JP4826872B2 - Corrosion evaluation equipment - Google Patents

Corrosion evaluation equipment Download PDF

Info

Publication number
JP4826872B2
JP4826872B2 JP2004155138A JP2004155138A JP4826872B2 JP 4826872 B2 JP4826872 B2 JP 4826872B2 JP 2004155138 A JP2004155138 A JP 2004155138A JP 2004155138 A JP2004155138 A JP 2004155138A JP 4826872 B2 JP4826872 B2 JP 4826872B2
Authority
JP
Japan
Prior art keywords
temperature
solution
liquid tank
corrosion evaluation
reference electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004155138A
Other languages
Japanese (ja)
Other versions
JP2005339902A (en
Inventor
慎 吉田
文武 菅内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004155138A priority Critical patent/JP4826872B2/en
Publication of JP2005339902A publication Critical patent/JP2005339902A/en
Application granted granted Critical
Publication of JP4826872B2 publication Critical patent/JP4826872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、塩橋の機能劣化を抑制すると共に、試料の使用温度と同じ状態で腐食評価をすることのできる腐食評価装置、詳細には、特に燃料電池用セパレータの耐食性の評価として用いられる電気化学的な腐食評価を、電池環境である高温で行える腐食評価装置に関する。 The present invention relates to a corrosion evaluation apparatus that can suppress the deterioration of the function of a salt bridge and can perform corrosion evaluation in the same state as the operating temperature of a sample, and more particularly, an electric power used as an evaluation of the corrosion resistance of a fuel cell separator. chemical corrosion evaluation relates to the corrosion evaluation equipment that enables a high temperature is a battery environment.

従来から、燃料電池用セパレータ等を試料(試験極)としてその腐食性等の性能を評価するための装置が利用されている。   2. Description of the Related Art Conventionally, an apparatus for evaluating performance such as corrosivity using a fuel cell separator or the like as a sample (test electrode) has been used.

例えば、特開2003−272649号公報では、燃料電池用セパレータの試作品について、電気化学的分極特性評価法による分極電流、発電試験時の電池起電力、及びセパレータ寿命を測定する装置が開示されている(特許文献1)。この装置は、セパレータ試作品の評価を行う際に、試作品と対極を酸性液内に配置し、その液槽と参照電極との間を塩橋で結ぶものである。   For example, Japanese Patent Application Laid-Open No. 2003-272649 discloses a device for measuring a polarization current by an electrochemical polarization characteristic evaluation method, a cell electromotive force during a power generation test, and a separator lifetime for a prototype of a fuel cell separator. (Patent Document 1). In this apparatus, when the separator prototype is evaluated, the prototype and the counter electrode are disposed in the acidic liquid, and the liquid tank and the reference electrode are connected by a salt bridge.

しかし、この装置では、セパレータの腐食評価のために液槽内を燃料電池作動中の温度と同程度の高温とすると参照電極との間に温度差があるため、塩橋(寒天)が溶解し、正確な腐食評価ができなくなるという問題がある。   However, in this device, if the temperature in the liquid tank is set to the same level as the temperature during fuel cell operation for the corrosion evaluation of the separator, there is a temperature difference between the reference electrode and the salt bridge (agar) dissolves. There is a problem that accurate corrosion evaluation cannot be performed.

燃料電池用メタルセパレータの耐食性の評価装置としては、3電極系を用いる電気化学的な腐食評価装置が用いられている。3電極系を用いる従来の腐食評価装置の例としては、図3に示す腐食評価装置30等が挙げられる。図3は、従来の腐食評価装置の概略構成図で、一般的な腐食評価装置の配置例を示すものである。   As a corrosion resistance evaluation apparatus for metal separators for fuel cells, an electrochemical corrosion evaluation apparatus using a three-electrode system is used. An example of a conventional corrosion evaluation apparatus that uses a three-electrode system is the corrosion evaluation apparatus 30 shown in FIG. FIG. 3 is a schematic configuration diagram of a conventional corrosion evaluation apparatus and shows an arrangement example of a general corrosion evaluation apparatus.

図3に示すように、腐食評価装置30は、試験極1及び対極2が入っている電解槽31と、参照電極3が入っている参照電極槽13と、該電解槽31及び該参照電極槽13を電気的に繋ぐ寒天からなる塩橋32と、試験極1、対極2及び参照電極3それぞれと配線で電気的に接続されている本体部15と、を備えた構造となっている。そして、電解槽31の周囲には、該電解槽31中の溶液を所望の温度に調節する温度調整水33が配置されている。   As shown in FIG. 3, the corrosion evaluation apparatus 30 includes an electrolytic cell 31 containing the test electrode 1 and the counter electrode 2, a reference electrode vessel 13 containing the reference electrode 3, and the electrolytic vessel 31 and the reference electrode vessel. 13 has a structure including a salt bridge 32 made of agar that electrically connects 13, and a main body 15 electrically connected to the test electrode 1, the counter electrode 2, and the reference electrode 3 by wiring. Around the electrolytic cell 31, temperature adjustment water 33 for adjusting the solution in the electrolytic cell 31 to a desired temperature is disposed.

しかし、図3に示す腐食評価装置30を使用して高温下で腐食評価を行うと、塩橋としての寒天が60℃程度で溶解してしまう。このため、試験極1の入っている電解槽31を燃料電池環境である60℃以上の高温にすると、寒天が溶け出し、電解槽31及び参照電極槽13それぞれの溶液が混合してしまい、正確な腐食の評価が行えなくなる。また、参照電極3として一般的に利用される銀−塩化銀電極では、参照電極槽13内の溶液は塩化カリウム(KCl)溶液であるため、電解槽31に塩化物イオンが混入してしまう。このことは、塩化物イオンの混入を避けたい腐食評価試験では重要な問題になる。
特開2003−272649号公報
However, when the corrosion evaluation is performed at a high temperature using the corrosion evaluation apparatus 30 shown in FIG. 3, the agar as the salt bridge is dissolved at about 60 ° C. For this reason, when the electrolytic cell 31 containing the test electrode 1 is heated to a high temperature of 60 ° C. or more, which is the fuel cell environment, the agar is melted and the solutions of the electrolytic cell 31 and the reference electrode cell 13 are mixed. Corrosion cannot be evaluated. Moreover, in the silver-silver chloride electrode generally used as the reference electrode 3, the solution in the reference electrode tank 13 is a potassium chloride (KCl) solution, so that chloride ions are mixed into the electrolytic tank 31. This is an important problem in corrosion evaluation tests where it is desirable to avoid mixing chloride ions.
JP 2003-272649 A

本発明が解決しようとする問題点は、前述した従来技術の問題である。
従って、本発明の目的は、塩橋の機能劣化を抑制すると共に、試料の使用温度と同じ状態で、正確な腐食評価を行うことのできる腐食評価装置を提供することにある。
The problem to be solved by the present invention is the problem of the prior art described above.
Accordingly, an object of the present invention is to provide a corrosion evaluation apparatus capable of suppressing the functional deterioration of a salt bridge and performing an accurate corrosion evaluation in the same state as the use temperature of a sample.

本発明者等は、鋭意研究したところ、腐食評価装置における試料(試験極)、塩橋(寒天)及び参照電極にはそれぞれ次に示す温度環境が望まれることの知見(第1の知見)を得た。
試料の温度環境 :温度が安定し、評価を行いたい温度にすること。
塩橋の温度環境 :温度が安定し、塩橋である寒天が溶け出さない温度にすること
(室温でよい)。
参照電極の温度環境:温度が安定し、室温が望ましい(参照電極は温度で特性が変わ
るため。また、動作保証が室温であるものが多い)。
As a result of diligent research, the present inventors have found that the following temperature environment is desired for the sample (test electrode), salt bridge (agar), and reference electrode in the corrosion evaluation apparatus (first knowledge). Obtained.
Temperature environment of the sample: The temperature should be stable and the temperature to be evaluated.
The temperature environment of the salt bridge: The temperature should be stable and the salt bridge agar should not melt.
(It may be room temperature).
Temperature environment of the reference electrode: The temperature is stable and room temperature is desirable (the characteristics of the reference electrode change with temperature)
Because. In many cases, the operation is guaranteed at room temperature.

そして、本発明者等は、前記第1の知見(腐食評価装置における前記各部の好適温度環境)に基づき、更に研究した結果、試料及び対極を溶液中に有する第1液槽と、参照電極を有する第2液槽とを含み、該第1液槽と該第2液槽とが電気的に接続される腐食評価装置において、試験極等の試料の温度環境と、参照電極の温度環境とを別々に制御し、またこのとき参照電極を室温程度の温度(同じ温度)に制御する特定の温度調整手段を備えた腐食評価装置が、前記目的を達成し得ることの知見(第2の知見)を得た。 As a result of further research based on the first knowledge (preferred temperature environment of each part in the corrosion evaluation apparatus), the present inventors have found that the first liquid tank having the sample and the counter electrode in the solution, and the reference electrode A corrosion evaluation apparatus in which the first liquid tank and the second liquid tank are electrically connected, and a temperature environment of a sample such as a test electrode and a temperature environment of a reference electrode Knowledge that the corrosion evaluation apparatus provided with specific temperature adjusting means that controls separately and controls the reference electrode to a temperature of about room temperature (the same temperature) at this time can achieve the object (second knowledge) Got.

本発明は、かかる第2の知見に基づきなされたもので、試料としての燃料電池用セパレータ及び対極を溶液中に有する第1液槽と、参照電極槽を有する第2液槽と、前記第1液槽と前記第2液槽とを電気的に接続する液橋と、前記参照電極槽と前記第2液槽とを電気的に接続する寒天からなる塩橋とを含み、前記第1液槽の溶液の一部を取り出し、取り出した一部の溶液を前記第2液槽の溶液として用いる腐食評価装置であり、前記第1液槽の溶液の温度と前記第2液槽の溶液の温度とをそれぞれ異なる温度に調整する温度調整手段を備え、前記温度調節手段は、前記第1液槽の溶液の温度を燃料電池の作動温度の範囲内に調節し、前記第2液槽の溶液の温度を前記塩橋が溶出しない温度に調節することを特徴とする腐食評価装置を提供するものである。 The present invention has been made on the basis of the second finding, and includes a first liquid tank having a fuel cell separator and a counter electrode as a sample in a solution, a second liquid tank having a reference electrode tank, and the first liquid tank. A liquid bridge that electrically connects the liquid tank and the second liquid tank; and a salt bridge made of agar that electrically connects the reference electrode tank and the second liquid tank, the first liquid tank A corrosion evaluation apparatus that takes out a part of the solution and uses the part of the taken-out solution as the solution in the second liquid tank, and the temperature of the solution in the first liquid tank and the temperature of the solution in the second liquid tank The temperature adjusting means adjusts the temperature of the solution in the first liquid tank within the operating temperature range of the fuel cell, and adjusts the temperature of the solution in the second liquid tank. to provide corrosion evaluation device, characterized in that the salt bridge is adjusted to a temperature that does not elute the Than is.

本発明は、かかる構成からなり、第1液槽の溶液の一部を温度調整手段で第2液槽の使用温度領域に調整して接触させるので、参照電極との電気的接続部の機能劣化を抑制すると共に、試料(試験極等)の使用温度と同じ状態で腐食評価をすることができる。
また、試料が如何なる温度環境の腐食評価試験を行っても、第2液槽は常に室温程度の温度環境下で安定し、正確な腐食評価が可能となる。
The present invention has such a configuration, and a part of the solution in the first liquid tank is adjusted and brought into contact with the use temperature region of the second liquid tank by the temperature adjusting means, so that the function deterioration of the electrical connection portion with the reference electrode is brought about. And corrosion evaluation can be performed in the same state as the use temperature of the sample (test electrode, etc.).
Moreover, even if the sample is subjected to a corrosion evaluation test in any temperature environment, the second liquid tank is always stable in a temperature environment of about room temperature, and an accurate corrosion evaluation is possible.

また、この腐食評価装置は、第1液槽の溶液の一部を温度調整手段で塩橋の使用温度領域に調整して接触させることが可能であるから、塩橋の機能劣化を抑制すると共に、試料(試験極等)の使用温度と同じ状態で腐食評価をすることができる。
また、試料が如何なる温度環境の腐食評価試験を行っても、塩橋部、参照電極は常に室温程度の温度環境下で安定し、正確な腐食評価が可能となる。
Further, the corrosion evaluation device this is because it is possible to contact by adjusting the operating temperature range of the salt bridge with temperature adjustment means a portion of the solution in the first tank, inhibiting the function deterioration of the salt bridge At the same time, the corrosion evaluation can be performed in the same state as the use temperature of the sample (test electrode or the like).
In addition, no matter what temperature environment corrosion evaluation test is performed on the sample, the salt bridge portion and the reference electrode are always stable in a temperature environment of about room temperature, and accurate corrosion evaluation becomes possible.

の腐食評価装置は、塩橋部である寒天を冷却する構造を有するものであるため、高温での腐食評価においても寒天の溶出を防ぐことができる。 Corrosion evaluation device This is because those having a structure for cooling the agar is a salt bridge portion, it is possible to prevent elution of the agar even in the corrosion evaluation at high temperature.

この腐食評価装置は、前記第1液槽の溶液の温度燃料電池の作動温度の範囲内にあるから、試料として燃料電池セパレータの正確な腐食評価を行うことができる。 The corrosion evaluation device, the temperature of the solution of the first liquid tank from in the range of operating temperature of the fuel cell, the exact corrosion rating of the fuel cell separator as a sample can be performed.

記第1液槽の溶液の温度が60℃以上であれば、燃料電池用セパレータの正確な腐食評価を行うことができる。 Before Symbol first tank of the solution temperature is 60 ° C. or higher der lever of the exact corrosion evaluation of the fuel cell separator can be performed.

記燃料電池用セパレータが、金属製の材料をセパレータ基材としたものである場合には、特に燃料電池用メタルセパレータの耐食性等の腐食評価を正確に行うことができ、優れた燃料電池用メタルセパレータの選定が可能となる。 Before SL fuel cell separator, when the metallic material is obtained by the separator substrate may be particularly accurately corrosion evaluation of corrosion resistance and the like of the metal separator for a fuel cell, a fuel cell excellent A metal separator can be selected.

本発明によれば、塩橋の機能劣化を抑制すると共に、試料の使用温度と同じ状態で、正確な腐食評価を行うことのできる腐食評価装置が提供される ADVANTAGE OF THE INVENTION According to this invention, while suppressing the functional deterioration of a salt bridge, the corrosion evaluation apparatus which can perform exact corrosion evaluation in the same state as the use temperature of a sample is provided .

以下に、本発明の実施例を挙げて、本発明をより具体的に説明するが、本発明は、斯かる実施例により何等制限されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples of the present invention. However, the present invention is not limited to the examples.

実施例1に係る腐食評価装置は、図1に示す構造を有するものである。
図1に示すように、本実施例1に係る腐食評価装置10は、試験極1及び対極2が溶液中に入っている第1電解槽11と、参照電極3が参照電極槽13を介して溶液中に入っている第2電解槽12と、第2電解槽12及び参照電極槽13を電気的に結ぶ寒天からなる塩橋4と、第1電解槽11及び該第2電極槽12を電気的に結ぶ液橋14と、試験極1、対極2及び参照電極3それぞれと配線で電気的に接続されている本体部15と、を備えた構造となっている。
The corrosion evaluation apparatus according to Example 1 has the structure shown in FIG.
As shown in FIG. 1, the corrosion evaluation apparatus 10 according to the first embodiment includes a first electrolytic cell 11 in which a test electrode 1 and a counter electrode 2 are in a solution, and a reference electrode 3 through a reference electrode cell 13. The second electrolytic cell 12 contained in the solution, the salt bridge 4 made of agar electrically connecting the second electrolytic cell 12 and the reference electrode cell 13, and the first electrolytic cell 11 and the second electrode cell 12 are electrically connected. The liquid bridge 14 is connected to the test electrode 1, the counter electrode 2, and the reference electrode 3. The main body 15 is electrically connected to each other by wiring.

第1電解槽11の周囲には、該第1電解槽11中の溶液を所望の温度に調節する温度調整水21が配置されている。また、第2電解槽12の周囲には、該第2電解槽12中の塩橋4を所望の温度に調節する温度調整水22が配置されている。また、第1電解槽11と第2電解槽12との間には、液橋14が設けられている。試験極1としては、燃料電池用メタルセパレータの試料が使用されている。   Around the first electrolytic cell 11, temperature adjusting water 21 for adjusting the solution in the first electrolytic cell 11 to a desired temperature is arranged. Further, around the second electrolytic cell 12, temperature adjusting water 22 for adjusting the salt bridge 4 in the second electrolytic cell 12 to a desired temperature is disposed. A liquid bridge 14 is provided between the first electrolytic cell 11 and the second electrolytic cell 12. As the test electrode 1, a sample of a fuel cell metal separator is used.

そして、第2電解槽12には、第1電解槽11の溶液から一部を取り出したものが溶液として用いられる。この第2電解槽12の溶液は、温度調整水22により第1電解槽11の溶液の温度と異なる温度に調節され、塩橋4に接触している。   And what extracted a part from the solution of the 1st electrolytic vessel 11 is used for the 2nd electrolytic vessel 12 as a solution. The solution of the second electrolytic cell 12 is adjusted to a temperature different from the temperature of the solution of the first electrolytic cell 11 by the temperature adjustment water 22 and is in contact with the salt bridge 4.

ここで、塩橋4として使用される寒天について詳述する。寒天は、ガラクタンの慣用名であり、ゲル化剤として使用されるものである。寒天の特性は、加熱するとゾルになり冷却するとゲルになることである。塩橋4としての寒天は、第1電解槽11と第2電解槽12とを電気的につなぐため、塩化カリウム、硝酸カリウム、硫酸カリウム等の水溶液を寒天で固めた形態として使用される。   Here, the agar used as the salt bridge 4 will be described in detail. Agar is a common name for galactan and is used as a gelling agent. A characteristic of agar is that it becomes a sol when heated and a gel when cooled. The agar as the salt bridge 4 is used as a form in which an aqueous solution of potassium chloride, potassium nitrate, potassium sulfate or the like is solidified with agar in order to electrically connect the first electrolytic cell 11 and the second electrolytic cell 12.

第1電解槽11の溶液の温度は、温度調整水21により、80℃に設定されている。この第1電解槽11の溶液の温度は、特に制限されるものではないが、燃料電池の作動温度の範囲内(例えば、60℃以上、好ましくは60℃〜90℃)にあることが、評価性向上の点から望まれる。   The temperature of the solution in the first electrolytic cell 11 is set to 80 ° C. by the temperature adjustment water 21. The temperature of the solution in the first electrolytic cell 11 is not particularly limited, but is evaluated to be within the operating temperature range of the fuel cell (for example, 60 ° C. or higher, preferably 60 ° C. to 90 ° C.). It is desirable from the viewpoint of improving the performance.

一方、第2電解槽12の温度は、温度調整水22により、25℃に設定されている。この第2電解槽12の溶液の温度は、第1電解槽11の溶液の温度と異なる限り特に制限されるものではないが、冷却水等の冷媒で冷却した環境下、特に25℃以下であることが望まれる。   On the other hand, the temperature of the second electrolytic cell 12 is set to 25 ° C. by the temperature adjustment water 22. The temperature of the solution in the second electrolytic cell 12 is not particularly limited as long as it is different from the temperature of the solution in the first electrolytic cell 11, but is particularly 25 ° C. or less in an environment cooled with a coolant such as cooling water. It is desirable.

このように、本実施例1に係る腐食評価装置10は、電解槽が、試験極1の入った第1電解槽11と塩橋4(寒天)の入った第2電解槽12との2つに分離され、試験極1の入った第1電解槽11が温度調整水21で温度調節され、また塩橋4の入った第2電解槽12が温度調整水22で温度調節される。これにより、試験極1は高温環境に、塩橋4(寒天)は低温環境下(好ましくは25℃以下)に置くことが可能になり、高温環境の腐食評価試験においても寒天が冷却されるため溶出せず、正確な腐食の測定が可能になる。   Thus, in the corrosion evaluation apparatus 10 according to the first embodiment, the electrolytic cell has two electrolytic cells, the first electrolytic cell 11 containing the test electrode 1 and the second electrolytic cell 12 containing the salt bridge 4 (agar). The temperature of the first electrolytic cell 11 containing the test electrode 1 is adjusted with the temperature adjusting water 21, and the temperature of the second electrolytic cell 12 containing the salt bridge 4 is adjusted with the temperature adjusting water 22. As a result, the test electrode 1 can be placed in a high temperature environment and the salt bridge 4 (agar) can be placed in a low temperature environment (preferably 25 ° C. or less), and the agar is cooled even in a corrosion evaluation test in a high temperature environment. It does not elute and enables accurate corrosion measurement.

実施例2に係る腐食評価装置は、図2に示す構造を有するものである。尚、図2において、図1で使用される部材と同一の部材には同一の符号を付している。   The corrosion evaluation apparatus according to Example 2 has the structure shown in FIG. In FIG. 2, the same members as those used in FIG. 1 are denoted by the same reference numerals.

図2に示すように、本実施例2に係る腐食評価装置20は、塩橋4としての寒天とともに、参照電極3が入った参照電極槽13が第2電解槽12に浸かっている以外については、前述した実施例1に係る腐食評価装置10と同様の構成を有している。従って、本実施例2において特に詳述しない点については、実施例1で詳述したことが適宜適用される。   As shown in FIG. 2, the corrosion evaluation apparatus 20 according to the second embodiment is the same as the salt bridge 4 except that the reference electrode tank 13 containing the reference electrode 3 is immersed in the second electrolytic tank 12 together with the agar. The structure is the same as that of the corrosion evaluation apparatus 10 according to Example 1 described above. Therefore, what is not described in detail in the second embodiment is applied as appropriate in the first embodiment.

即ち、本実施例2に係る腐食評価装置20は、試験極1及び対極2が溶液中に入っている第1電解槽11と、参照電極3が参照電極槽13を介して溶液中に入っている第2電解槽12と、第2電解槽12及び参照電極槽13を電気的に結ぶ寒天からなる塩橋4と、第1電解槽11及び第2電極槽12を電気的に結ぶ液橋14と、試験極1、対極2及び参照電極3それぞれと配線で電気的に接続されている本体部15と、を備えた構造となっている。   That is, in the corrosion evaluation apparatus 20 according to the second embodiment, the first electrolytic cell 11 in which the test electrode 1 and the counter electrode 2 are in solution, and the reference electrode 3 is in solution through the reference electrode vessel 13. The second electrolytic cell 12, the salt bridge 4 made of agar electrically connecting the second electrolytic cell 12 and the reference electrode cell 13, and the liquid bridge 14 electrically connecting the first electrolytic cell 11 and the second electrode cell 12. And a main body 15 electrically connected to each of the test electrode 1, the counter electrode 2 and the reference electrode 3 by wiring.

本実施例2において、第2電解槽12の周囲には、該第2電解槽12中の塩橋4及び参照電極槽13を所望の温度に調節する温度調整水22が配置されている。
そして、第2電解槽12には、第1電解槽11の溶液から一部を取り出したものが溶液として用いられる。この第2電解槽12の溶液は、温度調整水22により第1電解槽11の溶液の温度と異なる温度に調節され、塩橋4及び参照電極槽13に接触している。
In the second embodiment, temperature adjusting water 22 for adjusting the salt bridge 4 and the reference electrode tank 13 in the second electrolytic cell 12 to a desired temperature is disposed around the second electrolytic cell 12.
And what extracted a part from the solution of the 1st electrolytic vessel 11 is used for the 2nd electrolytic vessel 12 as a solution. The solution in the second electrolytic cell 12 is adjusted to a temperature different from the temperature of the solution in the first electrolytic cell 11 by the temperature adjusting water 22 and is in contact with the salt bridge 4 and the reference electrode cell 13.

このように、本実施例2に係る腐食評価装置20は、電解槽が、試験極1の入った第1電解槽11と塩橋4(寒天)及び参照電極槽13の入った第2電解槽12との2つに分離され、試験極1の入った第1電解槽11が温度調整水21で温度調節され、また塩橋4及び参照電極槽13の入った第2電解槽12が温度調整水22で温度調節される。これにより、試験極1は高温環境に、塩橋4(寒天)及び参照電極槽13は低温環境下(好ましくは25℃以下)に置くことが可能になり、高温環境の腐食評価試験においても寒天が冷却されるため溶出せず、参照電極槽13の温度も一定となり、精度高く、確実な腐食評価が可能になる。   As described above, in the corrosion evaluation apparatus 20 according to the second embodiment, the electrolytic cell has the first electrolytic cell 11 containing the test electrode 1, the salt bridge 4 (agar), and the second electrolytic cell containing the reference electrode cell 13. 12, the temperature of the first electrolytic cell 11 containing the test electrode 1 is adjusted with the temperature adjustment water 21, and the temperature of the second electrolytic cell 12 containing the salt bridge 4 and the reference electrode cell 13 is adjusted. The temperature is adjusted with water 22. As a result, the test electrode 1 can be placed in a high temperature environment, and the salt bridge 4 (agar) and the reference electrode tank 13 can be placed in a low temperature environment (preferably 25 ° C. or less). Since it is cooled, it does not elute and the temperature of the reference electrode tank 13 becomes constant, so that accurate corrosion evaluation can be performed with high accuracy.

図2に示す本実施例2に係る腐食評価装置20は、前述した図1に示す実施例1に係る腐食評価装置10に対して、参照電極槽の温度調整も行える構造になっている。即ち、塩橋4としての寒天と参照電極3が入った参照電極槽13とが両方とも第2電解槽12に浸かっている。このため、腐食評価装置20は、参照電極の温度一定保持を積極的に進めた構造である。   The corrosion evaluation apparatus 20 according to the second embodiment shown in FIG. 2 has a structure that can also adjust the temperature of the reference electrode tank with respect to the corrosion evaluation apparatus 10 according to the first embodiment shown in FIG. That is, both the agar as the salt bridge 4 and the reference electrode tank 13 containing the reference electrode 3 are immersed in the second electrolytic cell 12. For this reason, the corrosion evaluation apparatus 20 has a structure in which the temperature of the reference electrode is actively maintained.

本発明は、塩橋の機能劣化を抑制すると共に、試料の使用温度と同じ状態で、正確な腐食評価を行うことのできる腐食評価装置、耐腐食性に優れた燃料電池用セパレータ、発電効率等の性能に優れる燃料電池、及び優れた性能を有する車両として、産業上の利用可能性を有する。   The present invention suppresses the functional deterioration of the salt bridge, and at the same condition as the working temperature of the sample, can perform an accurate corrosion evaluation, a fuel cell separator with excellent corrosion resistance, power generation efficiency, etc. It has industrial applicability as a fuel cell having excellent performance and a vehicle having excellent performance.

図1は、実施例1に係る腐食評価装置を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating a corrosion evaluation apparatus according to the first embodiment. 図2は、実施例2に係る腐食評価装置を示す概略構成図である。FIG. 2 is a schematic configuration diagram illustrating a corrosion evaluation apparatus according to the second embodiment. 図3は、従来の腐食評価装置を示す概略構成図である。FIG. 3 is a schematic configuration diagram showing a conventional corrosion evaluation apparatus.

符号の説明Explanation of symbols

10,20,30・・・腐食評価装置、1・・・試験極、2・・・対極、3・・・参照電極、4・・・塩橋(寒天)、11・・・第1電解槽、12・・・第2電解槽、13・・・参照電極槽、14・・・液橋、15・・・本体部、21,22・・・温度調整水、31・・・電解槽、32・・・塩橋(寒天)、33・・・温度調整水   DESCRIPTION OF SYMBOLS 10,20,30 ... Corrosion evaluation apparatus, 1 ... Test electrode, 2 ... Counter electrode, 3 ... Reference electrode, 4 ... Salt bridge (agar), 11 ... 1st electrolytic cell , 12 ... 2nd electrolytic cell, 13 ... Reference electrode tank, 14 ... Liquid bridge, 15 ... Body part, 21, 22 ... Temperature adjustment water, 31 ... Electrolytic cell, 32 ... Shiobashi (agar), 33 ... Temperature adjustment water

Claims (3)

試料としての燃料電池用セパレータ及び対極を溶液中に有する第1液槽と、参照電極槽を有する第2液槽と、前記第1液槽と前記第2液槽とを電気的に接続する液橋と、前記参照電極槽と前記第2液槽とを電気的に接続する寒天からなる塩橋とを含み、前記第1液槽の溶液の一部を取り出し、取り出した一部の溶液を前記第2液槽の溶液として用いる腐食評価装置であり
前記第1液槽の溶液の温度と前記第2液槽の溶液の温度とをそれぞれ異なる温度に調整する温度調整手段を備え
前記温度調節手段は、前記第1液槽の溶液の温度を燃料電池の作動温度の範囲内に調節し、前記第2液槽の溶液の温度を前記塩橋が溶出しない温度に調節することを特徴とする腐食評価装置。
The liquid which electrically connects the 1st liquid tank which has the separator for fuel cells as a sample , and a counter electrode in a solution, the 2nd liquid tank which has a reference electrode tank, and the 1st liquid tank and the 2nd liquid tank A bridge, and a salt bridge made of agar electrically connecting the reference electrode tank and the second liquid tank, taking out a part of the solution in the first liquid tank, It is a corrosion evaluation device used as a solution in the second liquid tank ,
Temperature adjusting means for adjusting the temperature of the solution in the first liquid tank and the temperature of the solution in the second liquid tank to different temperatures, respectively ;
The temperature adjusting means adjusts the temperature of the solution in the first liquid tank within the operating temperature range of the fuel cell, and adjusts the temperature of the solution in the second liquid tank to a temperature at which the salt bridge does not elute. Characteristic corrosion evaluation device.
前記第1液槽の溶液の温度は、60℃以上である、請求項1に記載の腐食評価装置。 The corrosion evaluation apparatus according to claim 1, wherein the temperature of the solution in the first liquid tank is 60 ° C or higher. 前記燃料電池用セパレータが、金属製の材料をセパレータ基材とする、請求項1又は2記載の腐食評価装置。 The fuel cell separator, the metal material and the separator base material, the corrosion evaluation apparatus according to claim 1 or 2, wherein.
JP2004155138A 2004-05-25 2004-05-25 Corrosion evaluation equipment Expired - Fee Related JP4826872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004155138A JP4826872B2 (en) 2004-05-25 2004-05-25 Corrosion evaluation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004155138A JP4826872B2 (en) 2004-05-25 2004-05-25 Corrosion evaluation equipment

Publications (2)

Publication Number Publication Date
JP2005339902A JP2005339902A (en) 2005-12-08
JP4826872B2 true JP4826872B2 (en) 2011-11-30

Family

ID=35493233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004155138A Expired - Fee Related JP4826872B2 (en) 2004-05-25 2004-05-25 Corrosion evaluation equipment

Country Status (1)

Country Link
JP (1) JP4826872B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933366A (en) * 2021-08-26 2022-01-14 上海空间电源研究所 Electrochemical testing device for bipolar plate of fuel cell
CN113945509A (en) * 2021-11-01 2022-01-18 西安稀有金属材料研究院有限公司 Device and method for performing electrochemical test in high-temperature liquid-phase corrosion environment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157642A (en) * 1988-12-12 1990-06-18 Hideaki Takahashi Gel electrode for electrochemical measurement for evaluating deterioration degree of metallic material
JP2003272649A (en) * 2002-03-15 2003-09-26 Nippon Light Metal Co Ltd Manufacturing method of metal separator for fuel cell

Also Published As

Publication number Publication date
JP2005339902A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
Bockelmann et al. Passivation of zinc anodes in alkaline electrolyte: Part i. determination of the starting point of passive film formation
Dong et al. Solid electrolyte interphase engineering for aqueous aluminum metal batteries: a critical evaluation
Valøen et al. Transport properties of LiPF6-based Li-ion battery electrolytes
Zhang et al. Factors that influence formation of AlF3 passive film on aluminum in Li-ion battery electrolytes with LiPF6
Lundgren et al. Characterization of the mass-transport phenomena in a superconcentrated LiTFSI: acetonitrile electrolyte
CN108072602B (en) Electrochemical method for accelerating corrosion of stainless steel weld joint area
Mohd Nazeri et al. Corrosion characterization of Sn-Zn solder: a review
Berliner et al. Electrochemical kinetics of lithium plating and stripping in solid polymer electrolytes: Pulsed voltammetry
Newhouse et al. Charge-transfer kinetics of alloying in Mg-Sb and Li-Bi liquid metal electrodes
US20190277793A1 (en) Low temperature electrochemical reference electrode and systems using the same
Cengiz et al. Reference Electrodes in Li-Ion and Next Generation Batteries: Correct Potential Assessment, Applications and Practices
Sazhin et al. Highly quantitative electrochemical characterization of non-aqueous electrolytes and solid electrolyte interphases
Ghaznavi et al. Electrochemical corrosion studies in molten chloride salts
JP2008304448A (en) Galvanic corrosion monitoring and analysing system (gcmas)
Danis et al. Anodic stripping voltammetry at nanoelectrodes: trapping of Mn2+ by crown ethers
JP4826872B2 (en) Corrosion evaluation equipment
Huang et al. Anode corrosion of Zn-air fuel cell: mechanism and protection
CA3005623A1 (en) A reference electrode for electrochemical measurements at high temperatures
Streicher The dissolution of aluminum in sodium hydroxide solutions
JP2011003314A (en) Secondary battery
Sasaki et al. Effect of an alkyl dicarbonate on Li-ion cell performance
Huang et al. Mechanistic Study of Hydroxide Ion Consumption in Ultralean PVA Hydrogel Electrolytes for High-Energy-Density Micro Zinc-Air Batteries
RU2777000C1 (en) Method for determining the corrosion activity of glycols in heat exchange equipment
Mohamedi et al. Effect of molten carbonate composition on oxygen reduction under pressurized conditions: cyclic voltammetry and equivalent circuit analysis
JP4075645B2 (en) Oil pH sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees