常に重要な問題であると考えられる。このような表面は、回転型の工具の使用によって最も容易に得られるので、これらの表面は、本質的に、フロー軸に関して対称であり、一番容易に思い付く代替のプロファイルとしては、放物面や楕円面によって得られるほどのノイズ削減は期待できないものの、半円のものが考えられる。
【0027】
放物線の曲率は、多項
Y=Ax+R
の係数として表される。ここに、Aは上記係数であり、Rはセンシングゾーンの喉部での半径である。Aがゼロであれば、通路は円筒であり、また、それが非常に大きければ、喉部はナイフエッジになる。この係数に対する好ましい値の範囲は、1.0から5.0で、より好ましくは2.0から4.0である。以下の議論でのこの曲線に対する上記値は、2.15である。
【0028】
同様にして、楕円曲線の曲率は、その多項
{X/a}+{y/b}=1
の係数λ=b/aとして表される。ここに、aとbは、それぞれx方向およびy方向の半軸長である。この係数λに対する好ましい値の範囲は、0.2から2.5、より好ましくは、0.5から2.0である。評価に用いた曲線について用いた値は、0.5である。
【0029】
図5は、拡大したスケールで、センシング通路26を含むセンシング容器14の壁の一部分を示しており、本発明によれば、この容器は放物線のプロファイルを持ち、本実施例での係数は推奨値2.15であり、放物線の準線は中心フロー軸58に一致していて、その周りに放物線が回転して壁面が生成され、一方、各放物線の焦点は容器壁の内部にある円上の点60である。液体金属12はフロー軸58に沿うセンシング通路の入口62に流入し、また、矢印64の示す全体的な方向にあり、金属が容器内部に引き込まれる速度は、フローがスムーズで層流をなし、また、断面のフロー面積が最小となり、電気的センシングゾーンが適切に構成されている通路の中心部66、つまり喉部、へと向けられているそのようなフローの持つ速度である。溶融金属は通路の出口から排出され、それは、実際には、ゾーン66と出口68との間の放物線プロファイルの部分に密接に沿うと言うよりは、むしろよりジェットフローに近いものであることがわかっている。電流は電極20と28の間にある矢印70の方向に流れる。
【0030】
図6もまた、拡大スケールで、センシング通路26を含むセンシング容器14の壁の一部分を示しており、それは、ここでも本発明にしたがう楕円プロファイルからなっていて、その長軸80はセンシング通路の軸58に平行で、かつ、容器壁の内部にあり、その短軸82の延長線が電気的センシングゾーン66を通過するごとく設定されている。放物線プロファイルの場合と同様に、楕円プロファイルも中心のフロー縦軸58のまわりに回転されて、センシング通路の壁56を生成する。
【0031】
金属フローを観測するために、その金属を流すことのできる透明な材料のパイプが存在しないということから、溶融金属のフローを物理的に観察することは非常に困難である。流体中の粒子の力学的な動きの数学的計算もまた、非常に困難なことでは悪評高いものであり、その簡単化の仮定がとうしても必要になるので、処理では円筒座表系を用いた2次元シミュレーションが採用された。計算領域を入口境界面76と対応する出口球面キャップ78との間の領域であるとし、入口境界面76は軸58上の点Cに中心を持つ入口球面カップであり、その点Cは軸58と通路壁56への円錐接線の通路入口端面上での交点によって設定されるものであり、対応する出口球面キャップ78は軸58上で点C’に中心を持っており、点C’は軸58と通路壁56への円錐接線の通路出口端面上での交点によって設定されるものであるとすれば、入口境界面76と出口球面キャップ78との間の領域が計算目的用のセンシング通路の有効長を決めている。実際にはESZ通路を通過する過渡的な時間は、その通路の物理的な長さを粒子が通過する時間ではなく、発生したパルスの高さが十分な検出と識別のため電子回路によって設定されたしきい値よりも高い領域を粒子が通過する時間であると言うことに留意すべきだろう。この計算長さは粒子のサイズに応じて増大する。金属のフローセンシング電流の出口境界をセンシング通路喉部66であるとした。その上、計算の簡単化と計算精度の向上を目指して、計算境界内に可変間隔(スペーシング)の非直交性のグリッドが設定され、一方、10−5msの小さい時間ステップが採用された。
【0032】
入口境界76では、流体速度と電流密度の両方がいずれも一様でかつ境界に直交していると仮定し、一方、出口境界66では、電位が一定で、出口速度の勾配がゼロであると仮定した。いずれの数値計算においても連続性を守るように流入速度と流出速度をマッチする反復補正がなされた。溶融金属のジェットフローは喉部66を越えるものと仮定された。すなわち、出口側の発散性側壁は無視し、流体は単に喉部におけるのと同じ軸方向速度分布で通過すると仮定した。水を使ったシステムでの実験(室温で実行できる)は、実際にジェットタイプのフローが得られることを示した、したがって同じことが溶融金属フローに対しても成り立つだろうと仮定することは安全であるように思われる。適用した境界条件としては、通路の壁面に沿ってスリップがゼロであること、その内側壁と外側壁との間でチューブを横切る電流束がゼロであることなどの条件を使った。計算は、媒体が抵抗率Pの1つの連続的な物質(溶融金属)とそれに希薄に分散された球状の抵抗率Peffの混入物からなり、混入物は十分に分散されていて、それら相互間の距離がそれらを取り巻く流れの経路を乱すこのない程度に十分大きいこと、などの仮定のもとに行われた。
【0033】
LiMCAシステムは、通常、溶融アルミニウムが700℃の温度にある間に動作する。この温度では、その密度が2.368×10kg/mで、その電気抵抗率(Ωm)は0.25×10−6である。最もふつうの混入物はアルミナと気体のマイクロバブルであるが、それの密度は、それぞれ、3.8×10kg/m 及びゼロであり、それらは電気導体である。2硼化チタンは密度が4.5×10kg/mで、電気抵抗率が0.09×10−6のアルミナよりよりも低いことから、その混入が考えられていた。完全導体の粒子による電圧パルスは非電導体粒子とは逆に負で、同一サイズの非電導性粒子の2倍の高さの抵抗性のピークを持つことが、また他方、溶融アルミニウム中のTiB 子もまた、その誘電率がより大きいので逆符号の電圧パルスを発生し、その電圧パルスのピークの高さは同一サイズの非電導性粒子に対する電圧ピークの約3/4であることが見いだされている。
【0034】
センシングゾーンの収束区間に流入する溶融アルミニウムのフローの振る舞いを予測するために、金属は非圧縮性であり一定の性質を持つと見なされ、かつ、フローは層流で定常であると見なされた。これらは理想的な実用的動作条件である。金属フローは4.6m/sの速度で流れており、ESZ開口部におけるレイノズル数は開口部の直径にもとづけば約400である。電流は自己誘導磁界を発生し、流動する金属中に乗ってくるすべての粒子が対応する電磁界とそれから生ずる力を受けることになる。図7は計算領域内の電位分布を示し、図8は電流密度を示し、図9は自己誘導磁束密度を示しており、また図10はここで得られる特定の電磁力を示している。計算領域内の計算結果の等電位等高線図とそれらの値を示す図7から見られるように、開口部の中心断面に沿っての等電位線は内側電極22から流れる電流がESZの喉部に入る等電位Lにおいて最高の値を持っている。電位傾度は開口部の喉部の近くで非常に高く、開口部入口または出口に向かって徐々に下がる。60アンペアの通常の測定電流で開口部全体についての電圧低下は0.105ボルトである。この電位分布は図8に示す電流密度分布を生じ、それゆえそれに対応している。このようにして、この電位分布にしたがって電流密度は開口部の中心領域付近で非常に高くなっており、喉部からの距離にしたがって減少する。図9は開口部内の自己誘導磁束に対する等密度等高線図を示しており、これが中心軸58から通路壁56へと増加しているのが見られる。この標準テスト値の電流(60アンペア)とそれの誘導磁束の相互作用は図10に示す電磁力分布を生ずる。
【0035】
図11は計算によって得られた加速度ベクトルを示しており、一方、図12はセンシング通路内の軸方向に間隔をとって選ばれた3点、R、S、Tにおける軸方向速度プロファイルを示している。図14はセンシング通路内の軸方向に同じ間隔をとって選ばれた3点、R、S、Tにおける対応する半径方向速度プロファイルを示している。開口部の喉部66近くのより強い電流密度と磁束密度は、入口、出口領域62、68におけるよりずっと強い電磁力をそこに引き起こしている。電磁力は通路壁近くでより高いが、しかし中心部58に向かって減少し、そうして実際上、中心軸に沿っては実質的にゼロとなる。この力の場において、アルミニウム中に浮遊している電気的に非伝導性の粒子は逆向きの軸方向力を受けて金属の流れにさからって後進させられ、半径方向力が粒子を溶融金属の主流から56へと向かわせる。電気的にアルミニウムより高い伝導性の粒子(たとえば、TiB)は金属の流れと同方向の軸方向力を経験し、力の半径方向に働く成分によって中心軸に向かって押される。通常の測定値にある電流Iでは、真空源38によって発生された軸方向流の力はこれに逆らう電磁力よりもずっと強く、したがって、電磁力は、軸方向流の力に対向する点で比較的に効果的でない。しかし、半径方向に働く力は、事実上反対するものがなく、したがって、非常に効果的に働く。
【0036】
これら軸方向および半径方向の電磁力は電流Iの値に直接依存しそれにつれて増大する。さらに計算をすすめると、その結果は図14に示してあるが、電流を強くして、通路の喉部に向かって強くなってゆく後方に働く力が増大してくると、電流の、あるしきい値において、金属流は反転され、金属は喉部66から入口62に向かって動き、通路の入口に強い環状の渦が現れる。こうなると、金属はこの渦と壁面の間にあるセンシングゾーンにだけ流入することが可能となり、渦の流れの速度が通路壁面における金属流に加算される。実際には、250アンペアの条件調整電流によって、壁面における最大速度が4.64m/sから6.15m/sへと増加することが見いだされている。この高い流体速度は壁面に付着した混入物の堆積物あるいは残留沈着物をそぎ落とすことができるぐらい十分に高く、それらを渦に乗せて金属のメインの流れに追い返すので、上の条件調整電流の効果が壁面付近のこの高い流体速度のおかげである、とすることは妥当であると考えられる。
【0037】
したがって、この現象は、ESZへの入口の精密な形状と相互作用する磁界のピンチ効果の結果であり、ある臨界電流値で開口部内の圧力の増大をつくり出すそれらの結合が、ESZへの入口に強いフローの反転を引き起こすのである。従来提案され使われてきた、適当に作られた「スムーズに」丸くつくられた通路、あるいは、円筒状に、または円錐形の入口を持つ通路などにかわって、本発明の精密に仕上げられたセンシング通路を使用することには強力なはっきりとした利点がある。上に述べたように、いまのところ、アルミニウム用のLiMCAシステムでは、250から300アンペアの条件調整電流を使うと、それが大抵の状況のもとでうまく動作することがわかっているので、そのことが習慣的に行われている。推奨領域の下限である1.0の係数の放物線プロファイルでは、それ以上の電流で渦流が得られる臨界電流は約165アンペアであり、他方、推奨領域の上限である5.0の係数のプロファイルに対しては、その値はさらに低くなることを示すことができる。したがって、このような新しいプロファイルによれば、このようなより低い条件調整用流をつくるときは、より小さい容量のバッテリーシステムで動作させることが可能である。
【0038】
流れる流体金属中でなされる測定で遭遇したもう一つの一般的な問題は、粒子半径方向外向きに、またある程度はフロー軸に沿って軸方向に反対反発される、と記述されるような傾向である。周知のように、このことはLiMCAシステムが使えるようになる以前に採用されていたよりゆっくりとした、より高価な、しかし、より包括的な先行技術によって同じ融解物をテストすることにより決定できるように、標準的なテスト中にセンシングゾーンを通過する微粒子の総数を減らす。通過させる比率は通過割合として知られており、もし動作パラメータが十分注意深く選ばれていないならば、その割合は50%にも下がり得る。粒子が排除されるのは明らかに電磁力の作用のもとで金属の流れが粗い壁面のはっきりとしないか不適当なプロファイルのセンシング通路を通過するときの粒子のランダムな動きによるものである、したがって本発明の連続的な放物線または楕円のプロファイルは、通路壁面に対する遙かにスムーズな機械加工の適用と相まって、排除される割合の大幅な減少をもたらすだろう。たとえば、もし非電導性の粒子が通路壁によって収集されると考えるならば、中心軸58に向かう半径方向の速度を仮定し、その中心が半径分だけ壁面から離れていると仮定するとき、20から240μmのサイズの粒子に対する計算によって得られた収集率は2.15の多項係数を持つ放物線プロファイルにおいてたった5%に過ぎず、1.0の多項係数のときでもなお、8%に過ぎない。
【0039】
マグネシウムの分析に本システムを適用する際に遭遇する問題は、チューブ14について、溶融金属による攻撃に対して耐性のある材料を見つけることである。流体マグネシウムの物理的性質はアルミニウムのそれから大きくは違っていない。700゜Cの液体温度で、1.577×10−3kg/mの密度、1.23×10−3kg/msの粘性および0.28×10−6の電気抵抗率を持っている。圧縮されたシリカチューブはこのような攻撃に対し耐性があるが、熱ショックによって簡単にクラックが入るので故障率が高い。より最近の提案によれば、窒化ボロンのディスクにセンシング通路を形成し、それを2本のスチールチューブ間で保持し、サンプリングチャンバーを形成する内側の1本でディスクが保持される。このような構造のいずれの部分も、アルミニウムの場合のように、熱加工によって入口を平滑できず、そのかわり通路はESZ喉部において円筒孔で、入口と出口で円錐形の開口となるように形成された。観測された背景ノイズは、アルミニウムで得られていた約10μVの値よりかなり大きく、通常、おおよそ30から50μVで、ブロックを避けるのに必要とされた開口部のサイズもまたかなり大きく、約400から500μmであり、これら両方の結果はいずれも信頼度高く検出できる粒子の最小サイズを増大させるものであることがわかった。計算により、アルミニウムに対する60アンペアの標準動作電流においてさえ、大きい円環状の渦かまたは再循環ゾーンが円錐形の入口の内部に形成され、再び通路入口の強い電磁ピンチ力と、その結果それがつくり出す強い軸方向の背圧によって発生する、と言うことがわかった。このような渦自体は、観測されたように背景ノイズの増大を引き起こす。粒子が渦に乗せられてセンシングゾーンの喉部に到達できないので、より大きい通路が要求されるとの理由の説明になるだろうと考えられる。それ以外にも、粒子は渦の周りを周回させられ、粒子は互いに融合してより大きい粒子となるチャンスを与えられ、それらは一層、通路をブロックしやすくなるかまたは通路を通過できたとしても、それらは不確かなカウントを与えるようにカウントされてしまう。本発明のプロファイル通路の精密な形成と指定の平滑性の確保とが、正確で信頼できるテストに必要な、つまり60アンペア以上での電流フローが渦を形成するしきい値の引き上げを可能とし、他方必要に応じて、また必要とされるときに、適正な条件調整のため十分な軸方向速度の渦が生じるところのより高い電流値を予想することを可能としている。
【0040】
スチールは、スチールの延性、強靱性、絞り性、機械加工性、溶接性、H.I.C.、疲労強度、また、塗装性、孔食(小孔状腐食)性、腐食性、反射性、などの多くの特性が、これらの特性はすべてが、このような混入物の性質、サイズ、およびその面積密度によって微妙に影響されるが、混入物の存在によって不当に低下させられてしまっているということから、迅速で信頼性のある混入物検出要もう一つの金属である。現在採用されている方法は比較的時間がかかるのと高くつくため、本質的にオンラインで使うことができない。製造されるスチールの等級、付随する工程の運用に応じて、一般的には、50から200μmの直径の大きい混入物が存在する。LiMCAシステムがアルミニウムの融解物に成功裡に適用されて以来、液体スチール(液体の鋼)用のセンサープローブの開発に向けて多くの努力が払われてきた。初期のデザインは窒化硼素とシリカ(溶融石英)の複合チューブで、これはスチールがあらかじめ脱酸されておれば使用できるものであった。チューブの部分は窒化硼素でできていて溶融物の中に浸かっているが、その中で化学的に安定に保たれており、石英でできた本体の上側は溶融物上に出ていて、連続的な充填と排出の制御に必要な可視性を提供していた。このデザインは窒化硼素とシリカとの継ぎ目でリークを起こす傾向のあることがわかり、結果的に放棄され、その後はグラファイトで強化された内側電極で支持された一体構造のシリカチューブと円筒形のESZが使用されるようになった。これは時として成功裡に運転されたが、その運転は比較的高い背景ノイズに問題があり、その上、この高い背景ノイズは必ずしも条件調整によって改善できるとは限らないものである。液体珪素-硼素スチールの関連する性質は、融点1350℃、密度7.0×10−3kg/m、粘度7.0×10−3kg/msであり、電気抵抗率は1.40×10−6である。
【0041】
ESZ内の液体スチールの速度ベクトルが動作電流20アンペア、および200アンペアの条件調整電流で試された。このアルミニウムに対する電流よりも低い電流値を採用することはスチールのずっと高い抵抗率によって指示されたものである。両方の場合とも、最大速度は中心軸に沿っているが、驚くべきことには、条件調整動作における最大速度は典型的なテスト動作におけるそれよりも低いことが見いだされた。これは、電流を増大したときに、入口領域に形成される再循環ゾーンがESZ壁面付近の流体速度を劇的に増大させるところの溶融アルミニウムにおける条件調整効果とは対照的である。スチールにおけるこの高い電流での効果的でない条件調整効果はESZの円筒形形状の直接の結果であり、したがって、通路に対する高度に平滑化された壁面の採用と相まった本発明の放物線か楕円プロファイルのセンシング通路の使用がこの不具合を取り除き、アルミニウムやマグネシウムで得られた動作と同様の全体的な動作をもたらすであろう、と言うことが推測できる。2.15の係数の放物線プロファイルの通路を採用したスチールについての計算は、4m/sにおいて184アンペアの及び2m/sにおいて86アンペアのしきい電流値を与えたが、これは、それぞれ、アルミニウムについての相当する値である110アンペアと58アンペアに比較して、通路の適正な設計によっても当然予想されるように、スチールに対する臨界電流値が高くなることを示している。
【0042】
精密に形成したプロファイルと表面の平滑性を使用することの主な利点は、ある製造手順に対して採用されるべきセンシング電流と条件調整電流の値を決定し調節する能力である。したがって、テスト電流が層流の崩壊を引き起こすことなく十分高くとれ、逆に、条件調整電流が必要とされる強い渦流を生じることが、正確な測定には必要不可欠なことである。渦流がつくりだされるしきい電流値は、また、金属の流速と通路喉部の直径、これら両者は互いに関係しているが、その他のパラメータに依存している。通路の直径の選択はすでに上に述べられている。流速の選択はサンプルチャンバーに流入してくる十分大きいサンプルに対して有用な結果を与えるための要求によって決められる。含まれている小さい通路直径のゆえに、フロー速度は比較的大きくなくてはならず、通常2から4m/sである。層流から乱流への移行は、電磁力が流速にうち勝つ電流に依存しているので、しきい値もまた流速に依存している。
【0043】
以下の表は、直径300μm、長さ1mm、多項式の値Aが0.1から10までで、金属がアルミニウムである場合の、放物線プロファイルセンシング通路に対するしきい電流のIの値のこの相互依存性の例を示している。その値がAの最高値で実際的でないほど小さくなるまで漸次減少することが注目される。
【0044】
【表1】
Figure 0004841791
【0045】
楕円プロファイルに対応する同様な表は以下のとおりとなる。
【表2】
Figure 0004841791

【図面の簡単な説明】
【図1】 アルミニウム中の混入物測定用のLiMCAシステムを用いた先行技術の模式図
【図2】 図2の装置に用いられたような先行技術のサンプリングチューブ容器の下部での長手方向断面図で、他の先行技術の電気的センシングゾーンサンプリング通路の形状を示すもの
【図3】 アルミニウム中の混入物測定用のLiMCAシステムを用いた先行技術の模式図
【図4】 アルミニウム中の混入物測定用のLiMCAシステムを用いた先行技術の模式図
【図5】 本発明によるセンシング通路が放物面形状を持つサンプリングチューブの側壁に設けられたセンシング通路の拡大図
【図6】 本発明によってセンシング通路が楕円面形状を持つサンプリングチューブの側壁に設けられたセンシング通路の拡大図
【図7】 図7は計算領域内の電位分布のプロット
【図8】 図8は領域内の電流密度のプロット
【図9】 図9は領域内の誘起磁束密度のプロット
【図10】 図10は領域内の特定の電磁力分布のプロット
【図11】 図11は計算された金属フローベクトルのプロット
【図12】 図12は軸方向に間隔をおいて選択された点についての軸方向フローの速度を示す
【図13】 図13は同じく軸方向に間隔をおいて選択された点についての半径方向フローの速度を示す
【図14】 図14は、電流が金属の条件調整フローになるしきい値より大きいときの金属フローベクトルを示す
【参照符号】
10 溶融金属搬送用喉部
12 溶融金属
14 サンプル導入テスト容器(取り換え可能チューブ)
16 導入テスト容器の蓋
18 蓋支持用スタンダード(垂直の支柱)
20 内側電流伝達電極
22 電極20のまわりの熱遮断材
24 電極20の下側チップ
26 容器壁面中のセンシング通路
28 外側電流伝達電極
30 バッテリー
31 バッテリーリード線内のスイッチ
32 安定抵抗
33 スイッチシャント抵抗
34 電流計
36 三方バルブ
38 真空源レザーバー
40 ポンプ
42 差動増幅器
44 対数増幅器
46 ピーク検出器
48 マルチチャンネルアナライザー兼レコーダー
50 金属レベル検出器のの下側レベル電極
52 金属レベル検出器
54 金属レベル検出器のの上側レベル電極
56 センシング通路26の壁面
58 中心長手方向フロー軸と放物線の準線
60 放物線の焦点
62 センシング通路入口
64 金属フローの方向を示す矢印
66 センシング通路喉部;ESZゾーン
68 センシング通路出口
70 電流フローの方向を示す矢印
72 微粒子
74 微粒子の運動方向を示す矢印
76 計算領域入口境界
78 計算領域出口境界
80 楕円プロファイルの長軸
82 楕円プロファイルの短軸
84 回転プロファイルを持つ研磨工具

Claims (18)

  1. 溶融金属(12)に浸けられて、その中に含まれる混入物(72)を電気的センシングゾーン法によって検出する溶融金属混入物センサープローブ(14)であって、上記溶融金属混入物センサープローブは、電気絶縁性の耐熱材料でできたセンサープローブ本体(14)を備え、このセンサープローブ本体は、少なくともその壁の一部に、上記センサープローブ本体の一方の側から他方の側への溶融金属のフローのためのセンシング通路(26)を備え、そのセンシング通路は、その中に電気的センシングゾーンを持ちかつ縦軸(58)を有し、
    上記センシング通路(26)のフロー断面積がその入口から電気的センシングゾーンへと漸進的に減じ、
    上記入口(62)から上記電気的センシングゾーンへの上記センシング通路(26)のプロファイルが、上記センシング通路の上記縦軸(58)に一致する準線(58)とセンサープローブ本体(14)内にセンシング通路(26)から離れたところにある焦点(60)とを持つ放物線(56)及び上記センシング通路の上記縦軸に平行で上記センサープローブ本体(14)内にある一つの軸(80)と電気的センシングゾーンを通過するもう一つの軸(82)の延長線とを持つ楕円(56)、から選ばれていて、上記放物線は1.0から5.0の範囲内にある係数を採用し、上記楕円は、上記センシング通路の縦軸に平行な軸を有し上記センサープローブ本体内にあり、上記電気的センシングゾーンを通るもう1つの軸の方にも存在し、上記楕円は、0.2から2.5の範囲内にある楕円係数を採用し、
    上記センシング通路(26)において、壁表面(56)は、少なくともその入口から上記電気的センシングゾーンを通じて、1.016マイクロメーター(40マイクロインチ)よりもよい平滑度で滑らかである、
    溶融金属混入物センサープローブ。
  2. 上記電気的センシングゾーンから上記センシング通路(26)の出口(68)への上記センシング通路のプロファイルもまた、上記センシング通路の縦軸(58)に一致する準線(58)とセンサープローブ本体(14)内にセンシング通路(26)から離れたところにある焦点(60)とを持つ放物線(56)及び上記センシング通路の縦軸に平行で上記センサープローブ本体(14)内にある一つの軸(80)と電気的センシングゾーンを通過するもう一つの軸(82)の延長とを持つ楕円(56)、から選ばれていて、上記放物線は1.0から5.0の範囲内にある係数を採用し、上記楕円は、上記センシング通路の縦軸に平行な軸を有し上記センサープローブ本体内にあり、上記電気的センシングゾーンを通るもう1つの軸の方にも存在し、上記楕円は、0.2から2.5の範囲内にある楕円係数を用いる、ことを特徴とする、請求項1に請求された溶融金属混入物センサープローブ。
  3. 上記入口から上記電気的センシングゾーンを通しての上記センシング通路(26)は、放物線プロファイルを有するとき、2.0から4.0の範囲内にある係数の放物線を用い、楕円プロファイルを有するとき、0.5から2.0の範囲内にある係数の楕円を用いることを特徴とする請求項1に請求された溶融金属混入物センサープローブ。
  4. 上記電気的センシングゾーンから上記出口(68)への上記センシング通路は、放物線プロファイルを有するとき、2.0から4.0の範囲内にある係数の放物線を用い、楕円プロファイルを有するとき、0.5から2.0の範囲内にある係数の楕円を用いることを特徴とする請求項2に請求された溶融金属混入物センサープローブ。
  5. 上記センシング通路(26)は、0.254マイクロメーター(10マイクロインチ)よりもよい平滑度の壁表面(56)を持つことを特徴とする請求項1に請求された溶融金属混入物センサープローブ。
  6. 上記センシング通路(26)は、0.127マイクロメーター(5マイクロインチ)よりもよい平滑度の壁表面(56)を持つことを特徴とする請求項5に請求された溶融金属混入物センサープローブ。
  7. 溶融金属(12)に浸けられて、その中に含まれる混入物(72)を電気的センシングゾーン法によって検出する溶融金属混入物センサープローブの製造方法であって、上記溶融金属混入物センサープローブが、電気絶縁性の耐熱材料でできたセンサープローブ本体(14)を備え、このセンサープローブ本体は、少なくとも壁の一部に、上記センサープローブ本体の一方の側から他方の側への溶融金属のフローのためのセンシング通路(26)を備え、そのセンシング通路は、その中に電気的センシングゾーンを持ちかつ縦軸(58)を有し、
    機械加工によって上記壁の中に上記センシング通路(26)を形成し、上記センシング通路(26)において、壁表面(56)を、少なくともその入口から上記電気的センシングゾーンを通じて、1.016マイクロメーター(40マイクロインチ)よりもよい平滑度で滑らかにするステップを含み、
    このようにして形成された上記センシング通路(26)のフロー断面積が上記入口(62)から上記電気的センシングゾーンへと漸進的に減じ、
    上記入口(62)から上記電気的センシングゾーンへの上記センシング通路(26)のプロファイルが、上記センシング通路の縦軸(58)に一致する準線(58)とセンサープローブ本体(14)内にセンシング通路(26)から離れたところにある焦点(60)とを持つ放物線(56)及び上記センシング通路の縦軸に平行で上記センサープローブ本体(14)内にある一つの軸(80)と電気的センシングゾーンを通過するもう一つの軸(82)の延長とを持つ楕円(56)、から選ばれていて、上記放物線は1.0から5.0の範囲内にある係数を採用し、上記楕円は、上記センシング通路の縦軸に平行な軸を有し上記センサープローブ本体内にあり、上記電気的センシングゾーンを通るもう1つの軸の方にも存在し、上記楕円は、0.2から2.5の範囲内にある楕円係数を用いる、
    溶融金属混入物センサープローブの製造方法。
  8. 上記電気的センシングゾーンから上記センシング通路(26)の出口(68)への上記センシング通路のプロファイルもまた、上記センシング通路の縦軸(58)に一致する準線(58)とセンサープローブ本体(14)内にセンシング通路(26)から離れたところにある焦点(60)とを持つ放物線(56)及び上記センシング通路の縦軸に平行で上記センサープローブ本体(14)内にある一つの軸(80)と電気的センシングゾーンを通過するもう一つの軸(82)の延長とを持つ楕円(56)、から選ばれていて、上記放物線は1.0から5.0の範囲内にある係数を採用し、上記楕円は、上記センシング通路の縦軸に平行な軸を有し上記センサープローブ本体内にあり、上記電気的センシングゾーンを通るもう1つの軸の方にも存在し、上記楕円は、0.2から2.5の範囲内にある楕円係数を用いることを特徴とする、請求項7に請求された製造方法。
  9. 上記入口から上記電気的センシングゾーンを通しての上記センシング通路(26)は、放物線プロファイルを有するとき、2.0から4.0の範囲内にある係数の放物線を用い、楕円プロファイルを有するとき、0.5から2.0の範囲内にある係数の楕円を用いることを特徴とする、請求項7に請求された製造方法。
  10. 上記電気的センシングゾーンから上記出口(68)への上記センシング通路は、放物線プロファイルを有するとき、2.0から4.0の範囲内にある係数の放物線を用い、楕円プロファイルを有するとき、0.5から2.0の範囲内にある係数の楕円を用いることを特徴とする、請求項8に請求された製造方法。
  11. 上記センシング通路(26)は、0.254マイクロメーター(10マイクロインチ)よりもよい平滑度の壁表面(56)を持つことを特徴とする、請求項7に請求された製造方法。
  12. 上記センシング通路(26)は、0.127マイクロメーター(5マイクロインチ)よりもよい平滑度の壁表面(56)を持つことを特徴とする、請求項11に請求された製造方法。
  13. 溶融金属(12)に浸けられて、その中に含まれる混入物(72)を、より低い方の値の測定電流と、より高い方の値の条件電流とを用いる電気的センシングゾーン法によって検出する溶融金属混入物センサープローブ(14)であって、上記溶融金属混入物センサープローブは、電気絶縁性の耐熱材料でできたセンサープローブ本体(14)を備え、このセンサープローブ本体は、少なくともその壁面の一部に、上記センサープローブ本体の一方の側から他方の側への溶融金属のフローのためのセンシング通路(26)を備え、そのセンシング通路は、その中に電気的センシングゾーンを持ちかつ縦軸(58)を有し、
    上記センシング通路(26)のフロー断面積がその入口から電気的センシングゾーンへと滑らかに漸進的に減じ、かつ、上記電気的センシングゾーンからその出口まで滑らかに漸進的に増加し、
    上記センシング通路(26)は、上記センシングゾーンを通る流れの方向の縦軸について対称的であり、かつ、上記センシング通路(26)における壁表面(56)は、1.016マイクロメーター(40マイクロインチ)よりもよい平滑度で滑らかであり、
    これにより、所定の値の測定電流を与えた場合に、上記センシング通路を通るスムーズな層流が得られ、所定の値の条件電流を与えた場合に、上記センシング通路の入口で渦状態の流れが得られる、
    溶融金属混入物センサープローブ。
  14. 上記センシング通路(26)が0.254マイクロメーター(10マイクロインチ)よりもよい平滑度の壁表面(56)を持つことを特徴とする請求項13に請求された溶融金属混入物センサープローブ。
  15. 上記センシング通路(26)が0.127マイクロメートル(5マイクロインチ)よりもよい平滑度の壁表面(56)を持つことを特徴とする請求項14に請求された溶融金属混入物センサープローブ。
  16. 溶融金属(12)に浸けられて、その中に含まれる混入物(72)を、より低い方の値の測定電流と、より高い方の値の条件電流とを用いる電気的センシングゾーン法によって検出するタイプの溶融金属混入物センサープローブの製造方法であって、上記溶融金属混入物センサープローブが、少なくともその壁面の一部にセンシング通路(26)を持つ電気絶縁性の耐熱材料でできたセンサープローブ本体(14)をもち、そのセンシング通路は、上記センサープローブ本体の一端から他端への溶融金属のフローのために設けられ、その中に電気的センシングゾーンを持ちかつ縦軸方向(58)に延びていて、
    機械加工によってスムーズに漸進的に減少するフロー断面積を持つように壁内に上記センシング通路(26)を形成するステップを含み、
    その機械加工で形成されたその壁表面(56)が1.016マイクロメーター(40マイクロインチ)よりもよい平滑度を持ち、
    これにより、所定の値の測定電流を与えた場合に、上記センシング通路を通るスムーズな層流が得られ、所定の値の条件電流を与えた場合に、上記センシング通路の入口で渦状態の流れが得られる、
    溶融金属混入物センサープローブの製造方法。
  17. 上記センシング通路(26)が0.254マイクロメーター(10マイクロインチ)よりもよい平滑度の壁表面(56)を持つことを特徴とする請求項16に請求された製造方法。
  18. 上記センシング通路(26)が0.127マイクロメーター(5マイクロインチ)よりもよい平滑度の壁表面(56)を持つことを特徴とする請求項17に請求された製造方法。
JP2001571074A 2000-03-27 2001-03-27 溶融金属混入物センサープローブ Expired - Fee Related JP4841791B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CA2,302,121 2000-03-27
CA002302121A CA2302121A1 (en) 2000-03-27 2000-03-27 Liquid metal quality sensors
PCT/CA2001/000389 WO2001073401A2 (en) 2000-03-27 2001-03-27 Molten metal inclusion sensor probes

Publications (3)

Publication Number Publication Date
JP2003529073A JP2003529073A (ja) 2003-09-30
JP2003529073A5 JP2003529073A5 (ja) 2010-12-09
JP4841791B2 true JP4841791B2 (ja) 2011-12-21

Family

ID=4165640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001571074A Expired - Fee Related JP4841791B2 (ja) 2000-03-27 2001-03-27 溶融金属混入物センサープローブ

Country Status (6)

Country Link
US (1) US6566853B2 (ja)
JP (1) JP4841791B2 (ja)
KR (1) KR100897764B1 (ja)
AU (1) AU2001242183A1 (ja)
CA (1) CA2302121A1 (ja)
WO (1) WO2001073401A2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE519375C2 (sv) * 2000-11-03 2003-02-18 Mpc Metal Process Control Ab Förfarande och system för styrning av metallflöde
AU2003232169B8 (en) * 2002-06-11 2008-05-08 Koninklijke Philips Electronics N.V. A disposable cartridge for characterizing particles suspended in a liquid
BRPI0508435B1 (pt) * 2004-03-04 2019-04-02 Novelis Inc Método e aparelho para medir partículas em um metal fundido com um analisador de limpeza de metal líquido (limca)
US7420360B1 (en) * 2006-01-12 2008-09-02 Ermi Roos Method and apparatus for particle counting and size measurement
US9678051B2 (en) * 2011-03-11 2017-06-13 University Of Chinese Academy Of Sciences Method for distinguishing, classifying and measuring soft and hard inclusions in liquid metal
CN104769413B (zh) * 2012-10-15 2018-08-17 Abb公司 液体金属清洁度分析仪
RU2716875C1 (ru) * 2019-08-28 2020-03-17 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Ячейка для исследования высокотемпературной проводимости твердых веществ
CN113256689B (zh) * 2021-06-08 2021-10-12 南京甄视智能科技有限公司 高空抛物检测方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205844A (ja) * 1985-02-27 1986-09-12 アルカン・インターナシヨナル・リミテツド 浮遊粒子検査方法及び装置
JPH0394011A (ja) * 1989-04-27 1991-04-18 Sumitomo Metal Ind Ltd 溶融金属用介在物センサー
JPH07301595A (ja) * 1994-05-09 1995-11-14 Toa Medical Electronics Co Ltd 粒子測定装置およびその粒子測定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9007331A (pt) * 1989-04-27 1992-04-21 Guthrie Res Ass Sensor de inclusao de metal fundido
US5834928A (en) 1995-10-04 1998-11-10 Alcan International Limited Method and apparatus for the detection and measurement of solid particles in molten metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205844A (ja) * 1985-02-27 1986-09-12 アルカン・インターナシヨナル・リミテツド 浮遊粒子検査方法及び装置
JPH0394011A (ja) * 1989-04-27 1991-04-18 Sumitomo Metal Ind Ltd 溶融金属用介在物センサー
JPH07301595A (ja) * 1994-05-09 1995-11-14 Toa Medical Electronics Co Ltd 粒子測定装置およびその粒子測定方法

Also Published As

Publication number Publication date
US6566853B2 (en) 2003-05-20
KR100897764B1 (ko) 2009-05-15
JP2003529073A (ja) 2003-09-30
CA2302121A1 (en) 2001-09-27
KR20020093005A (ko) 2002-12-12
US20010035747A1 (en) 2001-11-01
WO2001073401A3 (en) 2002-02-07
WO2001073401A2 (en) 2001-10-04
AU2001242183A1 (en) 2001-10-08

Similar Documents

Publication Publication Date Title
EP0119770B1 (en) Method and apparatus for the detection and measurement of particulates in molten metal
AU647021B2 (en) Continuous-use molten metal inclusion sensor
JP4841791B2 (ja) 溶融金属混入物センサープローブ
US3628140A (en) Scanning element and aperture wafer for electronic particle counting and sizing apparatus
US6337564B2 (en) Detecting and classifying hard and soft inclusions in liquid metal
JPS61205844A (ja) 浮遊粒子検査方法及び装置
Williams et al. Air core imaging in cyclonic separators: implications for separator design and modelling
KR20020095199A (ko) 함유물 검출 및 측정 시스템
Guthrie et al. In situ detection of inclusions in liquid metals: Part II. Metallurgical applications of LiMCA systems
Guthrie et al. In situ detection of inclusions in liquid metals: Part I. Mathematical modeling of the behavior of particles traversing the electric sensing zone
JPH0250415B2 (ja)
Guthrie et al. In-situ sensors for liquid metal quality
CA2342297C (en) Molten metal inclusion sensor probes
Li et al. Liquid metal cleanliness analyzer (LiMCA) in molten aluminum
CN112986343B (zh) 一种高导磁材料电感-电容双通道油液检测装置
Badowski et al. Measurement of non-metallic inclusions in the size range of 10–20μm by LiMCA
Di Silvestro et al. Development of LiMCA (Liquid Metal Cleanliness Analyzer) Since Its Invention to Date
Doutre The development and application of a rapid method of evaluating molten metal cleanliness
Kuyucak et al. On the measurement of inclusions in copper-based melts
Kuyucak On the direct measurement of inclusions in molten metals
Guthrie et al. An overview of recent developments in experimental and numerical studies for the in-situ Measurement of large inclusions (≈ 50–400 microns) in liquid steel processing vessels
Makarov et al. A combined lorentz-force and optical detection method for inclusion detection in molten metal
Dallaire Electric sensing zone signal behaviour in liquid aluminium
JP2003136200A (ja) 清浄鋼の製造方法
Lee On the development of a batch type inclusion sensor in liquid steel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20070528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100720

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100727

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100820

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100827

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100921

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110509

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110516

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110608

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110615

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110707

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees