JP4830146B2 - Unidirectional antenna - Google Patents

Unidirectional antenna Download PDF

Info

Publication number
JP4830146B2
JP4830146B2 JP2007126064A JP2007126064A JP4830146B2 JP 4830146 B2 JP4830146 B2 JP 4830146B2 JP 2007126064 A JP2007126064 A JP 2007126064A JP 2007126064 A JP2007126064 A JP 2007126064A JP 4830146 B2 JP4830146 B2 JP 4830146B2
Authority
JP
Japan
Prior art keywords
antenna
excitation
inverted
feeding
ground plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007126064A
Other languages
Japanese (ja)
Other versions
JP2008283493A (en
Inventor
望 長谷部
弘 滝澤
Original Assignee
望 長谷部
株式会社ネットコムセック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 望 長谷部, 株式会社ネットコムセック filed Critical 望 長谷部
Priority to JP2007126064A priority Critical patent/JP4830146B2/en
Publication of JP2008283493A publication Critical patent/JP2008283493A/en
Application granted granted Critical
Publication of JP4830146B2 publication Critical patent/JP4830146B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a unidirectional antenna that can be made low with a simple configuration. <P>SOLUTION: The unidirectional antenna is provided with: a conductor ground board 2; a feed element 3 arranged on the conductor ground board 2 and formed by an inverted L-shaped antenna of a folded structure; a feed element 4 arranged in the main radiation direction of the feed element 3 separately from a first feed element only by a prescribed distance and formed by an inverted L-shaped antenna; and a parasitic element 5 arranged at the opposite side from the main radiation direction of the feed element 3 on an extension line obtained by connecting the feed elements 3 and 4 separately from the feed element 3 by almost 1/4 wavelength and formed by an inverted L-shaped antenna, wherein the excitation current of the feed element 4 is configured so as to have equal amplitude and phase lag by about 90 degrees with respect to the excitation current of the feed element 3. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、単方向性アンテナに関わり、特に、航空機などの飛翔体に搭載して好適なものである。   The present invention relates to a unidirectional antenna, and is particularly suitable for being mounted on a flying object such as an aircraft.

レーダシステム等に用いられる送信・受信共用アンテナとしては、メインビームの最大点のレベルと、その後側(メインビームの最大点の最大方向を0°としたときに180°±10°の範囲)における最大点とのレベル比である前後比(以下、F/Bと称する)が大きい単方向性アンテナが求められている。
このような単方向性アンテナは、複数のアンテナ素子をアレイ状に配置することでビームスキャンニングレーダを構成することができる。
ところで、上記した単方向性アンテナを航空機などの飛翔体に搭載する場合は、アンテナが空気力学上において大きな障害とならないように低背化を図ることが好ましい。このため、従来の単方向性アンテナは、T字型モノポールアンテナを用いてλ/4間隔で3素子を配置することにより、エンドファイアアレイを構成するようにしていた。これにより、アンテナの低背化を図り空気力学上の影響が小さくなるように構成していた。
As a transmission / reception shared antenna used in a radar system, etc., the level of the maximum point of the main beam and the rear side (range of 180 ° ± 10 ° when the maximum direction of the maximum point of the main beam is 0 °) There is a demand for a unidirectional antenna having a large front-to-back ratio (hereinafter referred to as F / B) that is a level ratio to the maximum point.
Such a unidirectional antenna can constitute a beam scanning radar by arranging a plurality of antenna elements in an array.
By the way, when the above-described unidirectional antenna is mounted on a flying object such as an aircraft, it is preferable to reduce the height so that the antenna does not become a major obstacle in aerodynamics. For this reason, the conventional unidirectional antenna is configured to form an endfire array by arranging three elements at λ / 4 intervals using a T-shaped monopole antenna. As a result, the antenna is reduced in height and the aerodynamic influence is reduced.

図8は、従来のエンドファイアアンテナの構造を示した図である。
この図8に示す従来のエンドファイアアンテナは、導体地板101上にT字型モノポールアンテナから成るアンテナ素子102a、102b、102cが4分の1波長(λ/4)の間隔で配置されている。この場合、アンテナ素子102a、102b、102cの位相は、それぞれ0度、−90度、−180度の位相差となる。
エンドファイアアレイアンテナの先行文献としては、特許文献1などがある。
特開平11−88046号公報
FIG. 8 is a diagram showing the structure of a conventional endfire antenna.
In the conventional endfire antenna shown in FIG. 8, antenna elements 102a, 102b, and 102c made of T-shaped monopole antennas are arranged on a conductive ground plane 101 at intervals of a quarter wavelength (λ / 4). . In this case, the phases of the antenna elements 102a, 102b, and 102c are phase differences of 0 degrees, −90 degrees, and −180 degrees, respectively.
As a prior document of the endfire array antenna, there is Patent Document 1 and the like.
JP 11-88046 A

しかしながら、上記した従来の単方向性アンテナは、給電回路を構成するマイクロストリップ線路の構造が非常に複雑になるという欠点があった。
また例えば、送信・受信周波数(約1GHz)の分離率を約6%((1.09GHz−1.03GHz)/1.06GHz=0.06)、VSWR(Voltage Standing Wave Ratio)を1.5以下、アンテナ利得を6dBi以上、F/Bを15dB以上となるように設計した場合、つまり、λ/4間隔で3つのアンテナ素子を配置して通常のエンドファイアアレイを設計した場合、各素子間の結合が強く、素子の入力インピーダンスが大きく異なるという問題点があった。
また給電系インピーダンスが50Ωより低下するという問題点があった。特に、0度位相励振のアンテナインピーダンスが大きく低下する。さらに0度位相励振のアンテナ素子と90度位相励振のアンテナ素子の入力インピーダンスの周波数特性が大きく異なるという問題点があった。
また単方向性アンテナとしては、図示しないが地板上に立てた直角反射板の前方にモノポールアンテナを配置したコーナーレフ構造が考えられる。この場合は、放射素子が単独なため、上記のように給電回路に関する考慮は必要ないという利点がある。しかしながら、モノポールアンテナの後方に設置するコーナー反射板が波長程度の大きさとなるため、アンテナ寸法が大型化し、飛翔体などに搭載する場合には空気力学上の大きな障害になるという問題点があった。
本発明は、上記したような点を鑑みてなされたものであり、簡単な回路構成で低背化が可能な単方向牲アンテナを提供することを目的とする。
However, the conventional unidirectional antenna described above has a drawback that the structure of the microstrip line constituting the feeder circuit becomes very complicated.
For example, the transmission / reception frequency (about 1 GHz) separation rate is about 6% ((1.09 GHz-1.03 GHz) /1.06 GHz = 0.06), and the VSWR (Voltage Standing Wave Ratio) is 1.5 or less. When the antenna gain is designed to be 6 dBi or more and F / B is 15 dB or more, that is, when a normal endfire array is designed with three antenna elements arranged at λ / 4 intervals, There is a problem that the coupling is strong and the input impedance of the element is greatly different.
In addition, there is a problem that the power feeding system impedance is lower than 50Ω. In particular, the antenna impedance of 0 degree phase excitation is greatly reduced. Further, there is a problem that the frequency characteristics of the input impedance of the antenna element with 0 degree phase excitation and the antenna element with 90 degree phase excitation are greatly different.
Moreover, as a unidirectional antenna, although not shown, a corner-reflective structure in which a monopole antenna is arranged in front of a right-angle reflecting plate standing on a ground plane is conceivable. In this case, since the radiating element is single, there is an advantage that the consideration regarding the feeding circuit is not necessary as described above. However, since the corner reflector installed behind the monopole antenna is about the size of a wavelength, the size of the antenna becomes large, and there is a problem that it becomes a large aerodynamic obstacle when mounted on a flying object. It was.
The present invention has been made in view of the above-described points, and an object thereof is to provide a unidirectional antenna that can be reduced in height with a simple circuit configuration.

上記目的を達成するため、本発明の単方向性アンテナは、導体地板と、導体地板上に配置された折り返し構造の逆L字型アンテナからなる第1の励振素子と、第1の励振素子の主放射方向で第1の励振素子に対し、複数の使用周波数を含む使用周波数帯域の中心周波数の約1/4波長に相当する距離だけ離間した、導体地板上の位置に配置された逆L字型アンテナからなる第2の励振素子と、第1の励振素子の主放射方向とは逆側の第1及び第2の励振素子を結んだ延長線上の位置で、かつ、第1の励振素子に対し1/4波長未満の所定の距離だけ離間した、導体地板上の位置に配置された逆L字型アンテナからなる第1の無給電素子と、第1及び第2の励振素子と第1の無給電素子とがそれぞれ配置された導体地板の表面とは反対側の背面に形成されており、第1の励振素子の励振電流に対して第2の励振素子の励振電流を等振幅で、かつ、略90度遅相させる90度位相差給電回路と、を備えることを特徴とする。
ここで、上記の90度位相差給電回路は、給電コネクタが配置される給電点と第1の励振素子の接続点との間に形成されてインピーダンス変成器として機能する第1のマイクロストリップ線路と、給電点と第2の励振素子の接続点との間に形成されて2段のインピーダンス変成器として機能する第2のマイクロストリップ線路とから構成されていることを特徴とする。
また、上記の目的を達成するため、本発明の単方向性アンテナは、第1の励振素子の主放射方向で第1及び第2の励振素子を結んだ延長線上で、かつ、第2の励振素子とは所定の距離だけ離間した、導体地板上の位置に配置された逆L字型アンテナからなる第2の無給電素子を備えたことを特徴とする。
Order to achieve the above object, a single directional antenna of the present invention includes a conductive ground plane, a first excitation element comprising a reverse L-shaped antenna arranged folded structure conductors Ground Plane, the first excitation An inverted element disposed at a position on the conductive ground plane, separated from the first excitation element in the main radiation direction of the element by a distance corresponding to about ¼ wavelength of the center frequency of the use frequency band including a plurality of use frequencies. The first excitation element at a position on the extension line connecting the second excitation element composed of the L-shaped antenna and the first and second excitation elements opposite to the main radiation direction of the first excitation element. A first parasitic element composed of an inverted L-shaped antenna disposed at a position on the conductor ground plane and spaced apart from the element by a predetermined distance less than a quarter wavelength ; first and second excitation elements; The back surface opposite to the surface of the conductor ground plane on which each of the parasitic elements is disposed Are formed, characterized in that it comprises an equal amplitude excitation current of the second parasitic elements with respect to the excitation current of the first excitation element, and a 90 degree phase difference feed circuit makes substantially 90 Dooso phase, the And
Here, the 90-degree phase difference feeding circuit includes a first microstrip line that is formed between a feeding point where the feeding connector is disposed and a connection point of the first excitation element and functions as an impedance transformer. , the feature that it is composed of a second microstrip line which serves as an impedance transformer in two stages is formed between the connection point of the feed point and the second excitation element.
In order to achieve the above object, the unidirectional antenna of the present invention is provided on the extension line connecting the first and second excitation elements in the main radiation direction of the first excitation element, and the second excitation the elements spaced apart by a predetermined distance, and further comprising a second parasitic element consisting of inverted L-shaped antenna disposed at a position on the conductive ground plane.

本発明の単方向性アンテナによれば、第1及び第2の励振素子と無給電素子とを逆L字型モノポールアンテナにより構成したので、低背化を図ることが可能になる。また第1及び第2の励振素子と無給電素子とを導体地板上に直線上に配置するという簡単な構成であるため、従来の3素子を利用したエンドファイアアンテナに比べて給電回路を容易に構成することができる。さらに、第1の励振素子を、逆L字型モノポールアンテナを折り返し構造としたことで、入力インピーダンスの低下を防止することができる。即ち、本発明によれば航空機などの飛翔体に搭載するのに好適な単方向性アンテナを簡単に実現することができる。   According to the unidirectional antenna of the present invention, since the first and second excitation elements and the parasitic element are configured by the inverted L-shaped monopole antenna, it is possible to reduce the height. In addition, since the first and second excitation elements and the parasitic elements are arranged in a straight line on the conductor ground plane, the feeder circuit can be easily made compared to the conventional endfire antenna using three elements. Can be configured. Furthermore, since the first excitation element has an inverted L-shaped monopole antenna with a folded structure, a decrease in input impedance can be prevented. That is, according to the present invention, a unidirectional antenna suitable for mounting on a flying object such as an aircraft can be easily realized.

図1は本発明の実施の形態に係る単方向性アンテナの構成を示した図であり、(a)は単方向性アンテナの概略斜視図、(b)は単方向性アンテナの側面図である。
なお、本実施形態の単方向性アンテナは、使用周波数が1.03GHzと1.09GHzという2つの周波数に設定されているものとする。
この図1(a)(b)に示す本実施形態の単方向性アンテナ1は、導体地板2、第1の励振素子である給電素子3、第2の励振素子である給電素子4、及び無給電素子5により構成され、これら給電素子3、4と無給電素子5とが導体地板2上において一直線上に配置されている。
給電素子3は導体地板2上の略中央に配置されたモノポール構造の逆L字型アンテナから成る。また給電素子3は単なる逆L字型アンテナではなく折り返し構造になっている。給電素子4は、給電素子3の主放射方向で、給電素子3とは所定の距離離れた位置に配置されたモノポール構造の逆L字型アンテナから成る。無給電素子5は、給電素子3の主放射方向とは逆側の給電素子3、4を結んだ延長線上で、給電素子3とは所定の距離離れた位置に配置されたモノポール構造の逆L字型アンテナから成る。
FIG. 1 is a diagram showing a configuration of a unidirectional antenna according to an embodiment of the present invention, where (a) is a schematic perspective view of the unidirectional antenna, and (b) is a side view of the unidirectional antenna. .
Note that the unidirectional antenna according to the present embodiment is set to have two operating frequencies of 1.03 GHz and 1.09 GHz.
The unidirectional antenna 1 of this embodiment shown to this Fig.1 (a) (b) is the conductor ground plane 2, the feed element 3 which is a 1st excitation element, the feed element 4 which is a 2nd excitation element, and nothing. The feeder element 5 is configured, and the feeder elements 3 and 4 and the parasitic element 5 are arranged on the conductor ground plane 2 in a straight line.
The feed element 3 is composed of an inverted L-shaped antenna having a monopole structure disposed substantially at the center on the conductor ground plane 2. The feed element 3 is not a simple L-shaped antenna but has a folded structure. The feed element 4 includes a monopole inverted L-shaped antenna disposed at a predetermined distance from the feed element 3 in the main radiation direction of the feed element 3. The parasitic element 5 is an extension of a monopole structure arranged at a predetermined distance from the feeding element 3 on an extension line connecting the feeding elements 3 and 4 on the side opposite to the main radiation direction of the feeding element 3. It consists of an L-shaped antenna.

本実施形態では、給電素子3と給電素子4との間隔を、使用周波数帯域(1.03GHz〜1.09GHz)の中心周波数(1.06GHz)の約λ/4に設定した。また給電素子3と無給電素子5との間隔を、使用周波数帯域の中心周波数の約0.215λに設定した。
このように本実施形態の単方向性アンテナ1を構成すると、給電素子3の励振電流に対して給電素子4の励振電流を等振幅で、且つ、略90度遅相させることで、上記の特性を実現することができる。即ち、送信・受信周波数の分離率を約6%、VSWRを1.5以下、アンテナ利得を6dBi以上、F/Bを15dB以上というアンテナ特性を実現することができる。
なお、本実施形態では単方向性アンテナ1の具体的な寸法は、図1(b)に示す給電素子3の長さL1=42.5mm、線路間隔W1=4.0mm、給電素子4の長さL2=29.3mm、無給電素子5の長さL3=42.0mm、給電素子3、4及び無給電素子5の夫々の高さh=32.0mmとした。また、給電素子3と給電素子4との間隔d1=70mm、給電素子3と無給電素子5との間隔d2=61.0mmとした。また、給電素子3、4、5の素子半径を1mmとした。
In the present embodiment, the interval between the power feeding element 3 and the power feeding element 4 is set to about λ / 4 of the center frequency (1.06 GHz) of the used frequency band (1.03 GHz to 1.09 GHz). Further, the interval between the feed element 3 and the parasitic element 5 was set to about 0.215λ of the center frequency of the used frequency band.
When the unidirectional antenna 1 of the present embodiment is configured as described above, the above-described characteristics are obtained by delaying the excitation current of the feed element 4 with an equal amplitude and approximately 90 degrees with respect to the excitation current of the feed element 3. Can be realized. That is, it is possible to realize antenna characteristics such as a transmission / reception frequency separation ratio of about 6%, a VSWR of 1.5 or less, an antenna gain of 6 dBi or more, and an F / B of 15 dB or more.
In the present embodiment, the specific dimensions of the unidirectional antenna 1 are as follows. The length L1 of the feed element 3 shown in FIG. 1B is 42.5 mm, the line interval W1 is 4.0 mm, and the length of the feed element 4 is The length L2 = 29.3 mm, the length L3 of the parasitic element 5 = 42.0 mm, and the heights h of the feeding elements 3 and 4 and the parasitic element 5 were set to 32.0 mm. Further, the distance d1 between the feeding element 3 and the feeding element 4 was set to 70 mm, and the distance d2 between the feeding element 3 and the parasitic element 5 was set to 61.0 mm. Further, the element radius of the power feeding elements 3, 4, and 5 was set to 1 mm.

このように本実施形態の単方向性アンテナ1においては、給電素子3、4と無給電素子5のアンテナ構造を逆L字型にしたことで、アンテナの低背化を実現することが可能になる。但し、給電素子3を逆L字型に構成した場合は、給電素子3の入力インピーダンスが大きく低下する。さらに、給電素子3と給電素子4との間に90度位相差を与えると、0度位相の素子である給電素子3のインピーダンスは単体時に比べて一層低下する。
そこで、本実施形態では、給電素子3を単なる逆L字型のモノポール構造でなく、折り返し逆L字型構造とした。これより、給電素子3のインピーダンスの低下を防止することができる。
As described above, in the unidirectional antenna 1 according to the present embodiment, the antenna structure of the feed elements 3 and 4 and the parasitic element 5 is inverted L-shaped, so that a reduction in the height of the antenna can be realized. Become. However, when the feed element 3 is configured in an inverted L shape, the input impedance of the feed element 3 is greatly reduced. Furthermore, when a phase difference of 90 degrees is provided between the power feeding element 3 and the power feeding element 4, the impedance of the power feeding element 3 that is an element having a phase of 0 degree is further reduced as compared with a single element.
Therefore, in the present embodiment, the feed element 3 is not a simple inverted L-shaped monopole structure but a folded inverted L-shaped structure. Thereby, it is possible to prevent the impedance of the power feeding element 3 from being lowered.

図2は本実施形態の単方向性アンテナに備えられている90度位相差給電回路の一例を示した図である。
図2に示す90度位相差給電回路は、導体地板2の背面側に形成したマイクロストリップ線路12、13、14により形成される。マイクロストリップ線路12は、50Ωの給電コネクタが配置される給電点11と、給電素子3の接続点15との間に形成され、給電素子3の給電を行うようにしている。またマイクロストリップ線路13及び14は、給電点11と給電素子4の接続点16との間に形成され、給電素子4の給電を行うようにしている。
また、マイクロストリップ線路12は、給電素子3の入力インピーダンスを100Ωに変換するインピーダンス変成器として機能する。またマイクロストリップ線路13、14は、2段のインピーダンス変成器であり給電素子4の入力インピーダンスを100Ωに変換する。即ち、90度位相差給電回路のマイクロストリップ線路12〜14は、給電素子3に給電するλg/4(線路内波長)変成器及び給電素子4に給電する2段のλg/4変成器13、14を介して並列接続された構造を採るものである。
よって、給電点11より見た本実施形態の単方向性アンテナの入力インピーダンスは50Ωとなる。
FIG. 2 is a diagram showing an example of a 90-degree phase difference feeding circuit provided in the unidirectional antenna of the present embodiment.
The 90-degree phase difference feeding circuit shown in FIG. 2 is formed by microstrip lines 12, 13, and 14 formed on the back side of the conductor ground plane 2. The microstrip line 12 is formed between a feeding point 11 where a 50Ω feeding connector is arranged and a connection point 15 of the feeding element 3 so as to feed the feeding element 3. The microstrip lines 13 and 14 are formed between the feeding point 11 and the connection point 16 of the feeding element 4 so as to feed the feeding element 4.
The microstrip line 12 functions as an impedance transformer that converts the input impedance of the feed element 3 into 100Ω. The microstrip lines 13 and 14 are two-stage impedance transformers that convert the input impedance of the feed element 4 to 100Ω. That is, the microstrip lines 12 to 14 of the 90-degree phase difference feeding circuit include a λg / 4 (in-line wavelength) transformer that feeds the feeding element 3 and a two-stage λg / 4 transformer 13 that feeds the feeding element 4, 14 is connected in parallel through 14.
Therefore, the input impedance of the unidirectional antenna of this embodiment viewed from the feeding point 11 is 50Ω.

このように本実施形態の単方向性アンテナ1においては、マイクロストリップ線路12を介して給電素子3の給電を行い、マイクロストリップ線路13及び14を介して給電素子4の給電を行うことにより、給電素子3と給電素子4との間に90度の位相差を与えると共に給電線路(50Ω)の整合性を図ることができる。またこの場合、単方向性アンテナ1は、給電素子3、4と、無給電素子5とを導体地板2上に直線上に配置するという簡単な構成であるため、従来の3素子を利用したエンドファイアアンテナに比べて給電回路を容易に構成できる。
なお、本実施形態の単方向性アンテナ1の90度位相差給電回路の具体的な寸法は、図2に示すマイクロストリップ線路12〜14の全長が、何れも48mmで線路内波長λの1/4(1.06GHzでの1/4波長)に設定されている。ここで、マイクロストリップ線路12の全長はL11+L12、マイクロストリップ線路13の全長はL13、マイクロストリップ線路14の全長はL14+L15+L16となる。
As described above, in the unidirectional antenna 1 according to the present embodiment, the feeding element 3 is fed via the microstrip line 12 and the feeding element 4 is fed via the microstrip lines 13 and 14, thereby feeding power. A phase difference of 90 degrees can be given between the element 3 and the feed element 4, and the matching of the feed line (50Ω) can be achieved. In this case, the unidirectional antenna 1 has a simple configuration in which the feed elements 3 and 4 and the parasitic element 5 are arranged on the conductor ground plane 2 in a straight line. Compared with a fire antenna, a power feeding circuit can be easily configured.
The specific dimensions of the 90-degree phase difference feeding circuit of the unidirectional antenna 1 of the present embodiment are as follows. The total length of the microstrip lines 12 to 14 shown in FIG. 4 (1/4 wavelength at 1.06 GHz). Here, the total length of the microstrip line 12 is L11 + L12, the total length of the microstrip line 13 is L13, and the total length of the microstrip line 14 is L14 + L15 + L16.

図3は、本実施形態の単方向性アンテナのVSWR特性の測定結果を示した図、図4は本実施形態の単方向性アンテナのVSWR特性をモーメント法により解析した解析結果を示した図である。
これら図3、図4に示すように本実施形態の単方向性アンテナ1は、使用周波数帯域である1.03GHz、及び1.09GHzでは、ともにVSWRの値が1.5以下であり広帯域特性であることを確認した。つまり、本実施形態の単方向性アンテナ1によれば、従来の3素子エンドファイアアレイでは実現できなかった帯域特性を実現できることが確認された。
図5は、本実施形態の単方向性アンテナの水平面内おける放射指向性の測定結果を示した図であり、(a)は1.03GHzにおける放射指向性の測定結果、(b)は1.09GHzにおける放射指向性の測定結果、(c)は測定条件を示した図である。図5(a)(b)に示す放射指向性から、使用周波数1.03GHz、1.09GHzにおける利得に関しては、約6.5dBi、F/Bは20dB以上の特性が得られることを確認した。
FIG. 3 is a diagram showing a measurement result of the VSWR characteristic of the unidirectional antenna of the present embodiment, and FIG. 4 is a diagram showing an analysis result of analyzing the VSWR characteristic of the unidirectional antenna of the present embodiment by a moment method. is there.
As shown in FIG. 3 and FIG. 4, the unidirectional antenna 1 of the present embodiment has a wide band characteristic with a VSWR value of 1.5 or less at the use frequency bands of 1.03 GHz and 1.09 GHz. I confirmed that there was. In other words, according to the unidirectional antenna 1 of the present embodiment, it was confirmed that the band characteristics that could not be realized by the conventional three- element endfire array can be realized.
Figure 5 is a diagram showing a definitive radiation directivity of the measurement results in the horizontal plane of the unidirectional antenna of this embodiment, (a) shows the radiation directivity of the measurement results in 1.03GHz, (b) is 1 Measurement result of radiation directivity at 0.09 GHz, (c) is a diagram showing the measurement conditions. From the radiation directivities shown in FIGS. 5 (a) and 5 (b), it was confirmed that characteristics of about 6.5 dBi and F / B of 20 dB or more were obtained with respect to gains at operating frequencies of 1.03 GHz and 1.09 GHz.

また図6は本実施形態の単方向性アンテナの垂直面内おける放射指向性の測定結果を示した図であり、(a)は1.03GHzにおける放射指向性の測定結果、(b)は1.09GHzにおける放射指向性の測定結果、(c)は測定条件を示した図である。
図6(a)(b)に示す放射指向性から、使用周波数1.03GHz、1.09GHzにおける利得及びF/Bに関しては、上記した水平面内と同様、約6.5dBi、F/Bは20dB以上の特性が得られることを確認した。
図7は本実施形態の単方向性アンテナの他の構成を示した側面図である。なお、図1と同一部位には同一符号を付して説明は省略する。
この図7に示す単方向性アンテナ20は、給電素子3の主放射方向で、給電素子3と給電素子4を結んだ延長線上で、且つ、給電素子4とは距離d3だけ離間した位置に逆L字型アンテナからなる無給電素子(第2の無給電素子)6を配置するようにしている。このように構成した場合は、さらなる利得の増加を計れるという利点がある。
FIG. 6 is a diagram showing the measurement result of the radiation directivity in the vertical plane of the unidirectional antenna of this embodiment. FIG. 6A shows the measurement result of the radiation directivity at 1.03 GHz, and FIG. Measurement result of radiation directivity at 0.09 GHz, (c) is a diagram showing measurement conditions.
From the radiation directivities shown in FIGS. 6 (a) and 6 (b), the gain and F / B at the operating frequencies of 1.03 GHz and 1.09 GHz are about 6.5 dBi and F / B is 20 dB as in the horizontal plane described above. It was confirmed that the above characteristics were obtained.
FIG. 7 is a side view showing another configuration of the unidirectional antenna of the present embodiment. In addition, the same code | symbol is attached | subjected to the same site | part as FIG. 1, and description is abbreviate | omitted.
The unidirectional antenna 20 shown in FIG. 7 is opposite to a position in the main radiation direction of the feed element 3 on an extension line connecting the feed element 3 and the feed element 4 and separated from the feed element 4 by a distance d3. A parasitic element (second parasitic element) 6 composed of an L-shaped antenna is arranged. Such a configuration has an advantage that the gain can be further increased.

本発明の実施の形態にかかる単方向性アンテナの構成を示した図であり、(a)は概略斜視図、(b)は側面図である。It is the figure which showed the structure of the unidirectional antenna concerning embodiment of this invention, (a) is a schematic perspective view, (b) is a side view. 本実施形態の単方向性アンテナに備えられている90度位相差給電回路の一例を示した図である。It is the figure which showed an example of the 90 degree | times phase difference electric power feeding circuit with which the unidirectional antenna of this embodiment was equipped. 本実施形態の単方向性アンテナのVSWR特性の測定結果を示した図である。It is the figure which showed the measurement result of the VSWR characteristic of the unidirectional antenna of this embodiment. 本実施形態の単方向性アンテナのVSWR特性をモーメント法により解析した解析結果を示した図である。It is the figure which showed the analysis result which analyzed the VSWR characteristic of the unidirectional antenna of this embodiment by the moment method. 本実施形態の単方向性アンテナの水平面内おける放射指向性の測定結果を示した図である。It is the figure which showed the measurement result of the radiation directivity in the horizontal surface of the unidirectional antenna of this embodiment. 本実施形態の単方向性アンテナの垂直面内おける放射指向性の測定結果を示した図である。It is the figure which showed the measurement result of the radiation directivity in the vertical plane of the unidirectional antenna of this embodiment. 本実施形態に係る単方向性アンテナの他の構成を示した側面図である。It is the side view which showed the other structure of the unidirectional antenna which concerns on this embodiment. 従来のエンドファイアアンテナの構造を示した図である。It is the figure which showed the structure of the conventional endfire antenna.

符号の説明Explanation of symbols

1、20…単方向性アンテナ、2…導体地板、3、4…給電素子、5、6…無給電素子、11…給電点、12、13、14…マイクロストリップ線路、15、16…接続点   DESCRIPTION OF SYMBOLS 1,20 ... Unidirectional antenna, 2 ... Conductor ground plane, 3, 4 ... Feeding element, 5, 6 ... Parasitic element, 11 ... Feeding point, 12, 13, 14 ... Microstrip line, 15, 16 ... Connection point

Claims (3)

導体地板と、
該導体地板上に配置された折り返し構造の逆L字型アンテナからなる第1の励振素子と、
該第1の励振素子の主放射方向で前記第1の励振素子に対し、複数の使用周波数を含む使用周波数帯域の中心周波数の約1/4波長に相当する距離だけ離間した、前記導体地板上の位置に配置された逆L字型アンテナからなる第2の励振素子と、
前記第1の励振素子の主放射方向とは逆側前記第1及び第2の励振素子を結んだ延長線上の位置で、かつ、前記第1の励振素子に対し前記1/4波長未満の所定の距離だけ離間した、前記導体地板上の位置に配置された逆L字型アンテナからなる第1の無給電素子と
前記第1及び第2の励振素子と前記第1の無給電素子とがそれぞれ配置された前記導体地板の表面とは反対側の背面に形成されており、前記第1の励振素子の励振電流に対して前記第2の励振素子の励振電流を等振幅で、かつ、略90度遅相させる90度位相差給電回路と、
を備えることを特徴とする単方向性アンテナ。
A conductor ground plane;
A first excitation element comprising an inverted L-shaped antenna with a folded structure disposed on the conductor ground plane;
The conductor ground plane separated from the first excitation element in the main radiation direction of the first excitation element by a distance corresponding to about ¼ wavelength of a center frequency of a use frequency band including a plurality of use frequencies. A second excitation element comprising an inverted L-shaped antenna disposed at a position of
At a location on said first extension line connecting said first and second excitation elements opposite to the main emission direction of the driven element, and wherein less than 1/4 wavelength over the previous SL first excitation element A first parasitic element consisting of an inverted L-shaped antenna disposed at a position on the conductor ground plane and separated by a predetermined distance ;
The first and second excitation elements and the first parasitic element are formed on the back side opposite to the surface of the conductor ground plate on which the first excitation element and the first parasitic element are respectively arranged. A 90-degree phase difference feeding circuit that delays the excitation current of the second excitation element with an equal amplitude and approximately 90 degrees,
Unidirectional antenna, characterized in that it comprises a.
前記90度位相差給電回路は、給電コネクタが配置される給電点と前記第1の励振素子の接続点との間に形成されてインピーダンス変成器として機能する第1のマイクロストリップ線路と、前記給電点と前記第2の励振素子の接続点との間に形成されて2段のインピーダンス変成器として機能する第2のマイクロストリップ線路とから構成されていることを特徴とする請求項1記載の単方向性アンテナ。 The 90-degree phase difference feeding circuit includes a first microstrip line that is formed between a feeding point where a feeding connector is disposed and a connection point of the first excitation element and functions as an impedance transformer, and the feeding No mounting according to claim 1 Symbol, characterized in that it is composed of a second microstrip line which serves as an impedance transformer in two stages is formed between the point and the connection point of the second excitation element Unidirectional antenna. 前記第1の励振素子の主放射方向で前記第1及び第2の励振素子を結んだ延長線上で、つ、前記第2の励振素子とは所定の距離だけ離間した、前記導体地板上の位置に配置された逆L字型アンテナからなる第2の無給電素子を備えたことを特徴とする請求項1又は2記載の単方向性アンテナ。 On the first extension line connecting said first and second excitation element in the main emission direction of the driven element, One or, and the second excitation element spaced a predetermined distance, on the conductive ground plane claim 1 or 2 SL placing unidirectional antenna characterized by comprising a second parasitic element consisting of arranged inverted L-shaped antenna in position.
JP2007126064A 2007-05-10 2007-05-10 Unidirectional antenna Expired - Fee Related JP4830146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007126064A JP4830146B2 (en) 2007-05-10 2007-05-10 Unidirectional antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126064A JP4830146B2 (en) 2007-05-10 2007-05-10 Unidirectional antenna

Publications (2)

Publication Number Publication Date
JP2008283493A JP2008283493A (en) 2008-11-20
JP4830146B2 true JP4830146B2 (en) 2011-12-07

Family

ID=40143932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126064A Expired - Fee Related JP4830146B2 (en) 2007-05-10 2007-05-10 Unidirectional antenna

Country Status (1)

Country Link
JP (1) JP4830146B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060629B1 (en) 2011-03-30 2012-10-31 株式会社東芝 ANTENNA DEVICE AND ELECTRONIC DEVICE HAVING THE ANTENNA DEVICE
JP5127966B1 (en) 2011-08-30 2013-01-23 株式会社東芝 ANTENNA DEVICE AND ELECTRONIC DEVICE HAVING THE ANTENNA DEVICE
JP5162012B1 (en) 2011-08-31 2013-03-13 株式会社東芝 ANTENNA DEVICE AND ELECTRONIC DEVICE HAVING THE ANTENNA DEVICE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3169325B2 (en) * 1995-08-14 2001-05-21 東洋通信機株式会社 Array antenna
JP2002290138A (en) * 2001-03-26 2002-10-04 Kyocera Corp Antenna device
JP2005236590A (en) * 2004-02-19 2005-09-02 Nippon Hoso Kyokai <Nhk> Antenna device and mobile communication apparatus having the same
JP2005341376A (en) * 2004-05-28 2005-12-08 Yagi Antenna Co Ltd Opposite phase power supply antenna device

Also Published As

Publication number Publication date
JP2008283493A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
US20210226344A1 (en) Compact wideband dual-polarized radiating elements for base station antenna applications
US20200083608A1 (en) Circularly polarized antennas
CN113748572B (en) Radiating element with angled feed stalk and base station antenna including the same
US9793607B2 (en) Antenna with quarter wave patch element, U-Slot, and slotted shorting wall
JP3734666B2 (en) ANTENNA DEVICE AND ARRAY ANTENNA USING THE SAME
KR101092846B1 (en) A series slot array antenna
US20120162021A1 (en) Circularly polarized antenna with wide beam width
JP2018511240A (en) Ultra-wideband antenna elements and arrays with low cross-polarization decade bandwidth
KR20160144920A (en) Dipole antenna with integrated balun
US5111214A (en) Linear array antenna with E-plane backlobe suppressor
EP1033782B1 (en) Monopole antenna
US20170237174A1 (en) Broad Band Diversity Antenna System
US20110221647A1 (en) Multi-Element Folded-Dipole Antenna
JP4728930B2 (en) Corner reflector antenna with ground plane
US20230361475A1 (en) Base station antennas having compact dual-polarized box dipole radiating elements therein that support high band cloaking
JP4830146B2 (en) Unidirectional antenna
CN105161848A (en) Elliptical slot circularly-polarized microstrip antenna
KR19980069830A (en) Log Periodic Dipole Antenna with Microstrip Feeder
CN106450774A (en) Ultra-wideband high-gain yagi antenna
US3975733A (en) Transmitting antenna employing radial fins
US8390520B2 (en) Dual-patch antenna and array
EP2309596A1 (en) Dual-polarization antenna&#39;s radiating element
JP2008278194A (en) Antenna device
US11095035B2 (en) Broad band dipole antenna
KR101523026B1 (en) Multiband omni-antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100907

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees