JP4841575B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP4841575B2
JP4841575B2 JP2008038526A JP2008038526A JP4841575B2 JP 4841575 B2 JP4841575 B2 JP 4841575B2 JP 2008038526 A JP2008038526 A JP 2008038526A JP 2008038526 A JP2008038526 A JP 2008038526A JP 4841575 B2 JP4841575 B2 JP 4841575B2
Authority
JP
Japan
Prior art keywords
flow path
heat
air
partition member
leeward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008038526A
Other languages
Japanese (ja)
Other versions
JP2009200144A (en
Inventor
敦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008038526A priority Critical patent/JP4841575B2/en
Publication of JP2009200144A publication Critical patent/JP2009200144A/en
Application granted granted Critical
Publication of JP4841575B2 publication Critical patent/JP4841575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、通信装置などの内部に設けられる発熱電子部品を冷却する冷却装置に関するものである。 The present invention relates to a cooling device for cooling a heat generating electronic component provided inside a communication device or the like.

通信装置の通信速度の高速化および回路の集積化の結果、通信装置を構成する発熱素子は小型化、高発熱化の傾向にある。しかし、発熱素子自身が動作するために発する熱は通信装置の故障や誤動作の原因となるため、通信装置の性能を満足させるためには放熱器等の冷却機構が必要である。通信装置内の冷却機構としては、発熱素子が取り付けられている基板または金属板を経由する熱伝導により冷却するものと、発熱素子が接している空気を経由する熱伝達により冷却するものが挙げられる。一般的な冷却機構は熱伝達によるものであり、発熱素子自体から発生する熱は、空気への熱伝達量を大きくするために、発熱素子に放熱器(放熱フィン)付加して、空気との接触面積を大きくしている。そのため、発熱素子の発熱量が大きくなるに従って、大きな放熱器が必要となり通信装置の小型化の妨げとなっていた。   As a result of increasing the communication speed of the communication device and integrating the circuits, the heating elements constituting the communication device tend to be smaller and higher in heat generation. However, since the heat generated by the operation of the heating element itself causes a failure or malfunction of the communication device, a cooling mechanism such as a radiator is required to satisfy the performance of the communication device. As a cooling mechanism in the communication device, there are a cooling mechanism that cools by heat conduction via a substrate or a metal plate to which a heating element is attached, and a cooling mechanism that cools by heat transfer via air that is in contact with the heating element. . A general cooling mechanism is based on heat transfer. The heat generated from the heat generating element itself is added with a radiator (heat dissipating fin) in order to increase the amount of heat transfer to the air. The contact area is increased. For this reason, as the amount of heat generated by the heat generating element increases, a large heat sink is required, which hinders downsizing of the communication device.

また、通信装置内の空気の流れを風上、風下とすると、空気の流れる方向に沿って発熱素子を配置した場合、風上から風下に空気が流れるにつれて、その空気の雰囲気温度は高くなる傾向にあり、風上側と風下側に同じような発熱量の発熱素子を配置すると、風下側の発熱素子の方が空気の雰囲気温度と許容温度の温度差が小さくなるという問題があった。この対策として特許文献1では、風下側における発熱素子から空気層への熱抵抗が、風上側における発熱素子から空気層への熱抵抗よりも低いベースプレートおよびフィンを設け、風下側における発熱素子から空気層への熱抵抗が、風上側における発熱素子から空気層への熱抵抗よりも低くなるように構成している。   Also, assuming that the air flow in the communication device is windward and leeward, when the heating element is arranged along the direction of air flow, the atmosphere temperature of the air tends to increase as the air flows from the windward to leeward. If the heating elements having the same heat generation amount are arranged on the leeward side and the leeward side, there is a problem that the temperature difference between the air ambient temperature and the allowable temperature is smaller in the leeward side heating element. As a countermeasure, in Patent Document 1, a base plate and fins having a thermal resistance from the heating element to the air layer on the leeward side are lower than the thermal resistance from the heating element to the air layer on the leeward side. The thermal resistance to the layer is configured to be lower than the thermal resistance from the heating element to the air layer on the windward side.

特開2003−188321号公報JP 2003-188321 A

従来の放熱器は以上のように構成されているので、風上側の発熱素子に取り付ける放熱器を小さく構成し、風下側の発熱素子に取り付ける放熱器を大きく構成するなど、風上側または風下側で放熱器の形状や材質を変更する必要があり、放熱器の形状または材質が複雑化する、さらに当該放熱器を実装する装置が大型化するという課題があった。   Since the conventional radiator is configured as described above, the radiator to be attached to the leeward side heating element is configured to be small and the radiator to be attached to the leeward side heating element is configured to be large. It is necessary to change the shape and material of the heat radiator, which complicates the shape or material of the heat radiator, and further increases the size of a device for mounting the heat radiator.

この発明は上記のような課題を解決するためになされたもので、風上側または風下側で放熱器の形状または材質を変更することなく、風下側に位置する放熱素子の熱を効率よく放熱することができる冷却装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and efficiently dissipates the heat of the heat dissipating element located on the leeward side without changing the shape or material of the radiator on the leeward or leeward side. It is an object of the present invention to provide a cooling device that can be used.

この発明に係る冷却装置は、発熱素子に当接して前記発熱素子の熱を伝導する基材及び前記基材に伝導された前記熱を放熱する突出部で構成される少なくとも二つの放熱部材と、前記放熱部材を格納する筐体内に積層構造の空気の流路である第1の流路及び第2の流路を形成する板状の仕切部材とを備え、前記第1の流路は、前記仕切部材の一方の面側に形成され、前記第2の流路は、前記仕切部材の他方の面側に形成され、前記空気の流路の風上側に位置する第1の放熱部材は、前記第1の流路内配置され、前記空気の流路の風下側に位置する第2の放熱部材は、前記基材の少なくとも一部前記第1の流路内に位置し前記突出部の少なくとも一部が前記第2の流路に露出するように、前記第1の流路及び前記第2の流路に跨って配置されるものである。 The cooling device according to the present invention includes at least two heat dissipating members configured by a base material that contacts the heat generating element and conducts heat of the heat generating element and a projecting portion that dissipates the heat conducted to the base material, and a plate-like partition member forming the first flow path and second flow path is a flow path of air of the laminated structure in a casing for storing the heat radiating member, said first flow path, said Formed on one surface side of the partition member, the second flow path is formed on the other surface side of the partition member, and the first heat radiating member located on the windward side of the air flow path is the disposed in the first flow path, the second heat radiating member located on the leeward side of the flow path of the air, of the projecting portion at least a portion of said substrate located in the first flow path as at least partially exposed in the second flow path, it is arranged over the first channel and the second flow path Is shall.

この発明によれば、発熱素子に当接して前記発熱素子の熱を伝導する基材及び前記基材に伝導された前記熱を放熱する突出部で構成される少なくとも二つの放熱部材と、前記放熱部材を格納する筐体内に積層構造の空気の流路である第1の流路及び第2の流路を形成する板状の仕切部材とを備え、前記第1の流路は、前記仕切部材の一方の面側に形成され、前記第2の流路は、前記仕切部材の他方の面側に形成され、前記空気の流路の風上側に位置する第1の放熱部材は、前記第1の流路内配置され、前記空気の流路の風下側に位置する第2の放熱部材は、前記基材の少なくとも一部前記第1の流路内に位置し前記突出部の少なくとも一部が前記第2の流路に露出するように、前記第1の流路及び前記第2の流路に跨って配置されるように構成したので、風上側の放熱部材により雰囲気温度が上昇していない第2の流路内において、風下側の放熱部材が放熱することが可能となり放熱効率を向上させることができ、風下側の放熱部材の小型化を実現することができる。 According to the present invention, at least two heat dissipating members composed of a base material that contacts the heat generating element and conducts heat of the heat generating element, and a protrusion that dissipates the heat conducted to the base material, and the heat dissipation And a plate-like partition member that forms a first flow path and a second flow path that are air flow paths having a laminated structure in a housing for storing the member, wherein the first flow path is formed by the partition member. The second flow path is formed on the other surface side of the partition member, and the first heat dissipating member located on the windward side of the air flow path is the first heat dissipating member. disposed in the flow path, the second heat radiating member located on the leeward side of the flow path of the air, at least a portion of said substrate located in the first flow path within said projection of at least a parts so as to expose the second flow path, so that is disposed across the first flow path and the second flow path Since it is configured, in the second flow path where the ambient temperature is not increased by the leeward heat dissipation member, the leeward heat dissipation member can dissipate heat, and the heat dissipation efficiency can be improved. Miniaturization of the member can be realized.

実施の形態1.
以下では、通信装置内にこの発明に係る冷却装置を配設するものとして説明する。図1はこの発明の実施の形態1に係る冷却装置を有する通信装置の構成を示す斜視図であり、図2は図1におけるA−A線断面図である。また、図3は図2におけるB−B線断面図、図4は図2におけるC−C線断面図である。
六面体の箱形状を有する通信装置などで構成される筐体1は、通気孔2が設けられた側面から冷却用空気Xを吸気し、ファン3が設けられた側面から空気Xを排気する。筐体1内部には、高密度および高発熱の発熱素子が複数設けられ、この実施の形態1では空気Xの流れの上流に位置する風上側発熱素子4と、空気Xの流れの下流に位置する風下側発熱素子5とが設けられている。
Embodiment 1 FIG.
Below, it demonstrates as what arrange | positions the cooling device based on this invention in a communication apparatus. 1 is a perspective view showing a configuration of a communication apparatus having a cooling apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view taken along line AA in FIG. 3 is a sectional view taken along line BB in FIG. 2, and FIG. 4 is a sectional view taken along line CC in FIG.
The housing 1 constituted by a communication device having a hexahedral box shape sucks the cooling air X from the side surface provided with the vent hole 2 and exhausts the air X from the side surface provided with the fan 3. A plurality of high-density and high-heat-generating elements are provided in the housing 1, and in the first embodiment, the windward-side heat-generating element 4 located upstream of the air X flow and the air X-flow downstream The leeward side heating element 5 is provided.

風上側発熱素子4および風下側発熱素子5の上部には、各発熱素子4および5で発生する熱を放熱するための風上側放熱器(第1の放熱部材)6および風下側放熱器(第2の放熱部材)7が設けられている。また、筐体1内には、空気Xの流れを下層部(第1の流路)11と上層部(第2の流路)12とに分ける下層基板8と上層基板(基板)9が配置されている。図2に示すように風上側発熱素子4、風上側放熱器6および風下側発熱素子5は下層基板8上に配置され、風下側放熱器7の上端部は上層基板9を貫通して上層部12に露出するように構成されている。 On the upper side of the windward side heating element 4 and the leeward side heating element 5, a windward side radiator (first heat radiating member) 6 for radiating the heat generated by the heating elements 4 and 5 and a leeward side radiator (first 2 heat dissipating member) 7 is provided. In addition, a lower layer substrate 8 and an upper layer substrate (substrate) 9 that divide the flow of the air X into a lower layer portion (first flow path) 11 and an upper layer portion (second flow path) 12 are disposed in the housing 1. Has been. As shown in FIG. 2, the windward heating element 4, the windward radiator 6 and the leeward heating element 5 are arranged on the lower layer substrate 8, and the upper end portion of the leeward radiator 7 penetrates the upper layer substrate 9 and forms the upper layer portion. 12 to be exposed.

図4に示すように、上層基板9の風下側放熱器7に対応する位置に貫通孔9aが形成され、この貫通孔9aに後述する風下側放熱器7のフィン7bが貫通するように挿入する。また、下層基板8および上層基板9には通信装置などを構成する複数の構成部品10が実装されているが、発熱量の大きい構成部品10は下層基板8に実装するなどし、下層部11を流れる空気と比較して、上層部12を流れる空気の温度上昇を抑制することができるように各構成部品10を配置する。 As shown in FIG. 4, a through hole 9a is formed at a position corresponding to the leeward radiator 7 of the upper substrate 9, and the fin 7b of the leeward radiator 7 described later is inserted into the through hole 9a. . The lower substrate 8 and the upper substrate 9 are mounted with a plurality of component parts 10 constituting a communication device or the like. However, the component part 10 having a large calorific value is mounted on the lower substrate 8, and the lower layer part 11 is mounted. Each component 10 is arrange | positioned so that the temperature rise of the air which flows through the upper layer part 12 can be suppressed compared with the flowing air.

次に、風上側放熱器6および風下側放熱器7の詳細について説明する。図5は、この発明の実施の形態1に係る冷却装置の構成を示す部分拡大図である。風上側発熱素子4および風下側発熱素子5の上部には、それぞれ風上側放熱器6と風下側放熱器7が設けられている。風上側放熱器6および風下側放熱器7は、各発熱素子4,5に当接して熱を伝導する基材6a,7aと、当該基材6a,7aに対して突出するように形成され各基材6a,7aに伝導された熱を放熱する複数のフィン6b,7bで構成されている。各フィン6b,7bは互いに略並行に等間隔に並列している。 Next, the details of the windward side radiator 6 and the leeward side radiator 7 will be described. FIG. 5 is a partially enlarged view showing the configuration of the cooling device according to Embodiment 1 of the present invention. On the upper side of the windward side heating element 4 and the leeward side heating element 5, a windward side radiator 6 and a leeward side radiator 7 are provided, respectively. The windward side radiator 6 and the leeward side radiator 7 are formed so as to contact the heat generating elements 4 and 5 and conduct heat, and to protrude from the base materials 6a and 7a. It is composed of a plurality of fins 6b and 7b that radiate heat conducted to the base materials 6a and 7a. The fins 6b and 7b are arranged in parallel at equal intervals substantially in parallel to each other.

風上側発熱素子4において発生した熱Yは、図5における矢印で示した経路を通り風上側放熱器6の基材6aに伝導され、さらにフィン6bの表面から放熱Y´として下層部11を流れる空気に放熱される。一方、風下側発熱素子5において発生した熱Yは、図5における矢印で示した経路を通り風下側放熱器7の基材7aに伝導され、さらにフィン7bの表面から放熱Y´として下層部11および上層部12を流れる空気に放熱される。このように、風上側発熱素子4において発生した熱は下層部11のみに放熱し、風下側発熱素子5において発生した熱は下層部11および上層部12の双方に放熱するように構成しているので、上側発熱素子4および風下側発熱素子5において発生した熱を共に下層部11のみに放熱する場合と比較して放熱効率を向上させることができる。 The heat Y generated in the windward heating element 4 is conducted to the base material 6a of the windward radiator 6 through the path indicated by the arrow in FIG. 5, and further flows from the surface of the fin 6b to the lower layer part 11 as heat radiation Y ′. Heat is released to the air. On the other hand, the heat Y generated in the leeward side heat generating element 5 is conducted to the base material 7a of the leeward side radiator 7 through the path indicated by the arrow in FIG. Then, heat is radiated to the air flowing through the upper layer portion 12. Thus, the heat generated in the leeward heating element 4 is radiated only to the lower layer part 11, and the heat generated in the leeward heating element 5 is radiated to both the lower layer part 11 and the upper layer part 12. Therefore, compared with the case where the heat generated in the upper heating element 4 and the leeward heating element 5 is radiated only to the lower layer part 11, the heat radiation efficiency can be improved.

以上のように、この実施の形態1によれば、風下側発熱素子において発生した熱を下層部のみではなく上層部を流れる空気にも放熱するように構成したので、風下側放熱器の放熱効率を向上させることができる。さらに、放熱効率を向上させることにより、風下側に設ける放熱器の小型化を実現することができ、当該冷却装置を実装する装置を小型化することができる。 As described above, according to the first embodiment, the heat generated in the leeward side heating element is radiated not only to the lower layer part but also to the air flowing through the upper layer part. Can be improved. Furthermore, by improving the heat dissipation efficiency, it is possible to reduce the size of the radiator provided on the leeward side, and it is possible to reduce the size of the device on which the cooling device is mounted.

さらに、この実施の形態1によれば、上層部を流れる空気の温度上昇を抑制するように各構成部品を配置するように構成しているので、風下側放熱器の放熱効率をより向上させることができる。 Furthermore, according to this Embodiment 1, since it has comprised so that each component may be arrange | positioned so that the temperature rise of the air which flows through an upper layer part may be suppressed, the heat dissipation efficiency of a leeward side radiator is improved more. Can do.

なお、上述した実施の形態1では、上層基板に貫通孔を形成し、この貫通孔に複数のフィン全体を一括して挿入する構成を示したが、貫通孔は複数の各フィンに対応するように複数設けるように構成してもよい。複数の貫通孔に各フィンを挿入することにより上層部と下層部の空気の行き来をより抑制することができる。 In the first embodiment described above, a configuration is shown in which a through hole is formed in the upper substrate, and the entire plurality of fins are inserted into the through hole at once. However, the through hole corresponds to each of the plurality of fins. A plurality of them may be provided. By inserting the fins into the plurality of through holes, the air flow between the upper layer portion and the lower layer portion can be further suppressed.

実施の形態2.
図6は、この発明の実施の形態2に係る冷却装置を有する通信装置の断面図である。また、図7は図6におけるD−D線断面図であり、図8は図6におけるE−E線断面図である。この冷却装置は、図2から図4において示した実施の形態1に係る冷却装置における平面形状の上層基板9を、下層基板8側に凹む段差部を設けた上層基板13に置き換えて構成している。以下では、実施の形態1で使用した符号と同一の符号を付して説明を省略または簡略化する。
Embodiment 2. FIG.
FIG. 6 is a cross-sectional view of a communication device having a cooling device according to Embodiment 2 of the present invention. 7 is a sectional view taken along line DD in FIG. 6, and FIG. 8 is a sectional view taken along line EE in FIG. This cooling device is configured by replacing the planar upper substrate 9 in the cooling device according to the first embodiment shown in FIGS. 2 to 4 with an upper substrate 13 provided with a stepped portion recessed on the lower substrate 8 side. Yes. In the following, the same reference numerals as those used in Embodiment 1 are used, and the description thereof is omitted or simplified.

平面で構成される下層基板8には、空気Xの流れの風上に位置する風上側発熱素子4と、空気Xの流れの風下に位置する風下側発熱素子5が配置されている。風上側発熱素子4の上部に設けられる風上側放熱器6は、基材6aおよびフィン6bが上層基板9の下方に位置しており、フィン6bから放熱される熱は下層部11を流れる空気に放熱される。一方、上層基板13は風下側発熱素子5付近で下側基板8側に凹む段差部13aが形成され、この段差部13aにはフィン7bか挿入可能な貫通孔13bが設けられている。風下側放熱器7の基材7aは上層基板9aの下方に位置するように配置されるが、フィン7bは大部分が貫通孔13bを貫通して上層部12に露出する。   On the lower layer substrate 8 constituted by a plane, the windward side heating element 4 located on the windward side of the air X flow and the leeward side heating element 5 located on the leeward side of the air X flow are arranged. The windward radiator 6 provided on the upper side of the windward heating element 4 has the base 6a and the fins 6b located below the upper substrate 9, and the heat radiated from the fins 6b is transferred to the air flowing through the lower layer part 11. Heat is dissipated. On the other hand, the upper layer substrate 13 is formed with a stepped portion 13a that is recessed toward the lower substrate 8 in the vicinity of the leeward heating element 5, and the stepped portion 13a is provided with a through hole 13b into which the fin 7b can be inserted. The base material 7a of the leeward radiator 7 is disposed so as to be positioned below the upper substrate 9a, but most of the fins 7b pass through the through holes 13b and are exposed to the upper layer portion 12.

このように、風上側発熱素子4において発生した熱は風上側放熱器6のフィン6aを経由して下層部11に放熱する経路を形成し、風下側発熱素子5において発生した熱は風下側放熱器7のフィン7aを経由して主に上層部12に放熱する経路を形成する。また、実施の形態1と同様に、発熱量の大きい構成部品10は下層基板8に実装し、下層部11を流れる空気と比較して、上層部12を流れる空気の温度上昇を抑制することができるように各構成部品10を配置するので、風下側放熱器7の放熱効率を向上させることができる。   Thus, the heat generated in the leeward heat generating element 4 forms a path for radiating heat to the lower layer portion 11 via the fins 6a of the leeward heat sink 6, and the heat generated in the leeward heat generating element 5 is radiated on the leeward side. A path for radiating heat mainly to the upper layer portion 12 through the fins 7a of the vessel 7 is formed. Further, similarly to the first embodiment, the component 10 having a large calorific value is mounted on the lower layer substrate 8 to suppress the temperature rise of the air flowing through the upper layer part 12 as compared with the air flowing through the lower layer part 11. Since each component 10 is arrange | positioned so that it can do, the thermal radiation efficiency of the lee side radiator 7 can be improved.

以上のように、この実施の形態2によれば、上層基板の一部を下層基板側に凹ませて段差部を形成し、当該段差部に風下側放熱器のフィンを貫通させ、フィンの大部分が上層部側に露出するように構成したので、風下側発熱素子において発生した熱を、下層部よりも雰囲気温度がより低い上層部に放熱することができ、風下側放熱器の放熱効率を向上させることができる。さらに、放熱効率を向上させることにより、風下側に設ける放熱器の小型化を実現することができ、当該冷却装置を実装する装置を小型化することができる。 As described above, according to the second embodiment, a stepped portion is formed by denting a part of the upper layer substrate toward the lower layer substrate side, and the fin of the leeward radiator is penetrated through the stepped portion. Since the part is exposed to the upper layer side, the heat generated in the leeward side heating element can be radiated to the upper layer part having a lower ambient temperature than the lower layer part, and the heat dissipation efficiency of the leeward side radiator can be increased. Can be improved. Furthermore, by improving the heat dissipation efficiency, it is possible to reduce the size of the radiator provided on the leeward side, and it is possible to reduce the size of the device on which the cooling device is mounted.

なお、上述した実施の形態2では、上層基板に貫通孔を形成し、この貫通孔に複数のフィン全体を一括して挿入する構成を示したが、貫通孔は複数の各フィンに対応するように複数設けるように構成してもよい。複数の貫通孔に各フィンを挿入することにより上層部と下層部の空気の行き来をより抑制することができる。 In the second embodiment described above, a configuration is shown in which a through hole is formed in the upper substrate and a plurality of fins are inserted into the through hole all together. However, the through hole corresponds to each of the plurality of fins. A plurality of them may be provided. By inserting the fins into the plurality of through holes, the air flow between the upper layer portion and the lower layer portion can be further suppressed.

実施の形態3.
図9は、この発明の実施の形態3に係る冷却装置を有する通信装置の断面図である。また、図10は図9におけるF−F線断面図であり、図11は図9におけるG−G線断面図である。この発明の実施の形態3に係る冷却装置は、風下側放熱器7のフィン7bと上層基板9との間にフィン7bの上面と上層基板9の下面に当接する伝熱板を介在させるように構成したものである。以下では、実施の形態1で使用した符号と同一の符号を付して説明を省略または簡略化する。
Embodiment 3 FIG.
FIG. 9 is a cross-sectional view of a communication device having a cooling device according to Embodiment 3 of the present invention. 10 is a cross-sectional view taken along line FF in FIG. 9, and FIG. 11 is a cross-sectional view taken along line GG in FIG. In the cooling device according to Embodiment 3 of the present invention, a heat transfer plate that is in contact with the upper surface of the fin 7b and the lower surface of the upper substrate 9 is interposed between the fin 7b and the upper substrate 9 of the leeward radiator 7. It is composed. In the following, the same reference numerals as those used in Embodiment 1 are used, and the description thereof is omitted or simplified.

風上側放熱器6のフィン6bと風下側放熱器7のフィン7bの高さは略同一とし、風上側放熱器6と風下側放熱器7は共に下層部11に位置し、上層部12側には露出しない。フィン7bと上層基板9との間に熱伝導性材料で構成される伝熱板14を配設し、この伝熱板14がフィン7bの上面と上層基板9の下面の双方に当接している。この伝熱板14を構成する熱伝導性材料としては、例えば熱伝導性のシリコンゴムやコンパウンドなど加圧することにより間隙を埋めることができる柔軟な材料を用いることにより各部材が良好に当接する。   The fins 6b of the windward radiator 6 and the fins 7b of the leeward radiator 7 are substantially the same, and both the windward radiator 6 and the leeward radiator 7 are located in the lower layer part 11 and are located on the upper layer part 12 side. Is not exposed. A heat transfer plate 14 made of a heat conductive material is disposed between the fin 7 b and the upper layer substrate 9, and the heat transfer plate 14 is in contact with both the upper surface of the fin 7 b and the lower surface of the upper layer substrate 9. . As the heat conductive material constituting the heat transfer plate 14, for example, each member satisfactorily contacts by using a flexible material capable of filling the gap by pressurizing, for example, heat conductive silicon rubber or a compound.

次に、風下側放熱器7および伝熱板14の詳細について説明する。図12は、この発明の実施の形態3に係る冷却装置の構成を示す部分拡大図である。風下側発熱素子5の上部に設けられた風下側放熱器7のフィン7bの上面は伝熱板14に当接している。また、この伝熱板14は上層基板9の下面に当接している。風下側発熱素子5において発生した熱Yは、図12において示した矢印の経路を通り風下側放熱器の基材7aに伝導され、熱Yの一部はフィン7bの表面から放熱Y´として下層部11を流れる空気に放熱される。 Next, details of the leeward radiator 7 and the heat transfer plate 14 will be described. FIG. 12 is a partially enlarged view showing the configuration of the cooling device according to Embodiment 3 of the present invention. The upper surfaces of the fins 7 b of the leeward side radiator 7 provided on the upper side of the leeward side heating element 5 are in contact with the heat transfer plate 14. The heat transfer plate 14 is in contact with the lower surface of the upper substrate 9. The heat Y generated in the leeward side heat generating element 5 is conducted to the base material 7a of the leeward side radiator through the path of the arrow shown in FIG. 12, and a part of the heat Y is radiated from the surface of the fin 7b as heat radiation Y ′. Heat is radiated to the air flowing through the section 11.

一方、フィン7bから伝熱板14に伝導された熱Zは、図12において示した矢印の経路を通り上層基板9に伝導され、上層基板9の表面から放熱Z´として上層部12を流れる空気に放熱される。このように、上層基板9の表面から放熱させることにより、上層部12を流れる空気と接する表面積を大きくすることができる。また、実施の形態1と同様に、発熱量の大きい構成部品10は下層基板8に実装し、下層部11を流れる空気と比較して、上層部12を流れる空気の温度上昇を抑制することができるように各構成部品10を配置するので、風下側放熱器7の放熱効率をさらに向上させることができる。 On the other hand, the heat Z conducted from the fins 7b to the heat transfer plate 14 is conducted to the upper substrate 9 through the path indicated by the arrow shown in FIG. 12, and the air flowing from the surface of the upper substrate 9 through the upper layer portion 12 as the heat radiation Z ′. Heat is dissipated. Thus, by dissipating heat from the surface of the upper layer substrate 9, the surface area in contact with the air flowing through the upper layer portion 12 can be increased. Further, similarly to the first embodiment, the component 10 having a large calorific value is mounted on the lower layer substrate 8 to suppress the temperature rise of the air flowing through the upper layer part 12 as compared with the air flowing through the lower layer part 11. Since each component 10 is arrange | positioned so that it can do, the thermal radiation efficiency of the lee side radiator 7 can further be improved.

以上のように、実施の形態3によれば、風下側放熱器のフィンの上面および上層板の下面にそれぞれ当接するように伝熱板を配設し、風下側発熱素子で発生した熱を当該伝熱板を介して上層板に伝熱して放熱させるように構成したので、上層板から放熱される熱と空気との接触面積を大きくすることができ、風下側放熱器の放熱効率を向上させることができる。さらに、放熱効率を向上させることにより、風下側に設ける放熱器の小型化を実現することができ、当該冷却装置を実装する装置を小型化することができる。 As described above, according to the third embodiment, the heat transfer plate is disposed so as to be in contact with the upper surface of the fin of the leeward radiator and the lower surface of the upper layer plate, and the heat generated in the leeward heating element is Since heat is transferred to the upper layer plate through the heat transfer plate to dissipate heat, the contact area between the heat radiated from the upper layer plate and air can be increased, and the heat dissipation efficiency of the leeward side radiator is improved. be able to. Furthermore, by improving the heat dissipation efficiency, it is possible to reduce the size of the radiator provided on the leeward side, and it is possible to reduce the size of the device on which the cooling device is mounted.

なお、上述した実施の形態1から実施の形態3では、空気の流路を下層および上層の2層に分ける構成、および発熱素子を2つ配置する構成を例に示したが、これに限定されるものではない。 In the first to third embodiments described above, the configuration in which the air flow path is divided into two layers, the lower layer and the upper layer, and the configuration in which two heating elements are arranged are shown as examples. However, the present invention is not limited to this. It is not something.

この発明の実施の形態1に係る冷却装置を有する通信装置の構成を示す斜視図である。It is a perspective view which shows the structure of the communication apparatus which has a cooling device which concerns on Embodiment 1 of this invention. 図1におけるA−A線断面図である。It is the sectional view on the AA line in FIG. 図1におけるB−B線断面図である。It is the BB sectional view taken on the line in FIG. 図1におけるC−C線断面図である。It is CC sectional view taken on the line in FIG. この発明の実施の形態1に係る冷却装置の構成を示す部分拡大図である。It is the elements on larger scale which show the structure of the cooling device which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る冷却装置を有する通信装置の断面図である。It is sectional drawing of the communication apparatus which has a cooling device concerning Embodiment 2 of this invention. 図6におけるD−D線断面図である。It is the DD sectional view taken on the line in FIG. 図6におけるE−E線断面図である。It is the EE sectional view taken on the line in FIG. この発明の実施の形態3に係る冷却装置を有する通信装置の断面図である。It is sectional drawing of the communication apparatus which has a cooling device concerning Embodiment 3 of this invention. 図1におけるF−F線断面図である。It is the FF sectional view taken on the line in FIG. 図1におけるG−G線断面図である。It is the GG sectional view taken on the line in FIG. この発明の実施の形態3に係る冷却装置の構成を示す部分拡大図である。It is the elements on larger scale which show the structure of the cooling device which concerns on Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 筐体、2 通気孔、3 ファン、4 風上側発熱素子、5 風下側発熱素子、6 風上側放熱器、6a,7a 基材、6b,7b フィン、7 風下側放熱器、8,8a 下層基板、9,13 上層基板、9a,13b 孔部、10 構成部品、11 下層部、12 上層部、13a 段差部、14 熱伝導板、X 空気、Y,Z 熱、Y´,Z´ 放熱。 DESCRIPTION OF SYMBOLS 1 Housing | casing, 2 ventilation hole, 3 fan, 4 windward side heating element, 5 leeward side heating element, 6 windward side radiator, 6a, 7a base material, 6b, 7b fin, 7 leeward side radiator, 8, 8a lower layer Substrate, 9, 13 Upper layer substrate, 9a, 13b Hole, 10 Component, 11 Lower layer, 12 Upper layer, 13a Stepped portion, 14 Heat conduction plate, X air, Y, Z heat, Y ', Z' Heat dissipation.

Claims (6)

発熱素子に当接して前記発熱素子の熱を伝導する基材及び前記基材に伝導された前記熱を放熱する突出部で構成される少なくとも二つの放熱部材と、
前記放熱部材を格納する筐体内に積層構造の空気の流路である第1の流路及び第2の流路を形成する板状の仕切部材とを備え、
前記第1の流路は、前記仕切部材の一方の面側に形成され、
前記第2の流路は、前記仕切部材の他方の面側に形成され、
前記空気の流路の風上側に位置する第1の放熱部材は、前記第1の流路内配置され
前記空気の流路の風下側に位置する第2の放熱部材は、前記基材の少なくとも一部前記第1の流路内に位置し前記突出部の少なくとも一部が前記第2の流路に露出するように、前記第1の流路及び前記第2の流路に跨って配置されることを特徴とする冷却装置。
At least two heat dissipating members composed of a base material that contacts the heat generating element and conducts heat of the heat generating element and a protrusion that dissipates the heat conducted to the base material;
A plate-shaped partition member that forms a first flow path and a second flow path that are air flow paths in a laminated structure in a housing that houses the heat dissipation member;
The first flow path is formed on one surface side of the partition member,
The second flow path is formed on the other surface side of the partition member,
The first heat radiating member located on the windward side of the flow path of the air is disposed in the first flow path,
Second heat radiating member located on the leeward side of the flow path of the air is at least partially the second flow path of the projecting portion at least a portion of said substrate located in the first flow path to be exposed on said first flow path and a cooling device according to claim Rukoto disposed across the second flow path.
前記仕切部材は、前記空気の流路の風下側に挿通部を有し、前記第2の放熱部材の突出部は前記挿通部を挿通することを特徴とする請求項1記載の冷却装置。The cooling device according to claim 1, wherein the partition member has an insertion portion on a leeward side of the air flow path, and the protruding portion of the second heat radiating member passes through the insertion portion. 前記仕切部材は、空気の流路の風下側に前記第1の流路側に凹む段差部を有し
前記第2の放熱部材は、前記突出部の少なくとも半分以上が前記段差部を介して前記第2の流路に露出することを特徴とする請求項1記載の冷却装置。
The partition member has a stepped portion recessed on the first flow path side to the leeward side of the air flow path,
Said second heat radiating member, the cooling device of claim 1, wherein more than at least half of the protrusion is equal to or exposed to the second flow path and through the stepped portion.
前記仕切部材は、前記段差部に挿通部を有し、前記第2の放熱部材の突出部は前記挿通部を挿通することを特徴とする請求項3記載の冷却装置。The cooling device according to claim 3, wherein the partition member has an insertion portion in the stepped portion, and the protruding portion of the second heat radiating member passes through the insertion portion. 発熱素子に当接して前記発熱素子の熱を伝導する基材及び前記基材に伝導された前記熱を放熱する突出部で構成される少なくとも二つの放熱部材と、
前記放熱部材を格納する筐体内に積層構造の空気の流路である第1の流路及び第2の流路を形成する板状の仕切部材とを備え、
前記第1の流路は、前記仕切部材の一方の面側に形成され、
前記第2の流路は、前記仕切部材の他方の面側に形成され、
前記空気の流路の風上側に位置する第1の放熱部材及び前記空気の流路の風下側に位置する第2の放熱部材を前記第1の流路内に配置すると共に、前記第2の放熱部材の突出部と前記仕切部材との間に、前記突出部及び前記仕切部材に当接する伝熱板を介在させることを特徴とする冷却装置。
At least two heat dissipating members composed of a base material that contacts the heat generating element and conducts heat of the heat generating element and a protrusion that dissipates the heat conducted to the base material;
A plate-shaped partition member that forms a first flow path and a second flow path that are air flow paths in a laminated structure in a housing that houses the heat dissipation member;
The first flow path is formed on one surface side of the partition member,
The second flow path is formed on the other surface side of the partition member,
With arranging the second heat radiating member located on the leeward side of the first heat radiation member and the flow path of the air which is located on the windward side of the flow path of the air in the first flow path, the second A cooling device comprising a heat transfer plate in contact with the protrusion and the partition member between the protrusion of the heat radiating member and the partition member .
前記仕切部材は、電子部品が搭載される基板であることを特徴とする請求項1から請求項5のうちのいずれか1項記載の冷却装置。The cooling device according to any one of claims 1 to 5, wherein the partition member is a substrate on which an electronic component is mounted.
JP2008038526A 2008-02-20 2008-02-20 Cooling system Active JP4841575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008038526A JP4841575B2 (en) 2008-02-20 2008-02-20 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038526A JP4841575B2 (en) 2008-02-20 2008-02-20 Cooling system

Publications (2)

Publication Number Publication Date
JP2009200144A JP2009200144A (en) 2009-09-03
JP4841575B2 true JP4841575B2 (en) 2011-12-21

Family

ID=41143366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038526A Active JP4841575B2 (en) 2008-02-20 2008-02-20 Cooling system

Country Status (1)

Country Link
JP (1) JP4841575B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5428968B2 (en) * 2010-03-16 2014-02-26 株式会社デンソーウェーブ Cooling system
JP5725039B2 (en) 2010-12-28 2015-05-27 富士通株式会社 Cooling unit, electronic device and guide member
JP5519589B2 (en) * 2011-07-01 2014-06-11 日本電信電話株式会社 Cooling mechanism
WO2014147963A1 (en) * 2013-03-19 2014-09-25 富士電機株式会社 Cooling device and power converter provided with same
KR102149444B1 (en) * 2016-11-04 2020-08-28 가부시끼가이샤 도시바 Electronics
CN108253558A (en) * 2018-03-10 2018-07-06 苏州暖舍节能科技有限公司 A kind of cooling system with damping solution
JP7404652B2 (en) * 2019-05-16 2023-12-26 富士電機株式会社 power converter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334374A (en) * 1993-05-26 1994-12-02 Nippon Telegr & Teleph Corp <Ntt> Cooling mechanism for electronic equipment
JPH0715160A (en) * 1993-06-21 1995-01-17 Nippon Telegr & Teleph Corp <Ntt> Cooling mechanism for electronic device
JP3261820B2 (en) * 1993-09-17 2002-03-04 富士通株式会社 Heating element mounting board
JPH07254794A (en) * 1994-03-16 1995-10-03 Fujitsu Ltd Cooling structure
JP2001094283A (en) * 1999-09-20 2001-04-06 Hitachi Ltd Electronic equipment
JP2002261477A (en) * 2001-02-28 2002-09-13 Meidensha Corp Printed board module

Also Published As

Publication number Publication date
JP2009200144A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4841575B2 (en) Cooling system
JP5082970B2 (en) Circuit board equipment
JP4655987B2 (en) Electronics
WO2011096218A1 (en) Heat radiation device and electronic equipment using the same
JP5899473B2 (en) Electronic equipment cooling structure
JP5231732B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
US7447027B2 (en) Hybrid heat dissipation device
WO2014088044A1 (en) Heat sink
US9117792B2 (en) Chip thermal dissipation structure
US20160360641A1 (en) Electronic device
JP2011049553A (en) Heat dissipation device
JP2011091384A (en) Heat dissipation device with heat pipeheat pipe heat radiator
JP4438526B2 (en) Power component cooling system
JP2006339223A (en) Heat dissipation structure of cpu
US7753110B2 (en) Heat dissipation device
JP6222251B2 (en) Cooling structure and apparatus
JPWO2008105067A1 (en) Heat dissipation component
TWM531125U (en) Heat sink board assembly and electronic device
JP5153275B2 (en) Fan motor with heat sink
JP2017157686A (en) Electronic device and storage device
JP2005057070A (en) Heat radiating structure of electronic equipment
JP4229738B2 (en) Heat pipe type heat dissipation unit
JP4496491B2 (en) Electronics
JP6044157B2 (en) Cooling parts
KR20160023517A (en) Heat sink having thermoconductive core and light source apparatus comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

R150 Certificate of patent or registration of utility model

Ref document number: 4841575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250