JP4838188B2 - Drill for hole formation - Google Patents

Drill for hole formation Download PDF

Info

Publication number
JP4838188B2
JP4838188B2 JP2007107151A JP2007107151A JP4838188B2 JP 4838188 B2 JP4838188 B2 JP 4838188B2 JP 2007107151 A JP2007107151 A JP 2007107151A JP 2007107151 A JP2007107151 A JP 2007107151A JP 4838188 B2 JP4838188 B2 JP 4838188B2
Authority
JP
Japan
Prior art keywords
grinding
hole
grindstone
drill
curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007107151A
Other languages
Japanese (ja)
Other versions
JP2008265017A (en
Inventor
俊彦 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOKUEIKENMA KAKO CO., LTD.
Original Assignee
KYOKUEIKENMA KAKO CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOKUEIKENMA KAKO CO., LTD. filed Critical KYOKUEIKENMA KAKO CO., LTD.
Priority to JP2007107151A priority Critical patent/JP4838188B2/en
Publication of JP2008265017A publication Critical patent/JP2008265017A/en
Application granted granted Critical
Publication of JP4838188B2 publication Critical patent/JP4838188B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

本発明は、ガラス等の硬脆材料板に孔開け加工を施すための孔形成用ドリルに関する。   The present invention relates to a hole-forming drill for punching a hard and brittle material plate such as glass.

従来、硬脆材料板に孔を開ける工具としては、鋼製のシャンクの先端にダイヤモンド等からなる砥石を取り付けた砥石部を回転させながら、硬脆材料板に接触させることで孔を開ける孔形成用ドリルがあり、このような孔形成用ドリルを用いて研削作業をする際に、砥石部をシャンクの軸心を中心として軸回転させながら硬脆材料板に接触させて、硬脆材料板に穿孔を形成するようにしている。   Conventionally, as a tool to make a hole in a hard and brittle material plate, a hole formation that makes a hole by contacting the hard and brittle material plate while rotating a grindstone part with a grindstone made of diamond etc. attached to the tip of a steel shank When drilling using such a hole forming drill, the grindstone is rotated around the shaft center of the shank and brought into contact with the hard and brittle material plate. A perforation is formed.

特開平6−144859号公報(第3頁、第4図)Japanese Patent Laid-Open No. 6-1444859 (page 3, FIG. 4)

しかしながら、特許文献1にあっては、孔形成用ドリルにより硬脆材料板に形成された孔の内周面が、孔形成用ドリルの軸方向に直線状に形成されているため、孔が形成された硬脆材料板の移動等の取扱い時に、曲げ荷重による応力が孔の内周面に集中して、硬脆材料板が破損してしまい易く、硬脆材料板の取扱いが困難であった。   However, in Patent Document 1, since the inner peripheral surface of the hole formed in the hard and brittle material plate by the hole forming drill is formed linearly in the axial direction of the hole forming drill, the hole is formed. During handling such as movement of the hard and brittle material plate, stress due to bending load was concentrated on the inner peripheral surface of the hole, and the hard and brittle material plate was likely to be damaged, and handling of the hard and brittle material plate was difficult .

例えば、貫通孔を有する硬脆材料板を、移動機能を備えた把持手段により、板面を床面に対し略平行に配置して把持した場合に、硬脆材料板全体に、その自重による曲げ荷重が生じることになる。この曲げ荷重による応力は、平面方向に拡がる硬脆材料板の所定箇所にて板面の表裏面を貫通する貫通孔において作用しやすく、例えば、前記把持手段により硬脆材料板を把持した状態で移動しようとした場合に、わずかな衝撃によっても、貫通孔の内周面において亀裂が生じ硬脆材料板が破損する虞があった。   For example, when a hard and brittle material plate having a through hole is gripped by gripping means having a moving function and the plate surface is arranged substantially parallel to the floor surface, the entire hard and brittle material plate is bent by its own weight. A load will be generated. The stress due to the bending load is likely to act in a through-hole penetrating the front and rear surfaces of the plate surface at a predetermined position of the hard and brittle material plate spreading in the plane direction. For example, in a state where the hard and brittle material plate is gripped by the gripping means. When attempting to move, even a slight impact may cause a crack in the inner peripheral surface of the through hole, resulting in damage to the hard and brittle material plate.

本発明は、このような問題点に着目してなされたもので、研削孔が形成された硬脆材料板を把持して移動する等の取扱いを行っても、硬脆材料板が割れ難い形状の研削孔を形成できる孔形成用ドリルを提供することを目的とする。   The present invention has been made paying attention to such a problem, and even if the hard brittle material plate in which the grinding hole is formed is gripped and moved, the hard brittle material plate is difficult to break. It is an object of the present invention to provide a hole forming drill capable of forming a grinding hole.

上記課題を解決するために、本発明の請求項1に記載の孔形成用ドリルは、
回転軸として作用するシャンクの周面に軸方向に沿って砥石部を備え、該砥石部を研削対象となる硬脆材料板の貫通孔内に配置し、該砥石部を前記シャンクの軸心を中心として軸回転させるとともに前記貫通孔との間で偏心運動を与えることで、前記貫通孔の内面を研削する孔形成用ドリルであって、
前記砥石部、回転軸の軸方向に沿って接線の傾きが連続する曲面からなる曲面研削部を有しており、前記曲面研削部は、接線の傾きが連続して増加するように膨出する膨出曲面を少なくとも備え、該膨出曲面は、前記貫通孔の内面を研削する際に前記貫通孔内に配置されるものであり、前記曲面研削部は、前記研削対象となる硬脆材料板の板厚以上の長さを有していることを特徴としている。
この特徴によれば、孔形成用ドリルの砥石部に形成された曲面研削部により、研削対象となる硬脆材料板に接線の傾きが連続した曲面を形成することができるため、この硬脆材料板に曲げ荷重がかかっても、曲げ荷重による応力が研削孔の内面における曲面の接線方向に連続して分散されることで、硬脆材料板が割れ難い形状の研削孔を形成できる。
また、回転軸の径方向に膨出した曲面である曲面研削部と、硬脆材料板の研削孔との間に偏心運動を与えることにより、研削孔の内面を更に大径の曲面に形成できる。
In order to solve the above-described problem, a drill for forming a hole according to claim 1 of the present invention is provided.
A grindstone portion is provided along the axial direction on the peripheral surface of the shank acting as a rotating shaft, the grindstone portion is disposed in a through-hole of a hard and brittle material plate to be ground , and the grindstone portion is disposed on the shaft center of the shank. by providing an eccentric motion between to pivot Rutotomoni the through hole as the center, a hole forming drill grinding an inner surface of the through hole,
The grindstone portion has a curved grinding portion formed of a curved surface having a tangential slope continuous along the axial direction of the rotating shaft, and the curved grinding portion bulges so that the tangential slope continuously increases. The bulging curved surface is disposed in the through hole when the inner surface of the through hole is ground, and the curved grinding portion is a hard and brittle material to be ground. It is characterized by having a length equal to or greater than the thickness of the plate .
According to this feature, the curved grinding portion formed in the grindstone portion of the hole forming drill can form a curved surface having a continuous tangential slope on the hard brittle material plate to be ground. Even if a bending load is applied to the plate, the stress due to the bending load is continuously dispersed in the tangential direction of the curved surface on the inner surface of the grinding hole, so that a grinding hole having a shape in which the hard and brittle material plate is difficult to break can be formed.
Further, by giving an eccentric motion between the curved grinding surface which is a curved surface bulging in the radial direction of the rotating shaft and the grinding hole of the hard and brittle material plate, the inner surface of the grinding hole can be formed into a larger-diameter curved surface. .

本発明の請求項に記載の孔形成用ドリルは、請求項に記載の孔形成用ドリルであって、
前記曲面研削部は、前記膨出曲面に連続して、回転軸の径方向に縮径した曲面からなる面取凹部を有していることを特徴としている。
この特徴によれば、回転軸の径方向に膨出した曲面に加えて、回転軸の径方向に縮径した形状の面取凹部を有している曲面研削部と、硬脆材料板の研削孔との間に偏心運動を与えることにより、研削孔の内面に、面取凹部を利用した面取り部を形成できる。
The hole forming drill according to claim 2 of the present invention is the hole forming drill according to claim 1 ,
The curved surface grinding portion has a chamfered recess formed of a curved surface that is continuous with the bulging curved surface and is reduced in diameter in the radial direction of the rotating shaft.
According to this feature, in addition to the curved surface bulging in the radial direction of the rotating shaft, the curved surface grinding portion having a chamfered recess having a diameter reduced in the radial direction of the rotating shaft, and grinding of the brittle material plate A chamfered portion using a chamfered concave portion can be formed on the inner surface of the grinding hole by giving an eccentric motion between the hole and the hole.

本発明の請求項に記載の孔形成用ドリルは、請求項1または2に記載の孔形成用ドリルであって、
前記砥石部は、先端側において設けられ硬脆材料板を貫通する貫通砥石部と、該貫通砥石部よりも後方側において設けられた前記曲面研削部と、から構成されていることを特徴としている。
この特徴によれば、砥石部の先端側の貫通砥石部により硬脆材料板に貫通孔を形成した後に、曲面研削部と硬脆材料板の研削孔との間に偏心運動を与えて研削することで、一つの孔形成用ドリルで一貫して、内周面に曲面を有する貫通孔を形成できる。
The hole forming drill according to claim 3 of the present invention is the hole forming drill according to claim 1 or 2 ,
The grindstone portion includes a penetrating grindstone portion that is provided on the front end side and penetrates the hard and brittle material plate, and the curved grinding portion that is disposed on the rear side of the penetrating grindstone portion. .
According to this feature, after the through hole is formed in the hard and brittle material plate by the penetrating grindstone portion on the tip side of the grindstone portion, an eccentric motion is applied between the curved grinding portion and the grinding hole of the hard and brittle material plate to perform grinding. Thus, it is possible to form a through hole having a curved surface on the inner peripheral surface consistently with a single hole forming drill.

本発明の請求項に記載の孔形成用ドリルは、請求項に記載の孔形成用ドリルであって、
前記曲面研削部の外径が、前記貫通砥石部の外径と略同径若しくは小径に形成されていることを特徴としている。
この特徴によれば、曲面研削部の外径が、貫通砥石部の外径と略同径若しくは小径に形成されているため、砥石部の先端側の貫通砥石部による硬脆材料板の貫通の際に、この貫通砥石部と硬脆材料板との偏心運動を0若しくは僅かにして貫通孔を形成できる。
The hole forming drill according to claim 4 of the present invention is the hole forming drill according to claim 3 ,
The outer diameter of the curved grinding portion is formed to be substantially the same as or smaller than the outer diameter of the penetrating grindstone portion.
According to this feature, since the outer diameter of the curved grinding portion is formed to be substantially the same as or smaller than the outer diameter of the penetrating grindstone portion, the penetration of the hard and brittle material plate by the penetrating grindstone portion on the tip side of the grindstone portion. At this time, the through-hole can be formed by setting the eccentric motion between the through-whetstone portion and the hard and brittle material plate to 0 or slightly.

本発明の実施例を以下に説明する。   Examples of the present invention will be described below.

本発明の実施例1を図1〜図9及び図18に基づいて説明する。先ず図1は、本発明に係る硬脆材料板の適用例を示す概略斜視図である。図2は、本発明の実施例1における孔形成用ドリルを示す斜視図である。図3は、図2と同じく正面図である。図4は、図2と同じく側面図である。図5は、図2と同じく断側面図である。図6は、図2と同じく板ガラスを穿孔する状況を示す断面図である。図7は、図6のA−A断面図である。図8(a)は、図2と同じく板ガラスを貫通した状況を示す断面図であり、(b)は、中間砥石部で研削する状況を示す断面図である。図9(a)は、図2と同じく研削後の板ガラスの研削孔を示す断面図であり、(b)は、板ガラスに曲げ荷重が掛った状況を示す断面図である。図18(a)は、実施例1において研削孔の貫通方向の位置における接線の傾き角度を例示した図であり、(b)は、研削孔の貫通方向の位置における接線の傾き角度を示すグラフである。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic perspective view showing an application example of a hard and brittle material plate according to the present invention. FIG. 2 is a perspective view showing the hole forming drill in Example 1 of the present invention. FIG. 3 is a front view similar to FIG. FIG. 4 is a side view similar to FIG. FIG. 5 is a cross-sectional side view similar to FIG. FIG. 6 is a cross-sectional view showing a situation where a plate glass is perforated as in FIG. FIG. 7 is a cross-sectional view taken along the line AA of FIG. FIG. 8A is a cross-sectional view showing a situation where the plate glass is penetrated similarly to FIG. 2, and FIG. 8B is a cross-sectional view showing a situation where grinding is performed by the intermediate grindstone portion. FIG. 9A is a cross-sectional view showing a ground hole of a plate glass after grinding, as in FIG. 2, and FIG. 9B is a cross-sectional view showing a state in which a bending load is applied to the plate glass. 18A is a diagram illustrating the inclination angle of the tangent at the position of the grinding hole in the penetration direction in Example 1, and FIG. 18B is a graph showing the inclination angle of the tangent at the position of the grinding hole in the penetration direction. It is.

まず、図1に示されるように、表裏面に貫通した貫通孔を備えた硬脆材料板の適用例を説明する。プラズマディスプレイパネル1は、互いに組み合わされてケースを構成するフロントケース部2及びバックケース部8と、該ケース内に収容される内部ユニット10と、を備えている。   First, as shown in FIG. 1, an application example of a hard and brittle material plate provided with through holes penetrating the front and back surfaces will be described. The plasma display panel 1 includes a front case portion 2 and a back case portion 8 which are combined with each other to form a case, and an internal unit 10 accommodated in the case.

内部ユニット10は、放熱用保持板としてのシャーシ部材7と、該シャーシ部材7の前面に支持される表示パネル9と、シャーシ部材7と表示パネル9との間に介在させた接着部材としての熱伝導シート6と、帯電防止、色調・輝度補正、電磁波遮蔽等の機能を有し、表示パネル9の前面に配置される光学機能フィルタ3と、からなる。   The internal unit 10 includes a chassis member 7 as a heat dissipation holding plate, a display panel 9 supported on the front surface of the chassis member 7, and heat as an adhesive member interposed between the chassis member 7 and the display panel 9. The conductive sheet 6 and the optical function filter 3 having functions such as antistatic, color tone / brightness correction, electromagnetic wave shielding, etc., are disposed on the front surface of the display panel 9.

表示パネル9は、前面側に設けた板ガラス4と、背面側に設けた硬脆材料板としての板ガラス5とから構成されており、板ガラス4は板ガラス5に比べて長辺方向が長く、短辺方向が短く形成されている。これにより板ガラス4と板ガラス5とは互いに重合しない領域が存在し、その非重合領域には表示パネル9内に設けられた電極(図示略)に接続された端子(図示略)が形成されている。この端子には、先端にコネクタ(図示略)を有する複数のフィルム状配線(図示略)が圧着され、前記コネクタがシャーシ部材7の背面に配置される回路基板(図示略)に設けられたコネクタ(図示略)と連結されることにより、該回路基板と表示パネル9とが電気的に接続されている。   The display panel 9 is composed of a plate glass 4 provided on the front side and a plate glass 5 as a hard and brittle material plate provided on the back side. The plate glass 4 has a long side direction longer than the plate glass 5 and a short side. The direction is short. Accordingly, there is a region where the plate glass 4 and the plate glass 5 do not overlap each other, and terminals (not shown) connected to electrodes (not shown) provided in the display panel 9 are formed in the non-polymerized region. . A plurality of film-like wiring (not shown) having a connector (not shown) at the tip is crimped to this terminal, and the connector is provided on a circuit board (not shown) arranged on the back surface of the chassis member 7. By being coupled to (not shown), the circuit board and the display panel 9 are electrically connected.

前面側の板ガラス4と背面側の板ガラス5との周縁部は、ガス放電用空間を形成するために低融点ガラスからなるシール材(図示略)により接着されてシールされ、密封されたガス放電用空間内には所定圧の希ガス(ネオン及びキセノンの混合ガス等)が封入されている。   The peripheral portions of the front side glass plate 4 and the rear side glass plate 5 are bonded and sealed with a sealing material (not shown) made of low melting point glass to form a gas discharge space, and the gas discharge is sealed. A rare gas (such as a mixed gas of neon and xenon) having a predetermined pressure is sealed in the space.

そして、板ガラス5の角部近傍の所定箇所に、前記したガス放電用空間の内部に封入する希ガスを流通させるための貫通孔が、板ガラス5の表裏面を貫通して形成されている。以下に、孔形成用ドリルによる貫通孔の形成工程について説明する。   And the through-hole for distribute | circulating the noble gas enclosed in the inside of the above-mentioned gas discharge space is formed in the predetermined location near the corner | angular part of the plate glass 5 so that the front and back of the plate glass 5 may be penetrated. Below, the formation process of the through-hole by the drill for hole formation is demonstrated.

図2の符号11は、本実施例における孔形成用ドリルとしてのダイヤモンドドリルであり、このダイヤモンドドリル11は、先端面と外周面にダイヤモンドを着装した砥石部としてのダイヤモンド砥石部12と、回転軸として作用する鋼製のシャンク13とで構成されている。尚、ダイヤモンド砥石部12は、ダイヤモンド砥粒を用いてメタルボンド砥石あるいは電着砥石として製作される。   Reference numeral 11 in FIG. 2 is a diamond drill as a hole forming drill in the present embodiment. The diamond drill 11 includes a diamond grindstone portion 12 as a grindstone portion in which diamond is mounted on a front end surface and an outer peripheral surface, and a rotating shaft. It is comprised with the steel shank 13 which acts as. The diamond grindstone portion 12 is manufactured as a metal bond grindstone or an electrodeposition grindstone using diamond abrasive grains.

また、図2ないし図4に示されるように、ダイヤモンド砥石部12は、先端側に形成された小径をなす貫通砥石部としての先端砥石部14と、中間部に形成されて先端砥石部14よりも大径をなす曲面研削部としての後方砥石部15と、で構成されている。   Further, as shown in FIGS. 2 to 4, the diamond grindstone portion 12 includes a tip grindstone portion 14 as a small-diameter penetrating grindstone portion formed on the tip side and an intermediate portion formed from the tip grindstone portion 14. And a rear grinding wheel portion 15 as a curved grinding portion having a large diameter.

先端砥石部14には、粒径が大きな粗いダイヤモンド砥粒が付着されるとともに、後方砥石部15には、先端砥石部14に付着されたダイヤモンド砥粒よりも粒径が小さい細かいダイヤモンド砥粒が付着されている。   Coarse diamond abrasive grains having a large particle size are attached to the tip grindstone portion 14, and fine diamond abrasive grains having a particle size smaller than that of the diamond abrasive grains adhered to the tip grindstone portion 14 are attached to the rear grindstone portion 15. It is attached.

また、先端砥石部14は、軸方向に沿って略同径に形成された略円筒形状をなし、先端砥石部14の側周には、円筒面14aが形成されるとともに、先端砥石部14の先端側には、先端に向かって直径が小さくなるように形成された円錐面14bが形成されている。尚、図2の部分拡大斜視図に示すように、先端砥石部14の先端部には、円錐面14bによって形成される円錐体の先端が切り欠かれて平坦面に形成された先端面14cが設けられ、すなわち先端砥石部14の先端部の形状が切頭円錐形状となっている。   Further, the tip grindstone portion 14 has a substantially cylindrical shape formed with substantially the same diameter along the axial direction, and a cylindrical surface 14 a is formed on the side periphery of the tip grindstone portion 14. On the distal end side, a conical surface 14b is formed so that the diameter decreases toward the distal end. As shown in the partial enlarged perspective view of FIG. 2, the tip of the tip grindstone 14 has a tip surface 14c formed by flattening the tip of the cone formed by the cone surface 14b. In other words, the shape of the tip portion of the tip grindstone portion 14 is a truncated cone shape.

また、後方砥石部15は、先端砥石部14よりもダイヤモンドドリル11の軸方向後方側において設けられているとともに、回転軸の径方向に膨出した曲面を備えている。より具体的には、後方砥石部15は、回転軸の軸方向に沿って接線の傾きが連続する曲面であって、硬脆材料板の表面における開口部を研削する開口部研削面15aと、同様に硬脆材料板の裏面における開口部を研削する開口部研削面15cと、この開口部研削面15a、15cよりも漸次拡径して形成され硬脆材料板の軸方向に内方側を研削する内方部研削面15bと、から成る曲面を有している。また、後方砥石部15は、回転軸の軸方向において内方部研削面15bの中間に位置する中心部を中心として、軸方向に略対称の連続した曲面を備えている。   The rear grindstone 15 is provided on the rear side in the axial direction of the diamond drill 11 with respect to the tip grindstone 14, and has a curved surface that bulges in the radial direction of the rotating shaft. More specifically, the rear grindstone 15 is a curved surface in which the tangential inclination continues along the axial direction of the rotation axis, and an opening grinding surface 15a for grinding the opening on the surface of the hard and brittle material plate; Similarly, an opening grinding surface 15c that grinds the opening on the back surface of the hard and brittle material plate, and the diameter of the opening grinding surface 15a and 15c is gradually increased from that of the hard and brittle material plate. It has a curved surface comprising an inner grinding surface 15b to be ground. Further, the rear grindstone portion 15 includes a continuous curved surface that is substantially symmetrical in the axial direction with a central portion located in the middle of the inner grinding surface 15b in the axial direction of the rotating shaft.

先端砥石部14の先端面14cの中央部には、略半球形状に刳り貫かれて形成された微小な凹部14dが形成されている。また、図3に示すように、先端砥石部14の先端面14cは、ダイヤモンドドリル11の正面視において略円形状をなすとともに、先端面14cに形成された凹部14dは、先端面14cの同心円として形成されている。   At the center portion of the tip surface 14c of the tip grindstone portion 14 is formed a minute recess 14d that is formed in a substantially hemispherical shape. Further, as shown in FIG. 3, the tip surface 14c of the tip grindstone portion 14 has a substantially circular shape when viewed from the front of the diamond drill 11, and the recess 14d formed on the tip surface 14c is a concentric circle of the tip surface 14c. Is formed.

次に、ダイヤモンドドリル11を用いて硬脆材料板としての板ガラス5が研削される工程について図5から図8を用いて詳述する。図5に示すように、ダイヤモンドドリル11を用いて硬脆材料板である板ガラス5を研削する際には、先ずダイヤモンドドリル11をシャンク13の軸心αを中心に軸回転させつつ、先端砥石部14の先端面14cを板ガラス5の表面に当接させる。このとき先端砥石部14の先端が切頭円錐形状をなしていることで、押圧力が先端面14cに集中するようになり、板ガラス5が研削され易くなっている。   Next, the process of grinding the plate glass 5 as a hard and brittle material plate using the diamond drill 11 will be described in detail with reference to FIGS. As shown in FIG. 5, when grinding the plate glass 5, which is a hard and brittle material plate, using the diamond drill 11, first the diamond drill 11 is rotated about the axis α of the shank 13, and the tip grindstone portion 14 is brought into contact with the surface of the plate glass 5. At this time, since the tip of the tip grindstone portion 14 has a truncated cone shape, the pressing force is concentrated on the tip surface 14c, and the plate glass 5 is easily ground.

また、図6に示すように、ダイヤモンドドリル11のダイヤモンド砥石部12が、シャンク13の軸心αを中心に軸回転しつつ、ダイヤモンド砥石部12と板ガラス5との間に相対的な偏心運動が与えられるようになっている。   Further, as shown in FIG. 6, the diamond wheel 12 of the diamond drill 11 rotates about the axis α of the shank 13, and a relative eccentric motion occurs between the diamond wheel 12 and the plate glass 5. It has come to be given.

ダイヤモンドドリル11の偏心運動について詳述すると、図7に示すように、ダイヤモンドドリル11の先端砥石部14の円筒面14aを、板ガラス5に形成された被研削面である略円形状の研削孔17の内周面に当接させ、ダイヤモンドドリル11を軸心α周りにa方向に軸回転させながら、先端砥石部14の円筒面14aが研削孔17の内周面の全周に渡って当接するように、ダイヤモンドドリル11の軸回転の軸心αを偏心軸βの周りにb方向に回転させ、すなわちダイヤモンドドリル11を偏心軸βを中心として遊星回転運動させる。尚、偏心軸βが円形状をなす研削孔17の中心軸となっている。   The eccentric motion of the diamond drill 11 will be described in detail. As shown in FIG. 7, the cylindrical surface 14 a of the tip grindstone portion 14 of the diamond drill 11 has a substantially circular grinding hole 17 that is a surface to be ground formed on the plate glass 5. The cylindrical surface 14a of the tip grindstone 14 abuts over the entire circumference of the inner peripheral surface of the grinding hole 17 while rotating the diamond drill 11 about the axis α in the direction a. As described above, the axis α of the shaft rotation of the diamond drill 11 is rotated in the b direction around the eccentric shaft β, that is, the diamond drill 11 is rotated on the planetary axis about the eccentric shaft β. The eccentric shaft β is the central axis of the circular grinding hole 17.

ダイヤモンドドリル11と板ガラス5との間に相対的な偏心運動を与える手段としては、板ガラス5を静止させた状態で固定し、ダイヤモンドドリル11を軸心α周りに軸回転させる第1モータ(図示略)を設けるとともに、ダイヤモンドドリル11及び前記第1モータを研削孔17の中心軸である偏心軸β周りに回転させるための第2モータ(図示略)を設け、これら第1モータ及び第2モータの両方を駆動させることで、ダイヤモンドドリル11と板ガラス5との間に相対的な偏心運動を与える方法がある。   As a means for giving a relative eccentric motion between the diamond drill 11 and the plate glass 5, a first motor (not shown) that fixes the plate glass 5 in a stationary state and rotates the diamond drill 11 about the axis α. ) And a second motor (not shown) for rotating the diamond drill 11 and the first motor around an eccentric shaft β that is the central axis of the grinding hole 17. There is a method of giving a relative eccentric motion between the diamond drill 11 and the plate glass 5 by driving both.

また、ダイヤモンドドリル11に偏心運動を与えることによって、板ガラス5に形成される研削孔17の直径は、先端砥石部14の外径よりも大きく、更に後述するように、後方砥石部15の外径よりも大きくなるように形成される。尚、研削孔17の直径は、ダイヤモンドドリル11の回転軸の軸心αと偏心運動の偏心軸βとの離間距離eによって変化するようになっており、軸心αと偏心軸βとの離間距離eが大きければ研削孔17の直径が大きく形成される。   Further, by giving an eccentric motion to the diamond drill 11, the diameter of the grinding hole 17 formed in the plate glass 5 is larger than the outer diameter of the tip grindstone portion 14, and as will be described later, the outer diameter of the rear grindstone portion 15. It is formed to be larger. The diameter of the grinding hole 17 changes depending on the separation distance e between the axis α of the rotation axis of the diamond drill 11 and the eccentric shaft β of the eccentric motion, and the separation between the axis α and the eccentric shaft β. If the distance e is large, the diameter of the grinding hole 17 is formed large.

更に、本実施例におけるダイヤモンドドリル11では、ダイヤモンド砥石部12をシャンク13の軸心αを中心として軸回転させるとともに、少なくとも研削孔17の中心点(偏心軸β)を先端面14cが通過するように、ダイヤモンド砥石部12と板ガラス5との間に偏心運動を与えて板ガラス5の研削を行うようになっている。そのためダイヤモンド砥石部12が軸回転されたときに、凹部14dに対応した位置や研削孔17の中心点(偏心軸β)に生じる板ガラス5の残存部位を、偏心運動されるダイヤモンド砥石部12の先端面14cによって研削して無くすことができる。   Furthermore, in the diamond drill 11 in the present embodiment, the diamond grindstone 12 is rotated about the axis α of the shank 13, and the tip surface 14c passes through at least the center point (eccentric axis β) of the grinding hole 17. Further, the plate glass 5 is ground by giving an eccentric motion between the diamond grindstone portion 12 and the plate glass 5. Therefore, when the diamond grindstone 12 is axially rotated, the tip of the diamond grindstone 12 that is eccentrically moved at the position corresponding to the recess 14d and the remaining portion of the plate glass 5 generated at the center point of the grinding hole 17 (eccentric axis β). The surface 14c can be ground away.

また、凹部14dが、板ガラス5が研削されることで発生する切粉を一時的に収容できるようになっている。そのため切粉がダイヤモンド砥石部12の先端面14cと板ガラス5との間に介在することで生じるダイヤモンドドリル11の研削効率の低下を防止できる。尚、ダイヤモンドドリル11を用いた研削の際に、研削孔17と先端砥石部14との間隙に洗浄水を流し込むこともでき、研削によって生じた切粉等をこの洗浄水で洗い流しながら研削できるようになっている。   Moreover, the recessed part 14d can accommodate temporarily the chip generate | occur | produced when the plate glass 5 is ground. Therefore, it is possible to prevent a reduction in the grinding efficiency of the diamond drill 11 caused by the chips being interposed between the tip surface 14 c of the diamond grindstone 12 and the plate glass 5. In the grinding using the diamond drill 11, cleaning water can be poured into the gap between the grinding hole 17 and the tip grindstone portion 14, so that chips and the like generated by grinding can be ground while washing with this cleaning water. It has become.

また、凹部14dは、その奥部に行く従って狭くなる形状となっており、このようにすることで、板ガラス5の研削の際に発生する切粉等が凹部14d内から排除され易くなり、切粉等が凹部14d内に詰まり難くなるため、使用後のダイヤモンドドリル11の手入れが容易になる。また、ダイヤモンドドリル11の回転軸の軸心α近傍は、回転径が略0であって回転運動がほとんど無い箇所となるため、先端面14cにおける軸心α近傍を凹部14dとすることで、回転運動がほとんど無い箇所を切粉の収容空間として利用できる。更に、硬脆材料の研削により欠損等が最も生じやすい先端面14cの一部を凹部14dとすることで、欠損の発生を防止できる。   Further, the concave portion 14d has a shape that becomes narrower as it goes to the inner portion thereof. By doing so, chips and the like generated during grinding of the glass sheet 5 can be easily removed from the concave portion 14d. Since powder or the like is less likely to be clogged in the recess 14d, the diamond drill 11 can be easily maintained after use. Further, the vicinity of the axis α of the rotation axis of the diamond drill 11 is a portion where the rotation diameter is substantially 0 and there is almost no rotational movement. A place where there is almost no movement can be used as a space for storing chips. Furthermore, by forming a part of the tip surface 14c where the defect or the like is most likely to occur due to the grinding of the hard and brittle material as the concave part 14d, the generation of the defect can be prevented.

先端砥石部14が板ガラス5を貫通した後、ダイヤモンドドリル11の軸回転の軸心αと偏心運動の偏心軸βとの離間距離eを徐々に大きくすることで、先端砥石部14の円筒面14aにより研削孔17の内周面を研削して研削孔17の直径が大きくなるように研削孔17を拡大させる。   After the tip grindstone portion 14 penetrates the plate glass 5, the cylindrical surface 14a of the tip grindstone portion 14 is gradually increased by increasing the separation distance e between the shaft rotation axis α of the diamond drill 11 and the eccentric shaft β of the eccentric motion. By grinding the inner peripheral surface of the grinding hole 17, the grinding hole 17 is enlarged so that the diameter of the grinding hole 17 is increased.

そして、図8(a)に示されるように、先端砥石部14による上述した偏心運動で、研削孔17の直径L2を後方砥石部15の内方部研削面15bの外径L1よりも大きく形成した後に、ダイヤモンド砥石部12を軸方向に研削孔17に更に挿入させ、後方砥石部15を研削孔17の内周面に当接させる。そして、図8(b)に示されるように、ダイヤモンドドリル11を軸心α周りに軸回転させつつ、後方砥石部15の周面が研削孔17の内周面の全周に及ぶように、ダイヤモンドドリル11を偏心運動させる。   8A, the diameter L2 of the grinding hole 17 is formed to be larger than the outer diameter L1 of the inner grinding surface 15b of the rear grinding wheel portion 15 by the above-described eccentric motion by the tip grinding wheel portion 14. After that, the diamond grindstone 12 is further inserted into the grinding hole 17 in the axial direction, and the rear grindstone 15 is brought into contact with the inner peripheral surface of the grinding hole 17. Then, as shown in FIG. 8B, while rotating the diamond drill 11 around the axis α, the peripheral surface of the rear grindstone 15 extends over the entire inner peripheral surface of the grinding hole 17. The diamond drill 11 is moved eccentrically.

また、このように、先端砥石部14により板ガラス5を貫通した研削孔17を形成した後に、ダイヤモンドドリル11の軸方向にダイヤモンド砥石部12と板ガラス5との相対位置を移動させ、先端砥石部14よりも後方側において形成された回転軸の径方向に膨出した曲面である後方砥石部15と、板ガラス5との間に偏心運動を与えて研削することで、一つのダイヤモンドドリル11で一貫して、板ガラス5に、この後方砥石部15に沿った形状の曲面を有する研削孔17を形成できる。すなわち、図9(a)に示されるように、貫通孔としての研削孔17は、後方砥石部15の径方向外方に膨出した曲面に沿って、径方向外方に拡径した曲面に形成される。具体的には板ガラス5の表面5a近傍と裏面5b近傍においては直径L2に形成されるとともに、中間面5cに向けて漸次拡径し、中間面5cにおいては直径L2よりも大径の直径L3に形成される。尚、後方砥石部15は、先端砥石部14よりも大径に形成されているため、本実施例のダイヤモンドドリル11は、比較的大径の研削孔17を形成する用途に適している。すなわち、回転軸の径方向に膨出した曲面である後方砥石部15と、板ガラス5の研削孔17との間に偏心運動を与えることにより、研削孔17の内面を更に大径の曲面に形成できる。   Further, after forming the grinding hole 17 penetrating the plate glass 5 by the tip grindstone portion 14 in this way, the relative position between the diamond grindstone portion 12 and the plate glass 5 is moved in the axial direction of the diamond drill 11, and the tip grindstone portion 14 is moved. By applying an eccentric motion between the rear grinding wheel portion 15, which is a curved surface bulging in the radial direction of the rotating shaft formed on the rear side, and the plate glass 5, grinding is performed consistently with one diamond drill 11. Thus, a grinding hole 17 having a curved surface with a shape along the rear grinding wheel portion 15 can be formed in the plate glass 5. That is, as shown in FIG. 9A, the grinding hole 17 as a through hole is a curved surface that expands radially outward along the curved surface bulging radially outward of the rear grindstone 15. It is formed. Specifically, in the vicinity of the front surface 5a and the back surface 5b of the plate glass 5, the diameter L2 is formed, and the diameter gradually increases toward the intermediate surface 5c, and the intermediate surface 5c has a diameter L3 larger than the diameter L2. It is formed. In addition, since the back grindstone part 15 is formed in a larger diameter than the front-end grindstone part 14, the diamond drill 11 of a present Example is suitable for the use which forms the comparatively large diameter grinding hole 17. FIG. That is, the inner surface of the grinding hole 17 is formed into a larger-diameter curved surface by giving an eccentric motion between the rear grinding wheel portion 15 which is a curved surface bulging in the radial direction of the rotating shaft and the grinding hole 17 of the plate glass 5. it can.

また、後方砥石部15には、先端砥石部14に付着されたダイヤモンド砥粒よりも細かいダイヤモンド砥粒が付着されているため、後方砥石部15によって研削孔17の内周面の面取りができるようになっている。尚、ダイヤモンド砥石部12に別段に円錐面を設け、該円錐面を用いて研削孔17周縁の面取りを行うこともできる。   In addition, since diamond abrasive grains finer than diamond abrasive grains attached to the tip grindstone portion 14 are adhered to the rear grindstone portion 15, the rear grindstone portion 15 can chamfer the inner peripheral surface of the grinding hole 17. It has become. It is also possible to provide a conical surface in the diamond grindstone 12 and chamfer the periphery of the grinding hole 17 using the conical surface.

このように、始めに粗いダイヤモンド砥粒が付着された先端砥石部14を用いて板ガラス5を貫通させて研削孔17を形成した後、細かいダイヤモンド砥粒が付着された後方砥石部15により研削孔17の面取りを行うことで、板ガラス5に研削孔17を形成する研削時間を短縮できるばかりか、貫通用のドリルとその他の面取り用の器具との交換作業が必要なくなり、研削孔17形成のための作業時間を短縮できるようになっている。   In this way, after forming the grinding hole 17 by penetrating the plate glass 5 using the tip grinding wheel portion 14 to which coarse diamond abrasive grains are first attached, the grinding hole is formed by the rear grinding stone portion 15 to which fine diamond abrasive grains are adhered. By chamfering 17, not only the grinding time for forming the grinding hole 17 in the plate glass 5 can be shortened, but also the replacement work between the drill for penetration and other chamfering tools is not required, and the grinding hole 17 is formed. The work time can be shortened.

次に、図18(a)に示されるように、本実施例の板ガラス5に形成された研削孔17における接線の傾きについて説明すると、板ガラス5の表面5aに平行の仮想の基準面Kに対する接線の傾き角度θは、図18(a)で例示されるθ1ないしθ6のように連続して変化している。図18(b)に示されるように、板ガラス5に形成された研削孔17の貫通方向の位置t(横軸)における接線の傾き角度θ(縦軸)は、板ガラス5の表面5a(t=0)から裏面5b(t=T)に向かって連続して増加している。具体的には、板ガラス5の表面5aと裏面5bとの仮想の中間面5c(t=T/2)において、傾き角度θ4はπ/2を示し、この中間面5cを中心として板ガラス5の表裏面に向かって、傾き角度θは略対称に変化している。   Next, as shown in FIG. 18A, the inclination of the tangent in the grinding hole 17 formed in the glass sheet 5 of the present embodiment will be described. The tangent to the virtual reference plane K parallel to the surface 5 a of the glass sheet 5. The inclination angle θ of FIG. 18 continuously changes as θ1 to θ6 illustrated in FIG. As shown in FIG. 18B, the inclination angle θ (vertical axis) of the tangent line at the position t (horizontal axis) in the penetration direction of the grinding hole 17 formed in the plate glass 5 is the surface 5a (t = 0) continuously increases toward the back surface 5b (t = T). Specifically, in the virtual intermediate surface 5c (t = T / 2) between the front surface 5a and the back surface 5b of the plate glass 5, the inclination angle θ4 indicates π / 2, and the surface of the plate glass 5 is centered on the intermediate surface 5c. The inclination angle θ changes substantially symmetrically toward the back surface.

次に、図9(b)に示されるように、上述したようにダイヤモンドドリル11により形成された研削孔17を有する板ガラス5に作用する曲げ荷重について説明すると、例えば板ガラス5の表面5aを上面として図示しない把持手段により把持すると、図示白抜き矢印方向に曲げ荷重が掛る。具体的には板ガラス5の中間面5cを中心として、表面5a側に引張り力が発生し、この引張り力は、表面5aにおいて最も大きい力として作用する。同様に、中間面5cの裏面5b側に圧縮力が発生し、この圧縮力は、裏面5bにおいて最も大きい力として作用する。   Next, as shown in FIG. 9B, the bending load acting on the plate glass 5 having the grinding holes 17 formed by the diamond drill 11 as described above will be described. For example, the surface 5a of the plate glass 5 is used as the upper surface. When gripped by a gripping means (not shown), a bending load is applied in the direction of the outlined arrow. Specifically, a tensile force is generated on the surface 5a side around the intermediate surface 5c of the plate glass 5, and this tensile force acts as the largest force on the surface 5a. Similarly, a compressive force is generated on the back surface 5b side of the intermediate surface 5c, and this compressive force acts as the largest force on the back surface 5b.

次に、板ガラス5の表裏面に貫通した研削孔17の内周面において作用する曲げ荷重について説明すると、曲げ荷重による応力は、研削孔17の内周面の貫通方向における接線方向に向けて作用する。上述したように、ダイヤモンドドリル11のダイヤモンド砥石部12に形成された後方砥石部15により、板ガラス5に接線の傾きが連続した曲面からなる研削孔17を形成することができるため、この板ガラス5に曲げ荷重がかかっても、曲げ荷重による応力が研削孔17の内面における曲面の接線方向に連続して分散されることで、板ガラス5が割れ難い形状の研削孔17を形成できる。   Next, the bending load acting on the inner peripheral surface of the grinding hole 17 penetrating the front and back surfaces of the plate glass 5 will be described. The stress due to the bending load acts toward the tangential direction in the penetrating direction of the inner peripheral surface of the grinding hole 17. To do. As described above, the rear grinding wheel portion 15 formed in the diamond grinding wheel portion 12 of the diamond drill 11 can form the grinding hole 17 having a curved surface with a continuous tangential slope in the glass plate 5. Even when a bending load is applied, the stress due to the bending load is continuously dispersed in the tangential direction of the curved surface on the inner surface of the grinding hole 17, so that the grinding hole 17 having a shape in which the plate glass 5 is difficult to break can be formed.

特に、本実施例のように、ダイヤモンドドリル11の後方砥石部15が、板ガラス5の表面5a及び裏面5bにおける開口部を研削する開口部研削面15a、15cから、板ガラス5の開口部よりも内方側を研削する内方部研削面15bに向かって漸次拡径する曲面を有していることで、図9(a)に示されるように、開口部研削面15a、15cにより研削される開口部の孔径L2を、内方部研削面15bにより研削される孔径L3と比べて小径に形成できるため、板ガラス5に掛る曲げ荷重が最も大きく作用する板ガラス5の表面5a及び裏面5bにおいて、曲げ荷重に対し割れ難さを向上させることができる。また、板ガラス5に掛る曲げ荷重による応力を分散させる方向が、研削孔17から径方向に離間する方向に形成できるため、研削孔17に集中する曲げ荷重を、板ガラス5における研削孔17の周辺部で受け持たせることができ、板ガラス5が割れ難くなる。   In particular, as in this embodiment, the rear grindstone portion 15 of the diamond drill 11 is located on the inner side of the opening portion of the plate glass 5 from the opening grinding surfaces 15a and 15c for grinding the openings on the front surface 5a and the back surface 5b of the plate glass 5. As shown in FIG. 9 (a), openings that are ground by the opening grinding surfaces 15a and 15c have a curved surface that gradually increases in diameter toward the inner grinding surface 15b that grinds the side. Since the hole diameter L2 of the portion can be formed smaller than the hole diameter L3 ground by the inner grinding surface 15b, the bending load is applied to the front surface 5a and the rear surface 5b of the plate glass 5 where the bending load applied to the plate glass 5 acts most greatly. In contrast, it is possible to improve the difficulty of cracking. Further, since the direction in which the stress due to the bending load applied to the plate glass 5 is dispersed can be formed in a direction away from the grinding hole 17 in the radial direction, the bending load concentrated on the grinding hole 17 is applied to the peripheral portion of the grinding hole 17 in the plate glass 5. The glass sheet 5 is difficult to break.

また、内方部研削面15bの中心部を中心として軸方向に略対称の連続した曲面を有した後方砥石部15により、板ガラス5に、この後方砥石部15に沿った曲面を形成できるため、板ガラス5の表面5aを上方に向けて把持した場合に生じる、板ガラス5の表面5aに引張り力が掛り裏面5bに圧縮力が掛る方向の曲げ荷重と、この方向と反対に、板ガラス5の裏面5bを上方に向けて把持した場合に生じる、板ガラス5の裏面5bに引張り力が掛り表面5aに引張り力が掛る曲げ荷重とに対し、同様の割れ難さを生じさせることができる。   Further, since the rear grinding wheel portion 15 having a continuous curved surface that is substantially symmetrical in the axial direction around the center portion of the inner grinding surface 15b, a curved surface along the rear grinding wheel portion 15 can be formed on the plate glass 5, A bending load in the direction in which a tensile force is applied to the front surface 5a of the plate glass 5 and a compressive force is applied to the back surface 5b, which occurs when the front surface 5a of the plate glass 5 is gripped upward, and the reverse surface 5b of the plate glass 5 is opposite to this direction. The same difficulty of cracking can be generated against a bending load in which a tensile force is applied to the back surface 5b of the plate glass 5 and a tensile force is applied to the surface 5a.

更に、後方砥石部15は、貫通方向に沿って均一の曲率のみを有する曲面に形成されており、この後方砥石部15により形成された板ガラス5の研削孔17の内周面において接線の傾きが均一に連続しているため、曲げ荷重による応力を均等に分散させることができる。   Further, the rear grindstone portion 15 is formed in a curved surface having only a uniform curvature along the penetrating direction, and the inclination of the tangent line is inclined on the inner peripheral surface of the grinding hole 17 of the plate glass 5 formed by the rear grindstone portion 15. Since it is uniformly continuous, the stress due to the bending load can be evenly dispersed.

次に、実施例2に係る孔形成用ドリルにつき、図10及び図11に基づいて説明する。図10は、本発明の実施例2における孔形成用ドリルを示す側視図である。図11(a)は、図10と同じく中間砥石部で研削する状況を示す断面図であり、(b)は、研削後の板ガラスの研削孔を示す断面図である。なお、上記実施例と同一構成で重複する構成を省略する。   Next, a hole forming drill according to Example 2 will be described with reference to FIGS. FIG. 10 is a side view showing the hole forming drill in Embodiment 2 of the present invention. FIG. 11A is a cross-sectional view showing a situation where the intermediate grindstone is ground as in FIG. 10, and FIG. 11B is a cross-sectional view showing a grinding hole of the plate glass after grinding. In addition, the same structure as the said Example is abbreviate | omitted.

図10は、実施例2における孔形成用ドリルとしてのダイヤモンドドリル21であって、曲面研削部としての後方砥石部25は、回転軸の径方向に膨出した曲面である内方部研削面25bと、この内方部研削面25bの軸方向の上下両方に、回転軸の径方向に縮径した形状の面取凹部としての開口部研削面25a、25cと、を有する曲面を備えている。より具体的には、後方砥石部25の曲面形状が、板ガラス5の表面5aにおける開口部を研削する開口部研削面25a、並びに板ガラス5の裏面5bにおける開口部を研削する開口部研削面25cから、板ガラス5の開口部よりも内方側を研削する内方部研削面25bに向かって漸次拡径する曲面を有しており、また、開口部研削面25a、25cが、内方部研削面25bに接線の傾きが連続して、且つ縮径する曲面の面取凹部に形成されている。更に、後方砥石部25は、シャンク23の軸方向における内方部研削面25bの中心部を中心として、軸方向に略対称の連続した曲面に形成されている。   FIG. 10 is a diamond drill 21 as a hole forming drill in the second embodiment, and a rear grindstone portion 25 as a curved grinding portion is an inner grinding surface 25b that is a curved surface bulging in the radial direction of the rotating shaft. In addition, curved surfaces having opening grinding surfaces 25a and 25c as chamfered concave portions having a diameter reduced in the radial direction of the rotating shaft are provided on both the upper and lower sides of the inner grinding surface 25b in the axial direction. More specifically, the curved shape of the rear grindstone 25 is from an opening grinding surface 25a for grinding the opening on the surface 5a of the plate glass 5 and an opening grinding surface 25c for grinding the opening on the back surface 5b of the plate glass 5. The curved surface gradually increases in diameter toward the inner grinding surface 25b that grinds the inner side from the opening of the plate glass 5, and the opening grinding surfaces 25a and 25c are inner grinding surfaces. 25b is formed in a chamfered concave portion of a curved surface with a continuous tangential inclination and a reduced diameter. Further, the rear grindstone portion 25 is formed in a continuous curved surface that is substantially symmetrical in the axial direction with the central portion of the inner grinding surface 25b in the axial direction of the shank 23 as the center.

図11(a)に示されるように、内方部研削面25bの軸方向の上下両方に面取凹部としての開口部研削面25a、25cを有している曲面研削部と、板ガラス5との間に偏心運動を与え、研削孔27の内周面を研削することにより、図11(b)に示されるように、板ガラス5に、内方部研削面25bに沿った内周面と、開口部研削面25a、25cを利用した面取り部27a、27bとを有する研削孔27を形成できる。また、研削孔27の内周面は、板ガラス5の表面5a連続する面取り部27a、及び板ガラス5の裏面5b連続する面取り部27bを有することとなるため、曲げ荷重による応力を面取り部27a、27bの接線方向に逃がすことができるばかりか、面取りがされているため、板ガラス5の取扱い時に欠損が生じ難い。尚、後方砥石部25は、先端砥石部24よりも大径に形成されているため、本実施例のダイヤモンドドリル21は、比較的大径の研削孔27を形成する用途に適している。すなわち、回転軸の径方向に膨出した曲面である後方砥石部25と、板ガラス5の研削孔27との間に偏心運動を与えることにより、研削孔27の内面を更に大径の曲面に形成できる。更に尚、面取凹部は、必ずしも回転軸の径方向に膨出した曲面である内方部研削面25bの軸方向の上下両方に形成される必要はなく、内方部研削面25bの軸方向の上下少なくとも何れか一方に形成されていてもよい。   As shown in FIG. 11 (a), a curved grinding portion having opening grinding surfaces 25a and 25c as chamfered concave portions on both the upper and lower sides in the axial direction of the inner grinding surface 25b, and the plate glass 5 By providing an eccentric motion between them and grinding the inner peripheral surface of the grinding hole 27, as shown in FIG. 11 (b), the plate glass 5 has an inner peripheral surface along the inner grinding surface 25b and an opening. A grinding hole 27 having chamfered portions 27a and 27b utilizing the partially ground surfaces 25a and 25c can be formed. Moreover, since the inner peripheral surface of the grinding hole 27 has a chamfered portion 27a continuous with the surface 5a of the plate glass 5 and a chamfered portion 27b continuous with the back surface 5b of the plate glass 5, the stress due to the bending load is chamfered by the chamfered portions 27a and 27b. In addition to being able to escape in the tangential direction, the chamfer is chamfered, so that it is difficult to cause defects when the plate glass 5 is handled. In addition, since the back grindstone part 25 is formed in a larger diameter than the front-end grindstone part 24, the diamond drill 21 of a present Example is suitable for the use which forms the comparatively large diameter grinding hole 27. FIG. That is, by giving an eccentric motion between the rear grinding wheel portion 25 which is a curved surface bulging in the radial direction of the rotating shaft and the grinding hole 27 of the plate glass 5, the inner surface of the grinding hole 27 is formed into a larger-diameter curved surface. it can. Furthermore, the chamfered recesses do not necessarily need to be formed both above and below in the axial direction of the inner grinding surface 25b, which is a curved surface that bulges in the radial direction of the rotating shaft, but in the axial direction of the inner grinding surface 25b. It may be formed on at least one of the upper and lower sides.

次に、実施例3に係る孔形成用ドリルにつき、図12に基づいて説明する。図12は、本発明の実施例3における孔形成用ドリルを示す側視図である。なお、上記実施例と同一構成で重複する構成を省略する。   Next, a hole forming drill according to Example 3 will be described with reference to FIG. FIG. 12 is a side view showing the hole forming drill in the third embodiment of the present invention. In addition, the same structure as the said Example is abbreviate | omitted.

図12は、実施例3における孔形成用ドリルとしてのダイヤモンドドリル31であって、曲面研削部としての後方砥石部35の曲面は、上述した実施例1における後方砥石部15の曲面と同じ曲率の曲面に形成されており、このダイヤモンドドリル31による穿孔で、図9(a)に示される研削孔17と同形状の曲面を有する研削孔が形成される。また、後方砥石部35の外径が、貫通砥石部としての先端砥石部34の外径よりも小径に形成されている。このようにすることで、先端砥石部34による板ガラス5の貫通の際に、実施例1のような偏心量の偏心運動を行わなくても、この先端砥石部34と板ガラス5との偏心運動を0若しくは僅かにして研削孔37を形成できる。そして、この研削孔37の内周面に当接させることなく、後方砥石部35を軸方向に相対移動させ易いばかりか、わずかの偏心運動で板ガラス5に曲面部を形成できる。   FIG. 12 is a diamond drill 31 as a hole forming drill in the third embodiment, and the curved surface of the rear grindstone portion 35 as the curved grinding portion has the same curvature as the curved surface of the rear grindstone portion 15 in the first embodiment described above. It is formed in a curved surface, and by this drilling by the diamond drill 31, a grinding hole having a curved surface having the same shape as the grinding hole 17 shown in FIG. Moreover, the outer diameter of the back grindstone part 35 is formed smaller than the outer diameter of the front-end grindstone part 34 as a penetration grindstone part. By doing in this way, when the plate glass 5 is penetrated by the tip grindstone portion 34, the eccentric motion between the tip grindstone portion 34 and the plate glass 5 can be performed without performing the eccentric motion of the eccentric amount as in the first embodiment. The grinding hole 37 can be formed with 0 or slightly. Then, without contacting the inner peripheral surface of the grinding hole 37, the rear grindstone portion 35 can be easily moved relatively in the axial direction, and the curved surface portion can be formed on the plate glass 5 with a slight eccentric motion.

尚、後方砥石部35は、先端砥石部34よりも小径に形成されているため、本実施例のダイヤモンドドリル31は、比較的小径の研削孔を形成する用途に適している。更に尚、後方砥石部35の外径は、先端砥石部34の外径よりも小径に限られず、先端砥石部34の外径と略同径に形成されていてもよい。   In addition, since the back grindstone part 35 is formed in a smaller diameter than the front-end grindstone part 34, the diamond drill 31 of a present Example is suitable for the use which forms a comparatively small diameter grinding hole. Furthermore, the outer diameter of the rear grindstone portion 35 is not limited to a smaller diameter than the outer diameter of the tip grindstone portion 34, and may be formed to be approximately the same diameter as the outer diameter of the tip grindstone portion 34.

次に、実施例4に係る孔形成用ドリルにつき、図13に基づいて説明する。図13は、本発明の実施例4における孔形成用ドリルを示す側視図である。なお、上記実施例と同一構成で重複する構成を省略する。   Next, a hole forming drill according to Example 4 will be described with reference to FIG. FIG. 13 is a side view showing the hole forming drill in the fourth embodiment of the present invention. In addition, the same structure as the said Example is abbreviate | omitted.

図13は、実施例4における孔形成用ドリルとしてのダイヤモンドドリル41であって、曲面研削部としての後方砥石部45の曲面は、上述した実施例2における後方砥石部25の曲面と同じ曲率の曲面に形成されるており、このダイヤモンドドリル41による穿孔で、図11(b)に示される研削孔27と同形状の曲面を有する研削孔が形成される。また、後方砥石部45の外径が、貫通砥石部としての先端砥石部44の外径よりも若干小径に形成されている。このようにすることで、先端砥石部44により、実施例1のような偏心量の偏心運動を行わなくても、板ガラスに先端砥石部44の外径と同径の内径を有する研削孔を形成するだけで、この研削孔の内周面に当接させることなく、後方砥石部45を軸方向に相対移動させ易いばかりか、わずかの偏心運動で板ガラス5に曲面部を形成できる。   FIG. 13 is a diamond drill 41 as a hole forming drill in the fourth embodiment, and the curved surface of the rear grindstone portion 45 as the curved grinding portion has the same curvature as the curved surface of the rear grindstone portion 25 in the second embodiment. It is formed in a curved surface, and by this drilling by the diamond drill 41, a grinding hole having a curved surface having the same shape as the grinding hole 27 shown in FIG. Further, the outer diameter of the rear grindstone 45 is formed to be slightly smaller than the outer diameter of the tip grindstone 44 as a through grindstone. In this way, the tip grindstone portion 44 forms a grinding hole having an inner diameter that is the same as the outer diameter of the tip grindstone portion 44 in the plate glass without performing an eccentric amount of eccentric movement as in the first embodiment. It is easy to relatively move the rear grindstone portion 45 in the axial direction without making contact with the inner peripheral surface of the grinding hole, and the curved surface portion can be formed on the plate glass 5 with a slight eccentric motion.

尚、後方砥石部45は、先端砥石部44よりも小径に形成されているため、本実施例のダイヤモンドドリル41は、比較的小径の研削孔を形成する用途に適している。更に尚、後方砥石部45の外径は、先端砥石部44の外径よりも小径に限られず、先端砥石部44の外径と略同径に形成されていてもよい。   Since the rear grindstone 45 is formed with a smaller diameter than the tip grindstone 44, the diamond drill 41 of this embodiment is suitable for use in forming a relatively small diameter grinding hole. Furthermore, the outer diameter of the rear grindstone portion 45 is not limited to be smaller than the outer diameter of the tip grindstone portion 44, and may be formed to be substantially the same diameter as the outer diameter of the tip grindstone portion 44.

次に、実施例5に係る孔形成用ドリルにつき、図14、図15及び図19に基づいて説明する。図14は、本発明の実施例5における孔形成用ドリルを示す側視図である。図15(a)は、図14と同じく中間砥石部で研削する状況を示す断面図であり、(b)は、研削後の板ガラスの研削孔を示す断面図である。図19は、実施例5において研削孔の貫通方向の位置における接線の傾き角度を示すグラフである。なお、上記実施例と同一構成で重複する構成を省略する。   Next, a hole forming drill according to Example 5 will be described with reference to FIGS. FIG. 14 is a side view showing the hole forming drill in the fifth embodiment of the present invention. FIG. 15A is a cross-sectional view showing a situation where the intermediate grindstone is ground as in FIG. 14, and FIG. 15B is a cross-sectional view showing a grinding hole of the plate glass after grinding. FIG. 19 is a graph showing the inclination angle of the tangent line at the position in the penetration direction of the grinding hole in Example 5. In addition, the same structure as the said Example is abbreviate | omitted.

図14は、実施例5における孔形成用ドリルとしてのダイヤモンドドリル51であって、後方砥石部55の研削面は、板ガラス5の表面5a側から内方に向かって表面5aと裏面5bとの略中間まで研削する軸方向に直線状に延びる研削面55aと、この研削面55aに連続して軸方向先方に向かって漸次縮径した曲面に形成された曲面研削部としての研削面55bと、この研削面55bの最も縮径した縮径箇所55b’に連続して板ガラス5の裏面5bまで研削する軸方向に直線状に延びる研削面55cと、から形成されている。   FIG. 14 is a diamond drill 51 as a hole forming drill in the fifth embodiment, and the grinding surface of the rear grindstone 55 is an abbreviation of the front surface 5a and the back surface 5b from the front surface 5a side of the plate glass 5 toward the inside. A grinding surface 55a that linearly extends in the axial direction to be ground to the middle, a grinding surface 55b as a curved grinding portion formed in a curved surface that is continuously reduced in diameter toward the axial direction ahead of the grinding surface 55a, The ground surface 55b is formed of a ground surface 55c that extends linearly in the axial direction and continues to the rear surface 5b of the glass sheet 5 continuously from the reduced diameter portion 55b ′ of the ground surface 55b.

図15(a)、(b)に示されるように、このように形成された後方砥石部55と、板ガラス5との間に偏心運動を与えることにより、板ガラス5に、後方砥石部55の研削面55a、55b、55cに沿った形状の内周面を有する研削孔57が形成される。   As shown in FIGS. 15A and 15B, by applying an eccentric motion between the rear grinding wheel portion 55 formed in this way and the plate glass 5, the grinding of the rear grinding stone portion 55 is performed on the plate glass 5. A grinding hole 57 having an inner peripheral surface shaped along the surfaces 55a, 55b and 55c is formed.

図19に示されるように、本実施例の板ガラス5に形成された研削孔57の接線の傾きについて説明すると、接線の傾き角度θは、研削面55aで研削される板ガラス5の表面5a(t=0)から中間面5c(t=T/2)に向かって、一定のπ/2であり、傾き角度θは、研削面55bで研削される板ガラス5の裏面5b(t=T)側に向かって連続して増加する。更に、接線の傾き角度θは、縮径箇所55b’で研削される被研削部(t=T1)において不連続に変化し、この被研削部(t=T1)から裏面5b(t=T)まで一定のπ/2である。   As shown in FIG. 19, the inclination of the tangential line of the grinding hole 57 formed in the glass sheet 5 of this embodiment will be described. The inclination angle θ of the tangential line is the surface 5a (t of the glass sheet 5 ground by the grinding surface 55a. = 0) from the intermediate surface 5c (t = T / 2) to a constant π / 2, and the inclination angle θ is on the back surface 5b (t = T) side of the plate glass 5 ground by the grinding surface 55b. It increases continuously. Further, the inclination angle θ of the tangent line changes discontinuously in the portion to be ground (t = T1) ground at the reduced diameter portion 55b ′, and the back surface 5b (t = T) from the portion to be ground (t = T1). Up to a constant π / 2.

次に、実施例6に係る孔形成用ドリルにつき、図16及び図17に基づいて説明する。図16は、本発明の実施例6における孔形成用ドリルを示す側視図である。図17(a)は、図16と同じく中間砥石部で研削する状況を示す断面図であり、(b)は、研削後の板ガラスの研削孔を示す断面図である。なお、上記実施例と同一構成で重複する構成を省略する。   Next, a hole forming drill according to Example 6 will be described with reference to FIGS. FIG. 16: is a side view which shows the drill for hole formation in Example 6 of this invention. FIG. 17A is a cross-sectional view showing a situation where the intermediate grindstone is ground as in FIG. 16, and FIG. 17B is a cross-sectional view showing a grinding hole of the plate glass after grinding. In addition, the same structure as the said Example is abbreviate | omitted.

図16は、実施例6における孔形成用ドリルとしてのダイヤモンドドリル61であって、曲面研削部としての後方砥石部65は、貫通砥石部としての先端砥石部64よりも回転軸の径方向に縮径した曲面である。より具体的には、後方砥石部65は、シャンク63の軸方向に沿って接線の傾きが連続する曲面であって、板ガラス5の表面5aを研削する開口部研削面65a及び板ガラス5の裏面5bを研削する開口部研削面65cよりも、軸方向に板ガラス5の内方側を研削する内方部研削面65bに向かって漸次縮径する曲面であり、且つ、シャンク63の軸方向において研削面65bの中間に位置する中心部を中心として、軸方向に略対称の連続した曲面を備えている。   FIG. 16 shows a diamond drill 61 as a hole forming drill in the sixth embodiment, and a rear grindstone portion 65 as a curved grinding portion is contracted in a radial direction of the rotation shaft more than a tip grindstone portion 64 as a through grindstone portion. It is a curved surface with a diameter. More specifically, the rear grindstone portion 65 is a curved surface in which the tangential inclination continues along the axial direction of the shank 63, and the opening grinding surface 65 a for grinding the surface 5 a of the plate glass 5 and the back surface 5 b of the plate glass 5. Is a curved surface that gradually decreases in diameter toward the inner portion grinding surface 65b that grinds the inner side of the glass sheet 5 in the axial direction relative to the opening grinding surface 65c that grinds, and the grinding surface in the axial direction of the shank 63 A continuous curved surface that is substantially symmetric in the axial direction is provided around a central portion located in the middle of 65b.

図17(a)、(b)に示されるように、回転軸の径方向に縮径した曲面である後方砥石部65と、板ガラス5との間に偏心運動を与えることにより、板ガラス5に、この内方部研削面65bに沿った形状の研削孔67を形成できる。尚、後方砥石部65は、先端砥石部64よりも小径に形成されているため、本実施例のダイヤモンドドリル61は、比較的小径の研削孔を形成する用途に適している。   As shown in FIGS. 17 (a) and 17 (b), by giving an eccentric motion between the rear grinding wheel portion 65, which is a curved surface reduced in diameter in the radial direction of the rotating shaft, and the plate glass 5, A grinding hole 67 having a shape along the inner grinding surface 65b can be formed. In addition, since the back grindstone part 65 is formed in a smaller diameter than the front-end grindstone part 64, the diamond drill 61 of a present Example is suitable for the use which forms a comparatively small diameter grinding hole.

更に、後方砥石部65は、貫通方向に沿って均一の曲率のみを有する曲面に形成されており、この後方砥石部65により形成された板ガラス5の研削孔67の内周面において接線の傾きが均一に連続しているため、曲げ荷重による応力を均等に分散させることができる。   Further, the rear grindstone portion 65 is formed in a curved surface having only a uniform curvature along the penetrating direction, and the inclination of the tangent line is inclined on the inner peripheral surface of the grinding hole 67 of the plate glass 5 formed by the rear grindstone portion 65. Since it is uniformly continuous, the stress due to the bending load can be evenly dispersed.

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。   Although the embodiments of the present invention have been described with reference to the drawings, the specific configuration is not limited to these embodiments, and modifications and additions within the scope of the present invention are included in the present invention. It is.

例えば、上記実施例では、後方砥石部により硬脆材料板に接線の傾きが連続する内周面を形成可能となっているが、接線の傾きが連続するとは、実施例1における図18(a)、(b)に示されるように、硬脆材料板の貫通方向に亘って連続して変化するものであってもよいし、実施例5における図15(b)、図19に示されるように、硬脆材料板の貫通方向に沿った一部のみに、連続して変化する部分を有するものであってもよい。また、内周面の曲面の断面視形状については、必ずしも本実施例に限られず、例えば断面視略正弦曲線であってもよいし、また例えば曲面の形状が断面視略二次曲線であって、図20に示されるように、接線の傾きが直線状に増減する、すなわち接線の傾きが一次式で表せるものであってもよい。すなわち、接線の傾きが連続する曲面とは、接線の傾きが一定である面を除外した面のことである。ここで接線の傾きが一定である面とは、例えば、図21(a)に示されるように、板ガラス5の内周面としての研削孔87の内周面が、板ガラス5の表裏面に直交する方向に形成された内周面87bと、この内周面87bの板ガラス表面5a側に形成された面取り部87aと、内周面87bの板ガラス裏面5b側に形成された面取り部87cと、から成る断面視連続した直線状に形成されており、図21(b)に示されるように、接線の傾き角度θ(縦軸)が、研削孔87の貫通方向の位置t(横軸)に対し、平行に示される。   For example, in the above embodiment, it is possible to form an inner peripheral surface with a continuous tangential slope on the hard and brittle material plate by the rear grindstone, but the continuous tangential slope is shown in FIG. ), As shown in (b), it may change continuously over the penetration direction of the hard and brittle material plate, as shown in FIGS. 15 (b) and 19 in the fifth embodiment. Moreover, you may have a part which changes continuously only in a part along the penetration direction of a hard-brittle material board. Further, the cross-sectional view shape of the curved surface of the inner peripheral surface is not necessarily limited to the present embodiment, and may be, for example, a substantially sine curve in a cross-sectional view, or the curved surface shape is a substantially quadratic curve in a cross-sectional view, for example. As shown in FIG. 20, the slope of the tangent may be increased or decreased linearly, that is, the slope of the tangent may be expressed by a linear expression. In other words, a curved surface having a tangent slope that is continuous is a face excluding a face having a constant tangent slope. Here, the surface where the inclination of the tangent is constant is, for example, as shown in FIG. 21A, the inner peripheral surface of the grinding hole 87 as the inner peripheral surface of the plate glass 5 is orthogonal to the front and back surfaces of the plate glass 5. An inner peripheral surface 87b formed in a direction to be cut, a chamfered portion 87a formed on the plate glass surface 5a side of the inner peripheral surface 87b, and a chamfered portion 87c formed on the plate glass back surface 5b side of the inner peripheral surface 87b. As shown in FIG. 21B, the tangential inclination angle θ (vertical axis) is relative to the position t (horizontal axis) in the penetrating direction of the grinding hole 87, as shown in FIG. , Shown in parallel.

また、上記実施例では、貫通孔を備えた硬脆材料板の適用例としてプラズマディスプレイパネル1における板ガラス5が示され、前記貫通孔として内部に封入する希ガスを流通させるための研削孔が示されているが、例えば、硬脆材料板の材料は樹脂材等であってもよいし、また例えば、硬脆材料板に備えた貫通孔の用途はネジ部材挿通用の挿通孔等であってもよい。   Moreover, in the said Example, the plate glass 5 in the plasma display panel 1 is shown as an application example of the hard-brittle material board provided with the through-hole, and the grinding hole for distribute | circulating the noble gas enclosed inside as the said through-hole is shown. However, for example, the material of the hard and brittle material plate may be a resin material or the like, and for example, the use of the through hole provided in the hard and brittle material plate is an insertion hole or the like for inserting a screw member. Also good.

また、上記実施例では、孔形成用ドリルとしてのダイヤモンドドリルが、貫通砥石部としての先端砥石部と、曲面研削部としての後方砥石部とを備え、このダイヤモンドドリルの先端砥石部を用いて硬脆材料板に貫通孔を開けるとともに、曲面研削部を用いて貫通孔の内周面に曲面を形成しているが、例えば、貫通方向に直線状の内周面が形成された貫通孔を既に有する硬脆材料が存在しており、曲面研削部のみを備えるダイヤモンドドリルを用いて、前記硬脆材料の貫通孔の内周面を曲面に形成して仕上げ加工を行ってもよい。また例えば、貫通砥石部のみを備えるドリルを用いて硬脆材料に貫通孔を形成し、このドリルとは別体に曲面研削部のみを備えるダイヤモンドドリルを用いて、前記貫通孔の内周面を曲面に形成して仕上げ加工を行ってもよい。   Further, in the above embodiment, the diamond drill as the hole forming drill includes the tip grindstone portion as the penetrating grindstone portion and the rear grindstone portion as the curved grinding portion, and using the tip grindstone portion of this diamond drill, A through-hole is opened in the brittle material plate and a curved surface is formed on the inner peripheral surface of the through-hole using a curved grinding part. For example, a through-hole having a linear inner peripheral surface formed in the penetration direction has already been formed. The hard and brittle material may be present, and finish processing may be performed by forming the inner peripheral surface of the through hole of the hard and brittle material into a curved surface using a diamond drill having only a curved grinding portion. Further, for example, a through hole is formed in a hard and brittle material using a drill having only a through grindstone portion, and an inner peripheral surface of the through hole is formed by using a diamond drill having only a curved grinding portion separately from this drill. Finishing may be performed by forming a curved surface.

本発明に係る硬脆材料板の適用例を示す概略斜視図である。It is a schematic perspective view which shows the example of application of the hard-brittle material board which concerns on this invention. 本発明の実施例1における孔形成用ドリルを示す斜視図である。It is a perspective view which shows the drill for hole formation in Example 1 of this invention. 図2と同じく正面図である。FIG. 3 is a front view similar to FIG. 2. 図2と同じく側面図である。FIG. 3 is a side view similar to FIG. 2. 図2と同じく断側面図である。FIG. 3 is a sectional side view similar to FIG. 2. 図2と同じく板ガラスを穿孔する状況を示す断面図である。It is sectional drawing which shows the condition which perforates plate glass similarly to FIG. 図6のA−A断面図である。It is AA sectional drawing of FIG. (a)は、図2と同じく板ガラスを貫通した状況を示す断面図であり、(b)は、中間砥石部で研削する状況を示す断面図である。(A) is sectional drawing which shows the condition which penetrated the plate glass similarly to FIG. 2, (b) is sectional drawing which shows the condition ground with an intermediate grindstone part. (a)は、図2と同じく研削後の板ガラスの研削孔を示す断面図であり、(b)は、板ガラスに曲げ荷重が掛った状況を示す断面図である。(A) is sectional drawing which shows the grinding hole of the plate glass after grinding similarly to FIG. 2, (b) is sectional drawing which shows the condition where the bending load was applied to plate glass. 本発明の実施例2における孔形成用ドリルを示す側視図である。It is a side view which shows the drill for hole formation in Example 2 of this invention. (a)は、図10と同じく中間砥石部で研削する状況を示す断面図であり、(b)は、研削後の板ガラスの研削孔を示す断面図である。(A) is sectional drawing which shows the condition ground with an intermediate grindstone part similarly to FIG. 10, (b) is sectional drawing which shows the grinding hole of the plate glass after grinding. 本発明の実施例3における孔形成用ドリルを示す側視図である。It is a side view which shows the drill for hole formation in Example 3 of this invention. 本発明の実施例4における孔形成用ドリルを示す側視図である。It is a side view which shows the drill for hole formation in Example 4 of this invention. 本発明の実施例5における孔形成用ドリルを示す側視図である。It is a side view which shows the drill for hole formation in Example 5 of this invention. (a)は、図14と同じく中間砥石部で研削する状況を示す断面図であり、(b)は、研削後の板ガラスの研削孔を示す断面図である。(A) is sectional drawing which shows the condition ground with an intermediate grindstone part similarly to FIG. 14, (b) is sectional drawing which shows the grinding hole of the plate glass after grinding. 本発明の実施例6における孔形成用ドリルを示す側視図である。It is a side view which shows the drill for hole formation in Example 6 of this invention. (a)は、図16と同じく中間砥石部で研削する状況を示す断面図であり、(b)は、研削後の板ガラスの研削孔を示す断面図である。(A) is sectional drawing which shows the condition ground with an intermediate grindstone part similarly to FIG. 16, (b) is sectional drawing which shows the grinding hole of the plate glass after grinding. (a)は、実施例1において研削孔の貫通方向の位置における接線の傾き角度を例示した図であり、(b)は、研削孔の貫通方向の位置における接線の傾き角度を示すグラフである。(A) is the figure which illustrated the inclination angle of the tangent in the position of the penetration direction of a grinding hole in Example 1, (b) is a graph which shows the inclination angle of the tangent in the position of the penetration direction of a grinding hole. . 実施例5において研削孔の貫通方向の位置における接線の傾き角度を示すグラフである。In Example 5, it is a graph which shows the inclination-angle of the tangent in the position of the penetration direction of a grinding hole. 断面視略二次曲線に形成される研削孔の貫通方向の位置における接線の傾き角度を示すグラフである。It is a graph which shows the inclination angle of the tangent in the position of the penetration direction of the grinding hole formed in a cross sectional view substantially quadratic curve. (a)は、板ガラスの断面視連続した直線状に形成された研削孔を示す断面図である。(b)は、研削孔の貫通方向の位置における接線の傾き角度を示すグラフである。(A) is sectional drawing which shows the grinding hole formed in the linear form which cross-sectional view of plate glass continued. (B) is a graph which shows the inclination angle of the tangent in the position of the penetration direction of a grinding hole.

符号の説明Explanation of symbols

1 プラズマディスプレイパネル
5 板ガラス(硬脆材料板)
5a 表面
5b 裏面
5c 中間面
11 ダイヤモンドドリル(孔形成用ドリル)
12 ダイヤモンド砥石部(砥石部)
13 シャンク
14 先端砥石部(貫通砥石部)
14c 先端面
15 後方砥石部(曲面研削部)
15a 開口部研削面
15b 内方部研削面
15c 開口部研削面
17 研削孔
21 ダイヤモンドドリル
25 後方砥石部(曲面研削部)
25a 開口部研削面(面取凹部)
25b 内方部研削面
25c 開口部研削面(面取凹部)
27 研削孔
31 ダイヤモンドドリル
34 先端砥石部(貫通砥石部)
35 後方砥石部(曲面研削部)
41 ダイヤモンドドリル
44 先端砥石部(貫通砥石部)
45 後方砥石部(曲面研削部)
51 ダイヤモンドドリル
55 後方砥石部
55b 研削面(曲面研削部)
57 研削孔
61 ダイヤモンドドリル
65 後方砥石部(曲面研削部)
65b 内方部研削面
67 研削孔
71 ダイヤモンドドリル
75 後方砥石部
75a、75c 面取部研削面(曲面研削部)
77 研削孔
87 研削孔
1 Plasma display panel 5 Flat glass (hard brittle material plate)
5a Front surface 5b Back surface 5c Intermediate surface 11 Diamond drill (drill for forming holes)
12 Diamond grinding wheel (grinding wheel)
13 Shank 14 Tip whetstone (penetrating whetstone)
14c Front end surface 15 Rear grinding wheel (curved surface)
15a Opening grinding surface 15b Inner grinding surface 15c Opening grinding surface 17 Grinding hole 21 Diamond drill 25 Rear grinding wheel (curved grinding part)
25a Grinding surface of the opening (chamfered recess)
25b Inner part grinding surface 25c Opening part grinding surface (chamfered recess)
27 Grinding hole 31 Diamond drill 34 Tip grindstone (through grindstone)
35 Rear wheel (curved surface)
41 Diamond drill 44 Tip grindstone (through grindstone)
45 Back wheel (curved surface)
51 Diamond drill 55 Back grinding wheel portion 55b Grinding surface (curved surface grinding portion)
57 Grinding hole 61 Diamond drill 65 Back grinding wheel part (curved surface grinding part)
65b Inner part grinding surface 67 Grinding hole 71 Diamond drill 75 Rear grinding wheel parts 75a, 75c Chamfered part grinding surface (curved surface grinding part)
77 Grinding hole 87 Grinding hole

Claims (4)

回転軸として作用するシャンクの周面に軸方向に沿って砥石部を備え、該砥石部を研削対象となる硬脆材料板の貫通孔内に配置し、該砥石部を前記シャンクの軸心を中心として軸回転させるとともに前記貫通孔との間で偏心運動を与えることで、前記貫通孔の内面を研削する孔形成用ドリルであって、
前記砥石部、回転軸の軸方向に沿って接線の傾きが連続する曲面からなる曲面研削部を有しており、前記曲面研削部は、接線の傾きが連続して増加するように膨出する膨出曲面を少なくとも備え、該膨出曲面は、前記貫通孔の内面を研削する際に前記貫通孔内に配置されるものであり、前記曲面研削部は、前記研削対象となる硬脆材料板の板厚以上の長さを有していることを特徴とする孔形成用ドリル。
A grindstone portion is provided along the axial direction on the peripheral surface of the shank acting as a rotating shaft, the grindstone portion is disposed in a through-hole of a hard and brittle material plate to be ground , and the grindstone portion is disposed on the shaft center of the shank. by providing an eccentric motion between to pivot Rutotomoni the through hole as the center, a hole forming drill grinding an inner surface of the through hole,
The grindstone portion has a curved grinding portion formed of a curved surface having a tangential slope continuous along the axial direction of the rotating shaft, and the curved grinding portion bulges so that the tangential slope continuously increases. The bulging curved surface is disposed in the through hole when the inner surface of the through hole is ground, and the curved grinding portion is a hard and brittle material to be ground. A drill for forming holes, characterized by having a length equal to or greater than the thickness of the plate .
前記曲面研削部は、前記膨出曲面に連続して、回転軸の径方向に縮径した曲面からなる面取凹部を有していることを特徴とする請求項に記載の孔形成用ドリル。 2. The drill for forming a hole according to claim 1 , wherein the curved grinding portion has a chamfered recess formed of a curved surface that is continuous with the bulging curved surface and has a diameter reduced in a radial direction of a rotation shaft. . 前記砥石部は、先端側において設けられ硬脆材料板を貫通する貫通砥石部と、該貫通砥石部よりも後方側において設けられた前記曲面研削部と、から構成されていることを特徴とする請求項1または2に記載の孔形成用ドリル。 The grindstone portion includes a penetrating grindstone portion that is provided on the front end side and penetrates a hard and brittle material plate, and the curved grinding portion that is provided on the rear side of the penetrating grindstone portion. The hole forming drill according to claim 1 or 2 . 前記曲面研削部の外径が、前記貫通砥石部の外径と略同径若しくは小径に形成されていることを特徴とする請求項に記載の孔形成用ドリル。 The hole forming drill according to claim 3 , wherein an outer diameter of the curved grinding portion is formed to be substantially the same as or smaller than an outer diameter of the penetrating grindstone portion.
JP2007107151A 2007-04-16 2007-04-16 Drill for hole formation Expired - Fee Related JP4838188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107151A JP4838188B2 (en) 2007-04-16 2007-04-16 Drill for hole formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107151A JP4838188B2 (en) 2007-04-16 2007-04-16 Drill for hole formation

Publications (2)

Publication Number Publication Date
JP2008265017A JP2008265017A (en) 2008-11-06
JP4838188B2 true JP4838188B2 (en) 2011-12-14

Family

ID=40045232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107151A Expired - Fee Related JP4838188B2 (en) 2007-04-16 2007-04-16 Drill for hole formation

Country Status (1)

Country Link
JP (1) JP4838188B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063456A (en) * 2009-09-15 2011-03-31 Asahi Glass Co Ltd Glass plate having bored hole and method for boring the glass plate
CN104690615A (en) * 2015-03-20 2015-06-10 肖衍盛 Machining method for drilling sapphire glass
GB2547233A (en) * 2016-02-11 2017-08-16 Jaguar Land Rover Ltd A system comprising a transparent or translucent member
CN110576344A (en) * 2018-08-13 2019-12-17 蓝思科技股份有限公司 Glass panel processing method
CN112936001A (en) * 2019-12-10 2021-06-11 苏州阿奎睿思机器人科技有限公司 Optical precision machining unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07186023A (en) * 1993-12-27 1995-07-25 Central Glass Co Ltd Laminated glass hole part chamfering drill
JP3099216B2 (en) * 1994-08-22 2000-10-16 旭栄研磨加工株式会社 Donut substrate grinding tool

Also Published As

Publication number Publication date
JP2008265017A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP4838188B2 (en) Drill for hole formation
CN103221167B (en) Cutter
CN107530792A (en) Cutting tool
CN1781635A (en) Drill
JP2011183532A (en) Ball end mill
JP6740606B2 (en) Cutter wheel
US20140205811A1 (en) Micro-channel structure for micro-wires
JP2008155310A (en) Non-core drill, and grinding method using the same
JP5001705B2 (en) Hard and brittle plate
CN1223429C (en) Changable blade and drilling tool with changable blade used in drilling work
KR20130098200A (en) Scribing wheel, scribing apparatus, and method for manufacturing scribing wheel
JP2010131736A (en) Boring drill and method of machining boring drill
CN207669153U (en) A kind of flap wheel reducing cost
JP2011031508A (en) Method of grinding hard brittle material
JP4693479B2 (en) Glass substrate drill
WO2012029666A1 (en) Hole boring drill for glass
JP2009184878A (en) Glass working device and glass working method
JP2007015025A (en) Taper neck end mill
TWI236408B (en) Apparatus for cutting liquid crystal display panel
JP2008108837A (en) Grinding apparatus of semiconductor wafer and method for manufacturing semiconductor device
JP2008105911A (en) Drill for perforating glass
JP2006205327A (en) Cemented carbide blade grinding tool and method of manufacturing cemented carbide tool
JP4790439B2 (en) Electrodes, electronic components and substrates
CN1640546A (en) Tip plate of a rotor and vertical shaft impact crusher having the same
JP4735175B2 (en) Composite drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees