JP4829516B2 - Rearing method of clownfish in early life stage - Google Patents

Rearing method of clownfish in early life stage Download PDF

Info

Publication number
JP4829516B2
JP4829516B2 JP2005099026A JP2005099026A JP4829516B2 JP 4829516 B2 JP4829516 B2 JP 4829516B2 JP 2005099026 A JP2005099026 A JP 2005099026A JP 2005099026 A JP2005099026 A JP 2005099026A JP 4829516 B2 JP4829516 B2 JP 4829516B2
Authority
JP
Japan
Prior art keywords
seawater
breeding
hours
copper
survival rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005099026A
Other languages
Japanese (ja)
Other versions
JP2006271321A (en
Inventor
岳志 古田
仲弘 岩田
靖行 野方
弘太郎 菊池
憲二 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005099026A priority Critical patent/JP4829516B2/en
Publication of JP2006271321A publication Critical patent/JP2006271321A/en
Application granted granted Critical
Publication of JP4829516B2 publication Critical patent/JP4829516B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Description

本発明は、カクレクマノミの飼育方法に関する。さらに詳述すると、本発明は、カクレクマノミの初期生活段階における飼育方法に関する。 The present invention also relates to the breeding how clownfish. In more detail, the present invention relates to a rearing how in the early life stages of clownfish.

海産魚や海産無脊椎動物に代表される食用または観賞用もしくは各種試験用の海産動物の飼育・養殖は、飼育環境や飼料等に影響を受けやすく難しい。特に、人工的な飼育環境下での飼育は難しく、自然の棲息環境を再現したり、それに近い海水組成として海水を濾過等により清浄な状態に維持するようにしているが、初期生活段階においては清浄な環境を実現しても生残率が低いため、初期生活段階において高い生残率が得られる飼育方法の確立が強く望まれている。ここで、海産動物の初期生活段階とは、孵化直後から成体とほぼ同等の形態に成長するまでの期間を指す。初期生活段階における海産動物の口は小さく、この時期に与える初期飼料としては小さな口でも摂餌可能な物が選択され、かかる初期飼料として従来は専らワムシが用いられている。   Breeding and aquaculture of edible or ornamental or various marine animals typified by marine fish and marine invertebrates are easily affected by the breeding environment and feed. In particular, breeding in an artificial breeding environment is difficult, and the natural habitat environment is reproduced, and the seawater composition close to it is maintained in a clean state by filtration etc., but in the initial life stage Since the survival rate is low even when a clean environment is realized, establishment of a breeding method capable of obtaining a high survival rate in the initial life stage is strongly desired. Here, the initial life stage of marine animals refers to the period from the time of hatching until it grows into a form almost equivalent to adults. The mouth of marine animals in the initial life stage is small, and the feed that can be fed even with a small mouth is selected as the initial feed to be given at this time, and rotifers have been used exclusively as such initial feed.

そこで、生物飼料に対して高度不飽和脂肪酸やビタミン類による栄養強化を施して生残率を向上させる方法(非特許文献1および非特許文献2)や、配合飼料にリン、カルシウム、鉄、銅、および亜鉛などのミネラル類を添加して生残率を向上させる方法(非特許文献3および非特許文献4)が提案されている。   Therefore, a method (Non-Patent Document 1 and Non-Patent Document 2) for improving the survival rate by applying nutritional enrichment with polyunsaturated fatty acids and vitamins to biological feed, and phosphorus, calcium, iron, copper in mixed feed , And methods of improving the survival rate by adding minerals such as zinc (Non-Patent Document 3 and Non-Patent Document 4) have been proposed.

Watanabe, T. et al. (1983): Nutiritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture, 34, 115-143.Watanabe, T. et al. (1983): Nutiritional values of live organisms used in Japan for mass propagation of fish: a review.Aquaculture, 34, 115-143. Craig, S.R. et al. (1994): The effects of enriching live food with highly unsaturated fatty acids on the growth and fatty acid composition of larval red drum Sciaenops ocellatus. Jounal of the World Aquaculture Society, 25(3), 424-431.Craig, SR et al. (1994): The effects of enriching live food with highly unsaturated fatty acids on the growth and fatty acid composition of larval red drum Sciaenops ocellatus.Jounal of the World Aquaculture Society, 25 (3), 424-431 . Kanazawa, A. (2003): Nutrition of marine larvae. Journal of Applied Aquaculture, 13(1/2), 103-143.Kanazawa, A. (2003): Nutrition of marine larvae. Journal of Applied Aquaculture, 13 (1/2), 103-143. 佐藤秀一(2003):1-2.ミネラル、2003年度日本水産学会大会講演要旨集、319.Sato Shuichi (2003): 1-2. Minerals, 2003 Annual Meeting of the Fisheries Science Society of Japan, 319.

しかしながら、従来の生物飼料への栄養強化では、必ずしも充分な生残率向上の効果が得られていないのが実情である。   However, the actual situation is that the effect of improving the survival rate is not always obtained by the conventional nutritional enhancement of the biological feed.

そこで本発明は、初期生活段階において高い生残率が得られるカクレクマノミの飼育方法を提供することを目的とする。 Accordingly, the present invention aims at providing a breeding how clownfish high survival rate in early life stage is obtained.

本発明者等は、環境水中の毒性物質に対する水生生物の影響評価試験を行った際に、水生生物にとって本来毒性物質であるはずの銅がある一定の濃度範囲では、むしろ生残率を上げることを知見するに至った。
そこで、初期生活段階におけるカクレクマノミを対象とした影響評価試験を積み重ねた結果、初期生活段階におけるカクレクマノミを飼育する海水中の銅濃度を0.04〜0.32ミリグラム/リットルとすることで、初期生活段階におけるカクレクマノミの生残率が向上することを知見するに至った。
さらに、孵化から36時間以内に飼育海水中の銅濃度を前記濃度とし、48時間〜72時間前記濃度を維持することでカクレクマノミの生残率が向上することを知見するに至った。
When conducting a test to evaluate the influence of aquatic organisms on toxic substances in environmental water, the present inventors rather increase the survival rate in a certain concentration range where copper is supposed to be a toxic substance for aquatic organisms. It came to know.
Then, as a result of accumulating the effect evaluation test for the clown fish in the initial life stage, the copper concentration in the seawater for breeding the clown fish in the initial life stage is set to 0.04 to 0.32 milligram / liter. It came to know that the survival rate of clown fish at the stage is improved.
Further, the copper concentration of the breeding seawater within 36 hours from hatching and the concentration, 48 hours to 72 hours the survival rate of the clownfish by maintaining concentration came to knowledge that improved.

本発明のカクレクマノミの飼育方法は、かかる知見に基づくものであり、少なくとも孵化直後から成体とほぼ同等の形態に成長するまでの期間であるカクレクマノミの初期生活段階において、カクレクマノミを飼育する飼育海水の銅濃度を好適な範囲にして、カクレクマノミの生残率を向上させるものである。ここで、飼育海水中の銅濃度の範囲は0.04〜0.32ミリグラム/リットルであれば好ましく、より好ましくは0.07〜0.21ミリグラム/リットル、さらに好ましくは0.09〜0.16ミリグラム/リットルである。 Clownfish breeding method of the present invention is based on such a finding, the early life stages of clownfish a period until the growth substantially equal form to adult immediately after at least hatching, rearing sea water for breeding clownfish The survival rate of the clown fish is improved by adjusting the copper concentration to a suitable range. Here, the range of copper concentration in the breeding seawater is preferably 0.04 to 0.32 milligram / liter, more preferably 0.07 to 0.21 milligram / liter, and still more preferably 0.09 to 0.00. 16 milligrams / liter.

また、孵化から36時間以内に飼育海水中の銅濃度を前記濃度とし、前記濃度を48〜72時間維持することが好ましい。尚、前記濃度を48〜72時間維持した後は飼育海水に銅を添加しなくても生残率の向上は充分見込めるため、銅を添加する必要はなく、よってコストダウンや飼育にかかる手間を省くことができる Further, the copper concentration of the breeding seawater within 36 hours from hatching and the concentration, it is preferred to maintain the pre-Symbol concentrations 48-72 hours. After maintaining the above concentration for 48 to 72 hours, the survival rate can be sufficiently improved without adding copper to the breeding seawater, so there is no need to add copper. It can be omitted .

しかして請求項1および2記載のカクレクマノミの飼育方法によれば、カクレクマノミの初期生活段階において従来法よりも高い生残率が得られ、カクレクマノミの水産増養殖における生産効率が向上する。 Thus, according to claims 1 and 2 breeding how clownfish described, high survival rate than the conventional method is obtained in the early life stages of clownfish, production efficiency is improved in the aquaculture clownfish.

以下、本発明のカクレクマノミの飼育方法の実施の一形態を詳細に説明する。 Hereinafter, an embodiment of the breeding how clownfish of the present invention in detail.

本発明のカクレクマノミの飼育方法は、少なくともカクレクマノミの初期生活段階において、カクレクマノミを飼育する飼育海水の銅濃度を0.04〜0.32ミリグラム/リットルとし、かつ孵化から36時間以内に飼育海水中の銅濃度を前記濃度とし、48時間〜72時間前記濃度を維持するようにしている。 Clownfish breeding method of the present invention, at least in early life stages clownfish, a copper concentration of breeding sea water for breeding clownfish and 0.04 to 0.32 mg / liter, and the breeding seawater within 36 hours from hatching of copper concentration of the concentration, so as to maintain a 4 8 hours to 72 hours the concentration.

ここで、カクレクマノミの初期生活段階とは、孵化直後から成体とほぼ同等の形態に成長するまでの期間を指し、孵化直後から体色、体型、鰭の条数が成体と同等となるまでの期間であり、孵化直後から2週間程度経過するまでの期間である。初期生活段階における孵化仔魚には初期飼料を与えて飼育し、孵化仔魚が初期生活段階を経過した時点で、初期飼料に加えて配合飼料や魚介類の細切物などを投与し、徐々に初期飼料の給餌量を減らすと共に配合飼料や魚介類の細切物等の給餌量を増やし、やがて配合飼料や魚介類の細切物等のみの初期飼料を用いない給餌に切り替える。   Here, the initial life stage of a clownfish refers to the period from the time of hatching until it grows into a shape almost equivalent to that of an adult, and the period from the time of hatching until the body color, body shape, and number of wings become equivalent to those of an adult. It is a period from about 2 weeks after the hatching. The hatchling larvae in the early life stage are fed with an initial feed and are fed, and when the hatched larvae have passed the initial life stage, in addition to the initial feed, compounded feed and fish and shellfish cuts are administered. The feed amount of the feed is reduced and the feed amount of the blended feed and fish and shellfish cuts is increased, and eventually, the feed is switched to the feed without using only the blended feed and fish and shellfish cuts.

カクレクマノミの初期飼料には、例えば一般に用いられるワムシを採用して良いが、ブラインシュリンプ(アルテミアとも呼ばれる)を用いても良い。本願発明者らが飼育実験を積み重ねた結果、クマノミ類の孵化仔魚は海産魚の中では比較的大型であり、ワムシを用いずにブラインシュリンプのみでもクマノミ類の孵化仔魚を飼育できることを見出したからである。   For example, a commonly used rotifer may be employed as the initial feed of the clownfish, but brine shrimp (also referred to as artemia) may be used. This is because the inventors of the present application accumulated the breeding experiments, and found that anemone hatching larvae were relatively large among marine fish, and it was found that hatching larvae of anemonefish could be raised only with brine shrimp without using a rotifer. .

飼育海水の銅濃度を調整するにあたっては、純銅を用いる必要は必ずしもなく、例えば銅元素を含む化合物を用いてもよい。例えば本実施形態では、硫酸銅5水和物を純水に溶解したものを、清浄な天然海水に海水中の銅濃度が0.04〜0.32ミリグラム/リットルとなるように添加し、これを飼育海水として用いる。飼育海水中に銅が溶け込むことによって、沈殿してしまう銅含有配合飼料とは異なり、孵化仔魚が必要とする量の銅を摂取しやすくなる In adjusting the copper concentration of the breeding seawater , it is not always necessary to use pure copper, and for example, a compound containing copper element may be used. For example, in this embodiment, copper sulfate pentahydrate dissolved in pure water is added to clean natural seawater so that the copper concentration in seawater is 0.04 to 0.32 milligram / liter. Is used as breeding seawater. Unlike copper-containing mixed feed that precipitates when copper dissolves in the breeding seawater, it becomes easier to ingest the amount of copper required by hatched larvae .

カクレクマノミの生残率向上に寄与する飼育海水中の銅濃度の範囲は、0.04〜0.32ミリグラム/リットルである。銅濃度が0.32ミリグラム/リットルより高濃度になるにつれて、生残率は徐々に低下し、銅濃度が0.64ミリグラム/リットルでは生残率は通常海水における場合よりも低くなる。また、銅濃度が0.04ミリグラム/リットルより小さくなると、試験海水中の銅濃度を小さくするほど生残率は低下し、最終的には、生残率が通常海水における場合と同程度となる。尚、好ましい銅濃度は0.07〜0.21ミリグラム/リットル、より好ましくは0.09〜0.16ミリグラム/リットルであり、この範囲内の銅濃度にすることで、本発明の効果がより顕著に得られる。   The range of the copper concentration in the breeding seawater that contributes to the improvement of the survival rate of clownfish is 0.04 to 0.32 milligram / liter. As the copper concentration becomes higher than 0.32 milligram / liter, the survival rate gradually decreases, and at a copper concentration of 0.64 milligram / liter, the survival rate becomes lower than that in normal seawater. In addition, when the copper concentration is less than 0.04 milligram / liter, the survival rate decreases as the copper concentration in the test seawater is reduced, and finally, the survival rate is about the same as in normal seawater. . The preferable copper concentration is 0.07 to 0.21 milligram / liter, more preferably 0.09 to 0.16 milligram / liter. By making the copper concentration within this range, the effect of the present invention is further improved. Remarkably obtained.

また、孵化から36時間以内に飼育海水中の銅濃度を前記濃度とし、前記濃度を48〜72時間維持することが好ましい。尚、前記濃度を48〜72時間維持した後は飼育海水に銅を添加しなくても生残率の向上は充分見込めるため、銅を添加する必要はなく、よってコストダウンや飼育にかかる手間を省くことができる Further, the copper concentration of the breeding seawater within 36 hours from hatching and the concentration, it is preferred to maintain the pre-Symbol concentrations 48-72 hours. After maintaining the above concentration for 48 to 72 hours, the survival rate can be sufficiently improved without adding copper to the breeding seawater, so there is no need to add copper. It can be omitted .

500mlの飼育海水を入れたプラスチック製のジョッキを24個用意し、カクレクマノミの孵化直後の仔魚を各ジョッキに10尾ずつ収容した。飼育海水は、(a)通常海水、(b)銅濃度が0.04ミリグラム/リットルの海水、(c)銅濃度が0.08ミリグラム/リットルの海水、(d)銅濃度が0.16ミリグラム/リットルの海水、(e)銅濃度が0.32ミリグラム/リットルの海水、(f)銅濃度が0.64ミリグラム/リットルの海水、の6種類とし、同じ飼育海水あたり4グループ飼育した。上記(b)〜(f)の飼育海水は、硫酸銅5水和物を銅濃度が2グラム/リットルになるよう純水に溶解した後に、上記の銅濃度となるよう海水に添加した。   Twenty-four plastic mugs containing 500 ml of breeding seawater were prepared, and 10 larvae immediately after hatching of clown fish were housed in each mug. The breeding seawater is (a) normal seawater, (b) seawater with a copper concentration of 0.04 milligram / liter, (c) seawater with a copper concentration of 0.08 milligram / liter, and (d) a copper concentration of 0.16 milligram. 4 groups of the same breeding seawater were prepared, including 6 types of seawater / liter of seawater, (e) seawater having a copper concentration of 0.32 milligram / liter, and (f) seawater having a copper concentration of 0.64 milligram / liter. The breeding seawaters (b) to (f) above were dissolved in pure water so that the copper sulfate pentahydrate had a copper concentration of 2 g / liter, and then added to the seawater so that the copper concentration would be the above.

水温は26℃に維持し、給気は行わなかった。ブラインシュリンプ乾燥卵を海水に懸濁し、28℃に保温し、24時間後に孵化した幼生を、200μmおよび60μmのフィルタを用いて海水で卵殻の除去および洗浄を行った後に給餌した。給餌は毎日1回行い、給餌量は24時間後に摂餌しきれなかったブラインシュリンプ幼生が飼育海水1mlあたり1個体以上残るように調整した。24時間毎に新たな飼育海水に仔魚を移し、摂餌しきれなかった古いブラインシュリンプを飼育海水から取り除いた。   The water temperature was maintained at 26 ° C. and no air was supplied. Brine shrimp dried eggs were suspended in seawater, incubated at 28 ° C., and larvae hatched after 24 hours were fed after removing and washing eggshells with seawater using 200 μm and 60 μm filters. Feeding was performed once a day, and the feed amount was adjusted so that one or more of the brine shrimp larvae that could not be fed after 24 hours remained per 1 ml of the breeding seawater. Every 24 hours, larvae were transferred to fresh breeding seawater, and old brine shrimp that could not be fed were removed from the breeding seawater.

上記条件で14日間の飼育を行い、上記6種類の飼育海水について生残率を比較した。図1に比較結果を示す。図1中の◆のプロットが通常海水での孵化仔魚の生残率の経時変化を示し、■のプロットが銅濃度が0.04ミリグラム/リットルの飼育海水での孵化仔魚の生残率の経時変化を示し、●のプロットが銅濃度が0.08ミリグラム/リットルの飼育海水での孵化仔魚の生残率の経時変化を示し、◇のプロットが銅濃度が0.16ミリグラム/リットルの飼育海水での孵化仔魚の生残率の経時変化を示し、□のプロットが銅濃度が0.32ミリグラム/リットルの飼育海水での孵化仔魚の生残率の経時変化を示し、○のプロットが銅濃度が0.64ミリグラム/リットルの飼育海水での孵化仔魚の生残率の経時変化を示す。尚、図1中の各飼育日数の生残率は、同じ飼育海水を用いた4グループの平均値をとった。   Breeding was carried out for 14 days under the above conditions, and the survival rates were compared for the above six kinds of breeding seawater. FIG. 1 shows the comparison results. The ◆ plot in Fig. 1 shows the time course of the survival rate of hatching larvae in normal seawater, and the ■ plot is the time course of the survival rate of hatching larvae in the breeding seawater with a copper concentration of 0.04 milligram / liter. The plot of ● shows the time course of the survival rate of hatching larvae in the breeding seawater with a copper concentration of 0.08 mg / liter, and the plot of ◇ shows the breeding seawater with a copper concentration of 0.16 mg / liter Shows the time course of the survival rate of hatching larvae at □, □ plot shows the time course of the survival rate of hatching larvae in the breeding seawater with a copper concentration of 0.32 mg / liter, and ○ plot shows the copper concentration Shows the time course of the survival rate of hatched larvae in the breeding seawater at 0.64 milligram / liter. In addition, the survival rate of each breeding days in FIG. 1 took the average value of four groups using the same breeding seawater.

図1に示される結果から、銅濃度が0.32ミリグラム/リットルより高くなるにつれて、生残率は低下し、銅濃度が0.64ミリグラム/リットルでは、生残率は通常海水よりも低くなることが分かる。   From the results shown in FIG. 1, as the copper concentration becomes higher than 0.32 milligram / liter, the survival rate decreases, and at the copper concentration of 0.64 milligram / liter, the survival rate becomes lower than normal seawater. I understand that.

次に、通常海水と、銅濃度が0.16ミリグラム/リットルの海水との2種の飼育海水を用意し、各飼育海水にカクレクマノミの孵化直後の仔魚を40尾ずつ収容し、上記と同条件で14日間の飼育を行った。そして、同条件で孵化7回分の飼育実験を繰り返した。2種類の飼育海水について生残率を比較した結果を図2に示す。図2は、通常海水および銅濃度が0.16ミリグラム/リットルの海水での飼育開始から14日後の各生残率を、7回分の飼育実験の平均値±標準偏差で示す。   Next, prepare two kinds of breeding seawater, normal seawater and seawater with a copper concentration of 0.16 milligram / liter, and contain 40 larvae immediately after hatching of clownfish in each breeding seawater, under the same conditions as above. And raised for 14 days. And the breeding experiment for 7 times of hatching was repeated on the same conditions. The result of comparing the survival rate for two types of breeding seawater is shown in FIG. FIG. 2 shows each survival rate 14 days after the start of breeding in normal seawater and seawater having a copper concentration of 0.16 mg / liter, as an average value ± standard deviation of seven breeding experiments.

通常海水での生残率は46±11%であるのに対し、銅濃度が0.16ミリグラム/リットルの海水では生残率が70±10%であり、通常海水と比較して生残率が飛躍的に向上していることが分かる。   The survival rate in normal seawater is 46 ± 11%, whereas in seawater with a copper concentration of 0.16 milligram / liter, the survival rate is 70 ± 10%, compared to normal seawater. It can be seen that there is a dramatic improvement.

以上の結果から、初期生活段階のカクレクマノミの飼育では、海水中の銅濃度が0.04〜0.32ミリグラム/リットルとなるように飼育海水に銅を付加することで、通常海水よりも生残率が向上し、特に銅濃度が0.16ミリグラム/リットルとなるように飼育海水に銅を付加することで、通常海水と比較して飛躍的に高い70%以上の生残率が得られることが明らかになった。   Based on the above results, in the breeding of clownfish in the early life stage, the copper was added to the breeding seawater so that the copper concentration in the seawater would be 0.04 to 0.32 milligram / liter, so that it survived more than normal seawater. By adding copper to the breeding seawater so that the rate is improved, especially the copper concentration is 0.16 milligram / liter, a survival rate of 70% or more that is dramatically higher than normal seawater can be obtained. Became clear.

市販の個体および本願発明者等が仔魚から育成した個体を雌雄3ペア用意し、1ペアごとに水量270Lの循環濾過式水槽で飼育した。尚、購入魚のペアをペア−1、ペア−2、育成魚のペアをペア−3とした。また、水槽内にはイソギンチャクをそれぞれ収容した。
水温27℃設定で、アサリや配合飼料を与えて飼育したところ、親魚は飼育槽の底および岩の表面に産卵し、産卵から8〜9日後の消灯後に孵化を開始した。孵化仔魚は飼育槽内に設置したネットに水流により集めて、翌朝ビニルチューブで採取し、実験に用いた。
Three pairs of males and females of commercially available individuals and individuals grown from larvae by the present inventors were prepared, and each pair was bred in a circulating filtration water tank with a water volume of 270 L. In addition, the pair of purchased fish was set to Pair-1, Pair-2, and the pair of rearing fish was set to Pair-3. Moreover, each sea anemone was accommodated in the water tank.
At a water temperature of 27 ° C. and fed with clams and compound feed, the parent fish spawned on the bottom of the breeding tank and on the rock surface, and hatched after 8-9 days after the spawning went out. Hatching larvae were collected by a stream of water in a net installed in the breeding tank, collected with a vinyl tube the next morning, and used for experiments.

500mlの飼育海水を入れたプラスチック製のジョッキを72個用意し、カクレクマノミの孵化直後の仔魚を各ジョッキに10尾ずつ収容した。尚、収容する際にはペア−1、ペア−2およびペア−3から産まれた仔魚はそれぞれ別々に収容した。飼育海水は、(a)通常海水、(b)銅濃度が0.07ミリグラム/リットルの海水、(c)銅濃度が0.09ミリグラム/リットルの海水、(d)銅濃度が0.12ミリグラム/リットルの海水、(e)銅濃度が0.16ミリグラム/リットルの海水、(f)銅濃度が0.21ミリグラム/リットルの海水、の6種類とし、同じ飼育海水あたり4グループ飼育した。上記(b)〜(f)の飼育海水は、硫酸銅5水和物を銅濃度が2グラム/リットルになるよう純水に溶解した後に、上記の銅濃度となるよう海水に添加した。   72 plastic mugs containing 500 ml of breeding seawater were prepared, and 10 larvae immediately after hatching of clown fish were housed in each mug. In addition, when accommodating, the larvae born from Pair-1, Pair-2 and Pair-3 were accommodated separately. The breeding seawater is (a) normal seawater, (b) seawater with a copper concentration of 0.07 milligram / liter, (c) seawater with a copper concentration of 0.09 milligram / liter, and (d) a copper concentration of 0.12 milligram. Four groups were bred for the same breeding seawater: (e) seawater with a copper concentration of 0.16 milligram / liter, and (f) seawater with a copper concentration of 0.21 milligram / liter. The breeding seawaters (b) to (f) above were dissolved in pure water so that the copper sulfate pentahydrate had a copper concentration of 2 g / liter, and then added to the seawater so that the copper concentration would be the above.

試験海水は水温は26.5℃に維持し、24時間給気した。ブラインシュリンプ乾燥卵を海水に懸濁し、28℃に保温し、24時間後に孵化した幼生を、200μmおよび60μmのフィルタを用いて海水で卵殻の除去および洗浄を行った後に給餌した。給餌は毎日1回行い、給餌量は24時間後に摂餌しきれなかったブラインシュリンプ幼生が飼育海水1mlあたり1個体以上残るように調整した。24時間毎に新たな飼育海水に仔魚を移し、摂餌しきれなかった古いブラインシュリンプを飼育海水から取り除いた。   The test seawater was maintained at 26.5 ° C. and supplied for 24 hours. Brine shrimp dried eggs were suspended in seawater, incubated at 28 ° C., and larvae hatched after 24 hours were fed after removing and washing eggshells with seawater using 200 μm and 60 μm filters. Feeding was performed once a day, and the feed amount was adjusted so that one or more of the brine shrimp larvae that could not be fed after 24 hours remained per 1 ml of the breeding seawater. Every 24 hours, larvae were transferred to fresh breeding seawater, and old brine shrimp that could not be fed were removed from the breeding seawater.

上記条件で14日間の飼育を行い、上記6種類の飼育海水について14日後の生残率を比較した。図3に比較結果を示す。図3の棒グラフの横軸は試験海水の銅濃度を示しており、左から(a)通常海水、すなわち銅濃度が0ミリグラム/リットル(b)0.07ミリグラム/リットル、(c)0.09ミリグラム/リットル、(d)0.12ミリグラム/リットル、(e)0.16ミリグラム/リットル、(f)0.21ミリグラム/リットルである。縦軸は14日後の生残率を示している。尚、該生残率は同じ飼育海水を用いた4つのジョッキの平均値をとったものである。図3下の3ペア計はペア−1、ペア−2、ペア−3のデータを合計した結果である。   Breeding was carried out for 14 days under the above conditions, and the survival rates after 14 days were compared for the above six kinds of breeding seawater. FIG. 3 shows the comparison results. The horizontal axis of the bar graph in FIG. 3 shows the copper concentration of the test seawater. From the left, (a) normal seawater, that is, the copper concentration is 0 mg / liter (b) 0.07 mg / liter, (c) 0.09. Milligram / liter, (d) 0.12 milligram / liter, (e) 0.16 milligram / liter, and (f) 0.21 milligram / liter. The vertical axis shows the survival rate after 14 days. The survival rate is an average value of four mugs using the same breeding seawater. The three-pair total at the bottom of FIG. 3 is the result of summing up the data of Pair-1, Pair-2, and Pair-3.

図3に示される結果から、銅濃度が0.07〜0.21ミリグラム/リットルでは銅を付加していない海水中で飼育した場合と比べると、いずれも生残率は向上した。銅濃度が0.09〜0.16ミリグラム/リットルではさらに生残率が向上し、銅の最適濃度は0.09〜0.16ミリグラム/リットルの範囲内にあり、この場合には70%前後の生残率が達成されることが確認された。   From the results shown in FIG. 3, the survival rate was improved in all cases when compared with the case where the copper concentration was 0.07 to 0.21 mg / liter compared to the case of breeding in seawater to which copper was not added. When the copper concentration is 0.09 to 0.16 milligram / liter, the survival rate is further improved, and the optimum copper concentration is in the range of 0.09 to 0.16 milligram / liter, in this case around 70% It was confirmed that the survival rate was achieved.

次に、銅の添加開始時期および添加期間が生残率に与える影響を調査した。試験海水中の銅濃度はすべて0.16ミリグラム/リットルとし、孵化から12時間経過後に(a)1日間(24時間)、(b)2日間(48時間)、(c)3日間(72時間)、(d)4日間(96時間)、(e)5日間(120時間)、前記銅濃度を維持するように銅を添加した。また、銅の添加開始時期を孵化から12時間経過後さらに(f)4日経過後(孵化から108時間経過後)から、(g)3日経過後(孵化から84時間経過後)から、(h)2日経過後(孵化から60時間経過後)から、(i)1日経過後(孵化から36時間経過後)から、とし、14日後まで前記同濃度を維持するように銅を添加した。さらに、孵化から12時間経過後さらに(j)0日後から2日間(孵化から12時間経過後、48時間)、(k)1日後から2日間(孵化から36時間経過後、48時間)、(l)2日後から2日間(孵化から60時間経過後、48時間)、(m)3日後から2日間(孵化から84時間経過後、48時間)、前記銅濃度を維持するように銅を添加した。尚、対照区として(n)全期間銅無添加区、(o)全期間銅添加区についても調査した。
孵化から12時間経過後に銅を添加した理由は、孵化が起こる時間が夜間の消灯後であり、仔魚の採取時に親魚に刺激を与える可能性があったからである。
Next, the influence of the copper addition start time and the addition period on the survival rate was investigated. The copper concentration in the test seawater was 0.16 mg / liter, and after 12 hours from hatching, (a) 1 day (24 hours), (b) 2 days (48 hours), (c) 3 days (72 hours) ), (D) 4 days (96 hours), (e) 5 days (120 hours), copper was added to maintain the copper concentration. In addition, after 12 hours from the hatching, (f) after 4 days (after 108 hours), (g) after 3 days (after 84 hours), (h) After 2 days (60 hours after hatching), (i) after 1 day (36 hours after hatching), copper was added so as to maintain the same concentration until 14 days later. Furthermore, 12 hours after hatching, (j) 2 days after hatching (48 hours after hatching, 48 hours), (k) 2 days after hatching (36 hours after hatching, 48 hours), ( l) 2 days after 2 days (60 hours after hatching, 48 hours), (m) 2 days after 3 days (84 hours after hatching, 48 hours), adding copper to maintain the copper concentration did. In addition, as a control group, (n) all-period copper addition group and (o) all-period copper addition group were also investigated.
The reason why copper was added 12 hours after hatching was that hatching occurred after the lights were turned off at night, and there was a possibility of stimulating the parent fish when collecting the larvae.

図4に示した調査結果においては、2日間(48時間)銅を添加して前記濃度を維持することで、70±22%の生残率が達成された。また、3日間(72時間)、4日間(96時間)、5日間(120時間)ではそれぞれ68±10%、65±13%、75±19%であり、2日間(48時間)の場合の生残率と比較しても有意差は認められなかった。さらに、対照区である全期間銅添加区の生残率も76±10%であり2日間(48時間)の場合の生残率と比較しても有意な差は無い。従って、少なくとも48時間前記濃度を維持すれば生残率が向上されることが確認された。ただし、銅の添加期間が1日(24時間)の場合は生残率の向上が僅かにしか見られないことから、銅の添加期間が24〜47時間だと本発明の効果が薄い可能性がある。よって、より確実に生残率の向上を図るためには、前記濃度を48〜72時間維持しておくのがよいと考えられる。   In the investigation results shown in FIG. 4, a survival rate of 70 ± 22% was achieved by adding copper for 2 days (48 hours) to maintain the above concentration. In 3 days (72 hours), 4 days (96 hours), and 5 days (120 hours), 68 ± 10%, 65 ± 13%, and 75 ± 19%, respectively, and in the case of 2 days (48 hours) There was no significant difference compared with the survival rate. Furthermore, the survival rate of the copper addition group for all periods as the control group is 76 ± 10%, which is not significantly different from the survival rate in the case of 2 days (48 hours). Therefore, it was confirmed that the survival rate was improved if the concentration was maintained for at least 48 hours. However, when the copper addition period is one day (24 hours), only a slight improvement in the survival rate is seen. Therefore, if the copper addition period is 24 to 47 hours, the effect of the present invention may be weak. There is. Therefore, in order to improve the survival rate more reliably, it is considered that the concentration should be maintained for 48 to 72 hours.

銅の添加開始時期については、孵化から12時間経過後さらに1日経過後(孵化から36時間経過後)では生残率が83±12%となり、生残率の飛躍的な向上が見られたが、孵化から12時間経過後さらに2日経過(孵化から60時間経過)した場合には、生残率の飛躍的向上は見られなかった。よって、銅の添加開始時期は孵化から12時間経過後さらに1日経過するまでに、すなわち、孵化から36時間以内が良いということが確認された。尚、カクレクマノミの孵化は夜間の消灯後に起こるが、本実験結果から、孵化直後である夜間の消灯後に銅を添加しなくても、孵化から36時間以内に銅を添加すれば生残率向上の効果は得られるので、夜間の消灯後に銅を添加するといった手間がかからない。   Regarding the start of copper addition, after 12 hours from hatching and after 1 day (36 hours after hatching), the survival rate was 83 ± 12%, and the survival rate was dramatically improved. When 12 hours passed after hatching and 2 days passed (60 hours passed after hatching), the survival rate was not dramatically improved. Therefore, it was confirmed that the addition start time of copper is good within 12 hours from the hatching and until one day has passed, that is, within 36 hours from the hatching. In addition, although the clown fish hatch after nighttime extinction, even if copper is not added after nighttime extinction immediately after hatching, adding copper within 36 hours after hatching improves the survival rate. Since the effect is obtained, there is no need to add copper after turning off at night.

孵化から12時間経過後さらに0日後から2日間(孵化から12時間経過後、48時間)、1日後から2日間(孵化から36時間経過後、48時間)では生残率がそれぞれ75±19%、73±13%となり、生残率の飛躍的な向上が見られたが、孵化から12時間経過後さらに2日経過さらに2日後から2日間(孵化から60時間経過後、48時間)、3日経過後から2日間(孵化から84時間経過後、48時間)では、生残率の飛躍的向上は見られなかった。この結果からも、銅の添加開始時期は孵化から36時間以内が良いということが確認された。   The survival rate is 75 ± 19% for 12 days after hatching and for 2 days after 0 days (12 hours after hatching, 48 hours) and for 1 day after 2 days (36 hours after hatching, 48 hours) 73 ± 13%, a dramatic improvement in the survival rate was observed, but 12 hours after hatching, 2 days later, 2 days later, 2 days (after 60 hours, 48 hours after hatching), 3 In 2 days after the passage of the day (after 48 hours from hatching, 48 hours), the survival rate was not dramatically improved. Also from this result, it was confirmed that the addition start time of copper should be within 36 hours from hatching.

実施例2の調査終了後に、生残したカクレクマノミの仔魚の体重を調査した。調査結果を表1に示す。表1中において、体重は平均値±標準偏差で示す。実験したどの同濃度においても、体重に有意差は無かったことから、銅は少なくとも孵化から14日後までは、カクレクマノミの仔魚の成長には影響しないことが確認された。   After completion of the investigation in Example 2, the weight of the surviving clownfish larvae was examined. The survey results are shown in Table 1. In Table 1, the body weight is shown as an average value ± standard deviation. There was no significant difference in body weight at any concentration tested, confirming that copper did not affect the growth of clownfish larvae at least 14 days after hatching.

比較例1Comparative Example 1

500mlの飼育海水を入れたプラスチック製のジョッキを24個用意し、クマノミの孵化直後の仔魚を各ジョッキに10尾ずつ収容した。飼育海水は、(a)通常海水、(b)銅濃度が0.04ミリグラム/リットルの海水、(c)銅濃度が0.08ミリグラム/リットルの海水、(d)銅濃度が0.16ミリグラム/リットルの海水、(e)銅濃度が0.32ミリグラム/リットルの海水、(f)銅濃度が0.64ミリグラム/リットルの海水、の6種類とし、同じ飼育海水あたり4グループ飼育した。上記(b)〜(f)の飼育海水は、硫酸銅5水和物を銅濃度が2グラム/リットルになるよう純水に溶解した後に、上記の銅濃度となるよう海水に添加した。   Twenty-four plastic mugs containing 500 ml of breeding seawater were prepared, and 10 larvae immediately after hatching of anemone fish were housed in each mug. The breeding seawater is (a) normal seawater, (b) seawater with a copper concentration of 0.04 milligram / liter, (c) seawater with a copper concentration of 0.08 milligram / liter, and (d) a copper concentration of 0.16 milligram. 4 groups of the same breeding seawater were prepared, including 6 types of seawater / liter of seawater, (e) seawater having a copper concentration of 0.32 milligram / liter, and (f) seawater having a copper concentration of 0.64 milligram / liter. The breeding seawaters (b) to (f) above were dissolved in pure water so that the copper sulfate pentahydrate had a copper concentration of 2 g / liter, and then added to the seawater so that the copper concentration would be the above.

水温は26℃に維持し、給気は行わなかった。ブラインシュリンプ乾燥卵を海水に懸濁し、28℃に保温し、24時間後に孵化した幼生を、200μmおよび60μmのフィルタを用いて海水で卵殻の除去および洗浄を行った後に給餌した。給餌は毎日1回行い、給餌量は24時間後に摂餌しきれなかったブラインシュリンプ幼生が飼育海水1mlあたり1個体以上残るように調整した。24時間毎に新たな飼育海水に仔魚を移し、摂餌しきれなかった古いブラインシュリンプを飼育海水から取り除いた。   The water temperature was maintained at 26 ° C. and no air was supplied. Brine shrimp dried eggs were suspended in seawater, incubated at 28 ° C., and larvae hatched after 24 hours were fed after removing and washing eggshells with seawater using 200 μm and 60 μm filters. Feeding was performed once a day, and the feed amount was adjusted so that one or more of the brine shrimp larvae that could not be fed after 24 hours remained per 1 ml of the breeding seawater. Every 24 hours, larvae were transferred to fresh breeding seawater, and old brine shrimp that could not be fed were removed from the breeding seawater.

上記条件で14日間の飼育を行い、上記6種類の飼育海水について生残率を比較した。図5に比較結果を示す。図5中の◆のプロットが通常海水での孵化仔魚の生残率の経時変化を示し、■のプロットが銅濃度が0.04ミリグラム/リットルの飼育海水での孵化仔魚の生残率の経時変化を示し、●のプロットが銅濃度が0.08ミリグラム/リットルの飼育海水での孵化仔魚の生残率の経時変化を示し、◇のプロットが銅濃度が0.16ミリグラム/リットルの飼育海水での孵化仔魚の生残率の経時変化を示し、□のプロットが銅濃度が0.32ミリグラム/リットルの飼育海水での孵化仔魚の生残率の経時変化を示し、○のプロットが銅濃度が0.64ミリグラム/リットルの飼育海水での孵化仔魚の生残率の経時変化を示す。尚、図5中の各飼育日数の生残率は、同じ飼育海水を用いた4グループの平均値をとった。   Breeding was carried out for 14 days under the above conditions, and the survival rates were compared for the above six kinds of breeding seawater. FIG. 5 shows the comparison results. In FIG. 5, the ♦ plot shows the time-dependent change in the survival rate of hatching larvae in normal seawater, and the ■ plot in FIG. 5 shows the time course of the survival rate of hatching larvae in the breeding seawater with a copper concentration of 0.04 mg / liter. The plot of ● shows the time course of the survival rate of hatching larvae in the breeding seawater with a copper concentration of 0.08 mg / liter, and the plot of ◇ shows the breeding seawater with a copper concentration of 0.16 mg / liter Shows the time course of the survival rate of hatching larvae at □, □ plot shows the time course of the survival rate of hatching larvae in the breeding seawater with a copper concentration of 0.32 mg / liter, and ○ plot shows the copper concentration Shows the time course of the survival rate of hatched larvae in the breeding seawater at 0.64 milligram / liter. In addition, the survival rate of each breeding day in FIG. 5 took the average value of four groups using the same breeding seawater.

図5に示される結果から、銅濃度が0.64ミリグラム/リットルでは、カクレクマノミの場合と同様に、生残率は通常海水よりも低くなり、他の濃度においても、カクレクマノミの場合ほど顕著な生残率の向上は見られなかった。   From the results shown in FIG. 5, when the copper concentration is 0.64 milligram / liter, the survival rate is usually lower than that of seawater as in the case of clownfish, and at other concentrations, the survival rate is more pronounced as in the case of clownfish. There was no improvement in the remaining rate.

次に、通常海水と、銅濃度が0.08ミリグラム/リットルの海水との2種の飼育海水を用意し、各飼育海水にクマノミの孵化直後の仔魚を40尾ずつ収容し、上記と同条件で14日間の飼育を行った。そして、同条件で孵化7回分の飼育実験を繰り返した。2種類の飼育海水について生残率を比較した結果を表2に示す。表2は、通常海水および銅濃度が0.08ミリグラム/リットルの海水での飼育開始から14日後の各生残率を、7回分の飼育実験の平均値±標準偏差で示す。   Next, prepare two kinds of breeding seawater, normal seawater and seawater with a copper concentration of 0.08 milligram / liter, and contain 40 larvae immediately after hatching of anemone fish in each breeding seawater, under the same conditions as above. And raised for 14 days. And the breeding experiment for 7 times of hatching was repeated on the same conditions. Table 2 shows the results of comparing the survival rates of the two types of breeding seawater. Table 2 shows each survival rate 14 days after the start of breeding in normal seawater and seawater having a copper concentration of 0.08 milligram / liter as an average value ± standard deviation of seven breeding experiments.

通常海水での生残率は15±11%であったのに対し、銅濃度が0.08ミリグラム/リットルの海水での生残率は28±20%であり、僅かな効果しか認められなかった。従って、クマノミにおいては、飼育海水中に銅を添加しても通常海水と比較しても生残率があまり向上せず、本発明の飼育方法は、カクレクマノミに対して特に効果が高いことが確認された。   The survival rate in normal seawater was 15 ± 11%, while the survival rate in seawater with a copper concentration of 0.08 milligram / liter was 28 ± 20%, showing only a slight effect. It was. Therefore, in the anemone fish, the survival rate is not so much improved even when copper is added to the breeding seawater, and the breeding method of the present invention is particularly effective against the clownfish. It was done.

以上の結果から、本発明の飼育方法は、初期生活段階のカクレクマノミの飼育において非常に効果的に作用し、海水中の銅濃度が適正銅濃度となるように飼育海水に銅を添加することで初期生活段階における生残率を大きく向上できることがわかった。   From the above results, the breeding method of the present invention works very effectively in the breeding of clownfish in the early life stage, and by adding copper to the breeding seawater so that the copper concentration in the seawater becomes an appropriate copper concentration. It was found that the survival rate in the initial life stage can be greatly improved.

本発明によれば、カクレクマノミの初期生活段階において高い生残率が得られ、カクレクマノミの水産増養殖における生産効率が向上する。   ADVANTAGE OF THE INVENTION According to this invention, a high survival rate is obtained in the initial life stage of a clown fish, and the production efficiency in the aquaculture of clown fish improves.

尚、上述の実施形態は本発明の好適な実施の一例であり、これに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, and is not limited thereto. Various modifications can be made without departing from the scope of the present invention.

異なる量の銅を添加した飼育海水中でのカクレクマノミの初期生活段階の生残率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the survival rate of the initial life stage of the clown fish in the breeding seawater which added different quantity of copper. 通常海水と銅を添加した海水をそれぞれ飼育海水とした場合のカクレクマノミの初期生活段階の生残率を、平均値±標準偏差で示すグラフである。It is a graph which shows the survival rate of the initial life stage of the clownfish when the seawater which added normal seawater and copper each was breeding seawater with an average value +/- standard deviation. 異なる量の銅を添加した飼育海水中でのカクレクマノミの初期生活段階における14日後の生残率を示すグラフである。Tukeyの多重比較により対照区との有意差を判定し、*、**、***、はそれぞれp<0.05、p<0.01、p<0.001の水準で有意差があると判定した場合に付した。It is a graph which shows the survival rate after 14 days in the initial life stage of the clown fish in the breeding seawater which added different quantity of copper. A significant difference from the control group was determined by Tukey's multiple comparison. *, **, and *** are significantly different at the levels of p <0.05, p <0.01, and p <0.001, respectively. It was attached when it was judged. 銅の添加開始時期および添加期間が生残率に与える影響を表す図である。It is a figure showing the influence which the addition start time and addition period of copper have on the survival rate. 異なる量の銅を添加した飼育海水中でのクマノミの初期生活段階の生残率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the survival rate of the initial life stage of the anemone fish in the breeding seawater which added different quantity of copper.

Claims (2)

少なくとも孵化直後から成体とほぼ同等の形態に成長するまでの期間であるカクレクマノミの初期生活段階において、カクレクマノミを飼育する飼育海水の銅濃度を0.04〜0.32ミリグラム/リットルとし、かつ孵化から36時間以内に飼育海水中の銅濃度を前記濃度とし、48時間〜72時間前記濃度を維持する初期生活段階におけるカクレクマノミの飼育方法。 In clownfish early life stages of a period from immediately after the at least hatching until grown substantially equal form to adult, a copper concentration of breeding sea water for breeding clownfish and 0.04 to 0.32 mg / liter, and hatching and the concentration of the copper concentration of the breeding seawater within 36 hours from clownfish breeding methods in early life stage to maintain 4 8 hours to 72 hours the concentration. 前記銅濃度を0.07〜0.21ミリグラム/リットルとする請求項1に記載のカクレクマノミの飼育方法。   The method of raising clown fish according to claim 1, wherein the copper concentration is 0.07 to 0.21 milligram / liter.
JP2005099026A 2005-03-30 2005-03-30 Rearing method of clownfish in early life stage Expired - Fee Related JP4829516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005099026A JP4829516B2 (en) 2005-03-30 2005-03-30 Rearing method of clownfish in early life stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005099026A JP4829516B2 (en) 2005-03-30 2005-03-30 Rearing method of clownfish in early life stage

Publications (2)

Publication Number Publication Date
JP2006271321A JP2006271321A (en) 2006-10-12
JP4829516B2 true JP4829516B2 (en) 2011-12-07

Family

ID=37206667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005099026A Expired - Fee Related JP4829516B2 (en) 2005-03-30 2005-03-30 Rearing method of clownfish in early life stage

Country Status (1)

Country Link
JP (1) JP4829516B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237050A (en) * 2007-03-26 2008-10-09 Central Res Inst Of Electric Power Ind Method for creating body color-mutated aquatic organism
CN102499327B (en) * 2011-11-16 2013-04-24 中国科学院南海海洋研究所 Anemonefish puffed pellet feed and preparation method thereof
CN111587822A (en) * 2020-06-18 2020-08-28 宁波大学 Physical prevention and treatment device for cryptocaryon irritans and use method thereof
CN112970634B (en) * 2021-02-04 2022-12-23 青岛农业大学 Clown fish-vegetable symbiotic circulating water breeding method

Also Published As

Publication number Publication date
JP2006271321A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
Naas et al. Enhanced first feeding of halibut larvae (Hippoglossus hippoglossus L.) in green water
Eda et al. Factors affecting intensive larval rearing of striped mullet, Mugil cephalus
Roo et al. Effects of supplementation of decapod zoea to Artemia basal diet on fatty acid composition and digestive gland histology in common octopus (Octopus vulgaris) paralarvae
Engell-Sørensen et al. Rearing of flounder (Platichthys flesus) juveniles in semiextensive systems
Hitzfelder et al. The effect of rearing density on growth and survival of cobia, Rachycentron canadum, larvae in a closed recirculating aquaculture system
Burgess et al. Increasing survival and growth in larval leopard coral grouper (Plectropomus leopardus) using intensively cultured Parvocalanus crassirostris nauplii
CN100370896C (en) Artificial breeding method for semi-smooth tongue sole
Beaumont et al. Aspects of veliger larval growth and byssus drifting of the spat of Pecten maximus and Aequipecten (Chlamys) opercularis
Uriarte et al. Enteroctopus megalocyathus
JP4829516B2 (en) Rearing method of clownfish in early life stage
Ai‐Jun et al. Feeding rhythm and growth of the tongue sole, Cynoglossus semilaevis Günther, during its early life stages
Toledo et al. Studies on the use of copepods in the semi‐intensive seed production of grouper Epinephelus coioides
Aydın et al. Turbot and flounder aquaculture
Perry et al. Expansion of the Soft Crab Fishery in Mississippi Using Cultured Blue Crabs.
Agudelo et al. Advances on spontaneous captive breeding and culture conditions of Caribbean Sea cucumber Stichopus sp
Thuong et al. Rearing the spotted seahorse H ippocampus kuda by feeding live and frozen copepods collected from shrimp ponds
Kabir et al. High density rotifer culture as live food for larval rearing in carp hatcheries
Ali et al. Effect of high and low cost brood feeds on the hatching and survival rate of freshwater prawn, Macrobrachium rogenbergii larvae
EP3718399B1 (en) Method for cultivating paralarvae of the common octopus (octopus vulgaris)
JP5366348B2 (en) Breeding aquatic organisms using prey organisms with high DHA content
JP4734990B2 (en) Bivalve floating larva rearing method by adding bivalve mature egg grind
JP4222559B2 (en) Clownfish breeding method
Gopakumar et al. Controlled breeding and larval rearing techniques of marine ornamental fishes
CN115067241B (en) Efficient outdoor ecological pond artificial breeding method for silver drum fish
Hamel et al. Factors regulating the breeding and foraging activity of a tropical opisthobranch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees