JP3454167B2 - Control device for hybrid vehicle - Google Patents
Control device for hybrid vehicleInfo
- Publication number
- JP3454167B2 JP3454167B2 JP28062998A JP28062998A JP3454167B2 JP 3454167 B2 JP3454167 B2 JP 3454167B2 JP 28062998 A JP28062998 A JP 28062998A JP 28062998 A JP28062998 A JP 28062998A JP 3454167 B2 JP3454167 B2 JP 3454167B2
- Authority
- JP
- Japan
- Prior art keywords
- engine
- torque
- control
- control device
- hybrid vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002485 combustion reaction Methods 0.000 claims description 21
- 238000001514 detection method Methods 0.000 claims description 8
- 230000001629 suppression Effects 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 4
- 239000000498 cooling water Substances 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000010349 pulsation Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/543—Transmission for changing ratio the transmission being a continuously variable transmission
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明はハイブリッド車両の
制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a hybrid vehicle.
【0002】[0002]
【従来の技術と解決すべき課題】原動機として内燃機関
と電動機とを併有し、いずれか一方または双方の駆動力
により走行するようにしたハイブリッド車両が知られて
いる(例えば、鉄道日本社発行「自動車工学」VOL.46 N
o.7 1997年6月号 39〜52頁参照)。2. Description of the Related Art A hybrid vehicle having both an internal combustion engine and an electric motor as a prime mover and driven by either or both driving forces is known (for example, issued by Japan Railway Company). "Automotive Engineering" VOL. 46 N
o.7 June 1997, pp. 39-52).
【0003】このようないわゆるパラレル方式のハイブ
リッド車両では、基本的に比較的負荷の小さい運転域で
は電動機のみで走行し、負荷が増大すると内燃機関を起
動して所要の駆動力を確保し、必要に応じて電動機と内
燃機関を併用することにより最大の駆動力を発揮させら
れるようになっている。In such a so-called parallel type hybrid vehicle, basically, in a driving range where the load is relatively small, only the electric motor travels, and when the load increases, the internal combustion engine is started to secure a required driving force, Accordingly, the maximum driving force can be exerted by using the electric motor and the internal combustion engine together.
【0004】ところで、電動機のみによる走行状態から
内燃機関を使用する運転状態へと移行するときには速や
かに機関を始動させる必要があるが、この始動時の機関
回転数の上昇を早めようとすると機関のポンピング作用
や動弁系統の摩擦によるトルク変動の影響により不快な
振動が発生しやすくなるという問題がある。始動時の回
転上昇を遅くすれば振動は軽減されるが、それだけ機関
に要求される回転数および出力が得られるまでに時間を
要することになるので内燃機関による走行への滑らかな
移行が難しくなってしまう。By the way, it is necessary to start the engine promptly when shifting from a running state using only the electric motor to an operating state in which the internal combustion engine is used. There is a problem that unpleasant vibration is likely to occur due to the effect of torque fluctuation due to pumping action and friction of the valve train. Vibration can be reduced by slowing the increase in rotation at startup, but it will take more time to obtain the required engine speed and output, making it difficult for the internal combustion engine to smoothly transition to running. Will end up.
【0005】本発明はこのような問題点に着目してなさ
れたもので、内燃機関に連結した始動・発電用の回転電
機を機関始動時にはトルク制御し、その後回転制御へと
切り換えることにより前記問題点を解消することを目的
としている。The present invention has been made in view of these problems, and the problem is solved by controlling the torque of a rotary electric machine for starting and generating electricity connected to an internal combustion engine at the time of starting the engine and then switching to the rotation control. The purpose is to eliminate points.
【0006】請求項1の発明は、内燃機関と、前記内燃
機関と相互に駆動可能に連結され、内燃機関の始動を行
う回転電機と、を備えた動力装置を車両の駆動系統に接
続可能に配置したハイブリッド車両において、内燃機関
の始動が必要な条件を検出する始動条件検出装置と、内
燃機関の回転数を検出する機関回転検出装置と、回転電
機のトルクと回転数を制御する制御装置とを備え、前記
制御装置は、前記回転電機により前記内燃機関を始動す
る際に、所期の回転域ではトルク制御を行い、前記以外
の回転域では回転数制御を行うように構成した。The invention of claim 1 is directed to an internal combustion engine and the internal combustion engine.
It is connected to the engine so that it can drive the internal combustion engine.
In a hybrid vehicle in which a power unit including a rotating electric machine is arranged to be connectable to a drive system of the vehicle, a starting condition detecting device for detecting a condition for starting the internal combustion engine and a rotational speed of the internal combustion engine are detected. An engine rotation detection device and a control device that controls the torque and the rotational speed of the rotating electric machine are provided, and the control device starts the internal combustion engine by the rotating electric machine.
During the rotation, torque control is performed in the desired rotation range, and rotation speed control is performed in the rotation range other than the above.
【0007】請求項2の発明は、上記制御装置を、始動
後所期の機関回転数に達するまでの回転数域ではトルク
制御を行い、以後は回転数制御を行うように構成した。According to a second aspect of the present invention, the control device is configured to perform torque control in a rotational speed range until a desired engine rotational speed is reached after starting, and thereafter perform rotational speed control.
【0008】請求項3の発明は、上記各発明のトルク制
御を、始動後経過時間に応じて定まる基本トルク値に、
機関クランク角に応じて定まる回転振動抑制トルクを加
えて生成したトルク指令値に基づいて行うものとした。According to a third aspect of the present invention, the torque control according to each of the above-mentioned inventions is performed by setting the basic torque value determined according to the elapsed time after starting,
It is performed based on the torque command value generated by adding the rotational vibration suppression torque that is determined according to the engine crank angle.
【0009】請求項4の発明は、上記請求項3の発明の
回転振動抑制トルクを、エンジンマウント系の共振周波
数近傍では機関トルク変動分を相殺する値とし、前記以
外の周波数域では所定の最小値とするようにした。According to a fourth aspect of the present invention, the rotational vibration suppressing torque according to the third aspect of the invention is set to a value that cancels out the engine torque fluctuation in the vicinity of the resonance frequency of the engine mount system, and has a predetermined minimum value in the frequency range other than the above. I made it a value.
【0010】請求項5の発明は、上記請求項4の発明の
機関トルク分を相殺する値を、機関冷却水温を含む運転
状態に応じて設定するように構成した。According to a fifth aspect of the invention, the value for canceling out the engine torque component of the fourth aspect of the invention is set in accordance with the operating state including the engine cooling water temperature.
【0011】請求項6の発明は、上記請求項4の発明に
おける回転振動抑制トルクの最小値として0を設定する
ものとした。According to the invention of claim 6, 0 is set as the minimum value of the rotational vibration suppressing torque in the invention of claim 4.
【0012】請求項7の発明は、上記請求項1の発明の
制御装置を、回転数制御開始時の初期回転数として、ト
ルク制御終了時の回転数を設定し、以後所定の最終目標
回転数へと漸次変化させるように構成した。According to a seventh aspect of the present invention, in the control device according to the first aspect of the present invention, the rotational speed at the end of the torque control is set as the initial rotational speed at the start of the rotational speed control, and thereafter a predetermined final target rotational speed is set. It was configured to gradually change to.
【0013】[0013]
【作用・効果】機関始動時の主たる振動発生要因は機関
のポンピング作用と動弁系の周期的摩擦作用による脈動
的なトルク変動であり、その特性や振動発生回転域は実
験等により予め知ることができる。したがって、上記請
求項1以下の各発明のように、機関始動中の所定の回転
域で回転電機のトルク制御を行うものとすれば、トルク
脈動が発生する回転域で当該脈動を相殺するトルクを付
与して機関始動時の振動発生を抑制することができる。
一方、前記トルク制御回転域以外では回転数制御を行う
ので、機関始動時の回転数の上昇ないしは始動後の目標
回転数への収束を速やかにして電動機から内燃機関によ
る走行状態へと移行するときの運転性を良好にすること
ができる。[Operation / Effect] The main cause of vibration at engine startup is the pulsating torque fluctuation due to the pumping action of the engine and the periodic frictional action of the valve train. You can Therefore, if the torque control of the rotating electric machine is performed in a predetermined rotation range during engine startup as in the inventions of claims 1 and below, the torque that cancels the pulsation in the rotation range in which the torque pulsation occurs is provided. It is possible to suppress the generation of vibration when the engine is started.
On the other hand, since the rotation speed control is performed in a region other than the torque control rotation range, when the rotation speed at the engine start increases or converges to the target rotation speed after the start, the electric motor shifts to the running state by the internal combustion engine. The drivability of can be improved.
【0014】回転電機のトルク制御は機関始動中の振動
発生回転域でのみ行えば足りるが、請求項2の発明のよ
うに始動の当初からトルク制御を行い、振動の発生しな
い所定の回転数に達してから回転数制御に移行するよう
にしてもよく、これにより制御を単純化することができ
る。The torque control of the rotating electric machine may be performed only in the vibration generating rotation range during the engine start, but the torque control is performed from the beginning of the start as in the second aspect of the invention, and the vibration is not generated at a predetermined rotation speed. It is also possible to shift to the rotation speed control after reaching this, which can simplify the control.
【0015】請求項3の発明によれば、始動後経過時間
に応じて定まる基本トルク値に、機関クランク角に応じ
て定まる回転振動抑制トルクを加えて生成したトルク指
令値に基づいてトルク制御を行うので、機関の始動に必
要なトルクを滑らかに立ち上げつつ必要な部分で振動抑
制トルクを付与してより円滑で速やかな機関始動が可能
となる。According to the third aspect of the invention, the torque control is performed based on the torque command value generated by adding the rotational vibration suppression torque determined according to the engine crank angle to the basic torque value determined according to the elapsed time after the start. Since this is performed, the torque required for starting the engine can be smoothly raised, and the vibration suppressing torque can be applied at the required portion to enable a smoother and faster engine start.
【0016】請求項4の発明によれば、上記請求項3の
発明の回転振動抑制トルクを、エンジンマウント系の共
振周波数近傍では機関トルク変動分を相殺する値とし、
前記以外の周波数域では所定の最小値、例えば請求項6
の発明のようにゼロとするようにしたので、機関トルク
変動を相殺する回転域以外での制御トルク量を減じて回
転電機の駆動電力消費を必要最小限に抑えることができ
る。According to the invention of claim 4, the rotational vibration suppressing torque of the invention of claim 3 is set to a value that cancels out the engine torque fluctuation in the vicinity of the resonance frequency of the engine mount system.
A predetermined minimum value, for example, in a frequency range other than the above, for example, 6
Since it is set to zero as in the invention described above, it is possible to reduce the amount of control torque in a region other than the rotation range that cancels out engine torque fluctuations, and minimize the drive power consumption of the rotating electric machine.
【0017】請求項5の発明によれば、上記請求項4の
発明の機関トルク分を相殺する値を、機関冷却水温を含
む運転状態に応じて設定する。車両運行中の機関始動時
は通常は暖機完了後のいわゆるホットスタートとなるの
で始動時の振動特性は安定しているが、機関の内部摩擦
に起因する振動は温度や気圧に影響をされる。したがっ
て本発明のようにこれらの運転状態に応じてトルク相殺
分を設定することにより、例えば冷間始動時など異なる
運転条件下での始動時においても振動低減効果を確保す
ることができる。According to the invention of claim 5, the value for canceling out the engine torque component of the invention of claim 4 is set in accordance with the operating state including the engine cooling water temperature. When the engine is started while the vehicle is in operation, the so-called hot start is usually performed after the warm-up is completed, so the vibration characteristics at the start are stable, but the vibration caused by internal friction of the engine is affected by temperature and atmospheric pressure. . Therefore, by setting the torque offset amount according to these operating states as in the present invention, it is possible to ensure the vibration reduction effect even at the time of starting under different operating conditions such as cold starting.
【0018】請求項7の発明によれば、上記請求項1の
発明の制御装置を、回転数制御開始時の初期回転数とし
て、トルク制御終了時の回転数を設定し、以後所定の最
終目標回転数へと漸次変化させるように構成したので、
トルク制御から回転数制御へ移行したときの目標回転数
との差を滑らかに減少させて、急激な回転数変化に伴う
ショックの発生を回避することができる。According to the invention of claim 7, the control device of the invention of claim 1 sets the rotational speed at the end of the torque control as the initial rotational speed at the start of the rotational speed control, and thereafter sets a predetermined final target. Since it is configured to gradually change to the rotation speed,
It is possible to smoothly reduce the difference from the target rotation speed at the time of shifting from the torque control to the rotation speed control, and avoid the occurrence of a shock due to a sudden change in the rotation speed.
【0019】[0019]
【発明の実施の形態】以下本発明の実施形態を図面に基
づいて説明する。まず図1〜図2に本願発明が適用可能
なハイブリッド車両の構成例を示す。これらはいずれも
走行条件に応じてエンジン(内燃機関)または電動モー
タの何れか一方または双方の動力を用いて走行するパラ
レル方式のハイブリッド車両である。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. First, FIGS. 1 and 2 show a configuration example of a hybrid vehicle to which the present invention can be applied. Each of these is a parallel type hybrid vehicle that travels by using the power of either or both of an engine (internal combustion engine) and an electric motor according to the traveling conditions.
【0020】図1において、太い実線は機械力の伝達経
路を示し、太い破線は電力線を示す。また、細い実線は
制御線を示し、二重線は油圧系統を示す。この車両のパ
ワートレインは、モータ1(本発明の回転電機)、エン
ジン2、クラッチ3、モータ4、無段変速機5、減速装
置6、差動装置7および駆動輪8から構成される。モー
タ1の出力軸、エンジン2の出力軸およびクラッチ3の
入力軸は互いに連結されており、また、クラッチ3の出
力軸、モータ4の出力軸および無段変速機5の入力軸は
互いに連結されている。In FIG. 1, a thick solid line indicates a mechanical force transmission path, and a thick broken line indicates a power line. Also, a thin solid line indicates a control line, and a double line indicates a hydraulic system. The power train of this vehicle includes a motor 1 (the rotating electric machine of the present invention), an engine 2, a clutch 3, a motor 4, a continuously variable transmission 5, a speed reducer 6, a differential gear 7, and drive wheels 8. The output shaft of the motor 1, the output shaft of the engine 2, and the input shaft of the clutch 3 are connected to each other, and the output shaft of the clutch 3, the output shaft of the motor 4, and the input shaft of the continuously variable transmission 5 are connected to each other. ing.
【0021】クラッチ3締結時はエンジン2とモータ4
が車両の推進源となり、クラッチ3解放時はモータ4の
みが車両の推進源となる。エンジン2またはモータ4の
駆動力は、無段変速機5、減速装置6および差動装置7
を介して駆動輪8へ伝達される。無段変速機5には油圧
装置9から圧油が供給され、ベルトのクランプと潤滑が
なされる。油圧装置9のオイルポンプ(図示せず)はモ
ータ10により駆動される。When the clutch 3 is engaged, the engine 2 and the motor 4
Is the propulsion source of the vehicle, and when the clutch 3 is disengaged, only the motor 4 is the propulsion source of the vehicle. The driving force of the engine 2 or the motor 4 is the continuously variable transmission 5, the speed reducer 6 and the differential device 7.
Is transmitted to the drive wheels 8 via. Pressure oil is supplied from the hydraulic device 9 to the continuously variable transmission 5, and the belt is clamped and lubricated. An oil pump (not shown) of the hydraulic device 9 is driven by the motor 10.
【0022】モータ1は主としてエンジン始動と発電に
用いられ、モータ4は主として車両の推進(力行)と制
動に用いられる。また、モータ10は油圧装置9のオイ
ルポンプ駆動用である。また、クラッチ3締結時に、モ
ータ1を車両の推進と制動に用いることもでき、モータ
4をエンジン始動や発電に用いることもできる。クラッ
チ3はパウダークラッチであり、伝達トルクを調節する
ことができる。無段変速機5はベルト式やトロイダル式
などの無段変速機であり、変速比を無段階に調節するこ
とができる。The motor 1 is mainly used for engine starting and power generation, and the motor 4 is mainly used for propulsion (power running) and braking of the vehicle. The motor 10 is for driving the oil pump of the hydraulic device 9. Further, when the clutch 3 is engaged, the motor 1 can be used for propulsion and braking of the vehicle, and the motor 4 can be used for engine starting and power generation. The clutch 3 is a powder clutch and can adjust the transmission torque. The continuously variable transmission 5 is a continuously variable transmission such as a belt type or toroidal type, and can continuously adjust the gear ratio.
【0023】モータ1,4,10はそれぞれ、インバー
タ11,12,13により駆動される。なお、モータ
1,4,10に直流電動モータを用いる場合には、イン
バータの代わりにDC/DCコンバータを用いる。イン
バータ11〜13は共通のDCリンク14を介してメイ
ンバッテリ15に接続されており、メインバッテリ15
の直流充電電力を交流電力に変換してモータ1,4,1
0へ供給するとともに、モータ1,4の交流発電電力を
直流電力に変換してメインバッテリ15を充電する。な
お、インバータ11〜13は互いにDCリンク14を介
して接続されているので、回生運転中のモータにより発
電された電力をメインバッテリ15を介さずに直接、力
行運転中のモータへ供給することができる。メインバッ
テリ15には、リチウム・イオン電池、ニッケル・水素
電池、鉛電池などの各種電池や、電機二重層キャパシタ
ーいわゆるパワーキャパシターが適用される。The motors 1, 4, 10 are driven by inverters 11, 12, 13 respectively. When DC electric motors are used as the motors 1, 4 and 10, a DC / DC converter is used instead of the inverter. The inverters 11 to 13 are connected to the main battery 15 via the common DC link 14, and the main battery 15
DC charging power of the motor is converted into AC power and the motors 1, 4, 1
0 is supplied to the main battery 15 as well as the AC power generated by the motors 1 and 4 is converted into DC power. Since the inverters 11 to 13 are connected to each other via the DC link 14, the electric power generated by the motor during the regenerative operation can be directly supplied to the motor during the power running operation without passing through the main battery 15. it can. As the main battery 15, various batteries such as a lithium-ion battery, a nickel-hydrogen battery, and a lead battery, and an electric double-layer capacitor so-called power capacitor are applied.
【0024】16は本発明の制御装置の機能を備えたコ
ントローラであり、マイクロコンピュータとその周辺部
品や各種アクチュエータなどを備え、クラッチ3の伝達
トルク、モータ1,4,10の回転数や出力トルク、無
段変速機5の変速比、エンジン2の燃料噴射量・噴射時
期、点火時期などを制御する。Reference numeral 16 denotes a controller having the function of the control device of the present invention, which comprises a microcomputer and its peripheral parts, various actuators, etc., and transmits torque of the clutch 3 and the rotational speeds and output torques of the motors 1, 4 and 10. Controls the gear ratio of the continuously variable transmission 5, the fuel injection amount / injection timing of the engine 2, the ignition timing, and the like.
【0025】コントローラ16には、図2に示すよう
に、キースイッチ20、セレクトレバースイッチ21、
アクセルペダルセンサ22、ブレーキスイッチ23、車
速センサ24、バッテリ温度センサ25、バッテリSO
C検出装置26、エンジン回転数センサ(本発明の機関
回転検出装置)27、スロットル開度センサ28が接続
される。キースイッチ20は、車両のキーが0N位置ま
たはSTART位置に設定されると閉路する(以下、ス
イッチの閉路をオンまたは0N、開路をオフまたはOF
Fと呼ぷ)。セレクトレバースイッチ21は、パーキン
グP、ニュートラルN、リバースRおよびドライブDの
何れかのレンジに切り換えるセレクトレバー(図示せ
ず)の設定位置に応じて、P,N,R,Dのいずれかの
スイッチがオンする。As shown in FIG. 2, the controller 16 includes a key switch 20, a select lever switch 21,
Accelerator pedal sensor 22, brake switch 23, vehicle speed sensor 24, battery temperature sensor 25, battery SO
A C detection device 26, an engine speed sensor (engine speed detection device of the present invention) 27, and a throttle opening sensor 28 are connected. The key switch 20 is closed when the key of the vehicle is set to the 0N position or the START position (hereinafter, switch closing is ON or 0N, open is OFF or OF.
Call it F). The select lever switch 21 is a switch for selecting one of P, N, R, and D depending on the setting position of a select lever (not shown) that switches to any range of parking P, neutral N, reverse R, and drive D. Turns on.
【0026】アクセルペダルセンサ22はアクセルペダ
ルの踏み込み量を検出し、ブレーキスイッチ23はブレ
ーキペダルの踏み込み状態(この時、スイッチオン)を
検出する。車速センサ24は車両の走行速度を検出し、
バッテリ温度センサ25はメインバッテリ15の温度を
検出する。また、バッテリSOC検出装置26はメイン
バッテリ15の実容量の代表値であるSOC(State Of
Charge)を検出する。さらに、エンジン回転数センサ
27はエンジン2の回転数を検出し、スロットル開度セ
ンサ28はエンジン2のスロットルバルブ開度を検出す
る。The accelerator pedal sensor 22 detects the amount of depression of the accelerator pedal, and the brake switch 23 detects the state of depression of the brake pedal (switch-on at this time). The vehicle speed sensor 24 detects the traveling speed of the vehicle,
The battery temperature sensor 25 detects the temperature of the main battery 15. Further, the battery SOC detection device 26 has a SOC (State Of State) that is a representative value of the actual capacity of the main battery 15.
Charge) is detected. Further, the engine rotation speed sensor 27 detects the rotation speed of the engine 2, and the throttle opening sensor 28 detects the throttle valve opening of the engine 2.
【0027】コントローラ16にはまた、エンジン2の
燃料噴射装置30、点火装置31、可変動弁装置32な
どが接続される。コントローラ16は、燃料噴射装置3
0を制御してエンジン2への燃料の供給と停止および燃
料噴射量・噴射時期を調節するとともに、点火装置31
を駆動してエンジン2の点火時期制御を行う。また、コ
ントローラ16は可変動弁装置32を制御してエンジン
2の吸・排気弁の作動状態を調節する。なお、コントロ
ーラ16には低圧の補助バッテリ33から電源が供給さ
れる。A fuel injection device 30, an ignition device 31, a variable valve operating device 32, etc. of the engine 2 are also connected to the controller 16. The controller 16 uses the fuel injection device 3
0 to control the supply and stop of fuel to the engine 2 and to adjust the fuel injection amount / injection timing, and to set the ignition device 31.
To control the ignition timing of the engine 2. Further, the controller 16 controls the variable valve operating device 32 to adjust the operating states of the intake / exhaust valves of the engine 2. The controller 16 is supplied with power from a low-voltage auxiliary battery 33.
【0028】以上は本発明が適用可能なハイブリッド車
両の基本的な構成例を示したものであり、本発明ではこ
うしたハイブリッド車両においてエンジン始動時にモー
タ1を最適制御することにより始動時の振動低減を実現
することを目的としている。以下にこのためのコントロ
ーラ16の機能構成および制御内容の実施形態につき図
3以下の各図面を参照しながら説明する。The above is an example of a basic configuration of a hybrid vehicle to which the present invention can be applied. In the present invention, vibration reduction at the time of starting is reduced by optimally controlling the motor 1 at the time of engine starting in such a hybrid vehicle. It is intended to be realized. An embodiment of the functional configuration and control contents of the controller 16 for this purpose will be described below with reference to the drawings starting from FIG.
【0029】図3はコントローラ16のモータ1の始動
時制御に関する部分の構成概念を機能ブロックとして示
したもの、図4はこのモータ制御による制御特性の概略
を示したものである。図4に示したようにこの制御では
始動の当初はトルク制御を行い、ある回転数に達して以
後は回転数制御を行うようにしている。FIG. 3 is a functional block diagram showing the structural concept of the portion of the controller 16 relating to the start-up control of the motor 1, and FIG. 4 is a schematic diagram showing the control characteristics of this motor control. As shown in FIG. 4, in this control, torque control is performed at the beginning of starting, and after reaching a certain rotation speed, rotation speed control is performed.
【0030】図3において、aは始動タイミング検出部
でありエンジン始動時を検出する。これは、ハイブリッ
ド車両の走行制御の過程でエンジンの始動が必要になっ
た時に始動指令を発するので、この指令に基づいて始動
を開始する。bはエンジン2(図1参照)またはモータ
1が始動当初から予め定めた所定の回転数に達するまで
のあいだのモータ1に対するトルク指令値を演算するト
ルク指令演算部、cは回転数が前記所定値に達してトル
ク指令演算部bによるトルク制御が終了して以後のモー
タ1に対する回転数指令値を演算する回転数指令演算部
である。dはモータ1の回転数を検出する回転数検出装
置、eは前記検出回転数に基づきトルク指令値と回転数
指令値とを切り換える指令切換部である。モータ1とエ
ンジン2とは特定の回転数比で連動するように連結され
ているので、前記回転数検出装置dとしては図2に示し
たエンジン回転センサを用いることができる。fはモー
タ1に駆動電流を供給するモータ制御部であり、前記指
令切換部eにより選択されたトルク指令値または回転数
指令値に基づいてモータ1を駆動する。In FIG. 3, reference numeral a designates a start timing detecting section for detecting the engine start time. This issues a start command when it is necessary to start the engine in the process of controlling the traveling of the hybrid vehicle, and therefore the start is started based on this command. b is a torque command calculation unit that calculates a torque command value for the motor 1 from the beginning of the engine 2 (see FIG. 1) or the time when the motor 1 reaches a predetermined rotation speed from the start, and c is the predetermined rotation speed. This is a rotation speed command calculation unit that calculates a rotation speed command value for the motor 1 after the torque control calculation unit b reaches a value and the torque control by the torque command calculation unit b ends. Reference numeral d is a rotation speed detection device that detects the rotation speed of the motor 1, and e is a command switching unit that switches between a torque command value and a rotation speed command value based on the detected rotation speed. Since the motor 1 and the engine 2 are connected so as to interlock at a specific rotation speed ratio, the engine rotation sensor shown in FIG. 2 can be used as the rotation speed detection device d. Reference numeral f denotes a motor control unit that supplies a drive current to the motor 1, and drives the motor 1 based on the torque command value or the rotation speed command value selected by the command switching unit e.
【0031】次に、上記モータ制御の詳細について図5
に示した流れ図に沿って説明する。この制御ではまずエ
ンジンの始動が必要な条件かどうかを検出し、始動条件
でないときは処理を終了し、始動条件であればエンジン
回転数Neを検出する(ステップ501〜503)。次
にエンジン回転数Neが回転数制御への切換回転数No
以上であるか否かを判定する(ステップ504)。始動
の当初はNe<Noであるから、ステップ505以下の
トルク制御の流れに移行する。Next, the details of the motor control will be described with reference to FIG.
A description will be given along the flow chart shown in FIG. In this control, first, it is detected whether or not the engine needs to be started. If it is not the starting condition, the process is terminated, and if it is the starting condition, the engine speed Ne is detected (steps 501 to 503). Next, the engine speed Ne is the number of revolutions No. for switching to the revolution speed control.
It is determined whether or not the above (step 504). Since Ne <No at the beginning of the engine start, the flow advances to the torque control flow from step 505.
【0032】トルク制御では、基本出力トルクTa、回
転振動抑制トルクTb、このTbに対する補償係数Kt
(ただしKt≦1)をそれぞれ演算する(ステップ50
5〜507)。基本出力トルクTaはエンジンの始動ク
ランキングに必要な基本トルクを確保するためのもので
あり、例えば図6に示したように始動開始時からの経過
時間にしたがって増大するような特性で与えられる。回
転振動抑制トルクTbは既述したようにエンジンのポン
ピング作用や動弁系の摩擦抵抗に起因してエンジン主軸
上に現れる脈動的なトルク変動を相殺するためのもので
あり、この相殺に必要なトルク特性は予め実験により決
定され、図7に示したような特性で与えられる。補償係
数Ktは図8に例示したように設定されており、これは
前記回転振動抑制トルクTbを振動が発生する特定の回
転域、例えばエンジンマウントの共振周波数域の近傍で
のみ付与することによりモータ駆動電力を最小限に抑え
るようにするためのものである。最終的なトルク指令値
Stは前記回転振動抑制トルクTbに補償係数Ktを乗
じたものを基本出力トルクTaに重畳して得られ、この
指令値Stを出力してモータ1を駆動するという制御を
繰り返す(ステップ508,509)。これにより、エ
ンジン始動の過程で生じる不快な振動を効果的に減殺す
ることができる。In the torque control, the basic output torque Ta, the rotational vibration suppression torque Tb, and the compensation coefficient Kt for this Tb.
(However, Kt ≦ 1) is calculated (step 50)
5-507). The basic output torque Ta is used to secure the basic torque required for the engine starting cranking, and is given as a characteristic that increases as time elapses from the start of the engine as shown in FIG. 6, for example. The rotational vibration suppression torque Tb is for canceling out the pulsating torque fluctuation appearing on the engine main shaft due to the pumping action of the engine and the frictional resistance of the valve train as described above, and is necessary for this cancellation. The torque characteristic is determined in advance by experiments and given as the characteristic shown in FIG. The compensation coefficient Kt is set as illustrated in FIG. 8. This is because the rotation vibration suppressing torque Tb is applied only in the vicinity of a specific rotation range where vibrations occur, for example, the resonance frequency range of the engine mount. This is for minimizing the driving power. The final torque command value St is obtained by superimposing a value obtained by multiplying the rotational vibration suppression torque Tb by the compensation coefficient Kt on the basic output torque Ta, and outputs the command value St to drive the motor 1. Repeat (steps 508 and 509). As a result, it is possible to effectively reduce the unpleasant vibration that occurs during the engine starting process.
【0033】一方、上記トルク制御の過程でエンジン回
転数が切換回転数Noを超えると、ステップ504での
判断に基づき、ステップ510以下の回転数制御の流れ
に切り替わる。切換回転数Noとしては、基本的にはエ
ンジン始動の過程で不快な振動が発生しない回転数域の
下限値付近の値が設定される。この回転数制御では、ま
ずモータ1の制御を回転数制御に切り換えるためにその
ときの運転状態に応じて目標回転数Ntを演算し、この
Ntに対応する回転数指令値Snを演算する(ステップ
510、511)。次にエンジン回転数Neを前記目標
回転数Ntと比較し、NeがNtよりも大のあいだは前
記指令値Snから所定の漸減分dSを減じたものを指令
値Snとして設定して出力する(ステップ512、51
3,514)。NeがNtとなったときにはステップ5
11にて演算したSnをそのまま出力する。この制御の
繰り返しにより、モータ1はトルク制御終了時点でのエ
ンジン回転数を初期値として、前記漸減分dSに相当す
る量だけ目標値Ntに向かって次第に回転数を減らすよ
うに回転数制御される。この回転数制御は、トルク制御
が必要な回転域を超過してのちただちに開始され、これ
によりエンジン始動時の回転数の上昇を速めて、エンジ
ンによる走行へと円滑に移行させることができる。On the other hand, when the engine speed exceeds the switching speed No in the process of the torque control, the flow of the speed control from step 510 onward is switched based on the determination in step 504. As the switching rotation speed No, a value near the lower limit value of the rotation speed range in which no unpleasant vibration is generated during the engine starting is basically set. In this rotation speed control, first, in order to switch the control of the motor 1 to the rotation speed control, a target rotation speed Nt is calculated according to the operating state at that time, and a rotation speed command value Sn corresponding to this Nt is calculated (step 510, 511). Next, the engine speed Ne is compared with the target speed Nt, and while Ne is larger than Nt, a value obtained by subtracting a predetermined gradual decrease dS from the command value Sn is set as a command value Sn and output ( Step 512, 51
3,514). When Ne becomes Nt, step 5
The Sn calculated in 11 is output as it is. By repeating this control, the motor 1 is controlled in rotation speed such that the rotation speed is gradually reduced toward the target value Nt by an amount corresponding to the gradual decrease dS, with the engine rotation speed at the end of the torque control as an initial value. . The rotational speed control is started immediately after the rotational range in which the torque control is required is exceeded, whereby the increase in the rotational speed at the time of engine start can be accelerated, and the running of the engine can be smoothly shifted.
【0034】図9〜図11は上記制御による実験結果で
ある。これはエンジンのスロットルを全開にして回転数
を0〜700rpmに変化させたときの回転数とエンジ
ン振動(上下加速度)の関係を、粘性補償と脈動補正の
有無に応じて示したものである。粘性補償とは主として
動弁系等の摩擦抵抗を考慮したトルク補正を、脈動補正
とは主としてポンピング作用を考慮したトルク補正をそ
れぞれ意味している。図9は各補正を施した本願実施形
態の効果、図10は脈動補正のみを施した場合、図11
は粘性補償のみを施した場合である。図9と図10との
比較から、粘性補償により回転指令値に対し始動直後の
回転数追従性が改善されていることがわかる。また、図
9と図11との比較から、脈動補償により回転脈動と振
動が十分に軽減されていることがわかる。9 to 11 show the experimental results by the above control. This shows the relationship between the engine speed (vertical acceleration) and the engine speed when the engine throttle is fully opened and the engine speed is changed from 0 to 700 rpm depending on the presence or absence of viscosity compensation and pulsation correction. Viscosity compensation means torque correction mainly considering frictional resistance of the valve train, and pulsation correction mainly means torque correction considering pumping action. FIG. 9 shows the effect of the embodiment of the present invention in which each correction is applied, and FIG. 10 shows the effect when only the pulsation correction is applied.
Shows the case where only viscosity compensation is applied. From comparison between FIG. 9 and FIG. 10, it can be seen that the viscosity compensation improves the rotation speed followability immediately after the start with respect to the rotation command value. Further, from the comparison between FIG. 9 and FIG. 11, it can be seen that rotational pulsation and vibration are sufficiently reduced by the pulsation compensation.
【図1】〜[Figure 1]
【図2】本発明が適用可能なハイブリッド車両の構成例
を示す概略構成図。FIG. 2 is a schematic configuration diagram showing a configuration example of a hybrid vehicle to which the present invention can be applied.
【図3】本発明の制御装置の一実施形態の構成概念を示
す機能ブロック図。FIG. 3 is a functional block diagram showing a configuration concept of an embodiment of a control device of the present invention.
【図4】上記実施形態によるモータ制御特性の概略を示
す特性線図。FIG. 4 is a characteristic diagram showing an outline of motor control characteristics according to the embodiment.
【図5】上記実施形態による制御動作内容を示す流れ
図。FIG. 5 is a flowchart showing the contents of control operation according to the above embodiment.
【図6】上記実施形態における基本出力トルクの制御特
性を示す特性線図。FIG. 6 is a characteristic diagram showing a control characteristic of basic output torque in the above embodiment.
【図7】同じく回転振動抑制トルクの制御特性を示す特
性線図。FIG. 7 is a characteristic diagram showing a control characteristic of rotational vibration suppression torque.
【図8】上記回転振動抑制トルクに対する補償係数の特
性線図。FIG. 8 is a characteristic diagram of a compensation coefficient for the rotational vibration suppression torque.
【図9】〜FIG. 9
【図11】実施形態による効果を説明するための振動特
性線図。FIG. 11 is a vibration characteristic diagram for explaining the effect of the embodiment.
1 モータ(回転電機) 2 エンジン(内燃機関) 3 クラッチ 4 モータ 5 無段変速機 9 油圧装置 10 油圧発生用モータ 15 バッテリ 16 コントローラ(コントローラ) 20 キースイッチ 21 セレクトレバースイッチ 22 アクセルペダルセンサ 23 ブレーキスイッチ 24 車速センサ 25 バッテリ温度センサ 26 バッテリSOC検出装置 27 エンジン回転数センサ(機関回転検出装置) 28 スロットル開度センサ 35 水温センサ 41 圧力センサ 1 motor (rotary electric machine) 2 engine (internal combustion engine) 3 clutch 4 motor 5 continuously variable transmission 9 Hydraulic system 10 Motor for hydraulic pressure generation 15 battery 16 controller 20 key switch 21 Select lever switch 22 Accelerator pedal sensor 23 Brake switch 24 vehicle speed sensor 25 Battery temperature sensor 26 Battery SOC Detection Device 27 Engine speed sensor (engine speed detector) 28 Throttle opening sensor 35 Water temperature sensor 41 Pressure sensor
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F02D 29/06 F02D 29/06 D (56)参考文献 特開 平9−191504(JP,A) 特開 平9−47092(JP,A) 特開 昭61−155635(JP,A) 特開 平10−205365(JP,A) 特開 平8−98322(JP,A) 特開 平8−98321(JP,A) 特開 平8−98320(JP,A) 特開 平4−297330(JP,A) 特開 平7−102955(JP,A) 特表2001−513978(JP,A) 国際公開98/039560(WO,A1) (58)調査した分野(Int.Cl.7,DB名) B60L 11/14 B60K 6/04 F02D 29/06 F02D 29/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification symbol FI F02D 29/06 F02D 29/06 D (56) References JP-A-9-191504 (JP, A) JP-A-9-47092 ( JP, A) JP 61-155635 (JP, A) JP 10-205365 (JP, A) JP 8-98322 (JP, A) JP 8-98321 (JP, A) JP Japanese Unexamined Patent Publication No. 8-98320 (JP, A) Japanese Unexamined Patent Publication No. 4-297330 (JP, A) Japanese Unexamined Patent Publication No. 7-102955 (JP, A) Special Table 2001-513978 (JP, A) International Publication 98/039560 (WO, A1) ) (58) Fields investigated (Int.Cl. 7 , DB name) B60L 11/14 B60K 6/04 F02D 29/06 F02D 29/02
Claims (7)
能に連結され、内燃機関の始動を行う回転電機と、を備
えた動力装置を車両の駆動系統に接続可能に配置したハ
イブリッド車両において、 内燃機関の始動が必要な条件を検出する始動条件検出装
置と、 内燃機関の回転数を検出する機関回転検出装置と、 回転電機のトルクと回転数を制御する制御装置とを備
え、 前記制御装置は、前記回転電機により前記内燃機関を始
動する際に、所期の回転域ではトルク制御を行い、前記
以外の回転域では回転数制御を行うように構成したハイ
ブリッド車両の制御装置。1. An internal combustion engine and the internal combustion engine can be driven mutually.
And a rotating electric machine for starting the internal combustion engine.
In the hybrid vehicle power unit is arranged to be connectable to a drive system of the vehicle was example, the start condition detection device for detecting a starting condition that requires an internal combustion engine, and the engine speed detecting device for detecting the rotational speed of the internal combustion engine, the rotation A control device for controlling the torque and the rotation speed of the electric machine, wherein the control device starts the internal combustion engine by the rotary electric machine.
A hybrid vehicle control device configured to perform torque control in a desired rotation range and to perform rotation speed control in a rotation range other than the above when operating.
るまでの回転数域ではトルク制御を行い、以後は回転数
制御を行うように構成したことを特徴とする請求項1に
記載のハイブリッド車両の制御装置。2. The control device is configured to perform torque control in a rotational speed range until a desired engine rotational speed is reached after starting, and thereafter perform rotational speed control. Control device for hybrid vehicle.
まる基本トルク値に、機関クランク角に応じて定まる回
転振動抑制トルクを加えて生成したトルク指令値に基づ
いて行うことを特徴とする請求項1または請求項2の何
れかに記載のハイブリッド車両の制御装置。3. The torque control is performed based on a torque command value generated by adding a rotational vibration suppression torque determined according to an engine crank angle to a basic torque value determined according to an elapsed time after starting. The control device for a hybrid vehicle according to claim 1 or 2.
系の共振周波数近傍では機関トルク変動分を相殺する値
とし、前記以外の周波数域では所定の最小値とすること
を特徴とする請求項3に記載のハイブリッド車両の制御
装置。4. The rotational vibration suppressing torque is set to a value that cancels out the engine torque fluctuation in the vicinity of the resonance frequency of the engine mount system, and is set to a predetermined minimum value in the frequency range other than the above. A control device for the hybrid vehicle described.
却水温を含む運転状態に応じて設定するように構成した
ことを特徴とする請求項4に記載のハイブリッド車両の
制御装置。5. The control device for a hybrid vehicle according to claim 4, wherein the value for canceling out the engine torque is set according to an operating state including the engine cooling water temperature.
とする請求項4に記載のハイブリッド車両の制御装置。6. The control device for a hybrid vehicle according to claim 4, wherein 0 is set as the minimum value.
数として、トルク制御終了時の回転数を設定し、以後所
定の最終目標回転数へと漸次変化させるように構成され
ていることを特徴とする請求項1に記載のハイブリッド
車両の制御装置。7. The control device is configured to set a rotation speed at the end of torque control as an initial rotation speed at the start of rotation speed control, and thereafter gradually change to a predetermined final target rotation speed. The control device for a hybrid vehicle according to claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28062998A JP3454167B2 (en) | 1998-10-02 | 1998-10-02 | Control device for hybrid vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28062998A JP3454167B2 (en) | 1998-10-02 | 1998-10-02 | Control device for hybrid vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000115911A JP2000115911A (en) | 2000-04-21 |
JP3454167B2 true JP3454167B2 (en) | 2003-10-06 |
Family
ID=17627721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28062998A Expired - Fee Related JP3454167B2 (en) | 1998-10-02 | 1998-10-02 | Control device for hybrid vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3454167B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104608759A (en) * | 2014-12-23 | 2015-05-13 | 潍柴动力股份有限公司 | Engine start control method |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3690244B2 (en) * | 2000-06-02 | 2005-08-31 | 日産自動車株式会社 | Engine torque fluctuation suppression device |
JP3454249B2 (en) | 2000-11-27 | 2003-10-06 | トヨタ自動車株式会社 | Engine cranking damping device |
JP3803269B2 (en) * | 2001-08-07 | 2006-08-02 | ジヤトコ株式会社 | Parallel hybrid vehicle |
US6842673B2 (en) | 2002-06-05 | 2005-01-11 | Visteon Global Technologies, Inc. | Engine engagement control for a hybrid electric vehicle |
US7370715B2 (en) * | 2004-12-28 | 2008-05-13 | Ford Global Technologies, Llc | Vehicle and method for controlling engine start in a vehicle |
JP4577260B2 (en) * | 2006-04-24 | 2010-11-10 | 日産自動車株式会社 | Engine starter |
JP2009013925A (en) * | 2007-07-06 | 2009-01-22 | Toyota Motor Corp | Vehicle and its control method |
JP5257143B2 (en) * | 2009-02-27 | 2013-08-07 | 日産自動車株式会社 | Control device for hybrid vehicle |
JP5263080B2 (en) * | 2009-08-27 | 2013-08-14 | 株式会社デンソー | Vehicle drive control device |
US8192324B2 (en) | 2009-11-13 | 2012-06-05 | Ford Global Technologies, Llc | Vehicle and method for controlling engine start in a vehicle |
US8565990B2 (en) | 2009-11-13 | 2013-10-22 | Ford Global Technologies, Llc. | Vehicle and method for controlling engine start in a vehicle |
JP5229245B2 (en) * | 2010-01-26 | 2013-07-03 | トヨタ自動車株式会社 | Start control device for internal combustion engine |
JP5825441B2 (en) * | 2012-09-05 | 2015-12-02 | 日産自動車株式会社 | Control device and control method for hybrid vehicle |
JP5696729B2 (en) | 2013-02-05 | 2015-04-08 | トヨタ自動車株式会社 | Vehicle control device |
JP6253184B2 (en) * | 2013-09-13 | 2017-12-27 | 日野自動車株式会社 | Hybrid vehicle and motor generator control method thereof |
JP6900828B2 (en) * | 2017-08-08 | 2021-07-07 | 株式会社アイシン | Vehicle control device |
-
1998
- 1998-10-02 JP JP28062998A patent/JP3454167B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104608759A (en) * | 2014-12-23 | 2015-05-13 | 潍柴动力股份有限公司 | Engine start control method |
CN104608759B (en) * | 2014-12-23 | 2017-05-10 | 潍柴动力股份有限公司 | Engine start control method |
Also Published As
Publication number | Publication date |
---|---|
JP2000115911A (en) | 2000-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3498593B2 (en) | Hybrid vehicle control device | |
JP3514142B2 (en) | Vehicle control device | |
JP3381613B2 (en) | Drive control device for hybrid vehicle | |
JP3744414B2 (en) | Vehicle control device | |
JP3454167B2 (en) | Control device for hybrid vehicle | |
JP4040241B2 (en) | Vehicle control device | |
KR101414357B1 (en) | Control device | |
JP4480862B2 (en) | Control device for hybrid vehicle | |
JP3414310B2 (en) | Engine start control device | |
US20010020789A1 (en) | Parallel hybrid vehicle employing parallel hybrid system, using both internal combustion engine and electric motor generator for propulsion | |
JPH11270668A (en) | Drive control device for hybrid vehicle | |
JP3454172B2 (en) | Hybrid vehicle control method | |
JP3565042B2 (en) | Hybrid vehicle control device | |
JP3716659B2 (en) | Vehicle travel control device | |
JP3612939B2 (en) | Combined type vehicle drive apparatus of internal combustion engine and electric motor and control method thereof | |
JP3675469B2 (en) | Control device for hybrid vehicle | |
JP3702897B2 (en) | Control device for hybrid vehicle | |
JP3668838B2 (en) | Vehicle control device | |
JP3577971B2 (en) | Vehicle start control device | |
JP3807024B2 (en) | Control device for compound drive system for vehicle | |
JP3627535B2 (en) | Vehicle engine control device | |
JP4051827B2 (en) | Vehicle drive control device | |
JP4253937B2 (en) | Control device for vehicle drive device | |
JP3589076B2 (en) | Hybrid vehicle control device | |
JP3807125B2 (en) | Engine torque detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080725 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080725 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090725 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090725 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100725 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |