JP4830289B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP4830289B2
JP4830289B2 JP2004342780A JP2004342780A JP4830289B2 JP 4830289 B2 JP4830289 B2 JP 4830289B2 JP 2004342780 A JP2004342780 A JP 2004342780A JP 2004342780 A JP2004342780 A JP 2004342780A JP 4830289 B2 JP4830289 B2 JP 4830289B2
Authority
JP
Japan
Prior art keywords
battery
secondary battery
convex
uneven
wall portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004342780A
Other languages
Japanese (ja)
Other versions
JP2006156049A (en
Inventor
義明 尾形
豊彦 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004342780A priority Critical patent/JP4830289B2/en
Publication of JP2006156049A publication Critical patent/JP2006156049A/en
Application granted granted Critical
Publication of JP4830289B2 publication Critical patent/JP4830289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

本発明は、二次電池に関する。   The present invention relates to a secondary battery.

近年、ポータブル機器や携帯機器などの電源として、また、電気自動車やハイブリッド自動車などの電源として、様々な二次電池が提案されている。(例えば、特許文献1,特許文献2参照)。   In recent years, various secondary batteries have been proposed as power sources for portable devices and portable devices, and as power sources for electric vehicles and hybrid vehicles. (For example, refer to Patent Document 1 and Patent Document 2).

特開2001−176487号JP 2001-176487 A 特開2004−31167号JP 2004-31167 A

特許文献1及び特許文献2の二次電池は、単電池として用いることもあるが、電気自動車やハイブリッド自動車などの電源として用いる場合には、多数の二次電池を配列し、これらを接続して用いる。このように、多数の電池を配列する場合には、隣り合う二次電池の間に、冷却風が流通する冷却通路を設け、それぞれの電池を適切に冷却するのが好ましい。   The secondary batteries of Patent Document 1 and Patent Document 2 may be used as a single battery, but when used as a power source for an electric vehicle or a hybrid vehicle, a large number of secondary batteries are arranged and connected. Use. Thus, when arranging a large number of batteries, it is preferable to provide a cooling passage through which cooling air flows between adjacent secondary batteries and cool each battery appropriately.

特許文献1の二次電池では、電池ケース(電槽)の外壁面(長側面)に、多数の突部が形成されている。このため、複数の二次電池を、長側面同士で接触させるようにして配列すると、突部同士を接触させることで隣接する二次電池の間に空隙を設け、この空隙を冷却風が流通する冷却通路とすることができる。これにより、それぞれの二次電池を、適切に冷却することができる。   In the secondary battery of Patent Literature 1, a large number of protrusions are formed on the outer wall surface (long side surface) of the battery case (battery case). For this reason, when arranging a plurality of secondary batteries so that the long side surfaces are in contact with each other, a gap is provided between adjacent secondary batteries by bringing the protrusions into contact with each other, and cooling air flows through the gap. It can be a cooling passage. Thereby, each secondary battery can be cooled appropriately.

特許文献2の二次電池500でも、図11に示すように、電池ケース501(電槽502)は、外壁面(長側面)が凹凸形状をなす凹凸壁部510を有している。凹凸壁部510は、図12に示すように、平坦板状をなす凹部513と、略円柱状で板厚方向に突出する多数の当接部512を含む凸部511とを有している。従って、図14に示すように、凹凸壁部510の当接部512同士を当接させるようにして、複数の二次電池500を配列させたとき、隣り合う二次電池500の間に冷却通路Rを設けることができるので、それぞれの二次電池500を、適切に冷却することができる。なお、二次電池500では、図13に示すように、樹脂からなる電槽本体部514と、PPなどの樹脂やアルミニウム箔等からなる多層被膜515とが一体に成形されて、凹凸壁部510をなしている。   Also in the secondary battery 500 of Patent Document 2, as shown in FIG. 11, the battery case 501 (the battery case 502) has an uneven wall portion 510 whose outer wall surface (long side surface) forms an uneven shape. As shown in FIG. 12, the concavo-convex wall portion 510 has a concave portion 513 having a flat plate shape, and a convex portion 511 including a large number of contact portions 512 that are substantially columnar and project in the thickness direction. Therefore, as shown in FIG. 14, when a plurality of secondary batteries 500 are arranged so that the contact parts 512 of the concavo-convex wall part 510 are in contact with each other, a cooling passage is provided between adjacent secondary batteries 500. Since R can be provided, each secondary battery 500 can be appropriately cooled. In the secondary battery 500, as shown in FIG. 13, a battery case main body portion 514 made of resin and a multilayer coating 515 made of resin such as PP, aluminum foil or the like are integrally formed to form an uneven wall portion 510. I am doing.

ところで、近年、二次電池の搭載スペースを縮小するために、二次電池の小型化の要求が高まっているが、電池容量を低下させることなく、電池を小型とするためには、電池ケースの壁部の厚みを薄くせざるを得ない。しかしながら、二次電池では、充放電に伴い、内圧が上昇する場合があるため、単純に、電池ケースの壁部の厚みを薄くすると、内圧の上昇に耐えうる強度を維持できなくなる虞があった。   By the way, in recent years, in order to reduce the mounting space of the secondary battery, there is an increasing demand for downsizing of the secondary battery. However, in order to reduce the battery without reducing the battery capacity, The thickness of the wall must be reduced. However, in a secondary battery, the internal pressure may increase with charge / discharge, so if the thickness of the wall of the battery case is simply reduced, the strength that can withstand the increase in internal pressure may not be maintained. .

具体的には、例えば、特許文献2の二次電池500において、図13に示すように、電池ケース501の凹凸壁部510の板厚T2を、T1にまで薄くすることを考える。例えば、前述したように、複数の二次電池500を配列したときの冷却通路Rを変えることなく凹凸壁部510の板厚をT1まで薄くするには、電槽本体部514の厚みを(T2−T1)だけ薄くしなければならない。しかしながら、この場合には、図中仮想線で示すように、平坦板状をなす凹部513全体の厚みがSにまで薄くなってしまい、内圧の上昇に耐えうる強度を維持できなくなる虞がある。 Specifically, for example, in the secondary battery 500 of Patent Document 2, as shown in FIG. 13, it is considered that the plate thickness T2 of the uneven wall portion 510 of the battery case 501 is reduced to T1. For example, as described above, in order to reduce the thickness of the concavo-convex wall portion 510 to T1 without changing the cooling passage R when the plurality of secondary batteries 500 are arranged, the thickness of the battery case body portion 514 is set to (T2 -T1) must be thinned. However, in this case, as indicated by a virtual line in the figure, the thickness of the entire concave portion 513 having a flat plate shape is reduced to S, and there is a possibility that the strength that can withstand the increase in internal pressure cannot be maintained.

例えば、内圧の上昇により、凹凸壁部510(凹部513)が膨張してしまい、隣り合う二次電池500の間の空隙が減少し、冷却通路Rを確保することができなくなる虞がある。従って、二次電池を適切に冷却することができなくなる虞があった。さらには、凹凸壁部510が上昇した内圧に耐えきれなくなり、凹凸壁部510(電池ケース501)が破損してしまう危険性もあった。   For example, the uneven wall portion 510 (recessed portion 513) expands due to the increase in internal pressure, and the gap between the adjacent secondary batteries 500 may decrease, and the cooling passage R may not be secured. Therefore, there is a possibility that the secondary battery cannot be cooled appropriately. Furthermore, there is a risk that the uneven wall portion 510 (battery case 501) may be damaged because the uneven wall portion 510 cannot withstand the increased internal pressure.

本発明は、かかる現状に鑑みてなされたものであって、複数の二次電池について、電池ケース同士を当接させて配列したときに、それぞれの二次電池を適切に冷却することが可能で、且つ、電池ケースの強度を適切に確保しつつ小型化が可能な二次電池を提供することを目的とする。   The present invention has been made in view of the current situation, and when a plurality of secondary batteries are arranged in contact with each other, each secondary battery can be appropriately cooled. And it aims at providing the secondary battery which can be reduced in size, ensuring the intensity | strength of a battery case appropriately.

その解決手段は、1または複数の発電要素と、上記発電要素を収容する外形直方体形状の電池ケースと、を備える二次電池であって、上記電池ケースは、当該電池ケースの少なくとも一部をなす凹凸壁部であって、相対的に肉厚が厚く、上記凹凸壁部の厚さ方向に直交する電池高さ方向に延びる凸部と、上記凸部よりも肉厚が薄く、上記電池高さ方向に延びる凹部とが、上記電池高さ方向に直交する方向に交互に配置されてなる凹凸壁部を有し、上記凸部は、上記電池ケース同士を当接させて配列したときに、他の電池ケースと当接する当接部であって、上記凸部と一体に形成された当接部を含み、上記凹部は、内壁面が平坦面をなし、外壁面が、上記電池高さ方向に延びる凹溝であって、上記電池高さ方向に直交する方向の破断形状が、上記電池ケースの内側に向かって凸の弧状の凹溝をなす二次電池である。 The solution is a secondary battery comprising one or more power generation elements and a rectangular parallelepiped battery case that houses the power generation elements, and the battery case forms at least a part of the battery case. A concavo-convex wall portion that is relatively thick and has a convex portion extending in a battery height direction perpendicular to the thickness direction of the concavo-convex wall portion; and a thickness that is thinner than the convex portion and the battery height Recesses extending in the direction have concavo-convex wall portions alternately arranged in a direction perpendicular to the battery height direction , and the protrusions are arranged when the battery cases are arranged in contact with each other. A contact portion that contacts the battery case, the contact portion being formed integrally with the convex portion , wherein the concave portion has a flat inner wall surface and an outer wall surface in the battery height direction . extending a groove, fracture shape in the direction perpendicular to the cell height direction, the upper A secondary battery which forms an arcuate groove convex towards the inside of the battery case.

本発明の二次電池は、電池ケースの少なくとも一部をなす凹凸壁部を有している。この凹凸壁部の凸部は、電池ケース同士を当接させて配列したときに、他の電池ケースと当接する当接部を含んでいる。このため、電池ケース同士を当接させて、複数の二次電池を配列したときに、隣接する二次電池の間に間隙を設けることができ、この間隙を、冷却風が流通する流通路(以下、冷却通路とも言う)とすることができる。これにより、複数の二次電池を配列する場合でも、それぞれの電池を適切に冷却することができる。   The secondary battery of this invention has the uneven | corrugated wall part which makes at least one part of a battery case. The convex portion of the concavo-convex wall portion includes a contact portion that contacts another battery case when the battery cases are arranged in contact with each other. For this reason, when battery cases are brought into contact with each other and a plurality of secondary batteries are arranged, a gap can be provided between adjacent secondary batteries. Hereinafter, it is also referred to as a cooling passage. Thereby, even when arranging a plurality of secondary batteries, each battery can be appropriately cooled.

その上、凹凸壁部の凹部は、内壁面が平坦面をなし、外壁面が、電池高さ方向に延びる凹溝であって、電池高さ方向に直交する方向の破断形状が、電池ケースの内側に向かって凸の弧状の凹溝をなしている。すなわち、凹部は、凹溝の弧の中点から両端に向かうにしたがって肉厚が厚くなる形態を有している。このような形態の凹部は、凹溝の弧の中点位置の肉厚を薄くしても、比較的強固となるので、電池の内圧による電池ケースの変形を抑制することができる。しかも、凹溝を、冷却通路として用いることができるため、凸部(当接部)の突出高さが低くても、十分に冷却通路を確保することができる。従って、凸部(当接部)の突出高さを低くすることで、電池ケースの凹凸壁部の肉厚を薄くすることができるので、その分、電池の小型化が可能となる。 Thereon, the recess of the uneven wall, without the inner wall surface flat surface, the outer wall surface, a groove extending in the cell height direction, breaking the shape in the direction orthogonal to the cell height direction, of the battery case It has an arcuate groove that is convex inward. That is, the concave portion has a form in which the thickness increases from the midpoint of the arc of the concave groove toward both ends. The concave portion having such a form is relatively strong even if the thickness of the midpoint position of the arc of the concave groove is reduced, and therefore deformation of the battery case due to the internal pressure of the battery can be suppressed. In addition, since the concave groove can be used as a cooling passage, the cooling passage can be sufficiently ensured even if the protruding height of the convex portion (contact portion) is low. Therefore, by reducing the protruding height of the convex portion (contact portion), the thickness of the uneven wall portion of the battery case can be reduced, so that the battery can be miniaturized accordingly.

なお、発電要素は、電池の機能を奏するために電池ケース内に配置されるものであり、例えば、電極、セパレータ、電解液などが含まれる。
また、当接部の形態としては、例えば、一定の突出高さで電池高さ方向(凹溝が延びる方向)に延びる細長形状の当接部が挙げられる。また、当接部として、多数の柱状体を、電池高さ方向(凹溝が延びる方向)に沿って散点状に列置するようにしても良い。
Note that the power generation element is disposed in the battery case in order to perform the function of the battery, and includes, for example, an electrode, a separator, an electrolytic solution, and the like.
Moreover, as a form of a contact part, the elongate contact part extended in a battery height direction ( direction where a ditch | groove extends) with a fixed protrusion height is mentioned, for example. Further, as the contact portion, a large number of columnar bodies may be arranged in a dotted pattern along the battery height direction (the direction in which the groove extends).

さらに、上記の二次電池であって、前記電池ケースのうち少なくとも前記凹凸壁部は、樹脂の射出成形により成形されてなり、上記凹凸壁部は、前記電池高さ方向に樹脂が流れて成形されてなる二次電池であると良い。 Further, in the above secondary battery, at least the uneven wall portion of the battery case is formed by resin injection molding, and the uneven wall portion is formed by the resin flowing in the battery height direction. It is preferable that the secondary battery be made.

本発明の二次電池では、電池ケースのうち少なくとも凹凸壁部が、樹脂の射出成形により形成されている。凹凸壁部(これを含む電池ケース)を射出成形する場合には、凹凸壁部の厚みを薄くし過ぎると、射出される樹脂の流路(具体的には、樹脂が流れる方向に直交する断面の断面積)が小さくなりすぎて、適切に射出成形できなくなる虞がある。   In the secondary battery of the present invention, at least the uneven wall portion of the battery case is formed by resin injection molding. When an uneven wall (including a battery case) is injection molded, if the thickness of the uneven wall is made too thin, the flow path of the injected resin (specifically, the cross section orthogonal to the resin flow direction) ) Is too small, and there is a risk that the injection molding cannot be performed properly.

これに対し、本発明の二次電池では、前述のように、電池ケースの凹凸壁部のうち、肉厚の薄い凹部について、内壁面を平坦面とし、外壁面を、電池高さ方向に延びる凹溝であって、電池高さ方向に直交する方向の破断形状が、電池ケースの内側に向かって凸の弧状の凹溝としている。すなわち、凹部の形態を、凹溝の弧の中点から両端に向かうにしたがって肉厚が厚くなる形態としている。しかも、射出成形する際、凹凸壁部では、樹脂を流す方向を、凹溝が延びる電池高さ方向としている。このため、凹部について、凹溝の弧の中点位置の肉厚を薄くしても、射出される樹脂の流路の断面積(樹脂が流れる電池高さ方向に直交する断面の断面積)を比較的大きく確保できる。 On the other hand, in the secondary battery of the present invention, as described above, of the concave and convex wall portions of the battery case, with respect to the thin concave portion, the inner wall surface is a flat surface and the outer wall surface extends in the battery height direction . It is a ditch | groove, Comprising: The fracture | rupture shape of the direction orthogonal to a battery height direction is made into the arc-shaped ditch | groove which protrudes toward the inner side of a battery case. That is, the shape of the concave portion is a shape in which the thickness increases from the midpoint of the arc of the concave groove toward both ends. In addition, when the injection molding is performed, in the uneven wall portion, the direction in which the resin flows is the battery height direction in which the groove extends. For this reason, even if the thickness of the center point of the arc of the groove is reduced, the cross-sectional area of the flow path of the injected resin (the cross-sectional area of the cross section perpendicular to the battery height direction through which the resin flows) is reduced. It can be secured relatively large.

さらには、成形金型のうち、凹凸壁部の凹部を成形する金型凸部は、凹凸壁部の凸部を成形する金型凹部に近づくにしたがって、射出樹脂の流通路の断面(樹脂が流れる方向に直交する断面)にかかる厚み方向(図中上下方向)の寸法が大きくなる弧状となる。このため、金型凹部の位置(金型凸部の位置に比べて断面積が大きいため、樹脂の流れが良好)を流れる樹脂が、金型凸部の位置に流れ込み易くなる。従って、凹凸壁部の凹部を成形する金型凸部の位置にも、適切に、射出した樹脂を流し込むことができる。
従って、凹部に弧状の凹溝を設け、凸部(当接部)の突出高さを低くすることにより、厚みを薄くした凹凸壁部(これを含む電池ケース)を適切に射出成形することができるので、樹脂製の電池ケースを備える電池を、容易に小型化できる。
Furthermore, among the molding dies, the mold convex part that molds the concave part of the concave-convex wall part becomes closer to the mold concave part that molds the convex part of the concave-convex wall part. It becomes an arc shape in which the dimension in the thickness direction (vertical direction in the figure) over the cross section perpendicular to the flowing direction is increased. For this reason, the resin flowing through the position of the mold concave portion (the flow of the resin is good because the cross-sectional area is larger than the position of the mold convex portion) can easily flow into the position of the mold convex portion. Accordingly, the injected resin can be appropriately poured also into the position of the mold convex portion for molding the concave portion of the concave-convex wall portion.
Therefore, by providing an arc-shaped concave groove in the concave portion and reducing the protruding height of the convex portion (contact portion), it is possible to appropriately injection-mold the concave-convex wall portion (including the battery case) having a reduced thickness. Therefore, a battery including a resin battery case can be easily downsized.

さらに、上記いずれかに記載の二次電池であって、前記当接部は、前記電池高さ方向に沿って散点状に列置されてなる二次電池であると良い。 Furthermore, in the secondary battery according to any one of the above, the contact portion may be a secondary battery arranged in a dotted pattern along the battery height direction .

本発明の二次電池では、当接部を、電池高さ方向(凸部が延びる方向)に沿って、散点状に列置している。このため、当該二次電池を、当接部において、他の二次電池と当接させて配列したとき、電池高さ方向(凸部が延びる方向)に隣り合う当接部同士の間にも、冷却通路を設けることができる。これにより、二次電池の冷却性を良好とすることができる。 In the secondary battery of the present invention, the contact portions are arranged in a dotted pattern along the battery height direction ( direction in which the convex portion extends). For this reason, when the secondary battery is arranged in contact with another secondary battery at the contact portion, it is also between the contact portions adjacent to each other in the battery height direction ( direction in which the convex portion extends). A cooling passage can be provided. Thereby, the cooling property of a secondary battery can be made favorable.

さらに、上記いずれかの二次電池であって、前記電池ケースのうち少なくとも前記凹凸壁部は、樹脂の射出成形により成形されてなり、少なくとも上記凹凸壁部の外壁面側に、金属箔からなり、上記外壁面に沿った凹凸形状をなす金属層を備える二次電池であると良い。   Furthermore, in any one of the above secondary batteries, at least the uneven wall portion of the battery case is formed by resin injection molding, and at least the outer wall surface side of the uneven wall portion is made of a metal foil. The secondary battery may be provided with a metal layer having an uneven shape along the outer wall surface.

樹脂製の電池ケースを備える二次電池では、水蒸気、酸素ガス、水素ガスなどが電池ケースを透過し、長期間に渡り徐々に外部に漏出してしまう問題がある。特に、ニッケル水素蓄電池では、水素ガスが、樹脂製の電池ケースを透過して外部に漏出することで、電池内の水素ガスが減少すると、正極と負極の容量のバランスが崩れ、電池特性が著しく低下してしまう問題があった。これに対し、本発明の二次電池では、少なくとも凹凸壁部の外壁面側に、金属箔からなる金属層を備えている。このように、電池ケースの外壁面側に金属層を設けることにより、水素ガス等が、電池ケースの壁部を透過して外部に漏出するのを抑制することができる。   In a secondary battery including a resin battery case, there is a problem that water vapor, oxygen gas, hydrogen gas, and the like permeate the battery case and gradually leak to the outside over a long period of time. In particular, in a nickel metal hydride storage battery, hydrogen gas permeates through the resin battery case and leaks to the outside. When the hydrogen gas in the battery decreases, the capacity balance between the positive electrode and the negative electrode is lost, and the battery characteristics are remarkably reduced. There was a problem that would decrease. On the other hand, the secondary battery of the present invention includes a metal layer made of a metal foil at least on the outer wall surface side of the uneven wall portion. Thus, by providing the metal layer on the outer wall surface side of the battery case, hydrogen gas or the like can be prevented from passing through the wall portion of the battery case and leaking outside.

ところで、従来の二次電池500(図11参照)では、インサート成形により、図12,図13に示すように、凹凸壁部510の外壁面510b側に金属層515c(金属層515cを含む多層膜515)を備える電池ケースを成形しているが、適切に成形できない場合があった。具体的には、凹凸壁部510の外壁面510bは、平坦板状をなす凹部513と、略円柱状で板厚方向に突出する多数の当接部512を含む凸部511とを有している。従って、成形する際は、金属層515cを含む多層膜515を、凹凸壁部510の凹凸形状を成形する金型の上に配置し、当接部512を成形する金型凹部に、射出した樹脂と共に金属層515cを含む多層膜515を押し込むようにして、小さな円柱形状の当接部512を成形する。ところが、金属層515cを含む多層膜515が、金型凹部に沿って十分に変形しないために、適切な形状に当接部512を成形できないことがあった。   By the way, in the conventional secondary battery 500 (refer FIG. 11), as shown in FIG. 12, FIG. 13, the metal layer 515c (multilayer film containing the metal layer 515c) is formed in the outer wall surface 510b side of the uneven | corrugated wall part 510 by insert molding. 515) is molded, but there are cases where it cannot be molded properly. Specifically, the outer wall surface 510b of the concavo-convex wall portion 510 includes a concave portion 513 having a flat plate shape, and a convex portion 511 including a large number of abutting portions 512 that are substantially cylindrical and project in the thickness direction. Yes. Therefore, when molding, the multilayer film 515 including the metal layer 515c is placed on the mold for molding the concave-convex shape of the concave-convex wall portion 510, and the injected resin is injected into the mold concave portion for molding the contact portion 512. At the same time, a small cylindrical contact portion 512 is formed by pressing the multilayer film 515 including the metal layer 515c. However, since the multilayer film 515 including the metal layer 515c is not sufficiently deformed along the mold recess, the contact portion 512 may not be formed into an appropriate shape.

これに対し、本発明の二次電池では、前述のように、凹凸壁部の凹部は、外壁面が、電池高さ方向に延びる凹溝であって、電池高さ方向に直交する方向の破断形状が、電池ケースの内側に向かって凸の弧状の凹溝をなしている。凹溝を設けた分、凸部(当接部)の突出高さを低くできるので、インサートした金属層(金属層を含む多層膜)を、凸部(当接部)の形状に対応する金型の小さな円柱形状の凹部に沿って変形させやすくなる。さらには、凹溝を弧状とすることにより、インサートした金属層(金属層を含む多層膜)を、凹溝に対応する金型に沿っても変形させやすくなる。従って、インサート成形により、外壁面側に外壁面に沿った凹凸形状をなす金属層(金属層を含む多層膜)を備える凹凸壁部(これを含む電池ケース)を、適切に成形することが可能となる。 In contrast, in the secondary battery of the present invention, as described above, concave portions of the concavo-convex wall, an outer wall surface, a groove extending in the cell height direction, breaking in the direction orthogonal to the cell height direction The shape forms an arc-shaped groove that is convex toward the inside of the battery case. Since the protruding height of the convex portion (contact portion) can be reduced by providing the concave groove, the inserted metal layer (multilayer film including the metal layer) is made of gold corresponding to the shape of the convex portion (contact portion). It becomes easy to deform along a cylindrical concave portion of a small mold. Furthermore, by making the concave groove in an arc shape, the inserted metal layer (multilayer film including the metal layer) can be easily deformed along the mold corresponding to the concave groove. Therefore, it is possible to appropriately shape an uneven wall portion (including a battery case) including a metal layer (a multilayer film including a metal layer) having an uneven shape along the outer wall surface on the outer wall surface by insert molding. It becomes.

なお、金属層をなす金属箔として、例えば、アルミニウム箔を好適に用いることができる。また、凹凸壁部の外壁面側には、金属層のみならず、金属層と樹脂層とを積層した多層膜(例えば、金属層を2つのポリプロピレン層の間に配置させた3層構造を有する多層膜)を設けるようにしても良い。   In addition, as metal foil which makes a metal layer, aluminum foil can be used suitably, for example. Further, on the outer wall surface side of the concavo-convex wall portion, not only a metal layer but also a multilayer film in which a metal layer and a resin layer are laminated (for example, a three-layer structure in which a metal layer is disposed between two polypropylene layers). A multilayer film) may be provided.

さらに、上記いずれかの二次電池であって、前記電池ケースのうち少なくとも前記凹凸壁部は、樹脂の射出成形により成形されてなり、少なくとも上記凹凸壁部の外壁面側に、金属箔からなり、上記外壁面に沿った凹凸形状をなす金属層を備え、前記当接部は、一定の突出高さで前記電池高さ方向に延びる細長形状をなす二次電池であると良い。 Furthermore, in any one of the above secondary batteries, at least the uneven wall portion of the battery case is formed by resin injection molding, and at least the outer wall surface side of the uneven wall portion is made of a metal foil. Preferably, the secondary battery includes a metal layer having an uneven shape along the outer wall surface, and the contact portion has an elongated shape extending in the battery height direction with a constant protruding height.

前述したように、小さな円柱形状をなす当接部を有する電池ケースを成形する場合には、インサートした金属層(金属層を含む多層膜)が、金型凹部に沿って十分に変形しないために、適切な形状に当接部を成形できないことがあった。
これに対し、本発明の二次電池では、当接部を、一定の突出高さで電池高さ方向(凸部が延びる方向)に延びる細長形状としている。従って、当接部に対応する金型の凹部を、凸部が延びる電池高さ方向に大きくすることができるので、インサートした金属層(金属層を含む多層膜)を、射出した樹脂により、当該金型に沿って変形させ易くなる。これにより、射出した樹脂も、当該金型に沿った凹凸形状に成形し易くなる。従って、インサート成形により、凹凸壁部の外壁面に金属層(金属層を含む多層膜)を備える電池ケースを、適切に成形することができる。
As described above, when a battery case having a contact portion having a small cylindrical shape is formed, the inserted metal layer (multilayer film including the metal layer) is not sufficiently deformed along the mold recess. In some cases, the contact portion cannot be formed into an appropriate shape.
On the other hand, in the secondary battery of the present invention, the contact portion has an elongated shape that extends in the battery height direction ( direction in which the convex portion extends) with a constant protruding height. Accordingly, since the concave portion of the mold corresponding to the contact portion can be enlarged in the battery height direction in which the convex portion extends, the inserted metal layer (multilayer film including the metal layer) is It becomes easy to deform along the mold. Thereby, it becomes easy to shape | mold the injected resin also into the uneven | corrugated shape along the said metal mold | die. Therefore, a battery case including a metal layer (a multilayer film including a metal layer) on the outer wall surface of the concavo-convex wall portion can be appropriately formed by insert molding.

また、上記いずれかの二次電池の製造方法として、樹脂の射出成形により、前記電池ケースのうち少なくとも前記凹凸壁部を成形する成形工程を有し、上記成形工程では、前記電池高さ方向に樹脂を流して前記凹部を成形する二次電池の製造方法とするのが好ましい。 In addition, as one of the above secondary battery manufacturing methods, the method includes a molding step of molding at least the concavo-convex wall portion of the battery case by resin injection molding. In the molding step, in the battery height direction , It is preferable to use a method for manufacturing a secondary battery in which a resin is poured to form the recess.

本発明の二次電池は、前述のように、凹凸壁部の凹部が、凹溝の弧の中点から両端に向かうにしたがって肉厚が厚くなる形態を有している。これに対し、本発明の成形工程では、凹部が延びる前記電池高さ方向に樹脂を流して凹部を成形するため、凹溝の弧の中点位置の肉厚を薄くする場合でも、射出される樹脂の流路の断面積(樹脂が流れる電池高さ方向に直交する断面の断面積)を比較的大きく確保できるため、適切に射出成形することができる。従って、本発明の製造方法によれば、厚みの薄い凹凸壁部(これを含む電池ケース)を適切に成形することができるので、樹脂製の電池ケースを備える電池を、容易に小型化できる。 As described above, the secondary battery of the present invention has a configuration in which the concave portion of the concave-convex wall portion becomes thicker toward the both ends from the midpoint of the arc of the concave groove. On the other hand, in the molding process of the present invention, the resin is poured in the battery height direction in which the recess extends to form the recess, so that the injection is performed even when the thickness of the midpoint position of the arc of the recess is thinned. Since the cross-sectional area of the resin flow path (the cross-sectional area of the cross section perpendicular to the battery height direction through which the resin flows) can be secured relatively large, injection molding can be performed appropriately. Therefore, according to the manufacturing method of the present invention, the thin uneven wall portion (battery case including the wall) can be appropriately formed, so that the battery including the resin battery case can be easily downsized.

さらに、上記の二次電池の製造方法であって、前記成形工程では、金属箔からなる金属層(または、金属層を含む多層膜)をインサートし、前記電池ケースのうち少なくとも前記凹凸壁部の外壁面側に、上記外壁面に沿った凹凸形状をなす上記金属層を一体成形する二次電池の製造方法とするのが好ましい。   Furthermore, in the method for manufacturing a secondary battery described above, in the forming step, a metal layer made of metal foil (or a multilayer film including the metal layer) is inserted, and at least the uneven wall portion of the battery case is inserted. It is preferable to use a method for manufacturing a secondary battery in which the metal layer having an uneven shape along the outer wall surface is integrally formed on the outer wall surface side.

前述したように、従来においては、小さな円柱形状をなす当接部を有する電池ケースを成形する場合には、インサートした金属層(金属層を含む多層膜)を、射出した樹脂により、当接部の形状に対応する金型の小さな円柱形状の凹部に沿って変形できず、これにより、射出した樹脂も凹凸形状に成形できないことがあった。   As described above, conventionally, when a battery case having an abutting portion having a small columnar shape is formed, the inserted metal layer (multilayer film including the metal layer) is formed by injecting resin into the abutting portion. In this case, the resin cannot be deformed along the small cylindrical concave portion of the mold corresponding to the shape of the mold, and the injected resin may not be molded into the concave and convex shape.

これに対し、本発明の二次電池では、前述のように、凹凸壁部の凹部に凹溝を設けた分、凸部(当接部)の突出高さを低くできる。このため、本発明の製造方法により、電池ケースのうち少なくとも凹凸壁部の外壁面側に金属層を一体成形する際、当接部を、円柱形状の小さな突起とした場合でも、インサートした金属層(金属層を含む多層膜)を、当接部の形状に対応する金型の小さな円柱形状の金型凹部に沿って変形させ易くなる。さらには、凹溝を弧状に成形するため、インサートした金属層(金属層を含む多層膜)を、凹溝に対応する金型に沿っても変形させやすくなる。従って、射出した樹脂を、金型に沿って、適切に凹凸形状に成形できると共に、凹凸壁部の外壁面側に、適切に、外壁面に沿った凹凸形状をなす金属層(金属層を含む多層膜)を一体成形することができる。   On the other hand, in the secondary battery of the present invention, as described above, the protrusion height of the convex portion (contact portion) can be lowered by the amount of the concave groove provided in the concave portion of the concave and convex wall portion. For this reason, when the metal layer is integrally formed at least on the outer wall surface side of the concavo-convex wall portion of the battery case by the manufacturing method of the present invention, even when the contact portion is a small cylindrical protrusion, the inserted metal layer (Multilayer film including a metal layer) can be easily deformed along a small cylindrical mold concave portion of the mold corresponding to the shape of the contact portion. Furthermore, since the concave groove is formed in an arc shape, the inserted metal layer (multilayer film including the metal layer) can be easily deformed along the mold corresponding to the concave groove. Accordingly, the injected resin can be appropriately formed into a concavo-convex shape along the mold, and a metal layer (including a metal layer) that appropriately forms a concavo-convex shape along the outer wall surface on the outer wall surface side of the concavo-convex wall portion. Multilayer film) can be formed integrally.

さらに、上記の二次電池の製造方法であって、前記成形工程では、前記当接部を、一定の突出高さで前記電池高さ方向に延びる細長形状に成形する二次電池の製造方法とするのが好ましい。 Furthermore, in the method for manufacturing a secondary battery described above, in the forming step, the contact portion is formed into an elongated shape extending in the battery height direction with a constant protrusion height; It is preferable to do this.

前述したように、従来においては、小さな円柱形状をなす当接部を有する電池ケースを成形する場合には、インサートした金属層(金属層を含む多層膜)を、射出した樹脂により、当接部の形状に対応する金型の小さな円柱形状の凹部に沿って変形できず、これにより、射出した樹脂も凹凸形状に成形できないことがあった。
これに対し、本発明の製造方法では、当接部を、一定の突出高さで電池高さ方向(凸部が延びる方向)に延びる細長形状に成形する。すなわち、当接部に対応する金型凹部を、凸部が延びる電池高さ方向に大きくする。これにより、インサートした金属層(金属層を含む多層膜)を、射出した樹脂により、当該金型に沿って変形させ易くなると共に、射出した樹脂も、当該金型に沿った凹凸形状に成形し易くなる。従って、本発明の製造方法によれば、凹凸壁部の外壁面に金属層(金属層を含む多層膜)を備える電池ケースを、適切に成形することができる。
As described above, conventionally, when a battery case having an abutting portion having a small columnar shape is formed, the inserted metal layer (multilayer film including the metal layer) is formed by injecting resin into the abutting portion. In this case, the resin cannot be deformed along the small cylindrical concave portion of the mold corresponding to the shape of the mold, and the injected resin may not be molded into the concave and convex shape.
On the other hand, in the manufacturing method of the present invention, the contact portion is formed into an elongated shape extending in the battery height direction ( direction in which the convex portion extends) with a constant protrusion height. That is, the mold concave portion corresponding to the contact portion is enlarged in the battery height direction in which the convex portion extends. As a result, the inserted metal layer (multilayer film including the metal layer) can be easily deformed along the mold by the injected resin, and the injected resin is also formed into an uneven shape along the mold. It becomes easy. Therefore, according to the manufacturing method of the present invention, a battery case including a metal layer (a multilayer film including a metal layer) on the outer wall surface of the concavo-convex wall portion can be appropriately formed.

次に、本発明の実施形態(実施例1,2)について、図面を参照しつつ説明する。   Next, embodiments (Examples 1 and 2) of the present invention will be described with reference to the drawings.

本実施例1の二次電池100は、図1(a),(b)に示すように、電槽102及び蓋体103を有する電池ケース101を備えるニッケル水素蓄電池である。蓋体103は、樹脂からなり、矩形略板形状を有し、安全弁122、温度センサ装着穴124が設けられている。安全弁122は、電池ケース101の内圧が所定値を超えた場合に作動し、内部の気体(水素ガス等)を外部に排出し、内圧上昇を抑制する。温度センサ装着穴124には、図示しない温度センサを挿入することができ、電池の温度を検知することが可能とされている。電槽102は、矩形略箱形状を有し、後に詳述するが、凹凸形状をなす外壁面110bを有する凹凸壁部110を含んでいる。   The secondary battery 100 of the first embodiment is a nickel-metal hydride storage battery including a battery case 101 having a battery case 102 and a lid body 103 as shown in FIGS. The lid 103 is made of resin, has a substantially rectangular plate shape, and is provided with a safety valve 122 and a temperature sensor mounting hole 124. The safety valve 122 operates when the internal pressure of the battery case 101 exceeds a predetermined value, discharges internal gas (hydrogen gas or the like) to the outside, and suppresses an increase in internal pressure. A temperature sensor (not shown) can be inserted into the temperature sensor mounting hole 124 so that the temperature of the battery can be detected. The battery case 102 has a substantially rectangular box shape and includes an uneven wall portion 110 having an outer wall surface 110b having an uneven shape, which will be described in detail later.

電池ケース101(電槽102)の内部は、図2に示すように、隔壁部130によって、6つの空間に仕切られている。それぞれの空間には、極板群150(正極151、負極152、セパレータ153)と、電解液(図示しない)とが配置されている。なお、極板群150と電解液(図示しない)とは、発電要素に相当する。
正極151としては、例えば、水酸化ニッケルを含む活物質と、発泡ニッケルなどの活物質支持体とを備える電極板を用いることができる。負極152としては、例えば、水素吸蔵合金を負極構成材として含む電極板を用いることができる。セパレータ153としては、例えば、親水化処理された合成繊維からなる不織布を用いることができる。電解液としては、例えば、KOHを含む比重1.2〜1.4のアルカリ水溶液を用いることができる。
As shown in FIG. 2, the inside of the battery case 101 (the battery case 102) is partitioned into six spaces by a partition wall portion 130. In each space, an electrode plate group 150 (positive electrode 151, negative electrode 152, separator 153) and an electrolytic solution (not shown) are arranged. The electrode plate group 150 and the electrolytic solution (not shown) correspond to power generation elements.
As the positive electrode 151, for example, an electrode plate including an active material containing nickel hydroxide and an active material support such as foamed nickel can be used. As the negative electrode 152, for example, an electrode plate containing a hydrogen storage alloy as a negative electrode constituent material can be used. As the separator 153, for example, a non-woven fabric made of synthetic fibers subjected to a hydrophilic treatment can be used. As the electrolytic solution, for example, an alkaline aqueous solution containing KOH and having a specific gravity of 1.2 to 1.4 can be used.

ここで、電槽102の凹凸壁部110について、詳細に説明する。
凹凸壁部110は、図3に示すように、樹脂からなり、凹凸形状の凹凸面114bを有する樹脂本体部114と、凹凸面114b上に設けられた多層膜115とを備えている。多層膜115は、図4に示すように、3層構造をなし、凹凸面114b側から順に、ポリプロピレンからなる第1樹脂層115bと、アルミニウム箔からなる金属層115cと、ポリプロピレンからなる第2樹脂層115dとを有している。
Here, the uneven wall portion 110 of the battery case 102 will be described in detail.
As shown in FIG. 3, the concavo-convex wall portion 110 is made of a resin, and includes a resin main body portion 114 having a concavo-convex concavo-convex surface 114b and a multilayer film 115 provided on the concavo-convex surface 114b. As shown in FIG. 4, the multilayer film 115 has a three-layer structure, and in order from the uneven surface 114b side, a first resin layer 115b made of polypropylene, a metal layer 115c made of aluminum foil, and a second resin made of polypropylene. Layer 115d.

前述したように、電池ケースの壁部を樹脂製とした場合には、水蒸気、酸素ガス、水素ガスなどが電池ケースを透過し、長期間に渡り徐々に外部に漏出してしまう問題がある。特に、本実施例1の二次電池100のようなニッケル水素蓄電池では、水素ガスが、樹脂製の電池ケースを透過して外部に漏出することで、電池内の水素ガスが減少すると、正極と負極の容量のバランスが崩れ、電池特性が著しく低下してしまう問題があった。これに対し、本実施例1の二次電池100では、上述のように、凹凸壁部110が、金属層115cを含む多層膜115を、樹脂製の本体部の凹凸面114b上に配置した構成をなしている。このように、凹凸壁部110に金属層115cを設けることにより、水素ガス等が、電池ケース101の凹凸壁部110を透過して外部に漏出するのを抑制することができる。   As described above, when the wall of the battery case is made of resin, there is a problem that water vapor, oxygen gas, hydrogen gas, etc. permeate the battery case and gradually leak to the outside over a long period of time. In particular, in the nickel-metal hydride storage battery such as the secondary battery 100 of the first embodiment, when the hydrogen gas passes through the resin battery case and leaks to the outside, the hydrogen gas in the battery decreases. There was a problem that the balance of the capacity of the negative electrode was lost and the battery characteristics were significantly deteriorated. On the other hand, in the secondary battery 100 of the first embodiment, as described above, the uneven wall portion 110 has the multilayer film 115 including the metal layer 115c arranged on the uneven surface 114b of the resin main body portion. I am doing. Thus, by providing the metal layer 115 c on the uneven wall portion 110, hydrogen gas or the like can be prevented from passing through the uneven wall portion 110 of the battery case 101 and leaking outside.

さらに、凹凸壁部110は、図3,図4に示すように、相対的に肉厚が厚い凸部111と、凸部111よりも肉厚が薄い凹部113とを有している。凸部111と凹部113とは、厚さ方向に直交する所定方向(具体的には、図1(b)に示すように、電池高さ方向Y(図中上下方向))に延び、所定方向に直交する方向(具体的には、図1(b)に示すように、電池幅方向X(図中左右方向))に交互に配置されている。   Furthermore, as shown in FIGS. 3 and 4, the uneven wall portion 110 includes a convex portion 111 having a relatively thick wall and a concave portion 113 having a wall thickness that is thinner than the convex portion 111. The convex portion 111 and the concave portion 113 extend in a predetermined direction orthogonal to the thickness direction (specifically, as shown in FIG. 1B, the battery height direction Y (vertical direction in the drawing)), and the predetermined direction Are arranged alternately in the battery width direction X (specifically, as shown in FIG. 1B).

凸部111は、図3に示すように、凹凸壁部110の外壁面110b側に、略円柱形状をなし、凹凸壁部110の厚み方向に突出する多数の当接部112を含んでいる。この当接部112は、電池高さ方向Yに沿って散点状に列置されている。後に詳述するが、当接部112は、複数の二次電池100を、電池ケース101同士を当接させて配列したときに、他の二次電池100の当接部112と当接する位置に配置されている(図5参照)。   As shown in FIG. 3, the convex portion 111 has a substantially cylindrical shape on the outer wall surface 110 b side of the concavo-convex wall portion 110, and includes a large number of contact portions 112 protruding in the thickness direction of the concavo-convex wall portion 110. The contact portions 112 are arranged in a dotted pattern along the battery height direction Y. As will be described in detail later, the contact portion 112 is located at a position where the secondary battery 100 contacts the contact portion 112 of another secondary battery 100 when the plurality of secondary batteries 100 are arranged in contact with each other. Is arranged (see FIG. 5).

凹部113は、図3,図4に示すように、凹凸壁部110の内壁面110cをなす部位が平坦面をなし、外壁面110bをなす部位が、電池高さ方向Yに延びる凹溝113bをなしている。この凹溝113bは、電池高さ方向Yに直交する方向(凹凸壁部110の厚み方向、図4において上下方向)の破断形状が、電池ケース101の内側(内壁面110c側)に向かって凸の弧状をなしている。   As shown in FIGS. 3 and 4, the recess 113 has a concave portion 113 b extending in the battery height direction Y at a portion forming the inner wall surface 110 c of the uneven wall portion 110 forming a flat surface and a portion forming the outer wall surface 110 b. There is no. The groove 113b has a rupture shape in a direction perpendicular to the battery height direction Y (thickness direction of the concavo-convex wall portion 110, vertical direction in FIG. 4) protruding toward the inner side (inner wall surface 110c side) of the battery case 101. It has an arc shape.

ここで、本実施例1の二次電池100を、従来の二次電池500と比較して、詳細に説明する。図4に二点鎖線で示すように、従来の二次電池500では、凹凸壁部510の厚みをT2としていたのに対し、本実施例1の二次電池100では、凹凸壁部110の厚みを、T2より薄いT1としている。詳細には、本実施例1の二次電池100では、凹凸壁部の内壁面側の肉厚を均一に薄くするのではなく、当接部112の突出高さを、従来の二次電池500の当接部512の突出高さよりも(T2−T1)だけ低くすることにより、凹凸壁部110の厚みを薄くしている。   Here, the secondary battery 100 of the first embodiment will be described in detail in comparison with the conventional secondary battery 500. As shown by a two-dot chain line in FIG. 4, in the conventional secondary battery 500, the thickness of the concavo-convex wall portion 510 is T2, whereas in the secondary battery 100 of the first embodiment, the thickness of the concavo-convex wall portion 110. Is T1 thinner than T2. Specifically, in the secondary battery 100 according to the first embodiment, the thickness of the inner wall surface side of the uneven wall portion is not uniformly reduced, but the protruding height of the contact portion 112 is set to the conventional secondary battery 500. The thickness of the concavo-convex wall portion 110 is reduced by making it lower than the protruding height of the contact portion 512 by (T2-T1).

ところで、当接部112の突出高さを低くするだけでは、従来の二次電池500に比べて、複数の二次電池100を配列したときの冷却通路R(図5参照)が小さくなり、冷却性が悪くなることが懸念される。ところが、本実施例1では、上述のように、凹部113に凹溝113bを設けることにより、冷却通路Rを補っている。このため、本実施例1の二次電池100では、後述するように、従来の二次電池500と同程度の冷却性を確保している。   By the way, only by reducing the protruding height of the contact portion 112, the cooling passage R (see FIG. 5) when the plurality of secondary batteries 100 are arranged becomes smaller than the conventional secondary battery 500, and cooling is performed. There is concern about the worsening of sex. However, in the first embodiment, the cooling passage R is supplemented by providing the concave 113 with the concave 113b as described above. For this reason, in the secondary battery 100 of the first embodiment, as will be described later, the same cooling performance as that of the conventional secondary battery 500 is ensured.

ここで、複数の二次電池100を、電池ケース101の凹凸壁部110同士を当接させて配列したときの様子を図5に示し、従来の二次電池500を複数配列したとき(図14参照)と比較して説明する。なお、二次電池100は、図1(b)に示すように、凹凸壁部110の外壁面110bに、他の二次電池100との位置決めを行うための、位置決め凸部117と位置決め凹部118とを有している。位置決め凸部117は、凹凸壁部110の厚み方向(図1(b)において紙面に直交する方向)に突出する円柱形状をなしている。位置決め凹部118は、円柱状の有底穴で、位置決め凸部117を挿入できる大きさを有している。従って、位置決め凸部117を、他の二次電池100の位置決め凹部118に挿入する形態で、複数の二次電池100を配列している。   Here, FIG. 5 shows a state in which a plurality of secondary batteries 100 are arranged with the concavo-convex wall portions 110 of the battery case 101 in contact with each other, and when a plurality of conventional secondary batteries 500 are arranged (FIG. 14). Reference) and will be described. In addition, as shown in FIG.1 (b), the secondary battery 100 has the positioning convex part 117 and the positioning recessed part 118 for positioning with the other secondary battery 100 on the outer wall surface 110b of the uneven | corrugated wall part 110. As shown in FIG. And have. The positioning convex portion 117 has a cylindrical shape protruding in the thickness direction of the concave-convex wall portion 110 (the direction orthogonal to the paper surface in FIG. 1B). The positioning concave portion 118 is a cylindrical bottomed hole and has a size capable of inserting the positioning convex portion 117. Accordingly, the plurality of secondary batteries 100 are arranged in such a manner that the positioning convex portions 117 are inserted into the positioning concave portions 118 of the other secondary batteries 100.

上記のように複数の二次電池100を配列すると、図5に示すように、凹凸壁部110の当接部112が、他の二次電池100の当接部112と当接する。これにより、隣り合う二次電池100の間に冷却通路Rを設けることができる。ここで、図5と図14とを比較するとわかるように、本実施例1の二次電池100では、従来の二次電池500と同程度の大きさの冷却通路Rを確保することができた。これは、当接部112の突出高さを低くした代わりに、凹溝113bを設けているからである。   When a plurality of secondary batteries 100 are arranged as described above, the contact portion 112 of the concavo-convex wall portion 110 contacts the contact portion 112 of another secondary battery 100 as shown in FIG. Thereby, the cooling passage R can be provided between the adjacent secondary batteries 100. Here, as can be seen from a comparison between FIG. 5 and FIG. 14, the secondary battery 100 of Example 1 was able to secure a cooling passage R having the same size as that of the conventional secondary battery 500. . This is because the recessed groove 113b is provided instead of lowering the protruding height of the contact portion 112.

しかも、本実施例1の二次電池100では、従来の二次電池500と同様に、図1(b),図3に示すように、当接部112を、電池高さ方向Yに沿って散点状に列置している。これにより、冷却通路Rを、凹溝113bが延びる電池高さ方向Y(図5において紙面に直交する方向)のみならず、電池幅方向X(図5において左右方向)にも設けることができた。   Moreover, in the secondary battery 100 of the first embodiment, as in the conventional secondary battery 500, as shown in FIGS. 1 (b) and 3, the contact portion 112 is arranged along the battery height direction Y. They are lined up in a dotted pattern. As a result, the cooling passage R can be provided not only in the battery height direction Y (the direction perpendicular to the paper surface in FIG. 5) in which the concave groove 113b extends, but also in the battery width direction X (the left-right direction in FIG. 5). .

従って、例えば、冷却風を電池高さ方向Y(図5において紙面に直交する方向)に送風した場合に、冷却風は、凹溝113bに沿って電池高さ方向Yに流れるばかりでなく、当接部112を回り込むようにして電池幅方向X(図5において左右方向)にも流れることになる。このため、凹凸壁部110を略全面にわたって冷却することができるので、二次電池110の冷却性が良好となる。   Therefore, for example, when the cooling air is blown in the battery height direction Y (the direction orthogonal to the paper surface in FIG. 5), the cooling air not only flows in the battery height direction Y along the concave groove 113b, but also The battery flows in the battery width direction X (left and right direction in FIG. 5) so as to go around the contact portion 112. For this reason, since the uneven | corrugated wall part 110 can be cooled over substantially the whole surface, the coolability of the secondary battery 110 becomes favorable.

しかしながら、凹部113に凹溝113bを設けることにより、凹部の肉厚が減少するので、凹凸壁部110の強度が低下し、二次電池110の内圧上昇に耐えられなくなることが懸念される。これに対し、本実施例1では、図4に示すように、凹凸壁部110の凹部113について、内壁面110cをなす部位を平坦形状とし、外壁面110bをなす部位を電池ケース101の内側(内壁面110c側)に向かって凸の弧状をなす断面形状としている。すなわち、凹部113を、凹溝113bの弧の中点Fから両端に向かうにしたがって、肉厚が厚くなる形態としている。このような形態の凹部113は、凹溝113bの弧の中点Fの位置の肉厚をSにまで薄くしても、比較的強固となるので、二次電池110の内圧上昇に耐えうる強度を確保することができる。   However, since the thickness of the concave portion is reduced by providing the concave groove 113b in the concave portion 113, there is a concern that the strength of the concave and convex wall portion 110 is reduced and the secondary battery 110 cannot withstand the increase in internal pressure. On the other hand, in the first embodiment, as shown in FIG. 4, with respect to the recess 113 of the concavo-convex wall portion 110, the portion forming the inner wall surface 110c is made flat and the portion forming the outer wall surface 110b is inside the battery case 101 ( The cross-sectional shape has a convex arc shape toward the inner wall surface 110c side. That is, the concave portion 113 is configured such that the thickness increases from the midpoint F of the arc of the concave groove 113b toward both ends. The recess 113 having such a configuration is relatively strong even when the thickness of the midpoint F of the arc of the recess 113b is reduced to S, and thus the strength capable of withstanding the increase in the internal pressure of the secondary battery 110. Can be secured.

以上説明したように、本実施例1の二次電池100では、従来の二次電池500と比べて、凹凸壁部110の厚みを(T2−T1)だけ薄くすることができた。従って、従来の二次電池500と比べて、電池の厚み(図1(a)において上下方向の寸法)を2×(T2−T1)だけ薄くすることにより、小型化を実現することができた。しかも、電池ケース101の強度(具体的には、凹凸壁部110の強度)を適切に確保しつつ、二次電池100の冷却性も良好とすることができた。   As described above, in the secondary battery 100 of Example 1, the thickness of the concavo-convex wall 110 could be reduced by (T2-T1) compared to the conventional secondary battery 500. Therefore, compared with the conventional secondary battery 500, the battery thickness (dimension in the vertical direction in FIG. 1A) is reduced by 2 × (T2−T1), thereby realizing downsizing. . Moreover, the cooling property of the secondary battery 100 can be improved while adequately ensuring the strength of the battery case 101 (specifically, the strength of the uneven wall portion 110).

次に、本実施例1の二次電池100の製造方法について説明する。
まず、ポリプロピレンからなる樹脂フィルムと、アルミニウムからなる金属箔とを用意する。次いで、金属箔の表面と裏面に、樹脂フィルムをそれぞれ接着し、ロール成形することにより、第1樹脂層115b、金属層115c、及び第2樹脂層115dを備える3層構造の多層膜115を作成した。
Next, a method for manufacturing the secondary battery 100 of the first embodiment will be described.
First, a resin film made of polypropylene and a metal foil made of aluminum are prepared. Next, a multilayer film 115 having a three-layer structure including the first resin layer 115b, the metal layer 115c, and the second resin layer 115d is formed by bonding a resin film to the front and back surfaces of the metal foil and roll forming. did.

次いで、インサート成形法により、電槽102を一体成形した。具体的には、例えば、凹凸壁部110を成形する部位では、図6(a)に示すように、金型として、外壁面110b側の金型10と、内壁面110c側の金型20とを用意した。金型10には、凸部111の凸形状を成形する金型凹部11、さらに、凸部111のうち当接部112の略円柱形状を成形する金型凹部12、及び、凹部113の凹溝を成形する金型凸部13が設けられている。   Next, the battery case 102 was integrally formed by an insert molding method. Specifically, for example, at the site where the concavo-convex wall portion 110 is molded, as shown in FIG. 6 (a), the mold 10 on the outer wall surface 110b side and the mold 20 on the inner wall surface 110c side are used as molds. Prepared. The mold 10 includes a mold recess 11 that molds the convex shape of the convex portion 111, a mold concave portion 12 that molds a substantially cylindrical shape of the contact portion 112 of the convex portion 111, and a concave groove of the concave portion 113. The mold convex part 13 which shape | molds is provided.

次いで、図6(a)に示すように、金型10上に多層膜115を載置させた状態で、金型20と多層膜115との間に、溶融した樹脂(本実施例1では、ポリプロピレンとポリフェニレンエーテルからなるポリマアロイ)を射出した。なお、溶融樹脂は、金型凹部11及び金型凸部13が延びる方向(図6(a)において紙面に直交する方向)に流れるように、射出している。   Next, as shown in FIG. 6A, in the state where the multilayer film 115 is placed on the mold 10, a molten resin (in the first embodiment, A polymer alloy made of polypropylene and polyphenylene ether was injected. The molten resin is injected so as to flow in a direction in which the mold concave portion 11 and the mold convex portion 13 extend (a direction orthogonal to the paper surface in FIG. 6A).

このとき、多層膜115は、射出された樹脂により、金型10側(図6(a)において下側)に押し拡げられ、金型10の金型凹部11、12及び金型凸部13に沿って、凹凸に変形することとなる。これにより、射出された樹脂を、金型10の金型凹部11,12及び金型凸部13に沿って、凹凸形状にすることができる。すなわち、図6(b)に示すように、当接部112を含む凸部111と凹部113とを備え、外壁面110b側に多層膜115が積層された凹凸壁部110を成形することができる。   At this time, the multilayer film 115 is pushed and expanded to the mold 10 side (lower side in FIG. 6A) by the injected resin, and the mold recesses 11 and 12 and the mold protrusion 13 of the mold 10 are spread. Along with this, it will be deformed into irregularities. Thereby, the injected resin can be formed into a concavo-convex shape along the mold concave portions 11 and 12 and the mold convex portion 13 of the mold 10. That is, as shown in FIG. 6 (b), it is possible to form the concavo-convex wall portion 110 having the convex portion 111 including the abutting portion 112 and the concave portion 113 and having the multilayer film 115 laminated on the outer wall surface 110b side. .

ところで、従来の二次電池500を製造するに当たり、電池ケース501の電槽502をインサート成形法により一体成形した場合には、インサートした多層膜515を、射出した樹脂により、当接部512の形状に対応する金型凹部に沿って変形できず、適切な形状に当接部512を成形できないことがあった。。これに対し、本実施例1では、当接部112の突出高さを低くしているため、従来の金型と比べて、当接部112の突出形状を成形する金型凹部12の深さが浅くなっている。さらに、凹溝113bの破断面形状を弧状としているため、インサートした多層膜115を、凹溝113を成形する金型凸部13に沿っても変形させやすくなる。従って、本実施例1では、インサートした多層膜115を、金型10の凹凸形状に沿って、適切に変形させることができる。   By the way, in manufacturing the conventional secondary battery 500, when the battery case 502 of the battery case 501 is integrally formed by the insert molding method, the shape of the contact portion 512 is made of the inserted multilayer film 515 by the injected resin. In some cases, the contact portion 512 cannot be formed into an appropriate shape. . On the other hand, in the first embodiment, since the protruding height of the abutting portion 112 is lowered, the depth of the mold recess 12 for forming the protruding shape of the abutting portion 112 as compared with the conventional mold. Is getting shallower. Furthermore, since the fracture surface shape of the concave groove 113b is an arc shape, the inserted multilayer film 115 can be easily deformed along the mold convex portion 13 for molding the concave groove 113. Therefore, in the first embodiment, the inserted multilayer film 115 can be appropriately deformed along the uneven shape of the mold 10.

しかも、本実施例1では、凹凸壁部110の厚みを、従来の凹凸壁部510の厚みT2よりも薄いT1としている。ここで、例えば、冷却通路Rの大きさを保持しつつ、凹凸壁部510の厚みT2をT1にまで薄くするには、図13に一点鎖線で示すように、樹脂本体部514の厚みを(T2−T1)だけ均一に薄くすることが考えられる。しかしながら、この場合には、最も肉厚が薄い凹部を成形する部分において、射出樹脂の流通路の断面(樹脂が流れる方向に直交する断面)にかかる厚み方向の寸法が、全体的に寸法Sにまで小さく(薄く)なる。すなわち、凹部を成形する部分において、射出樹脂の流通路の断面積が全体的に小さくなるため、射出した樹脂が適切に流れなくなる虞がある。   Moreover, in the first embodiment, the thickness of the concavo-convex wall portion 110 is set to T1, which is thinner than the thickness T2 of the conventional concavo-convex wall portion 510. Here, for example, in order to reduce the thickness T2 of the concavo-convex wall portion 510 to T1 while maintaining the size of the cooling passage R, the thickness of the resin main body portion 514 is changed to (1) as shown by a one-dot chain line in FIG. It is conceivable that the thickness is uniformly reduced by T2-T1). However, in this case, the dimension in the thickness direction applied to the cross section of the flow path of the injection resin (the cross section orthogonal to the direction in which the resin flows) is the overall dimension S in the portion where the thinnest recess is formed. It becomes small (thin). That is, since the cross-sectional area of the flow path of the injection resin is reduced as a whole in the portion where the concave portion is formed, the injected resin may not flow properly.

これに対し、本実施例1の二次電池100では、図4に示すように、凹部113の外壁面110cを断面弧状の凹溝113bとし、当接部112の突出高さを低くすることにより、冷却通路Rを確保しつつ、凹壁部110の厚みをT1にまで薄くしている。このため、図6に示すように、射出樹脂の流通路の断面(樹脂が流れる方向に直交する断面)にかかる厚み方向(図中上下方向)の寸法は、弧の中点Fの位置では、Sにまで小さく(薄く)なるが、弧の中点Fから両端に向かうにしたがって大きくなる。すなわち、射出樹脂の流通路の断面積を、比較的大きく確保することができる。   On the other hand, in the secondary battery 100 of the first embodiment, as shown in FIG. 4, the outer wall surface 110 c of the recess 113 is formed as a concave groove 113 b having an arc cross section, and the protruding height of the contact portion 112 is reduced. While ensuring the cooling passage R, the thickness of the concave wall portion 110 is reduced to T1. For this reason, as shown in FIG. 6, the dimension in the thickness direction (vertical direction in the figure) applied to the cross section of the flow path of the injection resin (cross section orthogonal to the direction in which the resin flows) is It becomes smaller (thinner) to S, but increases from the midpoint F of the arc toward both ends. That is, a relatively large cross-sectional area of the flow path of the injection resin can be ensured.

さらには、金型凸部13は、金型凹部11,12に近づくにしたがって、射出樹脂の流通路の断面(樹脂が流れる方向に直交する断面)にかかる厚み方向(図中上下方向)の寸法が大きくなる弧状をなしている。このため、金型凹部11,12の位置(金型凸部13の位置に比べて断面積が大きいため、樹脂の流れが良好)を流れる樹脂が、金型凸部13の位置に流れ込み易くなる。
従って、射出樹脂の流通路のうち、凹部113を成形する金型凸部13の位置にも、適切に、射出した樹脂を流し込むことができる。
Furthermore, the mold convex part 13 is a dimension in the thickness direction (vertical direction in the figure) applied to the cross section (cross section orthogonal to the resin flowing direction) of the flow path of the injection resin as it approaches the mold concave parts 11 and 12. It has an arc shape that increases. For this reason, the resin flowing through the positions of the mold concave portions 11 and 12 (the flow of the resin is good because the cross-sectional area is larger than the position of the mold convex portion 13) easily flows into the position of the mold convex portion 13. .
Accordingly, the injected resin can be appropriately poured into the position of the mold convex portion 13 for molding the concave portion 113 in the flow path of the injected resin.

上記のように、本実施例1では、インサート成形法により、厚みの薄い凹凸壁部110を有する電槽102を適切に成形することができた。
その後、電槽102の隔壁部130によって仕切られている6つの空間内に、図2に示すように、極板群150(正極151、負極152、セパレータ153)を配置し、電解液(図示しない)を注入した。次いで、安全弁122を備える蓋体103と、電池ケース101とを、熱溶着により一体とすることで、電池ケース101を備える二次電池100が完成する。
As described above, in Example 1, it was possible to appropriately form the battery case 102 having the thin uneven wall portion 110 by the insert molding method.
After that, as shown in FIG. 2, the electrode plate group 150 (the positive electrode 151, the negative electrode 152, and the separator 153) is disposed in the six spaces partitioned by the partition wall 130 of the battery case 102, and an electrolytic solution (not shown). ) Was injected. Next, the secondary battery 100 including the battery case 101 is completed by integrating the lid 103 including the safety valve 122 and the battery case 101 by heat welding.

次に、実施例2の二次電池200について、図面を参照しつつ説明する。本実施例2の二次電池200は、実施例1の二次電池100と比較して、電池ケースの凹凸壁部の形態が異なり、その他の部分については同様である。従って、以下においては、実施例1と異なる凹凸壁部を中心に説明し、同様な部分については説明を省略または簡略化する。   Next, the secondary battery 200 of Example 2 will be described with reference to the drawings. The secondary battery 200 of the second embodiment is different from the secondary battery 100 of the first embodiment in the shape of the uneven wall portion of the battery case, and the other portions are the same. Accordingly, in the following description, the uneven wall portion different from that of the first embodiment will be mainly described, and description of similar portions will be omitted or simplified.

二次電池200の凹凸壁部210は、図7に示すように、樹脂からなり、凹凸形状の凹凸面214bを有する樹脂本体部214と、凹凸面214b上に設けられた多層膜215とを備えている。多層膜215は、図8に示すように、実施例1の二次電池100と同様に、3層構造をなし、凹凸面214b側から順に、ポリプロピレンからなる第1樹脂層215bと、アルミニウム箔からなる金属層215cと、ポリプロピレンからなる第2樹脂層215dとを有している。このように、凹凸壁部210に金属層215cを設けることにより、電池内の水素ガス等が、凹凸壁部210を透過して外部に漏出するのを抑制することができる。   As shown in FIG. 7, the uneven wall portion 210 of the secondary battery 200 is made of a resin, and includes a resin main body 214 having an uneven surface 214b and a multilayer film 215 provided on the uneven surface 214b. ing. As shown in FIG. 8, the multilayer film 215 has a three-layer structure as in the secondary battery 100 of Example 1, and in order from the concave and convex surface 214b side, the first resin layer 215b made of polypropylene and an aluminum foil. A metal layer 215c and a second resin layer 215d made of polypropylene. As described above, by providing the metal layer 215c on the uneven wall portion 210, hydrogen gas or the like in the battery can be prevented from passing through the uneven wall portion 210 and leaking outside.

さらに、凹凸壁部210は、図7,図8に示すように、相対的に肉厚が厚い凸部211と、凸部211よりも肉厚が薄い凹部213とを有している。凸部211と凹部213とは、厚さ方向に直交する所定方向(具体的には、実施例1の二次電池100と同様に、電池高さ方向Y(図1(b)において上下方向))に延び、所定方向に直交する方向(具体的には、実施例1の二次電池100と同様に、電池幅方向X(図1(b)において左右方向))に交互に配置されている。   Further, as shown in FIGS. 7 and 8, the uneven wall portion 210 has a convex portion 211 having a relatively thick wall and a concave portion 213 having a wall thickness smaller than that of the convex portion 211. The convex portion 211 and the concave portion 213 are in a predetermined direction orthogonal to the thickness direction (specifically, the battery height direction Y (vertical direction in FIG. 1B) as in the secondary battery 100 of Example 1). ) And are alternately arranged in a direction orthogonal to the predetermined direction (specifically, in the same manner as the secondary battery 100 of Example 1, the battery width direction X (left and right direction in FIG. 1B)). .

凸部211は、実施例1の凸部111と異なり、図7に示すように、凹凸壁部210の外壁面210b側に、一定の突出高さで電池高さ方向Yに延びる細長形状をなす当接部212を含んでいる。後に詳述するが、当接部212も、実施例1の当接部112と同様に、複数の二次電池200を、電池ケース201同士を当接させて配列したときに、他の二次電池200の当接部212と当接する位置に配置されている(図9参照)。   Unlike the convex portion 111 of the first embodiment, the convex portion 211 has an elongated shape extending in the battery height direction Y with a certain protruding height on the outer wall surface 210b side of the concave-convex wall portion 210 as shown in FIG. A contact portion 212 is included. As will be described in detail later, in the same manner as the contact portion 112 of the first embodiment, the contact portion 212 also includes other secondary batteries 200 when the battery cases 201 are arranged in contact with each other. It arrange | positions in the position contact | abutted with the contact part 212 of the battery 200 (refer FIG. 9).

図7,図8に示すように、凹部213は、実施例1の凹部113と同様に、凹凸壁部210の内壁面210cをなす部位が平坦面をなし、外壁面210bをなす部位が、電池高さ方向Yに延びる凹溝213bをなしている。この凹溝213bは、電池高さ方向Yに直交する方向(凹凸壁部210の厚み方向、図8において上下方向)の破断形状が、電池ケース201の内側(内壁面210c側)に向かって凸の弧状をなしている。   As shown in FIG. 7 and FIG. 8, the recess 213 has a flat surface where the inner wall surface 210c of the uneven wall portion 210 forms a flat surface and the battery wall 210b corresponds to the battery. A concave groove 213b extending in the height direction Y is formed. The groove 213b has a rupture shape in a direction perpendicular to the battery height direction Y (thickness direction of the concavo-convex wall portion 210, vertical direction in FIG. 8) protruding toward the inner side (inner wall surface 210c side) of the battery case 201. It has an arc shape.

図8に示すように、本実施例2の二次電池200においても、実施例1の二次電池100と同様に、凹凸壁部210の厚みをT1と薄く(従来の二次電池500では、凹凸壁部510の厚みは、T1より厚いT2)している。詳細には、凹凸壁部の内壁面側の肉厚を均一に薄くするのではなく、実施例1の二次電池100と同様に、当接部の突出高さを低くすることにより、凹凸壁部210の厚みをT1と薄くしている。ここで、当接部の突出高さを低くするだけでは、冷却通路Rが小さく(狭く)なってしまうが、本実施例2では、上述のように、凹部213に凹溝213bを設けることにより、冷却通路Rを補っている。   As shown in FIG. 8, also in the secondary battery 200 of the second embodiment, the thickness of the concavo-convex wall portion 210 is as thin as T1 as in the secondary battery 100 of the first embodiment (in the conventional secondary battery 500, The thickness of the concavo-convex wall portion 510 is T2) that is thicker than T1. More specifically, the uneven wall is not formed by uniformly reducing the wall thickness of the uneven wall portion on the inner wall surface side, but by reducing the protruding height of the contact portion in the same manner as the secondary battery 100 of Example 1. The thickness of the portion 210 is reduced to T1. Here, only by lowering the protrusion height of the contact portion, the cooling passage R becomes smaller (narrower), but in the second embodiment, as described above, the concave groove 213 is provided with the concave groove 213b. The cooling passage R is supplemented.

ここで、複数の二次電池200を、電池ケース201の凹凸壁部210同士を当接させて配列したときの様子を、図9に示す。なお、本実施例2の二次電池200も、実施例1の二次電池100と同様に、位置決め凸部117を、他の二次電池200の位置決め凹部118に挿入する形態で、複数の二次電池200を配列させている(図1(b)参照)。
上記のように複数の二次電池200を配列すると、図9に示すように、凹凸壁部210の当接部212が、他の二次電池200の当接部212と当接する。これにより、隣り合う二次電池200の間に、冷却通路Rを設けることができる。図9と図5とを比較するとわかるように、本実施例2の二次電池200においても、実施例1の二次電池100と同程度(従って、従来の二次電池500と同程度)の大きさの冷却通路Rを確保しているので、それぞれの二次電池200を、適切に冷却することができる。
Here, FIG. 9 shows a state in which a plurality of secondary batteries 200 are arranged with the concavo-convex wall portions 210 of the battery case 201 in contact with each other. Note that the secondary battery 200 of the second embodiment also has a plurality of secondary batteries 200 in the form in which the positioning convex portions 117 are inserted into the positioning concave portions 118 of the other secondary batteries 200, similarly to the secondary battery 100 of the first embodiment. The secondary batteries 200 are arranged (see FIG. 1B).
When a plurality of secondary batteries 200 are arranged as described above, the contact portions 212 of the concavo-convex wall portion 210 contact the contact portions 212 of the other secondary batteries 200 as shown in FIG. Thereby, the cooling passage R can be provided between the adjacent secondary batteries 200. As can be seen from a comparison between FIG. 9 and FIG. 5, the secondary battery 200 of the second embodiment is also of the same level as the secondary battery 100 of the first embodiment (therefore, the same level as the conventional secondary battery 500). Since the cooling passage R of a magnitude | size is ensured, each secondary battery 200 can be cooled appropriately.

しかしながら、凹部213に凹溝213bを設けることにより、凹部の肉厚が薄くなるので、凹凸壁部210の強度が低下し、二次電池210の内圧上昇に耐えられなくなることが懸念される。これに対し、本実施例2では、図8に示すように、凹凸壁部210の凹部213について、実施例1の凹部113と同様に、内壁面210cをなす部位を平坦形状とし、外壁面210bをなす部位を電池ケース201の内側(内壁面210c側)に向かって凸の弧状をなす断面形状としている。すなわち、凹部213を、凹溝213bの弧の中点Fから両端に向かうにしたがって、肉厚が厚くなる形態としている。このような形態の凹部213は、凹溝213bの弧の中点Fの位置の肉厚をSにまで薄くしても、比較的強固となるので、二次電池200の内圧上昇に耐えうる強度を確保することができる。   However, since the concave portion 213 is provided with the concave groove 213b, the thickness of the concave portion is reduced. Therefore, there is a concern that the strength of the concave and convex wall portion 210 is reduced and the internal pressure of the secondary battery 210 cannot be increased. On the other hand, in the second embodiment, as shown in FIG. 8, the concave portion 213 of the concave and convex wall portion 210 has a flat shape in the same manner as the concave portion 113 of the first embodiment, and the outer wall surface 210b. The cross-sectional shape that forms a convex arc shape toward the inner side (inner wall surface 210c side) of the battery case 201 is formed. That is, the concave portion 213 is configured such that the thickness increases from the midpoint F of the arc of the concave groove 213b toward both ends. The concave portion 213 having such a configuration is relatively strong even if the thickness of the midpoint F of the arc of the concave groove 213b is reduced to S, so that it can withstand the increase in internal pressure of the secondary battery 200. Can be secured.

以上説明したように、本実施例2の二次電池200でも、従来の二次電池500と比べて、凹凸壁部210の厚みを(T2−T1)だけ薄くすることができた。従って、従来の二次電池500と比べて、電池の厚み(図1(a)において上下方向の寸法)を2×(T2−T1)だけ薄くすることにより、小型化を実現することができた。しかも、電池ケース201の強度(具体的には、凹凸壁部210の強度)を適切に確保しつつ、二次電池200を適切に冷却することができる。   As described above, also in the secondary battery 200 of the second embodiment, the thickness of the uneven wall portion 210 can be reduced by (T2-T1) as compared with the conventional secondary battery 500. Therefore, compared with the conventional secondary battery 500, the battery thickness (dimension in the vertical direction in FIG. 1A) is reduced by 2 × (T2−T1), thereby realizing downsizing. . In addition, the secondary battery 200 can be appropriately cooled while appropriately ensuring the strength of the battery case 201 (specifically, the strength of the uneven wall portion 210).

次に、本実施例2の二次電池200の製造方法について説明する。
まず、実施例1と同様にして、第1樹脂層215b、金属層215c、及び第2樹脂層215dを備える3層構造の多層膜215を作成した。次いで、実施例1と同様に、インサート成形法により、電槽202を一体成形した。なお、本実施例2の二次電池200では、実施例1の二次電池100と比べて、凹凸壁部の形状のみが異なるため、これを成形する金型の形状が異なっている。
Next, a method for manufacturing the secondary battery 200 of the second embodiment will be described.
First, in the same manner as in Example 1, a multilayer film 215 having a three-layer structure including the first resin layer 215b, the metal layer 215c, and the second resin layer 215d was formed. Next, as in Example 1, the battery case 202 was integrally molded by an insert molding method. In addition, in the secondary battery 200 of this Example 2, since only the shape of an uneven | corrugated wall part differs compared with the secondary battery 100 of Example 1, the shape of the metal mold | die which molds this differs.

具体的には、凹凸壁部210を成形する部位では、図10(a)に示すように、金型として、外壁面210b側の金型50と、内壁面210c側の金型60とを用いた。金型50には、当接部212を含む凸部211の凸形状を成形する金型凹部51、及び凹部213の凹溝を成形する金型凸部53が設けられている。本実施例2では、図10(a)に示すように、金型50上に多層膜215を載置した後、金型60と多層膜215との間に、実施例1と同様に、溶融した樹脂(本実施例2でも、ポリプロピレンとポリフェニレンエーテルからなるポリマアロイ)を射出した。   Specifically, as shown in FIG. 10 (a), the mold 50 on the outer wall surface 210b side and the mold 60 on the inner wall surface 210c side are used as the molds at the site where the uneven wall portion 210 is molded. It was. The mold 50 is provided with a mold concave portion 51 that molds the convex shape of the convex portion 211 including the contact portion 212 and a mold convex portion 53 that molds the concave groove of the concave portion 213. In the second embodiment, as shown in FIG. 10A, after the multilayer film 215 is placed on the mold 50, the fusion is performed between the mold 60 and the multilayer film 215 in the same manner as in the first embodiment. The resin thus obtained (also in Example 2, a polymer alloy made of polypropylene and polyphenylene ether) was injected.

このとき、多層膜215は、射出された樹脂により、金型50側(図10(a)において下側)に押し拡げられ、金型50の金型凹部51及び金型凸部53に沿って、凹凸に変形することとなる。これにより、射出された樹脂を、金型50の金型凹部51及び金型凸部53に沿って、凹凸形状にすることができる。すなわち、図10(b)に示すように、当接部212を含む凸部211と凹部213とを備え、外壁面210b側に多層膜215が積層された凹凸壁部210を成形することができる。   At this time, the multilayer film 215 is expanded to the mold 50 side (lower side in FIG. 10A) by the injected resin, and along the mold recess 51 and the mold protrusion 53 of the mold 50. , Will be deformed into irregularities. Thereby, the injected resin can be formed into a concavo-convex shape along the mold concave portion 51 and the mold convex portion 53 of the mold 50. That is, as shown in FIG. 10 (b), it is possible to form the concavo-convex wall portion 210 having the convex portion 211 including the abutting portion 212 and the concave portion 213 and having the multilayer film 215 laminated on the outer wall surface 210b side. .

ところで、実施例1の凹凸壁部110では、図3に示すように、当接部112を、略円柱形状の小さな突起をなし、これが電池高さ方向Yに沿って散点状に列置されるようにした。このため、実施例1では、図6に示すように、凹凸壁部110の外壁面110b側の金型10では、当接部112の突出形状を成形する金型凹部11が、略円柱形状の小さな凹みとなる。   By the way, in the uneven | corrugated wall part 110 of Example 1, as shown in FIG. 3, the contact part 112 comprises the substantially cylindrical small protrusion, and these are arranged in a dotted pattern along the battery height direction Y. It was to so. Therefore, in Example 1, as shown in FIG. 6, in the mold 10 on the outer wall surface 110 b side of the concavo-convex wall portion 110, the mold concave portion 11 that molds the protruding shape of the contact portion 112 has a substantially cylindrical shape. It becomes a small dent.

これに対し、本実施例2では、図7に示すように、当接部212を、一定の突出高さで電池高さ方向Yに延びる細長形状としている。しかも、図示していないが、当接部212を、電池高さ方向Yに複数個並べるのではなく、電池高さ方向Yについて、凹凸壁部210の一方の端部付近から他方の端部付近まで、直線状に連続して延びる形態とした。すなわち、凸部211を、電池高さ方向Yについて、凹凸壁部210の一方の端部付近から他方の端部付近まで、一定の高さで延びる形態とした。   On the other hand, in the present Example 2, as shown in FIG. 7, the contact part 212 is made into the elongate shape extended in the battery height direction Y by fixed protrusion height. Moreover, although not shown, a plurality of contact portions 212 are not arranged in the battery height direction Y, but in the battery height direction Y, from one end portion of the concavo-convex wall portion 210 to the other end portion. Until then, it was set as the form extended linearly continuously. That is, the convex portion 211 is configured to extend at a certain height from the vicinity of one end portion of the uneven wall portion 210 to the vicinity of the other end portion in the battery height direction Y.

このため、図10(a)に示すように、凹凸壁部210の外壁面210b側の金型50では、当接部212の突出形状を成形する金型凹部51が、一定の深さで電池高さ方向Y(図中紙面に直交する方向)に延びる、大きな凹みとなる。これにより、インサートした多層膜215が、金型凹部51に沿って変形し易くなると共に、射出した樹脂が電池高さ方向Y(図中紙面に直交する方向)に流れ易くなる。従って、本実施例2では、実施例1よりも、凹凸壁部(電槽)の成形性が良好となる。
その後は、実施例1と同様の手順により、二次電池200を製造することができる。
For this reason, as shown in FIG. 10 (a), in the mold 50 on the outer wall surface 210b side of the concavo-convex wall section 210, the mold recess 51 for forming the protruding shape of the contact section 212 has a constant depth. It becomes a large dent extending in the height direction Y (direction orthogonal to the paper surface in the drawing). Thereby, the inserted multilayer film 215 is easily deformed along the mold recess 51, and the injected resin is easy to flow in the battery height direction Y (direction perpendicular to the paper surface in the drawing). Therefore, in this Example 2, the moldability of the concavo-convex wall portion (battery case) is better than that in Example 1.
Thereafter, the secondary battery 200 can be manufactured by the same procedure as in the first embodiment.

以上において、本発明を実施例1,2に即して説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、実施例1,2では、凹凸壁部110,210に、多層膜115,215を設けたが、多層膜を設けないようにしても良い。
また、実施例1,2では、樹脂本体部114,214の凹凸面114b,214b上に、多層膜115,215を設けたが、樹脂本体部114,214の内側面(電池の内側)に設けるようにしても良い。
In the above, the present invention has been described with reference to the first and second embodiments. However, the present invention is not limited to the above-described embodiments, and it can be applied as appropriate without departing from the scope of the present invention. Nor.
For example, in the first and second embodiments, the multilayer films 115 and 215 are provided on the uneven wall portions 110 and 210, but the multilayer films may not be provided.
In the first and second embodiments, the multilayer films 115 and 215 are provided on the concave and convex surfaces 114b and 214b of the resin main body portions 114 and 214, but are provided on the inner side surfaces (inside the battery) of the resin main body portions 114 and 214. You may do it.

また、実施例2では、当接部212を、一定の突出高さで電池高さ方向Yに延びる細長形状とし、しかも、電池高さ方向Yについて、凹凸壁部210の一方の端部付近から他方の端部付近まで、直線状に連続して延びる形態とした。すなわち、凸部211を、電池高さ方向Yについて、凹凸壁部210の一方の端部付近から他方の端部付近まで、一定の高さで延びる形態とした。しかしながら、このような形態に限定されるものではなく、一定の突出高さで電池高さ方向Yに延びる細長形状の当接部を、電池高さ方向Yに複数個並べるようにしても良い。   Further, in Example 2, the contact portion 212 is formed in an elongated shape extending in the battery height direction Y with a constant protruding height, and from the vicinity of one end of the concavo-convex wall portion 210 in the battery height direction Y. It was set as the form extended continuously linearly to the other edge part vicinity. That is, the convex portion 211 is configured to extend at a certain height from the vicinity of one end portion of the uneven wall portion 210 to the vicinity of the other end portion in the battery height direction Y. However, the present invention is not limited to such a configuration, and a plurality of elongated contact portions extending in the battery height direction Y with a fixed protrusion height may be arranged in the battery height direction Y.

実施例1にかかる二次電池100を示す図であり、(a)は上面図、(b)は側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the secondary battery 100 concerning Example 1, (a) is a top view, (b) is a side view. 実施例1にかかる二次電池100の内部を示す図であり、図1のA−A断面図に相当する。1 is a diagram showing the inside of a secondary battery 100 according to Example 1, and corresponds to a cross-sectional view taken along line AA of FIG. 実施例1にかかる電池ケース101の凹凸壁部110の破断斜視図である。1 is a cutaway perspective view of an uneven wall portion 110 of a battery case 101 according to Example 1. FIG. 実施例1にかかる電池ケース101の凹凸壁部110の断面図であり、図3のB矢視図に相当する。3 is a cross-sectional view of the concavo-convex wall portion 110 of the battery case 101 according to Example 1, and corresponds to a view taken in the direction of arrow B in FIG. 複数の二次電池100を配列したときの様子を示す図であり、凹凸壁部110の厚さ方向にかかる断面図に相当する。It is a figure which shows a mode when the some secondary battery 100 is arranged, and is equivalent to sectional drawing concerning the thickness direction of the uneven | corrugated wall part 110. FIG. 実施例1にかかる電槽102の製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the battery case 102 concerning Example 1. FIG. 実施例2にかかる電池ケース201の凹凸壁部210の破断斜視図である。6 is a cutaway perspective view of an uneven wall portion 210 of a battery case 201 according to Example 2. FIG. 実施例2にかかる電池ケース201の凹凸壁部210の断面図であり、図7のC矢視図に相当する。It is sectional drawing of the uneven | corrugated wall part 210 of the battery case 201 concerning Example 2, and is equivalent to the C arrow line view of FIG. 複数の二次電池200を配列したときの様子を示す図であり、凹凸壁部210の厚さ方向にかかる断面図に相当する。It is a figure which shows a mode when the some secondary battery 200 is arranged, and is equivalent to sectional drawing concerning the thickness direction of the uneven | corrugated wall part 210. FIG. 実施例2にかかる電槽202の製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the battery case 202 concerning Example 2. FIG. 従来の二次電池500を示す図であり、(a)は上面図、(b)は側面図である。It is a figure which shows the conventional secondary battery 500, (a) is a top view, (b) is a side view. 従来の電池ケース501の凹凸壁部510の破断斜視図である。FIG. 6 is a cutaway perspective view of an uneven wall portion 510 of a conventional battery case 501. 従来の電池ケース501の凹凸壁部510の断面図であり、図12のD矢視図に相当する。It is sectional drawing of the uneven | corrugated wall part 510 of the conventional battery case 501, and is equivalent to the arrow D figure of FIG. 複数の二次電池500を配列したときの様子を示す図であり、凹凸壁部510の厚さ方向にかかる断面図に相当する。It is a figure which shows a mode when the some secondary battery 500 has been arranged, and is equivalent to sectional drawing concerning the thickness direction of the uneven | corrugated wall part 510. FIG.

符号の説明Explanation of symbols

100,200 二次電池
101,201 電池ケース
102,202 電槽
110,210 凹凸壁部
110b,210b 外壁部
110c,210c 内壁部
111,211 凸部
112,212 当接部
113,213 凹部
113b,213b 凹溝
114,214 樹脂本体部
115,215 多層膜
115c,215c 金属層
100, 200 Secondary battery 101, 201 Battery case 102, 202 Battery case 110, 210 Uneven wall portion 110b, 210b Outer wall portion 110c, 210c Inner wall portion 111, 211 Protruding portion 112, 212 Abutting portion 113, 213 Recessed portion 113b, 213b Concave groove 114, 214 Resin body 115, 215 Multilayer film 115c, 215c Metal layer

Claims (5)

1または複数の発電要素と、
上記発電要素を収容する外形直方体形状の電池ケースと、
を備える二次電池であって、
上記電池ケースは、
当該電池ケースの少なくとも一部をなす凹凸壁部であって、
相対的に肉厚が厚く、上記凹凸壁部の厚さ方向に直交する電池高さ方向に延びる凸部と、
上記凸部よりも肉厚が薄く、上記電池高さ方向に延びる凹部とが、上記電池高さ方向に直交する方向に交互に配置されてなる凹凸壁部を有し、
上記凸部は、上記電池ケース同士を当接させて配列したときに、他の電池ケースと当接する当接部であって、上記凸部と一体に形成された当接部を含み、
上記凹部は、
内壁面が平坦面をなし、
外壁面が、上記電池高さ方向に延びる凹溝であって、上記電池高さ方向に直交する方向の破断形状が、上記電池ケースの内側に向かって凸の弧状の凹溝をなす
二次電池。
One or more power generation elements;
A battery case having a rectangular parallelepiped shape for accommodating the power generation element;
A secondary battery comprising:
The battery case is
An uneven wall portion forming at least a part of the battery case,
A relatively thick wall, and a protrusion extending in the battery height direction perpendicular to the thickness direction of the uneven wall;
Thicker than the convex portion is thin, and a recess extending the battery height direction, has an uneven wall portion formed by alternately arranged in the direction orthogonal to the cell height direction,
The protrusion includes a contact portion that is in contact with another battery case when the battery cases are arranged in contact with each other, and is formed integrally with the protrusion .
The recess is
The inner wall is flat,
The outer wall surface, a groove extending in the cell height direction, breaking the shape of the direction orthogonal to the cell height direction, a secondary battery which forms the groove of arcuate convex toward the inside of the battery case .
請求項1に記載の二次電池であって、
前記電池ケースのうち少なくとも前記凹凸壁部は、樹脂の射出成形により成形されてなり、
上記凹凸壁部は、前記電池高さ方向に樹脂が流れて成形されてなる
二次電池。
The secondary battery according to claim 1,
At least the uneven wall portion of the battery case is formed by resin injection molding,
The concavo-convex wall portion is a secondary battery formed by resin flowing in the battery height direction .
請求項1または請求項2に記載の二次電池であって、
前記当接部は、前記電池高さ方向に沿って散点状に列置されてなる
二次電池。
The secondary battery according to claim 1 or 2, wherein
The contact portion is a secondary battery that is arranged in a dotted pattern along the battery height direction .
請求項1〜請求項3のいずれか一項に記載の二次電池であって、
前記電池ケースのうち少なくとも前記凹凸壁部は、樹脂の射出成形により成形されてなり、
少なくとも上記凹凸壁部の外壁面側に、金属箔からなり、上記外壁面に沿った凹凸形状をなす金属層を備える
二次電池。
The secondary battery according to any one of claims 1 to 3,
At least the uneven wall portion of the battery case is formed by resin injection molding,
A secondary battery comprising a metal layer made of a metal foil and having an uneven shape along the outer wall surface at least on the outer wall surface side of the uneven wall portion.
請求項1または請求項2に記載の二次電池であって、
前記電池ケースのうち少なくとも前記凹凸壁部は、樹脂の射出成形により成形されてなり、
少なくとも上記凹凸壁部の外壁面側に、金属箔からなり、上記外壁面に沿った凹凸形状をなす金属層を備え、
前記当接部は、一定の突出高さで前記電池高さ方向に延びる細長形状をなす
二次電池。
The secondary battery according to claim 1 or 2 , wherein
At least the uneven wall portion of the battery case is formed by resin injection molding,
At least on the outer wall surface side of the concavo-convex wall portion, a metal layer made of a metal foil and having a concavo-convex shape along the outer wall surface,
The contact portion is a secondary battery having an elongated shape extending in the battery height direction with a constant protrusion height.
JP2004342780A 2004-11-26 2004-11-26 Secondary battery Active JP4830289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342780A JP4830289B2 (en) 2004-11-26 2004-11-26 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342780A JP4830289B2 (en) 2004-11-26 2004-11-26 Secondary battery

Publications (2)

Publication Number Publication Date
JP2006156049A JP2006156049A (en) 2006-06-15
JP4830289B2 true JP4830289B2 (en) 2011-12-07

Family

ID=36634081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342780A Active JP4830289B2 (en) 2004-11-26 2004-11-26 Secondary battery

Country Status (1)

Country Link
JP (1) JP4830289B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10727452B2 (en) 2015-02-13 2020-07-28 Samsung Sdi Co., Ltd. Flexible secondary battery

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4640622B2 (en) * 2008-04-25 2011-03-02 本田技研工業株式会社 Power storage device and metal battery case manufacturing method
EP2348557B1 (en) 2010-01-13 2013-07-03 Samsung SDI Co., Ltd. Secondary battery
JP6295688B2 (en) * 2014-01-31 2018-03-20 株式会社Gsユアサ Power storage device, power storage module, and method for manufacturing power storage device
KR102235282B1 (en) 2014-11-19 2021-04-01 삼성에스디아이 주식회사 Fablicating method of rechargeable battery having a curved surface
KR102297831B1 (en) * 2014-11-26 2021-09-03 삼성에스디아이 주식회사 Rechargeable battery
JP6248080B2 (en) 2015-09-25 2017-12-13 プライムアースEvエナジー株式会社 Battery module and battery pack
KR101972135B1 (en) * 2015-10-29 2019-04-24 주식회사 엘지화학 Battery Pack Having Slim Bottom case and Notebook Including the Same
KR102334141B1 (en) * 2017-10-31 2021-12-02 주식회사 엘지에너지솔루션 Secondary Battery Comprising Battery Case Formed by Injection Molding
CN111354885B (en) * 2018-12-23 2024-09-10 宁德时代新能源科技股份有限公司 Battery module
JP7058235B2 (en) * 2019-03-07 2022-04-21 プライムアースEvエナジー株式会社 Alkaline secondary battery battery, method of manufacturing alkaline secondary battery battery, and alkaline secondary battery
KR20220000673A (en) * 2020-06-26 2022-01-04 삼성에스디아이 주식회사 Rechargeable battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055491A (en) * 2002-07-24 2004-02-19 Miyagawa Kasei Ind Co Ltd Battery case structure of sealed type battery
JP2005317525A (en) * 2004-03-31 2005-11-10 Honda Motor Co Ltd Exterior case of rectangular storage battery, and arrangement method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10727452B2 (en) 2015-02-13 2020-07-28 Samsung Sdi Co., Ltd. Flexible secondary battery

Also Published As

Publication number Publication date
JP2006156049A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
KR102064460B1 (en) Pouch case for secondary battery, pouch type secondary battery and manufacturing method thereof using the same
JP4830302B2 (en) Secondary battery
JP7055305B2 (en) Pouch-type battery case including crack prevention structure and its manufacturing method
JP4830289B2 (en) Secondary battery
CN110062964A (en) The pouch-type exterior material of secondary cell, bag type secondary battery and its manufacturing method using it
TWI442614B (en) Battery
KR20130113301A (en) Battery cell of stair-like structure
JP6860091B2 (en) Power storage module and manufacturing method of power storage module
JP2020517052A (en) Sealing block for pouch-type secondary battery for preventing crack, pouch-type battery case manufactured using the same, and method for sealing pouch-type battery case
JP2018116888A (en) Storage battery
CN111201657B (en) Power storage module
JP2012221837A (en) Lithium ion secondary battery
JP2018106967A (en) Power storage device and manufacturing method thereof
JP4771765B2 (en) Battery case
JP2020053134A (en) Power storage module
JP2006114406A (en) Manufacturing method of sheet type battery, sheet type battery, and battery pack cimbined with sheet type unit cell
JP7027996B2 (en) Mold
US20220059912A1 (en) Power storage module, and manufacturing method therefor
JP2020149897A (en) Power storage element
JP2020087587A (en) Power storage module and manufacturing method of power storage module
JP6965730B2 (en) Manufacturing method of power storage module
JP2020030982A (en) Power storage module
JP2020030983A (en) Power storage module
JP2020021604A (en) Power storage module and manufacturing method of power storage module
JP6965731B2 (en) Power storage module and manufacturing method of power storage module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R151 Written notification of patent or utility model registration

Ref document number: 4830289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3