JP4834519B2 - Vehicle drive source control device - Google Patents

Vehicle drive source control device Download PDF

Info

Publication number
JP4834519B2
JP4834519B2 JP2006305267A JP2006305267A JP4834519B2 JP 4834519 B2 JP4834519 B2 JP 4834519B2 JP 2006305267 A JP2006305267 A JP 2006305267A JP 2006305267 A JP2006305267 A JP 2006305267A JP 4834519 B2 JP4834519 B2 JP 4834519B2
Authority
JP
Japan
Prior art keywords
engine
vehicle
torque
drive source
cranking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006305267A
Other languages
Japanese (ja)
Other versions
JP2008120197A (en
Inventor
裕基 戸嶋
良英 鈴木
正憲 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2006305267A priority Critical patent/JP4834519B2/en
Priority to CN200710165950XA priority patent/CN101177140B/en
Priority to FR0758909A priority patent/FR2908374B1/en
Priority to DE102007000672.3A priority patent/DE102007000672B4/en
Publication of JP2008120197A publication Critical patent/JP2008120197A/en
Application granted granted Critical
Publication of JP4834519B2 publication Critical patent/JP4834519B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/206Reducing vibrations in the driveline related or induced by the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0685Engine crank angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

本発明は、車両の駆動源制御装置に関し、特に、駆動源としてエンジンの他にモータを備える車両の駆動源制御装置に関する。   The present invention relates to a drive source control device for a vehicle, and more particularly to a drive source control device for a vehicle including a motor in addition to an engine as a drive source.

特許文献1に、惰力走行している車両の運動エネルギーを内燃機関に伝達し、内燃機関をクランキング(押しがけ起動)することのできる自動トランスミッションが開示されている。また、特許文献2には、上記車両の運動エネルギーを内燃機関に伝達した際の車速低下によって感ぜられるショックを抑制するために、回転装置(モータジェネレータ)にアシスト駆動力を出力させ、運動エネルギーの損失による車速の低下を抑制することが提案されている。   Patent Document 1 discloses an automatic transmission capable of transmitting the kinetic energy of a vehicle traveling in a repulsive manner to an internal combustion engine and cranking (pushing and starting) the internal combustion engine. Further, in Patent Document 2, in order to suppress a shock felt by a reduction in vehicle speed when the kinetic energy of the vehicle is transmitted to the internal combustion engine, an assist driving force is output to the rotating device (motor generator), and the kinetic energy is output. It has been proposed to suppress a decrease in vehicle speed due to loss of the vehicle.

実開昭64−53659号公報Japanese Utility Model Publication No. 64-53659 特開2004−190498号公報JP 2004-190498 A

しかしながら、車両走行中に運動エネルギーを利用してエンジンをクランキング始動させた場合、図5に示すように、クランキングをしている間は、運動エネルギーの損失があり、エンジンが自律回転を始めてくるとエンジン出力トルクが加わるため、特許文献2のように単にモータアシストを加えるだけでは、トルクショックを吸収できないという問題点がある。   However, when the engine is cranked and started using kinetic energy while the vehicle is running, there is a loss of kinetic energy while cranking, as shown in FIG. Since the engine output torque is applied when it comes, there is a problem that torque shock cannot be absorbed simply by adding motor assist as in Patent Document 2.

更に、クランキング時のエンジンを回転させる負荷も一定ではなく図5のように、エンジンの回転数上昇分と、ピストンの圧縮・膨張分とで変動するため、結果として車輪に周期的な負荷が掛かってしまうという問題点がある。   Further, the load for rotating the engine at the time of cranking is not constant and varies depending on the increase in the engine speed and the compression / expansion of the piston as shown in FIG. 5, resulting in a cyclic load on the wheels. There is a problem of hanging.

本発明は、上記した事情に鑑みてなされたものであって、車両走行中に運動エネルギーを利用してエンジンをクランキング始動させてエンジン走行に切り替える際のショックを抑制できる車両の駆動源制御装置を提供することにある。   The present invention has been made in view of the above-described circumstances, and is a vehicle drive source control device that can suppress a shock when the engine is cranked and switched to engine running by using kinetic energy during vehicle running. Is to provide.

本発明の第1の視点によれば、車両を駆動するモータと、車両の走行状態により停止制御されるエンジンと、をそれぞれ制御する車両の駆動源制御装置であって、車両の運動エネルギーを用いたクランキングにより、停止状態のエンジンを起動させるエンジン起動手段と、前記エンジンのクランキング時に、車輪にもたらされるトルク変動を推定するトルク変動推定手段と、前記推定したトルク変動を相殺するよう前記モータへの指示トルクを加減するトルク変動相殺手段と、を備え、前記エンジンから前記車輪に動力を伝達する動力伝達系において、前記動力伝達系の上流側から下流側にかけて、前記エンジン、クラッチ、変速機の順に配置されており、前記モータは、前記動力伝達系において下流側から、前記変速機、前記クラッチを介して前記エンジンに動力を伝達可能であり、前記エンジン起動手段は、エンジン停止状態において、アクセル開度量が所定値以上となった場合、車速に拘らず、エンジンのクランキング起動を開始し、前記トルク変動推定手段は、前記エンジンのクランキングによるトルク損失と、エンジン起動後の発生トルクの双方を推定する車両の駆動源制御装置が提供される。

According to a first aspect of the present invention, there is provided a vehicle drive source control device that controls a motor that drives a vehicle and an engine that is controlled to stop according to the running state of the vehicle, and uses the kinetic energy of the vehicle. Engine starting means for starting the engine in a stopped state by cranking, torque fluctuation estimating means for estimating the torque fluctuation caused to the wheels during cranking of the engine, and the motor so as to cancel the estimated torque fluctuation A torque fluctuation canceling means for adjusting the command torque to the wheel, and transmitting power from the engine to the wheels, the engine, clutch, and transmission from the upstream side to the downstream side of the power transmission system The motor is arranged from the downstream side in the power transmission system via the transmission and the clutch. Is capable of transmitting power to the engine Te, the engine starting means is in the engine stop state, when the accelerator opening degree exceeds a predetermined value, regardless of the vehicle speed, to start the cranking activation of engine, the torque The fluctuation estimation means is provided with a vehicle drive source control device that estimates both torque loss due to cranking of the engine and torque generated after engine startup.

また、本発明の第2の視点によれば、上記車両の駆動源制御装置において、エンジンのクランキングに要するトルク損失と、エンジン起動後の発生トルクの双方を推定・相殺すること、を特徴とする車両の駆動源制御装置が提供される。   According to a second aspect of the present invention, the vehicle drive source control apparatus is characterized in that both a torque loss required for engine cranking and a generated torque after starting the engine are estimated and offset. A vehicle drive source control device is provided.

また、本発明の第3の視点によれば、上記車両の駆動源制御装置において、エンジンの回転周期と、エンジンピストンの上死点とに基づいて、トルク変動パターンを推定すること、を特徴とする車両の駆動源制御装置が提供される。   According to a third aspect of the present invention, in the vehicle drive source control apparatus, the torque fluctuation pattern is estimated based on the engine rotation cycle and the top dead center of the engine piston. A vehicle drive source control device is provided.

本発明によれば、モータ走行状態においてショックを発生させることなくエンジンを起動し、スムースにエンジン走行へ移行することが可能となる。   According to the present invention, it is possible to start the engine without causing a shock in the motor running state and smoothly shift to engine running.

続いて、本発明を実施するための最良の形態について図面を参照して詳細に説明する。図1は、本発明を適用可能なハイブリッド車両の構成を示したブロック図である。まず始めに、図1を参照すると、内燃機関に代表されるエンジン(以下、「ENG」ともいう)11と、バッテリ19に蓄積された電気で駆動されるMG12との2種類の原動機とが並列に配置され、車輪を駆動できるような構成となっている。   Next, the best mode for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a hybrid vehicle to which the present invention can be applied. First, referring to FIG. 1, an engine represented by an internal combustion engine (hereinafter also referred to as “ENG”) 11 and two types of prime movers, that is, MG 12 driven by electricity stored in a battery 19, are arranged in parallel. It is arranged in such a manner that the wheels can be driven.

エンジン11の出力は、変速機13に伝達され、次いで、出力部である差動装置(ディファレンシャル)14を経由してアクスルシャフト15、15’及び駆動輪16、16’に伝達され、車両を駆動する。MG12の出力も同様に差動装置(ディファレンシャル)14を経由して車両を駆動可能になっている。   The output of the engine 11 is transmitted to the transmission 13, and then transmitted to the axle shafts 15, 15 ′ and the drive wheels 16, 16 ′ via a differential device (differential) 14 that is an output unit to drive the vehicle. To do. Similarly, the output of the MG 12 can drive the vehicle via a differential device (differential) 14.

また、図1のハイブリッド車両は、車両全体の制御を掌るHV−ECU21(Hybrid Vehicle Electronic Control Unit)、MG12に駆動又は回生を指令するMG−ECU及びインバータ22、エンジン11の停止及び燃焼状態を制御するEG−ECU23、変速機13に組み込まれたクラッチアクチュエータ17、変速アクチュエータ18をコントロールし最適な変速を行なわしめるAMT−ECU24、バッテリ19の充電状態を管理する電池ECU25とを備えている。   The hybrid vehicle shown in FIG. 1 has an HV-ECU 21 (Hybrid Electronic Control Unit) that controls the entire vehicle, an MG-ECU and an inverter 22 that commands the MG 12 to drive or regenerate, and a stop and combustion state of the engine 11. An EG-ECU 23 to be controlled, a clutch actuator 17 incorporated in the transmission 13, an AMT-ECU 24 that controls the shift actuator 18 to perform an optimum shift, and a battery ECU 25 that manages the state of charge of the battery 19 are provided.

HV−ECU21は、エンジン起動手段、トルク変動推定手段、トルク変動相殺手段として機能し、ドライバーの走行意志を受けてMG−ECU及びインバータ22、EG−ECU23、電池ECU25を制御・管理する。また、EG−ECU23は、AMT−ECU24と連携して最良の燃焼状態を生み出すとともに、スタータ20あるいは車両の運動エネルギーによる押しがけエンジン始動時の燃料制御を行なう。また、運転席には、車両の速度を表示するインジケータ26が設けられている。   The HV-ECU 21 functions as an engine starting unit, a torque variation estimating unit, and a torque variation canceling unit, and controls and manages the MG-ECU, the inverter 22, the EG-ECU 23, and the battery ECU 25 in response to the driver's will of travel. Further, the EG-ECU 23 cooperates with the AMT-ECU 24 to produce the best combustion state, and performs fuel control at the time of starting the engine by pushing by the kinetic energy of the starter 20 or the vehicle. In addition, an indicator 26 that displays the speed of the vehicle is provided in the driver's seat.

図2は、ハイブリッド車両の駆動機構の概略構成(4速状態)を表したスケルトン図である。まず、変速機13側の構成について説明すると、エンジン11の出力軸31端部には、フライホイール32が固定されており、フライホイール32にはクラッチ要素33が取り付けられ、クラッチアクチュエータ17によって係脱可能になっている。クラッチの被動部材はスプライン等によって回転方向に対して、変速機13の入力軸34に一体的に取り付けられている。入力軸34には、クラッチ側から順に1st35、Rev36、2nd37の駆動ギヤが一体的に構成され、さらに3rd38、4th39、5th40、6th41の駆動ギヤが回転自在に装着されている。また、入力軸34と平行に、変速機13の出力軸42が設けられ、前記各ギヤと噛み合う位置に、1st43、2nd44被駆動ギヤが回転自在に、3rd45、4th46、5th47、6th48の各被駆動ギヤが一体的に装着されている。そして、変速機13の出力軸42のクラッチ側の端部には、差動装置(ディファレンシャル)14のリングギヤ70と噛合する駆動ギヤ49が一体的に装着されている。更に、変速機13側には、変速機13の入力軸34と平行な軸50が設けられ、Revアイドラギヤ51が回転自在に装着されている。Revアイドラギヤ51は軸方向にも移動可能で、クラッチ側の位置(太実線)ではRev駆動ギヤ36とは噛み合わないが、6th駆動ギヤ41側の位置(細線)ではRev駆動ギヤ36と噛み合い可能となっている。   FIG. 2 is a skeleton diagram showing a schematic configuration (fourth speed state) of the drive mechanism of the hybrid vehicle. First, the structure on the transmission 13 side will be described. A flywheel 32 is fixed to the end of the output shaft 31 of the engine 11. A clutch element 33 is attached to the flywheel 32, and is engaged and disengaged by the clutch actuator 17. It is possible. The driven member of the clutch is integrally attached to the input shaft 34 of the transmission 13 in the rotational direction by a spline or the like. On the input shaft 34, drive gears of 1st 35, Rev 36, 2nd 37 are integrally formed in order from the clutch side, and further, drive gears of 3rd 38, 4th 39, 5th 40, 6th 41 are rotatably mounted. Further, the output shaft 42 of the transmission 13 is provided in parallel with the input shaft 34, and the 1st43, 2nd44 driven gears are rotatable at positions where the gears mesh with the respective gears, and the 3rd45, 4th46, 5th47, 6th48 driven The gear is mounted integrally. A drive gear 49 that meshes with the ring gear 70 of the differential (differential) 14 is integrally attached to the clutch-side end of the output shaft 42 of the transmission 13. Furthermore, a shaft 50 parallel to the input shaft 34 of the transmission 13 is provided on the transmission 13 side, and a Rev idler gear 51 is rotatably mounted. The Rev idler gear 51 is also movable in the axial direction and does not mesh with the Rev drive gear 36 at the clutch side position (thick solid line), but can mesh with the Rev drive gear 36 at the position on the 6th drive gear 41 side (thin line). It has become.

変速機13の入力軸34及び出力軸42の各駆動ギヤ、被駆動ギヤの間には、各軸と固定的に回転するハブ部材52、53、54が設けられている。夫々のハブ部材には外周にスプライン等の係合手段があり、更に外周に設けられるスリーブ部材55、56、57と噛み合い、該スリーブは変速アクチュエータ18により軸方向(図左右)に動かされることによって、左側のギヤ、右側のギヤに構成されたスプラインと噛み合い動力伝達可能な状態と、いずれのギヤとも噛み合わない中立状態になる。図2では、スリーブ部材56が左動し4速状態となっている。また、出力軸42の1st43、2nd44の間にあるスリーブ部材55には更に外周部に延びた部分にギヤ58が設けられ、ギヤ58はRevアイドラギヤ51がRev駆動ギヤ36と噛み合った状態でRevアイドラギヤ51と噛み合い、中立状態とRev駆動状態の2つの状態を構成する。   Hub members 52, 53, and 54 that are fixedly rotated with the respective shafts are provided between the driving gears and the driven gears of the input shaft 34 and the output shaft 42 of the transmission 13. Each hub member has an engaging means such as a spline on the outer periphery, and further meshes with sleeve members 55, 56, 57 provided on the outer periphery, and the sleeve is moved in the axial direction (left and right in the figure) by the speed change actuator 18. The left gear and the right gear mesh with the spline and transmit power, and the neutral state does not mesh with any gear. In FIG. 2, the sleeve member 56 moves to the left and is in the fourth speed state. Further, the sleeve member 55 between the first shaft 43 and the second shaft 44 of the output shaft 42 is further provided with a gear 58 at a portion extending to the outer peripheral portion, and the gear 58 is in a state where the Rev idler gear 51 is engaged with the Rev drive gear 36. 51, and is in two states, a neutral state and a Rev drive state.

上記のとおり、エンジン11の駆動力は、クラッチアクチュエータ17によってクラッチが係合状態となり、変速アクチュエータ18によって選択された変速比に従って出力軸42端の第1の駆動ギヤ49に伝達される。   As described above, the driving force of the engine 11 is engaged with the clutch by the clutch actuator 17, and is transmitted to the first drive gear 49 at the end of the output shaft 42 according to the speed ratio selected by the speed change actuator 18.

一方、MG12で出力される駆動力は、MG出力軸60端に一体的に設けられた原動ギヤ61に伝達される。MG出力軸60と平行に配設された中間減速軸62には、原動ギヤ61と噛み合う被駆動ギヤ63と、差動装置(ディファレンシャル)14のリングギヤ70と噛合する第2の駆動ギヤ64と、が設けられ、MG12の駆動力は、所定の減速比にて、第2の駆動ギヤ64に伝達される。   On the other hand, the driving force output by the MG 12 is transmitted to a driving gear 61 provided integrally at the end of the MG output shaft 60. An intermediate reduction shaft 62 disposed in parallel with the MG output shaft 60 includes a driven gear 63 that meshes with the driving gear 61, a second drive gear 64 that meshes with the ring gear 70 of the differential device (differential) 14, , And the driving force of the MG 12 is transmitted to the second driving gear 64 at a predetermined reduction ratio.

上記構成により、HV−ECU21(Hybrid Vehicle Electronic Control Unit)によって、エンジン11並びにMG12の出力は、リングギヤ70に伝達され、差動装置(ディファレンシャル)14を介して、必要に応じて回転数の差を吸収した上で、アクスルシャフト15、15’及び駆動輪16、16’が駆動される。   With the above configuration, the output of the engine 11 and the MG 12 is transmitted to the ring gear 70 by the HV-ECU 21 (Hybrid Vehicle Electronic Control Unit), and the difference in the number of revolutions is reduced as necessary via the differential device (differential) 14. After absorption, the axle shafts 15, 15 'and the drive wheels 16, 16' are driven.

また、MG12は電力を受け取って駆動力に変換する力行状態と、駆動力を電力に変換する回生状態の両機能を有し、三相の電力によってステータ部材66で発生させた磁力がロータ部の鉄部分を通過して帰るのに最適な位置で多くの電流を流すことによって、駆動力の発生や回転方向の制御も含めて効率的な変換ができるように制御される。   The MG 12 has both functions of a power running state in which electric power is received and converted into driving force, and a regenerative state in which driving force is converted into electric power. The magnetic force generated in the stator member 66 by the three-phase electric power is By passing a large amount of current at a position optimal for returning through the iron portion, control is performed so that efficient conversion including generation of driving force and control of the rotation direction can be performed.

MG12の出力軸60の反対側には、回転検出装置として、レゾルバ65が取り付けられている。レゾルバ65は、MG12のコイルの巻かれたステータ部材66と、MG出力軸60と一体的に回転するロータ部材67との間の相対角度を検出し、レゾルバ信号として利用可能である。例えば、レゾルバ信号を、MG12の極数に依存した数値及びMG12側のギヤ比で換算することによって、車両の速度として用いることが可能である。   A resolver 65 is attached to the opposite side of the output shaft 60 of the MG 12 as a rotation detection device. The resolver 65 detects a relative angle between the stator member 66 around which the coil of the MG 12 is wound and the rotor member 67 that rotates integrally with the MG output shaft 60, and can be used as a resolver signal. For example, the resolver signal can be used as the vehicle speed by converting the numerical value depending on the number of poles of the MG 12 and the gear ratio on the MG 12 side.

続いて、上記構成よりなるハイブリッド車両における駆動源の制御について図面を参照して詳細に説明する。図3は、上記HV−ECU21において所定時間毎に行われる処理を表したフローチャートである。   Subsequently, control of the drive source in the hybrid vehicle having the above configuration will be described in detail with reference to the drawings. FIG. 3 is a flowchart showing processing performed at predetermined time intervals in the HV-ECU 21.

図3を参照すると、まず、HV−ECU21は、車速がエンジン起動可能速度以上であるか否かを確認する(ステップS001)。ここで、車速がエンジン起動可能速度未満である場合は、エンジンのクランキング始動は行わない(ステップS001のNO)。   Referring to FIG. 3, first, the HV-ECU 21 checks whether or not the vehicle speed is equal to or higher than the engine startable speed (step S001). Here, if the vehicle speed is less than the engine startable speed, the engine cranking start is not performed (NO in step S001).

一方、車速がエンジン起動可能速度以上である場合、HV−ECU21は、更に、エンジンの起動要求有無を確認する(ステップS002)。ここで、初期走行時やエコラン(エコノミー&エコロジーランニング)といったエンジン停止かつモータによる走行をしている場合に、エンジンの起動要求条件が成立した場合は、下記ステップS003以降の処理が行われる。一方、既にエンジン走行中である等、エンジンの起動要求が無い場合は、当然にエンジンのクランキング始動は行わない(ステップS002のNO)。   On the other hand, when the vehicle speed is equal to or higher than the engine startable speed, the HV-ECU 21 further checks whether or not the engine is requested to start (step S002). Here, if the engine start request condition is satisfied when the engine is stopped and the motor is running, such as during initial running or eco-run (economy & ecology running), the processing from step S003 onward is performed. On the other hand, if there is no engine start request, such as when the engine is already running, the engine cranking is naturally not started (NO in step S002).

車速がエンジン起動可能速度以上かつエンジンの起動要求ありの状態で、クランキング始動の条件が成立すると、HV−ECU21は、エンジン温度(水温)、アクセル開度をパラメータとし、クラッチ係合時に必要なトルクを定めたマップ等を参照して、現在のエンジン温度(水温)及びアクセル開度に対応するクラッチ係合速度を決定する(ステップS003)。このとき併せて、HV−ECU21は、現在車速等に基づいて、クランキング始動に使用可能なギヤ段の中から最適なギヤ段を選択する。   When the cranking start condition is satisfied when the vehicle speed is equal to or higher than the engine startable speed and the engine is requested to start, the HV-ECU 21 uses the engine temperature (water temperature) and the accelerator opening as parameters, and is necessary when the clutch is engaged. A clutch engagement speed corresponding to the current engine temperature (water temperature) and the accelerator opening is determined with reference to a map or the like that defines torque (step S003). At the same time, the HV-ECU 21 selects an optimum gear from the gears that can be used for cranking start based on the current vehicle speed and the like.

なお、アクセル開度が所定の高開度領域(例:70%〜)にある場合は、急発進とみなしMG12に必要なトルク指令を与えるとともに、クラッチを高速で係合させ、車速がエンジン起動可能速度に急速に達するよう設定されたマップを用いることができる。この場合も、後記するようにMG12に与えるトルク値を積み増しすることでショックを軽減することができる。   When the accelerator opening is in a predetermined high opening range (eg, 70% or more), it is regarded as a sudden start and a necessary torque command is given to the MG 12 and the clutch is engaged at a high speed, so that the vehicle speed is started. A map set to reach the possible speed rapidly can be used. Also in this case, the shock can be reduced by increasing the torque value applied to the MG 12 as will be described later.

HV−ECU21は、前記決定したクラッチ係合速度及びギヤ段にてクラッチの係合制御を開始し、エンジンへの車両運動エネルギーの伝達を開始する(ステップS004)。   The HV-ECU 21 starts clutch engagement control at the determined clutch engagement speed and gear position, and starts transmission of vehicle kinetic energy to the engine (step S004).

続いて、HV−ECU21は、エンジン始動時のトルク変動を推定すべく、エンジンクランク角センサの出力信号値からエンジン回転周期の割り出し(ステップS005)と、エンジンピストン上死点の推定(ステップS006)を実行する。   Subsequently, the HV-ECU 21 calculates the engine rotation cycle from the output signal value of the engine crank angle sensor (step S005) and estimates the engine piston top dead center (step S006) in order to estimate the torque fluctuation at the start of the engine. Execute.

続いて、HV−ECU21は、上記推定したエンジン回転周期及びエンジンピストン上死点と同期するよう、予め計測されたエンジンクランキング始動時のトルク変動パターンを補正して、クラッチを繋いだことより車輪に掛かるトルクを相殺する逆位相の信号値を演算する(ステップS007)。なお、クランキング中は、エンジンに負荷が発生するため、上記逆位相の信号値は正の値となり、エンジンの始動完了後は、エンジントルクが追加されるため、上記逆位相の信号値は負の値となる。   Subsequently, the HV-ECU 21 corrects the torque variation pattern at the start of engine cranking, which is measured in advance so as to synchronize with the estimated engine rotation cycle and engine piston top dead center. The signal value of the reverse phase that cancels the torque applied to is calculated (step S007). During cranking, a load is generated on the engine, so that the signal value in the opposite phase is a positive value, and the engine torque is added after the start of the engine is completed, so the signal value in the opposite phase is a negative value. It becomes the value of.

また、暖機運転後のクランキングと比較して、エンジン水温が低い場合のクランキング時の負荷は大きいため、HV−ECU21に、エンジン水温に応じて前記逆位相の信号値の変動幅の補正を行わせることとしてもよい。   Further, since the load at the time of cranking when the engine water temperature is low is large compared to the cranking after the warm-up operation, the HV-ECU 21 corrects the fluctuation range of the signal value of the opposite phase according to the engine water temperature. It is good also as making it perform.

続いて、HV−ECU21は、前記逆位相の信号値からトルク変動の相殺に必要な相殺トルク値を算出する(ステップS008)。   Subsequently, the HV-ECU 21 calculates a canceling torque value necessary for canceling the torque fluctuation from the signal value having the opposite phase (step S008).

最終的に、HV−ECU21は、上記相殺トルク値と、車両走行のための車両走行トルクとを合算した値をモータ指示トルクとしてMG12に指示する(ステップS009)。   Finally, the HV-ECU 21 instructs the MG 12 as a motor instruction torque using the sum of the offset torque value and the vehicle traveling torque for traveling the vehicle (step S009).

図4は、本発明を適用した車両において、車両停止状態から発進した際の車両の挙動の例である。アクセル開度0%、車速0の停止状態からアクセルを踏込むと、MGトルクが立ち上がり車両はMG走行状態に遷移する。このとき、クラッチは断状態であるため、エンジン(ENG)が車輪に掛けるトルクは0である。   FIG. 4 is an example of the behavior of the vehicle when starting from a vehicle stop state in a vehicle to which the present invention is applied. When the accelerator is depressed from the stop state of the accelerator opening 0% and the vehicle speed 0, the MG torque rises and the vehicle transitions to the MG running state. At this time, since the clutch is in a disengaged state, the torque applied to the wheel by the engine (ENG) is zero.

その後、車速がエンジン起動可能車速に達すると、図3のステップS003以降に示したエンジン起動制御が開始され、車両の状態及びドライバの走行意思に適った変速段及びクラッチ係合速度(勾配)にてクラッチ係合制御が実行される。   Thereafter, when the vehicle speed reaches the vehicle startable vehicle speed, the engine start control shown in and after step S003 in FIG. 3 is started, and the speed and clutch engagement speed (gradient) suitable for the vehicle state and the driver's intention to travel are set. Thus, clutch engagement control is executed.

クラッチを介して車両の運動エネルギーがエンジン側に伝達され始めると、エンジン回転数が上昇するとともに、運動エネルギーの損失が発生する。   When the kinetic energy of the vehicle starts to be transmitted to the engine side via the clutch, the engine speed increases and a loss of kinetic energy occurs.

その一方で、MG12が、上記運動エネルギーの損失を補償する相殺トルクを出力するため、結果として、車輪に掛かるトルクの変動は抑制される(図4の「合算した車輪に掛かるトルク」線参照)。   On the other hand, since the MG 12 outputs a canceling torque that compensates for the loss of kinetic energy, as a result, fluctuations in torque applied to the wheels are suppressed (see the “torque applied to the combined wheels” line in FIG. 4). .

その後、エンジン始動が完了し、エンジン出力トルクが車輪に伝達されるようになると、MG12のトルクは急減し、エンジン走行への切替が行われる。   Thereafter, when the engine start is completed and the engine output torque is transmitted to the wheels, the torque of the MG 12 is abruptly reduced and switching to engine running is performed.

なお、図4の例では、エンジン始動完了直前から一定期間、MG12に対して負のトルク値(回生制御)が与えられている。これは、エンジン出力トルクとMG出力トルクの合算トルクが目標をオーバーシュートすることによるショックを回避するためである。   In the example of FIG. 4, a negative torque value (regenerative control) is given to MG 12 for a certain period immediately before completion of engine start. This is in order to avoid a shock caused by the sum of the engine output torque and the MG output torque overshooting the target.

以上のように、エコラン中に、運動エネルギーを用いてエンジンをクランキング始動させる際のトルク変動が抑制される。   As described above, during the eco-run, torque fluctuation when the engine is cranked using kinetic energy is suppressed.

以上、本発明の一実施形態について説明したが、本発明の技術的範囲は、上述した実施の形態の記載に限定されるものではなく、適用される車両の仕様等に応じて、各種の変形を加えることが可能である。   Although one embodiment of the present invention has been described above, the technical scope of the present invention is not limited to the description of the embodiment described above, and various modifications may be made according to the specifications of the vehicle to be applied. Can be added.

例えば、上記した実施形態では、車速がエンジン起動可能速度を超えた場合に、エンジンのクランキングを開始するものとして説明したが、エンジン停止状態において、アクセル開度が増加、アクセル開度増加量が一定以上となった場合に、エンジンのクランキングを開始するようにしてもよい。   For example, in the above-described embodiment, it has been described that the cranking of the engine is started when the vehicle speed exceeds the engine startable speed. However, when the engine is stopped, the accelerator opening increases and the accelerator opening increase amount increases. The engine cranking may be started when the value exceeds a certain level.

また、上記した実施形態では、エンジンクランク角センサの値から割り出したエンジンの回転周期と、エンジンピストンの上死点とに基づいて、予め用意したトルク変動パターンを補正して車輪にもたらされるトルクを推定するものとして説明したが、クランキング時のクラッチ係合速度や使用変速段をパラメータとして車輪にもたらされるトルクを推定する方法も採用可能である。   Further, in the above-described embodiment, based on the engine rotation cycle calculated from the value of the engine crank angle sensor and the top dead center of the engine piston, the torque variation pattern prepared in advance is corrected to obtain the torque that is brought to the wheel. Although described as an estimation, it is also possible to employ a method of estimating the torque to be applied to the wheel using the clutch engagement speed at the time of cranking and the used gear position as parameters.

本発明を適用可能なハイブリッド車両の構成を示したブロック図である。1 is a block diagram showing a configuration of a hybrid vehicle to which the present invention can be applied. 本発明の一実施形態に係る車両の駆動機構の概略構成(4速状態)を表したスケルトン図である。1 is a skeleton diagram illustrating a schematic configuration (fourth speed state) of a vehicle drive mechanism according to an embodiment of the present invention. 本発明の一実施形態に係る車両の駆動源制御措置(HV−ECU)において所定時間毎に行われる処理を表したフローチャートである。It is a flowchart showing the process performed for every predetermined time in the drive source control measure (HV-ECU) of the vehicle which concerns on one Embodiment of this invention. 本発明を適用した車両において、車両停止状態から発進した際の車両の挙動の例である。It is an example of the behavior of the vehicle when the vehicle to which the present invention is applied starts from a vehicle stop state. 従来の車両において、車両停止状態から発進した際の車両の挙動を説明するための図である。It is a figure for demonstrating the behavior of the vehicle at the time of starting from a vehicle stop state in the conventional vehicle.

符号の説明Explanation of symbols

11 エンジン(ENG)
12 モータジェネレータ(MG)
13 変速機
14 差動装置(ディファレンシャル)
15、15’ アクスルシャフト
16、16’ 駆動輪
17 クラッチアクチュエータ
18 変速アクチュエータ
19 バッテリ
20 スタータ
21 HV−ECU(車両の駆動源制御装置)
22 MG−ECU及びインバータ
23 EG−ECU
24 AMT−ECU
25 電池ECU
26 インジケータ
31 出力軸
32 フライホイール
33 クラッチ要素
34 変速機入力軸
35〜41、49 駆動ギヤ
42 変速機出力軸
43〜48 被駆動ギヤ
50 Revアイドラギヤ軸
51 Revアイドラギヤ
52〜54 ハブ部材
55〜57 スリーブ部材
58 ギヤ
60 MG出力軸
61 原動ギヤ
62 中間減速軸
63 被駆動ギヤ
64 第2駆動ギヤ
65 レゾルバ
66 ステータ部材
67 ロータ部材
70 リングギヤ
11 Engine (ENG)
12 Motor generator (MG)
13 Transmission 14 Differential (differential)
15, 15 'Axle shaft 16, 16' Drive wheel 17 Clutch actuator 18 Shift actuator 19 Battery 20 Starter 21 HV-ECU (vehicle drive source control device)
22 MG-ECU and inverter 23 EG-ECU
24 AMT-ECU
25 Battery ECU
26 Indicator 31 Output shaft 32 Flywheel 33 Clutch element 34 Transmission input shaft 35-41, 49 Drive gear 42 Transmission output shaft 43-48 Driven gear 50 Rev idler gear shaft 51 Rev idler gear 52-54 Hub member 55-57 Sleeve Member 58 gear 60 MG output shaft 61 driving gear 62 intermediate reduction shaft 63 driven gear 64 second driving gear 65 resolver 66 stator member 67 rotor member 70 ring gear

Claims (4)

車両を駆動するモータと、車両の走行状態により停止制御されるエンジンと、をそれぞれ制御する車両の駆動源制御装置であって、
車両の運動エネルギーを用いたクランキングにより、停止状態のエンジンを起動させるエンジン起動手段と、
前記エンジンのクランキング時に、車輪にもたらされるトルクを推定するトルク変動推定手段と、
前記推定したトルクを相殺するよう前記モータへの指示トルクを加減するトルク変動相殺手段と、を備え、
前記エンジンから前記車輪に動力を伝達する動力伝達系において、前記動力伝達系の上流側から下流側にかけて、前記エンジン、クラッチ、変速機の順に配置されており、
前記モータは、前記動力伝達系において下流側から、前記変速機、前記クラッチを介して前記エンジンに動力を伝達可能であり、
前記エンジン起動手段は、アクセル開度が所定値以上となった場合、車速に拘らず、エンジンのクランキング起動を開始することと、
前記トルク変動推定手段は、前記エンジンのクランキングによるトルク損失と、エンジン起動後の発生トルクの双方を推定すること、
を特徴とする車両の駆動源制御装置。
A drive source control device for a vehicle that controls a motor that drives the vehicle and an engine that is controlled to stop depending on the running state of the vehicle,
Engine starting means for starting a stopped engine by cranking using kinetic energy of the vehicle;
Torque fluctuation estimating means for estimating the torque caused to the wheels during cranking of the engine;
Torque fluctuation canceling means for adjusting the command torque to the motor so as to cancel the estimated torque,
In the power transmission system that transmits power from the engine to the wheels, the engine, the clutch, and the transmission are arranged in this order from the upstream side to the downstream side of the power transmission system.
The motor can transmit power from the downstream side in the power transmission system to the engine via the transmission and the clutch.
When the accelerator opening is equal to or greater than a predetermined value, the engine starter starts cranking start of the engine regardless of the vehicle speed;
The torque fluctuation estimating means estimates both torque loss due to cranking of the engine and torque generated after engine startup;
A vehicle drive source control device.
前記エンジン起動手段は、アクセル開度が所定値以上である場合、アクセル開度が所定値未満である場合よりも、前記エンジンのクランキングの際のクラッチの係合速度を速くすること、
を特徴とする請求項1に記載の車両の駆動源制御装置。
The engine starting means, when the accelerator opening is greater than or equal to a predetermined value, to increase the clutch engagement speed at the time of cranking the engine than when the accelerator opening is less than a predetermined value,
The vehicle drive source control device according to claim 1.
前記トルク変動推定手段は、エンジンクランク角センサの値から割り出したエンジンの回転周期と、エンジンピストンの上死点とに基づいたトルク変動パターンにより前記車輪にもたらされるトルクを推定すること、
を特徴とする請求項1または2に記載の車両の駆動源制御装置。
The torque fluctuation estimating means estimates a torque to be provided to the wheel by a torque fluctuation pattern based on an engine rotation period determined from an engine crank angle sensor value and a top dead center of the engine piston;
The drive source control device for a vehicle according to claim 1 or 2.
前記トルク変動相殺手段は、エンジン水温に基づいて、前記モータへの指示トルクの加減量を変更すること、
を特徴とする請求項1乃至3いずれか一に記載の車両の駆動源制御装置。
The torque fluctuation canceling means is configured to change the amount of instruction torque to the motor based on engine water temperature;
The vehicle drive source control device according to any one of claims 1 to 3.
JP2006305267A 2006-11-10 2006-11-10 Vehicle drive source control device Expired - Fee Related JP4834519B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006305267A JP4834519B2 (en) 2006-11-10 2006-11-10 Vehicle drive source control device
CN200710165950XA CN101177140B (en) 2006-11-10 2007-11-09 Control device for vehicle driving source
FR0758909A FR2908374B1 (en) 2006-11-10 2007-11-09 PROPULSION SOURCE CONTROL SYSTEM FOR A VEHICLE
DE102007000672.3A DE102007000672B4 (en) 2006-11-10 2007-11-09 Drive source control device for a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006305267A JP4834519B2 (en) 2006-11-10 2006-11-10 Vehicle drive source control device

Publications (2)

Publication Number Publication Date
JP2008120197A JP2008120197A (en) 2008-05-29
JP4834519B2 true JP4834519B2 (en) 2011-12-14

Family

ID=39277780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006305267A Expired - Fee Related JP4834519B2 (en) 2006-11-10 2006-11-10 Vehicle drive source control device

Country Status (4)

Country Link
JP (1) JP4834519B2 (en)
CN (1) CN101177140B (en)
DE (1) DE102007000672B4 (en)
FR (1) FR2908374B1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241331A (en) * 2009-04-08 2010-10-28 Aisin Ai Co Ltd Vehicular power transmission control apparatus
JP2010241330A (en) * 2009-04-08 2010-10-28 Aisin Ai Co Ltd Vehicular power transmission control apparatus
JP5283786B2 (en) * 2010-09-16 2013-09-04 新電元工業株式会社 Drive control device, drive control system, and drive control method
DE102011083573B4 (en) * 2011-09-28 2022-04-28 Robert Bosch Gmbh Method of operating an internal combustion engine
US9499042B2 (en) 2011-09-30 2016-11-22 Brp-Powertrain Gmbh & Co. Kg Hybrid vehicle drivetrain
JP5927626B2 (en) * 2011-10-28 2016-06-01 ダイハツ工業株式会社 Clutch timing control device
JP2013107524A (en) * 2011-11-22 2013-06-06 Toyota Motor Corp Power output device
DE102014213080A1 (en) * 2013-09-20 2015-04-16 Robert Bosch Gmbh Method for stopping an internal combustion engine
CN104709033B (en) 2013-12-16 2017-04-12 比亚迪股份有限公司 Hybrid power automobile, air conditioner system of hybrid power automobile, and control method of air conditioner system
CN104709274B (en) * 2013-12-16 2018-08-14 比亚迪股份有限公司 Hybrid vehicle and its engine starting system and startup control method
DE102014209395A1 (en) * 2014-05-19 2015-11-19 Robert Bosch Gmbh Method for reducing drag torque fluctuations during electrical starting
JP2015229944A (en) * 2014-06-04 2015-12-21 株式会社デンソー Engine starter
CN104828081B (en) * 2014-12-19 2017-07-11 北汽福田汽车股份有限公司 The control method and device that hybrid electric vehicle engine sliding wear starts
JP2018001901A (en) * 2016-06-30 2018-01-11 アイシン精機株式会社 Travel support device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453659U (en) * 1987-09-29 1989-04-03
JP3775012B2 (en) * 1997-08-29 2006-05-17 アイシン・エィ・ダブリュ株式会社 Hybrid drive device for vehicle
JP3214427B2 (en) * 1997-12-12 2001-10-02 トヨタ自動車株式会社 Drive control device for hybrid vehicle
JP2001057706A (en) * 1999-08-09 2001-02-27 Mazda Motor Corp Running gear for vehicle
US6364807B1 (en) * 2000-06-30 2002-04-02 Ford Global Technologies, Inc. Control strategy for a hybrid powertrain for an automotive vehicle
JP4191376B2 (en) * 2000-11-14 2008-12-03 株式会社豊田中央研究所 Power output apparatus and control method thereof
JP3454249B2 (en) * 2000-11-27 2003-10-06 トヨタ自動車株式会社 Engine cranking damping device
BR0205395A (en) * 2001-05-21 2003-06-17 Luk Lamellen & Kupplungsbau Control process for motor vehicles with automated clutch device
JP3758626B2 (en) * 2002-09-20 2006-03-22 トヨタ自動車株式会社 Start method and start device for internal combustion engine, and start energy estimation method and device used therefor
JP3983162B2 (en) * 2002-12-06 2007-09-26 トヨタ自動車株式会社 Control device for internal combustion engine for vehicle
JP2005138743A (en) * 2003-11-07 2005-06-02 Nissan Motor Co Ltd Driving force control device of hybrid vehicle

Also Published As

Publication number Publication date
FR2908374B1 (en) 2014-12-12
DE102007000672A1 (en) 2008-05-15
JP2008120197A (en) 2008-05-29
CN101177140B (en) 2012-10-03
CN101177140A (en) 2008-05-14
DE102007000672B4 (en) 2017-12-14
FR2908374A1 (en) 2008-05-16

Similar Documents

Publication Publication Date Title
JP4834519B2 (en) Vehicle drive source control device
JP4059283B2 (en) Vehicle control apparatus, hybrid vehicle, vehicle control method, program for causing computer to execute vehicle control method, and computer-readable recording medium recording the program
JP3498593B2 (en) Hybrid vehicle control device
US9944278B2 (en) Vehicle
JP5880735B2 (en) Control device for hybrid vehicle
JP4961192B2 (en) Vehicle drive source control device
JP4293274B2 (en) Control device for vehicle drive device
US20150251649A1 (en) Active motor damping control of a hybrid electric vehicle powertrain
JP4296964B2 (en) Vehicle drive control device
JP2005153691A (en) Driving mechanism for vehicle
JPWO2011077813A1 (en) Hybrid vehicle
JPWO2008026480A1 (en) Vehicle drive source control device
JP2011047348A (en) Automobile
JP3454167B2 (en) Control device for hybrid vehicle
JP2012121495A (en) Learning control device for clutch
JP6067218B2 (en) Control device for vehicle drive system
JP2010184535A (en) Hybrid vehicle
JP2008068704A (en) Vehicular drive source control apparatus
JP5391719B2 (en) Hybrid vehicle
JP4086077B2 (en) Start control device for internal combustion engine
JP5338473B2 (en) Engine start control device
WO2014054534A1 (en) Hybrid vehicle control device
JP4682803B2 (en) Engine start control device
JP3807125B2 (en) Engine torque detector
JP7230076B2 (en) vehicle controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101027

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

R151 Written notification of patent or utility model registration

Ref document number: 4834519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees