JP4838640B2 - Insulation state monitoring device - Google Patents

Insulation state monitoring device Download PDF

Info

Publication number
JP4838640B2
JP4838640B2 JP2006166871A JP2006166871A JP4838640B2 JP 4838640 B2 JP4838640 B2 JP 4838640B2 JP 2006166871 A JP2006166871 A JP 2006166871A JP 2006166871 A JP2006166871 A JP 2006166871A JP 4838640 B2 JP4838640 B2 JP 4838640B2
Authority
JP
Japan
Prior art keywords
insulation
current
value
monitoring signal
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006166871A
Other languages
Japanese (ja)
Other versions
JP2007333604A (en
Inventor
剛 岡本
Original Assignee
光商工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光商工株式会社 filed Critical 光商工株式会社
Priority to JP2006166871A priority Critical patent/JP4838640B2/en
Publication of JP2007333604A publication Critical patent/JP2007333604A/en
Application granted granted Critical
Publication of JP4838640B2 publication Critical patent/JP4838640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Locating Faults (AREA)

Description

本発明は、直接接地系低電圧電路の絶縁を常時通電状態で監視する絶縁状態監視装置に関し、特に、従来の絶縁状態監視機能に加え、電路の接地相がアースと混触して絶縁監視用の監視電圧信号の電圧が低下した場合の混触電路の発見を容易にするための機能を付加した技術に関する。   The present invention relates to an insulation state monitoring device that monitors insulation of a direct grounding system low voltage circuit in a constantly energized state, and in particular, in addition to the conventional insulation state monitoring function, the grounding phase of the circuit is in contact with the ground for insulation monitoring. The present invention relates to a technique to which a function for facilitating discovery of a mixed electric circuit when a voltage of a monitoring voltage signal is lowered is added.

低圧の一線接地電路において電路の絶縁劣化が進行して漏電事故に至ると、変電所等に設置されている漏電継電器が動作して遮断器が遮断される。遮断器が遮断すると広範囲に停電するばかりでなく、事後処理として事故点の調査および復旧などに長時間を要する。このため事故の発生を未然に防止するための対策として電路の絶縁状態を常時監視するための絶縁状態監視装置が用いられている。   When the insulation degradation of the electric circuit progresses in the low-voltage one-line ground circuit and a leakage accident occurs, the leakage relay installed in the substation or the like operates to break the circuit breaker. When the circuit breaker breaks, not only does it cause a wide range of power outages, but it also takes a long time to investigate and restore the point of accident as post-processing. For this reason, an insulation state monitoring device for constantly monitoring the insulation state of the electric circuit is used as a measure for preventing the occurrence of an accident.

図8は一般に知られている一線接地電路の絶縁状態監視装置の説明図で、次のように構成されている。即ち、同図において21は変圧器で、低圧配電線である被監視電路20に電力を供給している。22はB種接地線、23は絶縁監視電圧信号(以下、絶縁監視信号と称す)を発生させる絶縁監視信号発生装置で、(以下、監視信号発生装置と称す)重畳用の変成器24及びB種接地線22を介して被監視電路に絶縁監視信号の電圧を重畳させる。絶縁監視信号の電圧は20Hz,10V程度の低周波低電圧信号を発生させ、0.5V程度に変成して印加される。25は監視信号発生装置23からの戻りの絶縁監視信号の電圧を検出する絶縁監視装置で零相変流器26を介して信号を取り込む。この零相変流器は、必ずしも接地線に設ける必要はなく、点線で示すように給電路に設けても同じである。なお、図中Cは電路の対地静電容量、Rは電路の対地絶縁抵抗を示している。   FIG. 8 is an explanatory diagram of an insulation state monitoring device for a one-wire grounded circuit that is generally known, and is configured as follows. That is, in the figure, reference numeral 21 denotes a transformer which supplies power to the monitored electric circuit 20 which is a low voltage distribution line. 22 is a B-type ground wire, 23 is an insulation monitoring signal generator for generating an insulation monitoring voltage signal (hereinafter referred to as an insulation monitoring signal), and a superposition transformer 24 and B (hereinafter referred to as a monitoring signal generator). The voltage of the insulation monitoring signal is superimposed on the monitored electric circuit via the seed ground line 22. The voltage of the insulation monitoring signal generates a low frequency low voltage signal of about 20 Hz and 10 V, and is transformed to about 0.5 V and applied. An insulation monitoring device 25 detects the voltage of the return insulation monitoring signal from the monitoring signal generator 23 and takes in a signal through the zero-phase current transformer 26. This zero-phase current transformer does not necessarily have to be provided on the ground line, and is the same even if it is provided on the feed line as indicated by the dotted line. In the figure, C represents the capacitance of the electric circuit to ground, and R represents the insulation resistance of the electric circuit to ground.

今、監視信号発生装置23から、絶縁監視信号の電圧を発生させB種接地線22に重畳すると、該絶縁監視信号は被監視電路20、電路の対地静電容量C、対地絶縁抵抗R間を循環して電流がIgとして流れる。   Now, when the voltage of the insulation monitoring signal is generated from the monitoring signal generator 23 and superimposed on the B-type ground line 22, the insulation monitoring signal passes between the monitored circuit 20, the ground capacitance C of the circuit, and the ground insulation resistance R. It circulates and current flows as Ig.

即ち、監視信号発生装置23から印加された絶縁監視信号の電流Igは電路の対地静電容量C、対地絶縁抵抗Rによるインピーダンスをとおして流れる。この絶縁監視信号の電流Igは、対地静電容量Cに流れる静電容量成分電流Igcと、絶縁劣化による抵抗成分電流Igrとの合成された電流で、これらの電流のベクトルは図9のようになる。   That is, the current Ig of the insulation monitoring signal applied from the monitoring signal generator 23 flows through the impedance due to the ground capacitance C and the ground insulation resistance R of the electric circuit. The current Ig of the insulation monitoring signal is a combined current of the capacitance component current Igc flowing through the ground capacitance C and the resistance component current Igr due to insulation deterioration, and the vector of these currents is as shown in FIG. Become.

同図の位相θは、印加した絶縁監視信号の電圧(基準電圧)Vsと零相変流器26で検出された電流Igとの位相差で、絶縁劣化がない場合は90度となるが、絶縁劣化が進むと抵抗成分電流Igrが大きくなり、それに伴って位相差θが変化する。従って、この抵抗成分電流Igrおよび位相差θの変化を監視することで電路の絶縁状態を監視することができる(例えば、特許文献1,2)。
特公平7−43403号公報 特公平7−21522号公報。
The phase θ in the figure is the phase difference between the voltage (reference voltage) Vs of the applied insulation monitoring signal and the current Ig detected by the zero-phase current transformer 26, and is 90 degrees when there is no insulation deterioration. As the insulation deterioration progresses, the resistance component current Igr increases, and the phase difference θ changes accordingly. Therefore, the insulation state of the electric circuit can be monitored by monitoring changes in the resistance component current Igr and the phase difference θ (for example, Patent Documents 1 and 2).
Japanese Patent Publication No. 7-43403 Japanese Patent Publication No. 7-21522.

上記説明の絶縁状態監視装置は一台の場合であるが、高層ビルなどのように多数の給電所(例えば、各階に)が設けられ、各給電所の変圧器の二次接地線を共通の接地線で接地する共通接地方式がとられる場合が多くなっている。この場合、図10に示すように共通接地線Ecに監視信号発生装置3を設け、絶縁監視は夫々の被監視電路に設けられた絶縁監視手段5−1,5−2,5−3によって行われる。   Although the insulation state monitoring device described above is a single unit, a large number of power stations (for example, on each floor) are provided as in a high-rise building, and the secondary ground line of the transformer of each power station is shared. In many cases, a common grounding method of grounding with a grounding wire is employed. In this case, as shown in FIG. 10, the monitoring signal generator 3 is provided on the common ground line Ec, and the insulation monitoring is performed by the insulation monitoring means 5-1, 5-2, 5-3 provided in each monitored electric circuit. Is called.

この複合給電方式において、監視信号発生装置3は正常に絶縁監視信号の電圧を発信しているにもかかわらず、何らかの原因で電圧が低下して絶縁監視手段5−1,5−2,5−3が正常に動作し得ない現象が生じた。その原因を調査した結果、給電路の接地相Nがアースと混触して対地インピーダンスが短絡状態となり、監視信号発生装置3からの発生電圧で、共通接地線Ec、接地線、接地相、及び接地を介してそこに大きな監視電流が流れ、絶縁監視手段が検出する絶縁監視信号の電圧が低下し、この絶縁監視信号電圧の低下によって、絶縁監視信号の電圧を基準として抵抗成分電流の値を演算する各絶縁監視手段は、正常な絶縁監視信号の電圧の検出ができなくなり、抵抗成分電流値演算の機能は停止し、絶縁監視機能を喪失していることが分かった。そして、この演算機能を復旧させるには、その原因となっている混触給電路を調査し、混触部分を修復しなければならない。しかし、接地相とアースの混触と同時に絶縁監視手段は、その機能を失っているため絶縁監視手段により混触電路を特定することはできない、という課題があった。   In this composite power feeding method, the monitoring signal generator 3 normally transmits the voltage of the insulation monitoring signal, but the voltage drops for some reason and the insulation monitoring means 5-1, 5-2, 5- The phenomenon that 3 could not operate normally occurred. As a result of investigating the cause, the grounding phase N of the power supply path is in contact with the earth and the ground impedance is short-circuited. A large monitoring current flows through the insulation monitoring signal, and the voltage of the insulation monitoring signal detected by the insulation monitoring means decreases. By this decrease in the insulation monitoring signal voltage, the value of the resistance component current is calculated based on the voltage of the insulation monitoring signal. It was found that each of the insulation monitoring means to be able to detect the voltage of the normal insulation monitoring signal was stopped, the function of resistance component current value calculation was stopped, and the insulation monitoring function was lost. In order to restore this calculation function, it is necessary to investigate the mixed contact feeding path that is the cause and repair the mixed contact portion. However, since the insulation monitoring means loses its function simultaneously with the contact between the ground phase and the earth, there is a problem that the insufficiency electric circuit cannot be specified by the insulation monitoring means.

本発明は、前記課題に基づいてなされたものであり、通常状態においては従来の給電路と大地間の絶縁状態を監視し、絶縁監視信号の電圧が低下した場合は混触給電路の表示をして、混触給電路を特定できるようにした絶縁状態監視装置を提供することにある。   The present invention has been made on the basis of the above problems. In a normal state, the insulation state between the conventional feeding path and the ground is monitored, and when the voltage of the insulation monitoring signal decreases, the mixed feeding feeding path is displayed. Thus, an object of the present invention is to provide an insulation state monitoring device that can identify a mixed feeding power supply path.

本発明は、前記課題の解決を図るために、複数の給電所に有する変圧器の二次接地線を共通にした共通接地線でB種接地し、この共通接地線に給電路の周波数と異なる低周波の絶縁監視信号を発生させる絶縁監視信号発生手段を設け、この絶縁監視信号を共通接地線に重畳用の変成器を介して重畳するとともに、各給電所には前記絶縁監視信号を零相変流器を介して検出する絶縁監視手段を設け、該絶縁監視手段は、検出した絶縁監視信号の電圧、電流を入力し、この入力した電圧、電流から抵抗成分電流値を演算する機能及び絶縁監視信号の電圧が正常か、又は所定値より低下しているかの判定をする機能及び混触状態を表示する混触表示手段を有し、絶縁監視信号の電圧が正常の判定のときは、絶縁監視信号の電圧分と電流分から抵抗成分電流値Igrを演算して求め、この電流値を表示手段に表示して電流値の大きさで電路の絶縁状態を監視し、接地相がアースと混触して絶縁監視信号の電圧が所定値より下がり低下の判定のときには、混触表示手段側に自動的に切換え、該混触表示手段は、絶縁監視信号の電流分をもとに絶縁インピーダンス値を演算し、この絶縁インピーダンス値を電流値Igに換算しこの電流値の大きさをもとに混触状態を表示手段に表示するようにしたことを特徴とする。
前記の混触表示手段での混触状態の表示態様は、絶縁インピーダンス値を電流値に換算し換算した電流値Igを演算して表示手段に表示し、表示された電流値の大きさで混触電路を判別するようにする。
また、前記の混触表示手段の他の実施例は、絶縁監視信号の電圧が設定値より下がり低下の判定があったとき、絶縁監視信号の電流分をもとに絶縁インピーダンス値を演算し、該インピーダンス値を電流値に換算して換算した電流値Igの大きさを判定し、予め設定した設定値より大きいときのみ混触していることを表示手段に表示して混触電路を特定するようにする。
また、混触表示手段の他の実施例は、絶縁監視信号の電圧が設定値より下がり低下の判定があったとき、絶縁監視信号の電流分をもとに絶縁インピーダンス値を演算し、該インピーダンス値を電流値に換算し換算した電流値Igの大きさを判定し、予め設定した設定値より大きいとき、給電路の周波数による零相電流I0を入力し、該零相電流I0と絶縁インピーダンス値を電流値に換算した電流値Igとを比較し、その差の電流値が予め設定した設定値を超えたときに混触している事を表示して混触電路を特定するようにする。
また、混触表示手段の他の実施例は、絶縁監視信号の電圧設定値より下がり低下の判定があったとき、絶縁監視信号の電流分をもとに絶縁インピーダンス値を演算し、該インピーダンス値を電流値に換算し換算した電流値Igの大きさを判定し、予め設定した設定値より大きいとき、共通接地線で接地されている各給電路の絶縁インピーダンス値を電流値に換算し換算した電流値Igを入力し、自給電路の電流値Igと比較し、自給電路の電流値Igが他の給電路の電流値Igに対し非常に大きいかを判断し、予め設定した設定値より大きいときに混触していることを表示して混触電路を特定するようにする。
In order to solve the above-mentioned problem, the present invention grounds a B-type ground with a common grounding line that shares the secondary grounding line of a transformer included in a plurality of feeding stations, and the common grounding line has a frequency different from that of the feeding path. Insulation monitoring signal generating means for generating a low-frequency insulation monitoring signal is provided, and this insulation monitoring signal is superimposed on a common ground line via a superposition transformer, and the insulation monitoring signal is zero-phased at each power station. Insulation monitoring means for detecting via a current transformer is provided, and the insulation monitoring means inputs the voltage and current of the detected insulation monitoring signal, calculates the resistance component current value from the inputted voltage and current, and insulation It has a function for determining whether the voltage of the monitoring signal is normal or lower than a predetermined value and a mixed contact display means for displaying the mixed contact state. When the voltage of the insulating monitoring signal is normal, the insulation monitoring signal Resistance formation from the voltage and current components of Calculate the current value Igr, display this current value on the display means, monitor the insulation state of the electric circuit with the magnitude of the current value, and the ground phase is in contact with the ground, and the voltage of the insulation monitoring signal is greater than the predetermined value When it is judged that the drop has fallen, it automatically switches to the contact display means, which calculates the insulation impedance value based on the current of the insulation monitoring signal, and converts this insulation impedance value to the current value Ig. However, the present invention is characterized in that the mixed state is displayed on the display means based on the magnitude of the current value.
The display state of the contact state in the contact display means is calculated by converting the insulation impedance value into a current value, calculating the converted current value Ig and displaying it on the display means, and displaying the contact electric circuit with the magnitude of the displayed current value. Try to determine.
Further, in another embodiment of the mixed contact display means, when it is determined that the voltage of the insulation monitoring signal falls below a set value, the insulation impedance value is calculated based on the current of the insulation monitoring signal, The impedance value is converted into a current value, the magnitude of the converted current value Ig is determined, and the contact means is displayed on the display means only when the current value Ig is larger than a preset set value so as to identify the contact electric circuit. .
Further, in another embodiment of the mixed display means, when it is determined that the voltage of the insulation monitoring signal falls below the set value, the insulation impedance value is calculated based on the current of the insulation monitoring signal, and the impedance value Is converted into a current value, the magnitude of the converted current value Ig is determined, and when it is larger than a preset set value, the zero-phase current I0 is input according to the frequency of the feed path, and the zero-phase current I0 and the insulation impedance value are The current value Ig converted into a current value is compared, and when the current value of the difference exceeds a preset set value, it is displayed that the contact is present and the mixed contact electric circuit is specified.
Further, in another embodiment of the mixed display means, when it is determined that the voltage is lower than the voltage setting value of the insulation monitoring signal, the insulation impedance value is calculated based on the current component of the insulation monitoring signal, and the impedance value is calculated. The current value Ig converted into a current value is determined, and when the value is larger than a preset value, the insulation impedance value of each power supply path grounded by a common ground line is converted into a current value and converted. When the value Ig is input and compared with the current value Ig of the self-feeding path, it is determined whether the current value Ig of the self-feeding path is much larger than the current value Ig of the other feeding paths. It displays that it is in contact and specifies the contact electric circuit.

以上示したように本発明によれば、混触の無い状態では通常の絶縁状態の監視を行い、接地相とアースの混触が発生すると同時に演算機能を停止していた絶縁監視手段に、絶縁インピーダンス値を電流値に換算した電流値が表示されるためその表示値によって、混触の程度が判断でき、また、その表示によって接地相とアースの混触給電路を特定することができる。   As described above, according to the present invention, the normal insulation state is monitored when there is no contact, and the insulation monitoring means that has stopped the calculation function at the same time that the contact between the ground phase and the ground is generated has the insulation impedance value. Since the current value converted into the current value is displayed, it is possible to determine the degree of incompatibility based on the display value, and it is possible to specify the incompatible power supply path between the ground phase and the ground by the display.

また、絶縁監視信号の電圧が所定値より低下した場合に即、混触状態を表示するのではなく、更にIg値(絶縁インピーダンス値を電流値に換算した電流値)の大きさや、零相電流との比較、又は他のIgとの比較によって混触の状態を判断することによって混触の判断の程度を上げることが出来る。   In addition, when the voltage of the insulation monitoring signal drops below a predetermined value, the contact state is not displayed immediately, but the magnitude of the Ig value (current value obtained by converting the insulation impedance value into a current value), zero-phase current and It is possible to increase the degree of the determination of incompatibility by determining the state of incompatibility by comparing the above or other Igs.

このように混触の判断を自動化し、予め設定したIg値、又はユーザーが任意に整定したIg値を超えたときに混触と判断して「コンショク、ハッセイ」の表示や警報を即、出して早急な対策を取らせることが出来る。このため従来混触給電路を特定するために要した時間を大幅に短縮できる。   In this way, the determination of incompatibility is automated, and when it exceeds a preset Ig value or an Ig value that is arbitrarily set by the user, it is determined that incompatibility has occurred, and a “Consultation, Hassey” display or alarm is immediately issued and immediately issued Can take the measures. For this reason, the time required to specify the conventional mixed power feeding path can be greatly shortened.

以上のことから、常時の絶縁状態監視の機能に加えて、接地相とアースの混触をも常時監視する機能も加わり、更に、接地相などの誤配線をしたときは混触と同様な絶縁監視信号の電流が流れて警報が出され、三相コンセントの接地相と非接地相の誤配線の検出等が可能となる。   From the above, in addition to the function of monitoring the insulation state at all times, the function of constantly monitoring the contact between the ground phase and earth is added. Current flows, an alarm is issued, and it is possible to detect miswiring between the ground phase and non-ground phase of the three-phase outlet.

以下、本発明の実施の形態における実施例を図面に基づいて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

図1は本発明の接地相とアースの混触のない状態のときの表示例を、図3は接地相とアースの混触発生後の表示例を示す。同図において1−1,1−2,1−3は各給電所の変圧器、F1、F2、F3は変圧器1−1,1−2,1−3の二次側の被監視電路である給電路を示し、各給電路における接地は、接地線E1,E2,E3を介して共通接地線EcによってB種接地される。3は監視信号発生手段で、給電路の周波数とは異なる低周波数(例えば、20Hz)、低電圧(例えば、10V)の基準となる絶縁監視信号の電圧を発生させ、重畳用の変流器4を介して共通接地線Ecに絶縁監視信号を重畳させる。5−1,5−2,5−3は各給電路F1、F2、F3に設けられた絶縁監視手段で、共通接地線Ecに重畳された絶縁監視信号を、各接地線E1,E2,E3に設けられた各零相変流器6−1、6−2、6−3を介して検出する。各絶縁監視手段5−1,5−2,5−3は、従来の抵抗成分電流を演算する機能に加え、図2に示す演算機能を有する。即ち、図2は演算手法のフローチャートを示し、第一及び第二のステップS1、S2で絶縁監視信号(図示では監視信号と略称)の電圧分と電流分を入力し、ステップS3で、監視信号の電圧分の低下の有無を判定する。電圧の低下が無い通常のときはステップS4で、監視信号の電圧分と電流分から電路と大地間の絶縁抵抗値を演算し、ステップS5でこの抵抗値から抵抗成分電流値Igrを求め、この抵抗成分電流値Igrを図1の表示手段2−1,2−2,2−3に表示し、また、電流値が所定値より大きくなったときは警報を発するなどして電路の絶縁状態を常時監視する。この表示された電流値Igrにより電路の絶縁状態を監視する。   FIG. 1 shows a display example when there is no contact between the ground phase and the earth of the present invention, and FIG. 3 shows a display example after occurrence of contact between the ground phase and the ground. In the figure, 1-1, 1-2, 1-3 are transformers of each power station, and F1, F2, F3 are monitored electric circuits on the secondary side of the transformers 1-1, 1-2, 1-3. A certain power feeding path is shown, and grounding in each power feeding path is B-type grounded by a common ground line Ec through ground lines E1, E2, and E3. Reference numeral 3 denotes a monitoring signal generating means for generating a voltage of an insulation monitoring signal which is a reference of a low frequency (for example, 20 Hz) and a low voltage (for example, 10 V) different from the frequency of the power supply path, and a current transformer 4 for superposition. An insulation monitoring signal is superimposed on the common ground line Ec via Reference numerals 5-1 5-2, and 5-3 denote insulation monitoring means provided in the power supply paths F1, F2, and F3. The insulation monitoring signals superimposed on the common ground line Ec are transmitted to the ground lines E1, E2, and E3. It detects via each zero phase current transformer 6-1, 6-2, 6-3 provided in. Each insulation monitoring means 5-1, 5-2, 5-3 has a calculation function shown in FIG. 2 in addition to the conventional function of calculating the resistance component current. That is, FIG. 2 shows a flowchart of the calculation method. In the first and second steps S1 and S2, a voltage component and a current component of an insulation monitoring signal (abbreviated as a monitoring signal in the drawing) are input, and in step S3, the monitoring signal is input. The presence or absence of a decrease in voltage is determined. When there is no voltage drop, in step S4, the insulation resistance value between the electric circuit and the ground is calculated from the voltage and current components of the monitoring signal, and in step S5, the resistance component current value Igr is obtained from this resistance value. The component current value Igr is displayed on the display means 2-1, 2-2, 2-3 in FIG. 1, and when the current value becomes larger than a predetermined value, an alarm is issued, etc. Monitor. The insulation state of the electric circuit is monitored based on the displayed current value Igr.

ステップ3で検出した監視信号の電圧の低下があったときは、混触表示手段Mi側に自動的に切り換えられ、ステップS7で、絶縁監視信号の電流分をもとに、絶縁インピーダンス値を演算し、ステップS8で絶縁インピーダンス値を電流(Ig)値に換算し、ステップS9で、図3のように表示手段2−1,2−2,2−3に電流値Igを表示する。   When there is a drop in the voltage of the monitoring signal detected in step 3, it is automatically switched to the mixed contact display means Mi side, and in step S7, an insulation impedance value is calculated based on the current of the insulation monitoring signal. In step S8, the insulation impedance value is converted into a current (Ig) value, and in step S9, the current value Ig is displayed on the display means 2-1, 2-2, 2-3 as shown in FIG.

図3は給電路F3で接地相とアースの混触が発生した場合を示し、接地相がアースと混触すると、図3の太い矢印で示すように、接地相−アース−共通接地線Ec−接地線E3を介して大きい電流が流れる。このとき重畳用の変成器3から重畳された絶縁監視信号の電圧分は、変成器4の所で示すように、点線から実線のように低下する。この電圧の低下を絶縁監視手段5−3は検出してステップS8で絶縁インピーダンス値を電流値に換算した「Ig:999mA」を表示し、絶縁監視手段5−2,5−3も同様の動作をするが、混触がないので図示のように7mA、5mAとあまり大きくならない電流値Igを表示する。従って、混触電路は即判別でき、また表示された電流値で混触の程度が判断できる。   FIG. 3 shows a case where the ground phase and the ground are mixed in the power supply path F3. When the ground phase is mixed with the ground, as shown by a thick arrow in FIG. 3, the ground phase-earth-common ground line Ec-ground line is shown. A large current flows through E3. At this time, the voltage component of the insulation monitoring signal superimposed from the superimposing transformer 3 decreases from a dotted line to a solid line as indicated by the transformer 4. The insulation monitoring means 5-3 detects this voltage drop and displays “Ig: 999 mA” in which the insulation impedance value is converted into a current value in step S8, and the insulation monitoring means 5-2 and 5-3 operate similarly. However, since there is no contact, the current value Ig which is not so large as 7 mA and 5 mA is displayed as shown in the figure. Therefore, the contact electric circuit can be immediately determined, and the degree of contact can be determined from the displayed current value.

図4は他の表示例(混触表示手段の第2の実施例)で、接地相のアースとの混触した給電路には大きな電流が流れるのでこの電流を検出した絶縁監視手段のみが[コンショク ハッセイ]の表示(又は警報)をし、混触給電路を特定できるようにしたものである。即ち、図2のステップS8で絶縁インピーダンス値を電流値に換算した電流値(Ig)を図5のステップ9−1でその大小を判定し、予め設定した設定値に達しないときはステップ10で「‐‐‐」を表示し、大きいときはステップ11で「コンショク ハッセイ」を表示し、また警報を発する。
図6は混触表示手段Miの第3の実施例で、前記の電流値Igが設定値以上となった後、更に精度を高めるために、ステップS21で給電路の周波数による零相電流I0を入力し、ステップ22でこの零相電流I0と前記電流値Igと比較し、その差の電流値が予め設定した設定値より大きくなった時にステップ23で「コンショク」の表示をするようにしたものである。絶縁状態監視装置は、一般に絶縁監視部と漏電検出部を有し、零相変流器6からフィルターによって絶縁監視信号の電流と給電路の周波数による零相電流を分けて検出されており、この零相電流を利用するものである。
FIG. 4 shows another display example (second embodiment of the contact display means). Since a large current flows in the power supply path in contact with the ground of the ground phase, only the insulation monitoring means that detects this current [Consultation Hassey ] (Or alarm) so that the mixed power feeding path can be specified. That is, the current value (Ig) obtained by converting the insulation impedance value into a current value in step S8 in FIG. 2 is determined in step 9-1 in FIG. 5, and if it does not reach the preset set value, in step 10 “---” is displayed. If it is larger, “Consultation Hassey” is displayed in Step 11 and an alarm is issued.
FIG. 6 shows a third embodiment of the mixed touch display means Mi. After the current value Ig becomes equal to or higher than the set value, a zero-phase current I0 according to the frequency of the feed path is input in step S21 in order to further improve the accuracy. In step 22, the zero-phase current I 0 is compared with the current value Ig, and when the difference current value becomes larger than a preset value, “consultation” is displayed in step 23. is there. The insulation state monitoring device generally has an insulation monitoring unit and a leakage detection unit, and the zero-phase current transformer 6 detects the current of the insulation monitoring signal and the zero-phase current according to the frequency of the feeding path separately by a filter. A zero-phase current is used.

給電路の周波数による零相電流I0は、非接地相と大地間の絶縁抵抗の劣化によって流れる電流であるが、この零相電流が増加した場合は、先の絶縁インピーダンス値を電流値に換算した電流値Igも増加する。この電流値Igの増加が零相電流I0の増加に起因するものであるか否かは両者を比較しその差を求めることで判断出来、これにより混触を表示することは無い。   The zero-phase current I0 due to the frequency of the feed path is a current that flows due to the deterioration of the insulation resistance between the non-grounded phase and the ground. When this zero-phase current increases, the previous insulation impedance value is converted into a current value. The current value Ig also increases. Whether or not the increase in the current value Ig is caused by the increase in the zero-phase current I0 can be determined by comparing the two and obtaining the difference therebetween, thereby preventing the display of incompatibility.

図7は混触表示手段Miの第4の実施例で、集中形監視制御のように、各給電路の絶縁監視信号を一箇所で管理可能な場合に、ステップ31で他の全ての給電路の電流Igを入力し、ステップ32で自給電路のIg値が、他の給電路のIg値に対し非常に大きいかを判断し、非常に大きい場合(予め設定した設定値以上となった場合)にステップ33で「コンショク」を表示する。
上記の各設定値は、混触の程度の判断を自動化する為に予め電流値Ig値を設定、又はユーザーが任意に設定し、混触の程度が設定値を超えたとき速やかな対応を促すようにする。
FIG. 7 shows a fourth embodiment of the tactile display means Mi. In the case where the insulation monitoring signal of each power supply path can be managed in one place as in the centralized monitoring control, in step 31, all other power supply paths are displayed. When current Ig is input, it is determined in step 32 whether the Ig value of the self-feeding path is very large compared to the Ig values of other feeding paths, and if it is very large (when it is greater than a preset set value) In step 33, “consumption” is displayed.
For each of the above set values, the current value Ig value is set in advance to automate the determination of the degree of contact, or is arbitrarily set by the user, and prompt response is encouraged when the degree of contact exceeds the set value. To do.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

本実施の形態における正常時の表示例。The example of a display at the time of normal in this Embodiment. 本実施の形態における演算例のフローチャート。The flowchart of the example of a calculation in this Embodiment. 本実施の形態における接地相とアースの混触発生時の表示例。The example of a display at the time of the contact occurrence of the ground phase and earth in this Embodiment. 本実施の他の実施の形態における接地相とアースの混触発生時の表示例。The example of a display at the time of the generation | occurrence | production of the contact of the ground phase and earth in other embodiment of this Embodiment. 混触表示手段の第2の実施の形態におけるフローチャート。The flowchart in 2nd Embodiment of a touch display means. 混触表示手段の第3の実施の形態におけるフローチャート。The flowchart in 3rd Embodiment of a touch display means. 混触表示手段の第4の実施の形態におけるフローチャート。The flowchart in 4th Embodiment of a mixed display means. 一般の絶縁状態監視装置の説明図。Explanatory drawing of a general insulation state monitoring apparatus. 一般の絶縁状態監視装置の説明のためのベクトル図。The vector diagram for description of a general insulation state monitoring apparatus. 共通接地方式における絶縁監視の説明図。Explanatory drawing of the insulation monitoring in a common grounding system.

符号の説明Explanation of symbols

1−1,1−2,1−3…変圧器
2−1,2−2,2−3…表示手段
3…監視信号発生手段
4…変成器
5−1,5−2,5−3…絶縁監視手段
6−1,6−2,6−3…零相変流器
Ec…共通接地線
Mi…混触表示手段
1-1, 1-2, 1-3 ... Transformer 2-1, 2-2, 2-3 ... Display means 3 ... Monitoring signal generating means 4 ... Transformer 5-1, 5-2, 5-3 ... Insulation monitoring means 6-1, 6-2, 6-3 ... Zero-phase current transformer Ec ... Common ground line Mi ... Mixed contact display means

Claims (5)

複数の給電所に有する変圧器の二次接地線を共通にした共通接地線でB種接地し、この共通接地線に給電路の周波数と異なる低周波の絶縁監視信号を発生させる絶縁監視信号発生手段を設け、この絶縁監視信号を共通接地線に重畳用の変成器を介して重畳するとともに、各給電所には前記絶縁監視信号を零相変流器を介して検出する絶縁監視手段を設け、該絶縁監視手段は、検出した絶縁監視信号の電圧、電流を入力しこの入力した電圧、電流から抵抗成分電流値を演算する機能及び絶縁監視信号の電圧が正常か、又は所定値より低下しているかの判定をする機能及び混触状態を表示する混触表示手段を有し、絶縁監視信号の電圧が正常の判定のときは、入力した絶縁監視信号の電圧分と電流分から抵抗成分電流値Igr求め、この電流値を表示手段に表示して電流値の大きさで電路の絶縁状態を監視し、接地相がアースと混触して絶縁監視信号の電圧が所定値より下がり低下の判定のときには、検出した絶縁監視信号を混触表示手段側に自動的切り換え、該混触表示手段は、絶縁監視信号の電流分をもとに絶縁インピーダンス値を演算し、この絶縁インピーダンス値を電流値Igに換算しこの電流値Igの大きさをもとに混触状態を表示手段に表示するようにしたことを特徴とする絶縁状態監視装置。 Insulation monitoring signal generation for grounding Class B with a common grounding wire that shares the secondary grounding wires of transformers in a plurality of power stations, and generating an insulation monitoring signal having a low frequency different from the frequency of the power feeding path on this common grounding wire Means for superimposing the insulation monitoring signal on the common ground line via a superposition transformer, and at each power station, an insulation monitoring means for detecting the insulation monitoring signal via a zero-phase current transformer is provided. The insulation monitoring means inputs the voltage and current of the detected insulation monitoring signal, calculates the resistance component current value from the input voltage and current, and the voltage of the insulation monitoring signal is normal or falls below a predetermined value. and has a mixed contact display means to function and displays the mixed contact state to have one of the determination, isolation when the voltage of the monitor signal is determined normal, the voltage component and a current component from the resistance component current value of an input insulation monitoring signal Igr look, this current Displayed on the display means to monitor the insulation state of the electric path by the magnitude of the current value, when the voltage of the ground phase is ground and mixed contact to the insulation monitoring signal is determined it falls lower than a predetermined value, the detected insulation monitoring signal Is automatically switched to the incompatibility display means side, and the intrusion display means calculates an insulation impedance value based on the current component of the insulation monitoring signal, converts the insulation impedance value into a current value Ig, and increases the current value Ig. An insulation state monitoring apparatus characterized in that the mixed state is displayed on the display means based on the above. 請求項1における混触表示手段による混触状態の表示は、絶縁インピーダンス値を電流値に換算した電流値Igを表示手段に表示し、表示された電流値の大きさで混触電路を判別できるようにしたことを特徴とする請求項1記載の絶縁状態監視装置。 The display of the contact state by the contact display means according to claim 1 displays the current value Ig obtained by converting the insulation impedance value into a current value on the display means so that the contact electric circuit can be discriminated by the magnitude of the displayed current value . The insulation state monitoring apparatus according to claim 1. 請求項1における混触表示手段は、絶縁監視信号の電圧が設定値より下がり低下の判定があったとき、絶縁監視信号の電流分をもとに絶縁インピーダンス値を演算し、該インピーダンス値を電流値に換算して換算した電流値Igの大きさを判定し、予め設定した設定値より大きいときのみ混触していることを表示手段に表示して混触電路を特定するようにしたことを特徴とする請求項1記載の絶縁状態監視装置。 The cross-contact display means according to claim 1 calculates an insulation impedance value based on a current component of the insulation monitoring signal when it is determined that the voltage of the insulation monitoring signal falls below a set value, and the impedance value is calculated as a current value. in terms determine the magnitude of the current Ig converted to, is characterized in that so as to identify incompatible path displayed on the display means that you are looking incompatible when larger than a preset set value The insulation state monitoring apparatus according to claim 1. 請求項1における混触表示手段は、絶縁監視信号の電圧が設定値より下がり低下の判定があったとき、絶縁監視信号の電流分をもとに絶縁インピーダンス値を演算し、該インピーダンス値を電流値に換算して換算した電流値Igの大きさを判定し、予め設定した設定値より大きいとき、給電路の周波数による零相電流I0を入力し、該零相電流I0と絶縁インピーダンス値を電流値に換算した電流値Igとを比較し、その差の電流値が予め設定した設定値を超えたときに混触していることを表示手段に表示して混触電路を特定するようにしたことを特徴とする請求項1記載の絶縁状態監視装置。 The cross-contact display means according to claim 1 calculates an insulation impedance value based on a current component of the insulation monitoring signal when it is determined that the voltage of the insulation monitoring signal falls below a set value, and the impedance value is calculated as a current value. The magnitude of the converted current value Ig is determined, and when it is larger than the preset set value, the zero-phase current I0 is input according to the frequency of the feeding path, and the zero-phase current I0 and the insulation impedance value are converted into the current value. Compared with the current value Ig converted to, and when the current value of the difference exceeds a preset set value, it is displayed on the display means that it is in contact, and the contact electric circuit is specified. The insulation state monitoring device according to claim 1. 請求項1における混触表示手段は、絶縁監視信号の電圧が設定値より下がり低下の判定があったとき、絶縁監視信号の電流分をもとに絶縁インピーダンス値を演算し、該インピーダンス値を電流値に換算して換算した電流値Igの大きさを判定し、予め設定した設定値より大きいとき、共通接地線で接地されている各給電路の絶縁インピーダンス値を電流値に換算した電流値Igを入力し、自給電路の電流値Igが他の給電路の電流値Igに対し非常に大きいかを判断し、予め設定した設定値より大きい電流が流れたときに混触していることを表示手段に表示して混触電路を特定するようにしたことを特徴とする請求項1記載の絶縁状態監視装置。 The cross-contact display means according to claim 1 calculates an insulation impedance value based on a current component of the insulation monitoring signal when it is determined that the voltage of the insulation monitoring signal falls below a set value, and the impedance value is calculated as a current value. The magnitude of the converted current value Ig is determined, and when it is larger than a preset set value, the current value Ig obtained by converting the insulation impedance value of each power supply path grounded by the common ground line into a current value is obtained. It is determined whether or not the current value Ig of the self-feeding path is very large relative to the current value Ig of the other feeding path, and the display means that the current is in contact when a current larger than a preset value flows. view and insulation state monitoring apparatus according to claim 1, characterized in that so as to identify incompatible path.
JP2006166871A 2006-06-16 2006-06-16 Insulation state monitoring device Expired - Fee Related JP4838640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166871A JP4838640B2 (en) 2006-06-16 2006-06-16 Insulation state monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166871A JP4838640B2 (en) 2006-06-16 2006-06-16 Insulation state monitoring device

Publications (2)

Publication Number Publication Date
JP2007333604A JP2007333604A (en) 2007-12-27
JP4838640B2 true JP4838640B2 (en) 2011-12-14

Family

ID=38933209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166871A Expired - Fee Related JP4838640B2 (en) 2006-06-16 2006-06-16 Insulation state monitoring device

Country Status (1)

Country Link
JP (1) JP4838640B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543315A (en) * 2013-09-23 2014-01-29 华中科技大学 Impedance network analysis method of short-circuit current of 500 kV autotransformer
JP7108919B2 (en) * 2018-03-28 2022-07-29 パナソニックIpマネジメント株式会社 Circuit monitoring system and distribution system
CN114217134B (en) * 2021-11-01 2023-11-17 通富微电子股份有限公司 Ground resistance monitor and ground resistance monitoring system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646205B2 (en) * 1985-07-10 1994-06-15 日本原子力研究所 Single point grounding system ground fault and short circuit monitoring method
JPS6423671A (en) * 1987-07-17 1989-01-26 Fuji Photo Film Co Ltd Radio graphic image information reader
JP2530672B2 (en) * 1987-12-09 1996-09-04 富士通株式会社 Method for manufacturing semiconductor device
JPH0743403B2 (en) * 1990-01-10 1995-05-15 テンパール工業株式会社 Insulation resistance measurement method
JP3466087B2 (en) * 1998-06-25 2003-11-10 三菱電機ビルテクノサービス株式会社 Monitoring equipment for grounding system in electric room

Also Published As

Publication number Publication date
JP2007333604A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
US20080211511A1 (en) Method of Generating Fault Indication in Feeder Remote Terminal Unit for Power Distribution Automation System
KR102061929B1 (en) Method for detecting an open-phase condition of a transformer
US10396545B2 (en) Insulation monitoring device having voltage monitoring and underlying method
FI74365B (en) METHOD ATT DETEKTERA JORDFEL I NAET FOER DISTRIBUTION AV ELEKTRISK KRAFT OCH ANORDNING FOER GENOMFOERANDE AV METODEN.
CN106405322B (en) Method and apparatus for extended insulation fault search using multifunctional test current
JP2005304148A (en) Insulation monitoring system
WO2008061321A1 (en) Power supply monitoring system
US11327106B2 (en) System and method for locating faults on a polyphase electrical network using positive and negative sequence voltage variation
CN106443320B (en) Method for detecting ground fault in LVDC wire and electronic device thereof
US8908343B2 (en) System for electric distribution system protection and control and method of assembling the same
JP2009081928A (en) Apparatus for detecting leakage current
JP2011506978A (en) Method and apparatus for detecting defects in neutral feedback lines of electrical networks
JP4838640B2 (en) Insulation state monitoring device
JP2010127860A (en) Device and method for measuring leak current
JP2004239863A (en) Grounding method for transformer
KR101612488B1 (en) Hybrid transformer
JP2012075250A (en) Insulation ground fault monitoring device with adoption lock
KR20150134563A (en) Power system in the event of power failure recovery device
US20140035369A9 (en) Power supply appliance and power supply system with an appliance such as this
US3958153A (en) Method and apparatus for fault detection in a three-phase electric network
JP5275069B2 (en) DC / AC circuit ground fault detection method for non-grounded AC circuit
CN111060846B (en) CT secondary circuit fault on-line monitoring method
JP2001352663A (en) Method and apparatus for detecting electrical leak in low-voltage ground electrical circuit
JP4541034B2 (en) Electric circuit ground monitoring device
KR100953684B1 (en) Distrtibuting board cabinet panel for tunnel lamp controlling with capability of detecting function loose contact and arc

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees