JP4826852B2 - Semiconductor device, electro-optical device and electronic apparatus - Google Patents

Semiconductor device, electro-optical device and electronic apparatus Download PDF

Info

Publication number
JP4826852B2
JP4826852B2 JP2009162506A JP2009162506A JP4826852B2 JP 4826852 B2 JP4826852 B2 JP 4826852B2 JP 2009162506 A JP2009162506 A JP 2009162506A JP 2009162506 A JP2009162506 A JP 2009162506A JP 4826852 B2 JP4826852 B2 JP 4826852B2
Authority
JP
Japan
Prior art keywords
film
semiconductor device
conductive film
resin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009162506A
Other languages
Japanese (ja)
Other versions
JP2009278120A (en
Inventor
伸晃 橋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009162506A priority Critical patent/JP4826852B2/en
Publication of JP2009278120A publication Critical patent/JP2009278120A/en
Application granted granted Critical
Publication of JP4826852B2 publication Critical patent/JP4826852B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01044Ruthenium [Ru]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]

Landscapes

  • Liquid Crystal (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、半導体装置、電気光学装置及び電子機器に関するものであり、特に基板上に抵抗体が設けられる半導体装置電気光学装置及び電子機器に関するものである。
The present invention relates to a semiconductor device, an electro-optical device, and an electronic device , and more particularly to a semiconductor device , an electro-optical device, and an electronic device in which a resistor is provided on a substrate.

近年、半導体装置は、電子機器の小型化及び高機能化に伴って、パッケージ自体の小型化または高密度化が求められようになっており、一例として、半導体素子上にポリシリコンを用いて抵抗を内蔵させる技術が知られている。
例えば特許文献1には、ポリシリコンに不純物をドープした多結晶粒界を用いて抵抗を形成する技術が開示されている。
また、特許文献2には、半導体素子上の再配置配線部に、厚膜形成法によって抵抗ペーストを塗布・硬化させて、抵抗部を形成する技術が開示されている。
In recent years, with the miniaturization and high functionality of electronic devices, there has been a demand for miniaturization or high density of the package itself. As an example, a resistor is formed using polysilicon on a semiconductor element. There is a known technology that incorporates.
For example, Patent Document 1 discloses a technique for forming a resistor using a polycrystalline grain boundary in which polysilicon is doped with impurities.
Patent Document 2 discloses a technique for forming a resistance portion by applying and curing a resistance paste to a rearrangement wiring portion on a semiconductor element by a thick film forming method.

特開昭58−7848号公報JP 58-7848 A 特開2003−46026号公報JP 2003-46026 A

しかしながら、上述したような従来技術には、以下のような問題が存在する。
基板上に設けられた抵抗等の受動素子を用いてインピーダンス制御等を行う際には、抵抗値を高精度に管理する必要があるが、上記の技術では要求された精度を確保することが困難であり、信頼性の高い抵抗部が得られないという問題がある。
また、上記の技術では、抵抗部を形成するための独立したプロセスが必要であり、生産性が低下するという問題が生じる。
However, the following problems exist in the conventional technology as described above.
When impedance control is performed using a passive element such as a resistor provided on a substrate, it is necessary to manage the resistance value with high accuracy, but it is difficult to ensure the required accuracy with the above technique. Therefore, there is a problem that a highly reliable resistance portion cannot be obtained.
Moreover, in said technique, the independent process for forming a resistance part is required, and the problem that productivity falls arises.

本発明は、以上のような点を考慮してなされたもので、高精度の抵抗部を容易に形成で
きる半導体装置電気光学装置及び電子機器を提供することを目的とする。
SUMMARY An advantage of some aspects of the invention is that it provides a semiconductor device , an electro-optical device, and an electronic apparatus in which a highly accurate resistance portion can be easily formed.

上記の目的を達成するために本発明は、以下の構成を採用している。
本発明の半導体装置は、半導体素子の電極パッドと、外部端子と、を、配線する配線パターンを有する半導体装置であって、前記配線パターンの一部の幅を、前記配線パターンの他の部分の幅と異ならせて設けられた抵抗素子を有し、前記抵抗素子と、前記外部端子とが、樹脂層上に形成されることを特徴とするものである。
In order to achieve the above object, the present invention employs the following configuration.
A semiconductor device according to the present invention is a semiconductor device having a wiring pattern for wiring an electrode pad of a semiconductor element and an external terminal, wherein a width of a part of the wiring pattern is set to a width of another part of the wiring pattern It has a resistance element provided with a different width, and the resistance element and the external terminal are formed on a resin layer .

従って、本発明の電子基板では、配線パターンの一部が他の部分と比較して抵抗値が高くなるように配線諸元を異ならせることにより、容易に抵抗素子を形成することができる。この抵抗素子は、配線パターンにより形成されるため、別途抵抗素子を形成するための独立したプロセスを要せず、生産性の低下を回避することができる。
そして、本発明では、配線パターンの配線諸元を調整することにより、所望の抵抗値を有する抵抗素子を高精度に形成することができる。
この配線パターンとしては、電極部と接続される構成や、少なくとも一部が接続端子を形成する構成を採用できる。
また、配線パターンとしては、電極部と接続され、少なくとも一部が外部端子に接続される構成(例えば、W−CSP(Wafer Level Chip Size Package)パッケージ体)としてもよい。
Therefore, in the electronic substrate of the present invention, it is possible to easily form a resistance element by changing the wiring specifications so that a part of the wiring pattern has a higher resistance value than the other part. Since this resistance element is formed by a wiring pattern, an independent process for separately forming the resistance element is not required, and a decrease in productivity can be avoided.
In the present invention, a resistance element having a desired resistance value can be formed with high accuracy by adjusting the wiring specifications of the wiring pattern.
As this wiring pattern, it is possible to adopt a configuration that is connected to the electrode portion or a configuration in which at least a part forms a connection terminal.
Further, the wiring pattern may be configured to be connected to the electrode portion and at least partly connected to an external terminal (for example, a W-CSP (Wafer Level Chip Size Package) package).

前記配線パターンの一部の配線諸元を、他の部分と異ならせる方法としては、前記配線パターンの一部の幅を前記他の部分の幅と異ならせることにより抵抗素子を形成したり、前記配線パターンの一部の厚さを前記他の部分の厚さと異ならせることにより抵抗素子を形成する構成を好適に採用できる。   As a method of making the wiring specifications of a part of the wiring pattern different from other parts, forming a resistance element by making the width of a part of the wiring pattern different from the width of the other part, A configuration in which the resistance element is formed by making the thickness of a part of the wiring pattern different from the thickness of the other part can be suitably employed.

前記配線パターンの一部の厚さを前記他の部分の厚さと異ならせる場合には、前記配線パターンが少なくとも2層で形成され、前記抵抗素子が前記配線パターンよりは少ない層数で形成される構成を好適に採用できる。この場合、前記配線パターンが、第1配線パターンと、前記第1配線パターンとは異なる材料で形成され前記第1配線パターン上に積層された第2配線パターンとを有し、前記抵抗素子が前記第2配線パターンの一部が除去された領域に形成される構成を好適に採用できる。
この構成では、例えばエッチング等により第2配線パターンを除去することにより、配線パターンの一部が局所的に第1配線パターンで構成されて他の部分よりも高抵抗の抵抗素子を形成することができる。また、エッチング処理等により第2配線パターンを除去する場合には、第2配線パターンに対応したエッチング材を選択することにより、容易に第2配線パターンのみを除去することが可能になる。
When the thickness of a part of the wiring pattern is different from the thickness of the other part, the wiring pattern is formed with at least two layers, and the resistance element is formed with a smaller number of layers than the wiring pattern. The configuration can be suitably adopted. In this case, the wiring pattern includes a first wiring pattern and a second wiring pattern formed of a material different from the first wiring pattern and stacked on the first wiring pattern, and the resistive element is the A configuration formed in a region where a part of the second wiring pattern has been removed can be suitably employed.
In this configuration, by removing the second wiring pattern, for example, by etching or the like, a part of the wiring pattern is locally configured by the first wiring pattern, thereby forming a resistance element having a higher resistance than the other part. it can. When removing the second wiring pattern by etching or the like, it is possible to easily remove only the second wiring pattern by selecting an etching material corresponding to the second wiring pattern.

さらに、本発明では、前記抵抗素子が封止材で封止される構成を好適に採用できる。 これにより、本発明では、抵抗素子を保護し、腐食や短絡を防止することが可能になる。    Furthermore, in this invention, the structure by which the said resistive element is sealed with a sealing material can be employ | adopted suitably. Thereby, in this invention, it becomes possible to protect a resistance element and to prevent corrosion and a short circuit.

また、本発明では、前記抵抗素子が応力緩和層上に形成される構成を好適に採用できる。これにより、本発明では、この構成では、基板に熱応力が加わっても抵抗素子の信頼性や寿命の低下を抑制することができる。
前記接続端子としては、樹脂材をコアとして少なくとも頂部が前記配線パターンで覆われたバンプ電極で形成される構成を好適に採用できる。
これにより、本発明では、バンプ電極の近傍に抵抗素子を形成できるので、バンプ電極と抵抗素子との間の経路を最短にでき、配線を極小とできる。
Moreover, in this invention, the structure by which the said resistive element is formed on a stress relaxation layer can be employ | adopted suitably. Thereby, in this invention, even if thermal stress is added to a board | substrate with this structure, the reliability of a resistive element and the fall of a lifetime can be suppressed.
As the connection terminal, it is possible to suitably adopt a configuration in which a resin material is used as a core and at least a top portion is formed of a bump electrode covered with the wiring pattern.
Thereby, in the present invention, since the resistance element can be formed in the vicinity of the bump electrode, the path between the bump electrode and the resistance element can be minimized, and the wiring can be minimized.

また、前記基板としては半導体素子を有する構成も好適に採用できる。
これにより、本発明では、半導体素子の近傍に抵抗素子を形成できるので、半導体素子と抵抗素子との間の経路を最短にでき、配線を極小とできる。
この場合、半導体素子としては、能動領域に形成される配線パターンによりトランジスタ等のスイッチング素子を形成する構成や、半導体素子を内蔵する半導体チップを能動領域に実装する構成とすることができる。
また、本発明では、基板に半導体素子が非搭載状態、つまり半導体素子が設けられていない、例えばシリコン基板状態であっても適用可能である。
Moreover, the structure which has a semiconductor element as the said board | substrate can also be employ | adopted suitably.
Accordingly, in the present invention, since the resistance element can be formed in the vicinity of the semiconductor element, the path between the semiconductor element and the resistance element can be minimized, and the wiring can be minimized.
In this case, the semiconductor element can be configured such that a switching element such as a transistor is formed by a wiring pattern formed in the active region, or a semiconductor chip containing the semiconductor element is mounted in the active region.
Further, the present invention is applicable even when the semiconductor element is not mounted on the substrate, that is, when the semiconductor element is not provided, for example, a silicon substrate state.

そして、本発明の電気光学装置は、先に記載の電子基板が実装されることを特徴とするものである。
また、本発明の電子機器は、先に記載の電子基板または電気光学装置を備えることを特徴とするものである。
従って、本発明では、抵抗素子が精度よく形成された高品質の電気光学装置及び電子機器を得ることができるとともに、生産性が低下することなく効率的な電気光学装置製造及び電子機器製造を実現することができる。
The electro-optical device according to the present invention is characterized in that the electronic substrate described above is mounted.
According to another aspect of the invention, there is provided an electronic apparatus including the electronic substrate or the electro-optical device described above.
Therefore, according to the present invention, it is possible to obtain a high-quality electro-optical device and electronic equipment in which resistance elements are accurately formed, and realize efficient electro-optical device manufacture and electronic device manufacture without reducing productivity. can do.

電気光学装置の一実施形態である液晶表示装置を示す模式図である。1 is a schematic diagram illustrating a liquid crystal display device that is an embodiment of an electro-optical device. FIG. 液晶表示装置における半導体装置の実装構造の説明図である。It is explanatory drawing of the mounting structure of the semiconductor device in a liquid crystal display device. 半導体装置の斜視図である。It is a perspective view of a semiconductor device. 同、半導体装置の端子部分を拡大して示す図である。FIG. 3 is an enlarged view showing a terminal portion of the semiconductor device. 同、半導体装置の製造方法を説明するための工程図である。FIG. 5 is a process diagram for describing the method for manufacturing a semiconductor device. 同、半導体装置の製造方法を説明するための工程図である。FIG. 5 is a process diagram for describing the method for manufacturing a semiconductor device. 同、半導体装置の製造方法を説明するための工程図である。FIG. 5 is a process diagram for describing the method for manufacturing a semiconductor device. パッケージ体の製造方法を説明するための工程図である。It is process drawing for demonstrating the manufacturing method of a package body. パッケージ体の製造方法を説明するための工程図である。It is process drawing for demonstrating the manufacturing method of a package body. パッケージ体の変形例を示す断面図である。It is sectional drawing which shows the modification of a package body. 電子機器の一例を示す斜視図である。It is a perspective view which shows an example of an electronic device. 抵抗素子の変形例を示す平面図である。It is a top view which shows the modification of a resistive element. 抵抗素子の変形例を示す平面図である。It is a top view which shows the modification of a resistive element. 抵抗値を微調整する方法を説明するための図である。It is a figure for demonstrating the method to finely adjust resistance value. 温度と抵抗値との関係を示す図である。It is a figure which shows the relationship between temperature and resistance value.

以下、本発明の電子基板とその製造方法及び電子機器の製造方法の実施の形態を、図1ないし図15を参照して説明する。
[電気光学装置]
図1は本発明の電気光学装置の一実施形態である液晶表示装置を示す模式図である。
図示の液晶表示装置100は、液晶パネル110と、半導体装置121とを有する。また、必要に応じて、図示しない偏光板、反射シート、バックライト等の付帯部材が適宜に設けられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an electronic substrate, a method for manufacturing the same, and a method for manufacturing an electronic device according to the present invention will be described below with reference to FIGS.
[Electro-optical device]
FIG. 1 is a schematic view showing a liquid crystal display device which is an embodiment of the electro-optical device of the present invention.
The illustrated liquid crystal display device 100 includes a liquid crystal panel 110 and a semiconductor device 121. Moreover, incidental members, such as a polarizing plate, a reflective sheet, and a backlight (not shown), are appropriately provided as necessary.

液晶パネル110は、ガラスやプラスチックなどで構成される基板111及び112を備えている。基板111と基板112は対向配置され、図示しないシール材などによって相互に貼り合わされている。基板111と基板112の間には電気光学物質である液晶(不図示)が封入されている。基板111の内面上にはITO(Indium Tin Oxide)などの透明導電体で構成された電極111aが形成され、基板112の内面上には上記電極111aに対向配置される電極112aが形成されている。なお、電極111a及び電極112aは直交するように配置されている。そして、電極111a及び電極112aは基板張出部111Tに引き出され、その端部にはそれぞれ電極端子111bx及び電極端子111cxが形成されている。また、基板張出部111Tの端縁近傍には入力配線111dが形成され、その内端部にも端子111dxが形成されている。   The liquid crystal panel 110 includes substrates 111 and 112 made of glass or plastic. The substrate 111 and the substrate 112 are disposed to face each other and are bonded to each other by a sealing material (not shown). A liquid crystal (not shown) that is an electro-optical material is sealed between the substrate 111 and the substrate 112. An electrode 111a made of a transparent conductor such as ITO (Indium Tin Oxide) is formed on the inner surface of the substrate 111, and an electrode 112a disposed opposite to the electrode 111a is formed on the inner surface of the substrate 112. . The electrode 111a and the electrode 112a are arranged so as to be orthogonal to each other. Then, the electrode 111a and the electrode 112a are drawn out to the substrate extension portion 111T, and an electrode terminal 111bx and an electrode terminal 111cx are formed at the end portions, respectively. An input wiring 111d is formed in the vicinity of the edge of the substrate overhanging portion 111T, and a terminal 111dx is also formed at the inner end thereof.

基板張出部111T上には、封止樹脂122を介して、半導体装置121が実装されている。この半導体装置121は、例えば液晶パネル110を駆動する液晶駆動用ICチップである。半導体装置121の下面には図示しない多数のバンプ電極が形成されており、これらのバンプは基板張出部111T上の端子111bx,111cx,111dxにそれぞれ導電接続される。   A semiconductor device 121 is mounted on the substrate extension 111T via a sealing resin 122. The semiconductor device 121 is, for example, a liquid crystal driving IC chip that drives the liquid crystal panel 110. A large number of bump electrodes (not shown) are formed on the lower surface of the semiconductor device 121, and these bumps are conductively connected to terminals 111bx, 111cx, 111dx on the substrate overhanging portion 111T, respectively.

また、入力配線111dの外端部に形成された入力端子111dyには、異方性導電膜124を介してフレキシブル配線基板123が実装されている。入力端子111dyは、フレキシブル配線基板123に設けられた図示しない配線にそれぞれ導電接続されている。そして、外部からフレキシブル配線基板123を介して制御信号、映像信号、電源電位などが入力端子111dyに供給され、半導体装置121において液晶駆動用の駆動信号が生成されて、液晶パネル110に供給されるようになっている。   A flexible wiring board 123 is mounted on the input terminal 111dy formed at the outer end of the input wiring 111d via an anisotropic conductive film 124. The input terminals 111dy are conductively connected to wirings (not shown) provided on the flexible wiring board 123, respectively. Then, a control signal, a video signal, a power supply potential, and the like are supplied from the outside via the flexible wiring board 123 to the input terminal 111dy, and a driving signal for driving the liquid crystal is generated in the semiconductor device 121 and supplied to the liquid crystal panel 110. It is like that.

以上のように構成された本実施形態の液晶表示装置100によれば、半導体装置121を介して電極111aと電極112aとの間に適宜の電圧が印加されることにより、両電極111a,112aが対向配置される画素部分の液晶を再配向させて光を変調することができ、これによって液晶パネル110内の画素が配列された表示領域に所望の画像を形成することができる。   According to the liquid crystal display device 100 of the present embodiment configured as described above, an appropriate voltage is applied between the electrode 111a and the electrode 112a via the semiconductor device 121, whereby the electrodes 111a and 112a are Light can be modulated by re-orienting the liquid crystal of the pixel portions opposed to each other, whereby a desired image can be formed in the display area in which the pixels in the liquid crystal panel 110 are arranged.

図2は図1のH−H線における側面断面図であり、上記液晶表示装置100における半導体装置121の実装構造の説明図である。図2に示すように、半導体装置121の能動面(図示下面)には、IC側端子として複数のバンプ電極10が接続端子として設けられ、その先端は上記基板111の端子111bx,111dxに直接導電接触している。バンプ電極10と端子111bx,111dxとの間の導電接触部分の周囲には、熱硬化性樹脂などで構成される硬化された封止樹脂122が充填されている。   FIG. 2 is a side cross-sectional view taken along the line HH in FIG. 1, and is an explanatory diagram of a mounting structure of the semiconductor device 121 in the liquid crystal display device 100. As shown in FIG. 2, a plurality of bump electrodes 10 are provided as connection terminals on the active surface (lower surface in the drawing) of the semiconductor device 121 as connection terminals, and their tips are directly conductive to the terminals 111 bx and 111 dx of the substrate 111. In contact. The periphery of the conductive contact portion between the bump electrode 10 and the terminals 111bx and 111dx is filled with a cured sealing resin 122 made of a thermosetting resin or the like.

[半導体装置]
(第1実施形態)
次に、第1実施形態に係る電子基板としての半導体装置121の端子構造について説明する。図3は、端子が形成される半導体装置121の能動面側の構造を示す部分斜視図である。
半導体装置121は、例えば液晶表示装置の画素を駆動するICチップであり、その能動面側には薄膜トランジスタ等の複数の電子素子や各電子素子間を接続する配線等の電子回路(集積回路)等の半導体素子が形成されている(いずれも不図示)。
[Semiconductor device]
(First embodiment)
Next, the terminal structure of the semiconductor device 121 as the electronic substrate according to the first embodiment will be described. FIG. 3 is a partial perspective view showing the structure on the active surface side of the semiconductor device 121 where the terminals are formed.
The semiconductor device 121 is, for example, an IC chip that drives a pixel of a liquid crystal display device, and an electronic circuit (integrated circuit) such as a plurality of electronic elements such as thin film transistors and wirings connecting the electronic elements on the active surface side. Semiconductor elements are formed (both not shown).

図3に示す半導体装置121では、基板Pの能動面121aの長辺に沿って複数の電極パッド(電極部)24が整列配置されている。この電極パッド24は、上述した電子素子等から引き出されたものであり、電子回路の外部電極として機能するものである。また、能動面121aにおける電極パッド列24aの内側には、その電極パッド列24aに沿って直線状に連続する樹脂突起12が形成されている。さらに、各電極パッド24の表面から樹脂突起12の表面にかけて、各電極パッド24と樹脂突起12の頂部とを結ぶ配線パターン(金属配線)としての複数の導電膜20が形成されている。そして、コアとしての樹脂突起12と、樹脂突起12の表面に配設された各導電膜20とを含んでバンプ電極10が構成されている。なお、図3の例では、電極パッド列24aの内側に樹脂突起12を配置しているが、電極パッド列24aの外側に樹脂突起12を配置してもよい。   In the semiconductor device 121 shown in FIG. 3, a plurality of electrode pads (electrode portions) 24 are arranged along the long side of the active surface 121 a of the substrate P. The electrode pad 24 is drawn from the above-described electronic element or the like, and functions as an external electrode of the electronic circuit. In addition, a resin protrusion 12 that is linearly continuous along the electrode pad row 24a is formed inside the electrode pad row 24a on the active surface 121a. Furthermore, a plurality of conductive films 20 are formed as a wiring pattern (metal wiring) connecting each electrode pad 24 and the top of the resin protrusion 12 from the surface of each electrode pad 24 to the surface of the resin protrusion 12. The bump electrode 10 is configured to include the resin protrusion 12 as a core and the conductive films 20 disposed on the surface of the resin protrusion 12. In the example of FIG. 3, the resin protrusion 12 is disposed inside the electrode pad row 24a, but the resin protrusion 12 may be disposed outside the electrode pad row 24a.

図4は、バンプ電極10の要部構成を示す図であり、図4(a)はバンプ電極の周辺の平面拡大図、図4(b)は図4(a)のA−A線における側面断面図である。
図4に示すように、半導体装置121の能動面121aの周縁部には、Al等の導電性材料からなる複数の電極パッド24が配列形成されている。また、半導体装置121の能動面全体にSiN等の電気絶縁性材料からなる保護膜としてのパッシベーション膜26が形成されており、上述した各電極パッド24の表面に、パッシベーション膜26の開口部26aが形成されている。パッシベーション膜26上には、応力緩和性の高い、ポリイミドなどの有機樹脂膜が、開口部以外全表面もしくは一部に、更に形成されていても良い。
4A and 4B are views showing the configuration of the main part of the bump electrode 10, FIG. 4A is an enlarged plan view of the periphery of the bump electrode, and FIG. 4B is a side view taken along line AA in FIG. It is sectional drawing.
As shown in FIG. 4, a plurality of electrode pads 24 made of a conductive material such as Al are arranged on the periphery of the active surface 121 a of the semiconductor device 121. Further, a passivation film 26 as a protective film made of an electrically insulating material such as SiN is formed on the entire active surface of the semiconductor device 121, and an opening 26a of the passivation film 26 is formed on the surface of each electrode pad 24 described above. Is formed. On the passivation film 26, an organic resin film such as polyimide having a high stress relaxation property may be further formed on the entire surface or a part other than the opening.

そのパッシベーション膜26の表面であって、電極パッド列24aの内側には、樹脂突起12が形成されている。樹脂突起12は、半導体装置121の能動面121aから突出して形成され、略同一高さで直線状に延在しており、電極パッド列24aと平行に配設されている。この樹脂突起12は、ポリイミド樹脂やアクリル樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、変性ポリイミド樹脂等の弾性を有する樹脂材料からなっており、例えばインクジェット法を用いて形成されている。樹脂突起12の断面形状は、図4(b)に示すような半円状や台形状等の弾性変形が容易な形状とすることが望ましい。こうすることで、相手側基板との当接時にバンプ電極10を容易に弾性変形させることが可能になり、相手側基板との導電接続の信頼性を向上させることができる。   Resin protrusions 12 are formed on the surface of the passivation film 26 and inside the electrode pad row 24a. The resin protrusion 12 is formed to project from the active surface 121a of the semiconductor device 121, extends linearly at substantially the same height, and is disposed in parallel with the electrode pad row 24a. The resin protrusion 12 is made of a resin material having elasticity such as a polyimide resin, an acrylic resin, a phenol resin, an epoxy resin, a silicone resin, or a modified polyimide resin, and is formed using, for example, an inkjet method. The cross-sectional shape of the resin protrusion 12 is desirably a shape that can be easily elastically deformed, such as a semicircular shape or a trapezoidal shape as shown in FIG. By doing so, the bump electrode 10 can be easily elastically deformed at the time of contact with the counterpart substrate, and the reliability of the conductive connection with the counterpart substrate can be improved.

また、各電極パッド24の表面から樹脂突起12の表面を越えて、各電極パッド24と樹脂突起12の頂部とを結ぶ導電膜20が形成されている。この導電膜20は、電極パッド24と逆側の端部において、導電膜20と直交する方向に延びる導電膜(配線パターン)21によって、隣り合う導電膜20と接続された略U字状に形成されている。導電膜20、21は下層に配される導電膜(第1配線パターン)20a、21aと、導電膜20a、21a上に積層される導電膜(第2配線パターン)20b、21bとからなる二層配線構造を有している。   Further, a conductive film 20 is formed to connect each electrode pad 24 and the top of the resin protrusion 12 from the surface of each electrode pad 24 beyond the surface of the resin protrusion 12. The conductive film 20 is formed in a substantially U-shape connected to the adjacent conductive film 20 by a conductive film (wiring pattern) 21 extending in a direction orthogonal to the conductive film 20 at the end opposite to the electrode pad 24. Has been. The conductive films 20 and 21 are two layers including conductive films (first wiring patterns) 20a and 21a disposed in the lower layer and conductive films (second wiring patterns) 20b and 21b stacked on the conductive films 20a and 21a. It has a wiring structure.

本実施形態では、いずれもスパッタリングにより、導電膜20a、21aはTiWで厚さ3000〜7000Å(ここでは3000Å)に形成され、導電膜20b、21bは導電膜20a、21aよりも抵抗値が大きいAuで厚さ1000〜5000Å(ここでは1000Å)に形成されている。そして、導電膜21においては、導電膜21bの一部を除去して導電膜21aを露出させて形成した抵抗素子Rが設けられている。
使用される各々の導電膜の材質・膜組成および抵抗部の面積は、得たい抵抗値によって適宜変更することができる。以下本実施形態では、二層の導電膜構成について説明するが、詳細は後述するが、得たい抵抗値や温度特性に応じて三層以上の導電膜を組み合わせても構わない。また、導電膜の形成はスパッタリング以外にも、蒸着、メッキなど公知の手法を用いても構わない。
In this embodiment, the conductive films 20a and 21a are both formed of TiW to a thickness of 3000 to 7000 mm (here, 3000 mm) by sputtering, and the conductive films 20b and 21b have a higher resistance value than the conductive films 20a and 21a. The thickness is 1000 to 5000 mm (here, 1000 mm). The conductive film 21 is provided with a resistance element R formed by removing a part of the conductive film 21b and exposing the conductive film 21a.
The material / film composition of each conductive film used and the area of the resistance portion can be appropriately changed according to the resistance value to be obtained. Hereinafter, in the present embodiment, a two-layer conductive film configuration will be described. Although details will be described later, three or more layers of conductive films may be combined in accordance with a desired resistance value and temperature characteristics. In addition to the sputtering, the conductive film may be formed by a known method such as vapor deposition or plating.

先の図1に示すように、上記のバンプ電極10は、封止樹脂122を介して基板111上の端子111bxに熱圧着されている。封止樹脂122は熱硬化性樹脂であり、実装前においては未硬化状態若しくは半硬化状態となっている。封止樹脂122が未硬化状態であれば、実装前に半導体装置121の能動面(図示下面)又は基板111の表面に塗布すればよく、また、封止樹脂122が半硬化状態であれば、フィルム状若しくはシート状として、半導体装置121と基板111との間に介挿すればよい。封止樹脂122としてはエポキシ樹脂が一般的に用いられるが、他の樹脂でも同じ目的を達することができるものであれば良い。   As shown in FIG. 1, the bump electrode 10 is thermocompression bonded to the terminal 111 bx on the substrate 111 through the sealing resin 122. The sealing resin 122 is a thermosetting resin, and is in an uncured state or a semi-cured state before mounting. If the sealing resin 122 is in an uncured state, it may be applied to the active surface (the lower surface in the drawing) of the semiconductor device 121 or the surface of the substrate 111 before mounting, and if the sealing resin 122 is in a semi-cured state, What is necessary is just to insert between the semiconductor device 121 and the board | substrate 111 as a film form or a sheet form. An epoxy resin is generally used as the sealing resin 122, but other resins may be used as long as they can achieve the same purpose.

半導体装置121の実装は、図示しない加熱加圧ヘッドなどを用いて半導体装置121を基板111上に加熱しながら加圧して行う。このとき、封止樹脂122は初期において加熱によって軟化し、この軟化した樹脂を押し分けるようにしてバンプ電極10の頂部が端子111bxに導電接触する。そして、上記の加圧によって内部樹脂である樹脂突起12が押圧されて接触方向(図示上下方向)に弾性変形する。そして、この状態でさらに加熱を続けると封止樹脂122は架橋して熱硬化するので、加圧力を解放しても封止樹脂122によってバンプ電極10が端子111bxに導電接触しつつ弾性変形した状態に保持される。   The semiconductor device 121 is mounted by applying pressure while heating the semiconductor device 121 on the substrate 111 using a heating and pressing head (not shown) or the like. At this time, the sealing resin 122 is initially softened by heating, and the top of the bump electrode 10 is in conductive contact with the terminal 111bx so as to push the softened resin apart. And the resin protrusion 12 which is internal resin is pressed by said pressurization, and elastically deforms in a contact direction (illustrated vertical direction). If the heating is further continued in this state, the sealing resin 122 is cross-linked and thermally cured, so that the bump electrode 10 is elastically deformed while being in conductive contact with the terminal 111bx by the sealing resin 122 even when the applied pressure is released. Retained.

[半導体装置の製造方法]
次に、半導体装置の製造方法について、特に、上記バンプ電極10を形成する工程について説明する。
図5〜図7は、半導体装置121の製造方法の一例を示す工程図である。この製造工程は、パッシベーション膜26を形成する工程と、樹脂突起12を形成する工程と、導電膜20、21を形成する工程とを有している。本実施形態では、樹脂突起12をインクジェット法を用いて形成する。
[Method for Manufacturing Semiconductor Device]
Next, a manufacturing method of the semiconductor device will be described, particularly a process of forming the bump electrode 10.
5 to 7 are process diagrams showing an example of a method for manufacturing the semiconductor device 121. This manufacturing process includes a process for forming the passivation film 26, a process for forming the resin protrusion 12, and a process for forming the conductive films 20 and 21. In the present embodiment, the resin protrusion 12 is formed using an ink jet method.

まず、図5(a)に示すように、図示しない半導体素子が形成された基板Pの能動面121a上にパッシベーション膜26を形成する。すなわち、成膜法によりSiO2やSiN等のパッシベーション膜26を基板P上に形成した後に、フォトリソグラフィ法を用いたパターニングにより電極パッド24が露出する開口部26aを形成する。開口部26aの形成は、パッシベーション膜26上にスピンコート法、ディッピング法、スプレーコート法等によってレジスト層を形成し、さらに所定のパターンが形成されたマスクを用いてレジスト層に露光処理及び現像処理を施し、所定形状のレジストパターン(図示せず)を形成する。その後、このレジストパターンをマスクにして前記膜のエッチングを行って電極パッド24を露出させる開口部26aを形成し、剥離液等を用いてレジストパターンを除去する。ここで、エッチングにはドライエッチングを用いるのが好ましく、ドライエッチングとしては反応性イオンエッチング(RIE:Reactive Ion Etching)が好適に用いられる。エッチングとしてウェットエッチングを用いることもできる。
パッシベーション膜26上には、応力緩和性の高い、ポリイミドなどの有機樹脂膜を、開口部以外全表面もしくは一部に、更にフォトリソ法等を用いて形成しても良い。すなわち、以下手法で形成される抵抗素子Rは、有機樹脂膜(絶縁膜)上に形成されていても良い。
First, as shown in FIG. 5A, a passivation film 26 is formed on the active surface 121a of the substrate P on which a semiconductor element (not shown) is formed. That is, after a passivation film 26 such as SiO 2 or SiN is formed on the substrate P by a film forming method, an opening 26a through which the electrode pad 24 is exposed is formed by patterning using a photolithography method. The opening 26a is formed by forming a resist layer on the passivation film 26 by a spin coating method, a dipping method, a spray coating method, or the like, and further exposing and developing the resist layer using a mask in which a predetermined pattern is formed. Then, a resist pattern (not shown) having a predetermined shape is formed. Thereafter, the film is etched using the resist pattern as a mask to form an opening 26a exposing the electrode pad 24, and the resist pattern is removed using a stripping solution or the like. Here, dry etching is preferably used for the etching, and reactive ion etching (RIE) is preferably used as the dry etching. Wet etching can also be used as the etching.
On the passivation film 26, an organic resin film such as polyimide having a high stress relaxation property may be formed on the entire surface or a part other than the opening by using a photolithography method or the like. That is, the resistance element R formed by the following method may be formed on an organic resin film (insulating film).

次に、図5(b)に示すように、電極パッド24及びパッシベーション膜26が形成された基板Pの能動面121a上に、インクジェット法(液滴吐出方式)を用いて樹脂突起12を形成する。このインクジェット法は、液滴吐出ヘッドに設けられたノズルから1滴あたりの液量が制御された液滴状の樹脂材(液体材料)を吐出(滴下)するとともに、ノズルを基板Pに対向させ、さらにノズルと基板Pとを相対移動させることによって、基板P上に樹脂材の所望形状の膜パターンを形成する。そして、この膜パターンを熱処理することにより樹脂突起12を得る。   Next, as shown in FIG. 5B, the resin protrusion 12 is formed on the active surface 121a of the substrate P on which the electrode pad 24 and the passivation film 26 are formed by using an ink jet method (droplet discharge method). . This ink jet method discharges (drops) a droplet-shaped resin material (liquid material) whose liquid amount per droplet is controlled from a nozzle provided in a droplet discharge head, and makes the nozzle face the substrate P. Further, by moving the nozzle and the substrate P relative to each other, a film pattern having a desired shape made of a resin material is formed on the substrate P. And the resin protrusion 12 is obtained by heat-processing this film | membrane pattern.

ここで、液滴吐出ヘッドから複数の液滴を滴下して樹脂材の配置を行うことにより、樹脂材からなる膜の形状を任意に設定可能となるとともに、樹脂材の積層による樹脂突起12の厚膜化が可能となる。例えば、樹脂材を基板P上に配置する工程と、樹脂材を乾燥する工程とを繰り返すことにより、樹脂材の乾燥膜が積層されて樹脂突起12が確実に厚膜化される。また、液滴吐出ヘッドに設けられた複数のノズルから樹脂材を含む液滴を滴下することにより、樹脂材の配置量や配置のタイミングを部分ごとに制御することが可能である。
また、フォトリソ法等で樹脂突起12を形成し、硬化時に突起周辺をだらすことにより、所望の樹脂突起12形状を得ても良い。
Here, by dropping a plurality of droplets from the droplet discharge head and arranging the resin material, it becomes possible to arbitrarily set the shape of the film made of the resin material, and the resin protrusion 12 by the lamination of the resin material It is possible to increase the film thickness. For example, by repeating a step of placing the resin material on the substrate P and a step of drying the resin material, the resin material dry film is laminated and the resin protrusion 12 is reliably thickened. Further, by dropping droplets including a resin material from a plurality of nozzles provided in the droplet discharge head, it is possible to control the arrangement amount and the arrangement timing of the resin material for each part.
Alternatively, the resin protrusion 12 may be formed by a photolithography method or the like, and a desired resin protrusion 12 shape may be obtained by slackening the periphery of the protrusion during curing.

次に、図5(c)に示すように、電極パッド24の表面から樹脂突起12の表面にかけて、電極パッド24と樹脂突起12の頂部とを覆う金属配線としての導電膜20a、21aを形成する。この導電膜20a、21aは、ここではパターニングされたものではなく、ベタ膜として全面的に製膜される。   Next, as shown in FIG. 5C, conductive films 20 a and 21 a are formed as metal wirings covering the electrode pad 24 and the top of the resin protrusion 12 from the surface of the electrode pad 24 to the surface of the resin protrusion 12. . The conductive films 20a and 21a are not patterned here, but are formed entirely as a solid film.

続いて、図6(a)に示すように、スパッタリングによって導電膜20a、21a上に導電膜20b、21bを成膜する。この導電膜20b、21bも、パターニングされたものではなく、ベタ膜として全面的に製膜される。この後、パッシベーション膜26と同様に、フォトリソグラフィ法を用いたパターニングにより、図3及び図4に示した形状の導電膜20b、21bを形成する。   Subsequently, as shown in FIG. 6A, conductive films 20b and 21b are formed on the conductive films 20a and 21a by sputtering. The conductive films 20b and 21b are not patterned and are formed entirely as a solid film. Thereafter, similarly to the passivation film 26, the conductive films 20b and 21b having the shapes shown in FIGS. 3 and 4 are formed by patterning using a photolithography method.

具体的には、導電膜20b、21b上にスピンコート法、ディッピング法、スプレーコート法等によってレジスト層を形成し、さらに所定のパターンが形成されたマスクを用いてレジスト層に露光処理及び現像処理を施し、所定形状のレジストパターン(所定の配線パターン以外の領域が開口するパターン)を形成する。その後、このレジストパターンをマスクにして前記膜のエッチングを行って、所定の配線パ剥離液等を用いてレジストパターンを除去することにより、所定形状の導電膜20b、21bが得られる。
次に、パターニングされた導電膜20b、21bをマスクとして、エッチング処理を行うことにより、図6(b)に示すように、導電膜20a、21aが導電膜20b、21bと同一形状でパターニングされて二層に積層された導電膜20、21が形成される。
Specifically, a resist layer is formed on the conductive films 20b and 21b by a spin coating method, a dipping method, a spray coating method, etc., and further, an exposure process and a development process are performed on the resist layer using a mask on which a predetermined pattern is formed. Then, a resist pattern having a predetermined shape (a pattern in which an area other than the predetermined wiring pattern is opened) is formed. Thereafter, the film is etched using the resist pattern as a mask, and the resist pattern is removed using a predetermined wiring pattern removing solution or the like, whereby the conductive films 20b and 21b having a predetermined shape are obtained.
Next, by performing an etching process using the patterned conductive films 20b and 21b as a mask, the conductive films 20a and 21a are patterned in the same shape as the conductive films 20b and 21b as shown in FIG. 6B. Conductive films 20 and 21 stacked in two layers are formed.

続いて、抵抗素子Rを形成するために、図6(c)に示すように、導電膜20、21(導電膜20、21が形成されていない領域ではパッシベーション膜26)上に、上記と同様の方法によりレジスト層(樹脂材)22を形成する。
次いで、抵抗素子Rの形状、位置に対応した開口を有するマスクを用いてレジスト層に露光処理及び現像処理を施し、図7に示すように、レジスト層22に開口部22aを形成する。そして、このレジスト層22をマスクとして導電膜21bのみを選択的にエッチングして除去し、導電膜21aを露出させる。このときのエッチング液としては、例えば塩化第二鉄や過硫酸アンモニウム等が用いられる。
そして、剥離液等を用いてレジスト層22を除去することにより、図4に示したように、導電膜21の中、抵抗値が高い抵抗素子Rが形成される。
Subsequently, in order to form the resistance element R, as shown in FIG. 6C, on the conductive films 20 and 21 (the passivation film 26 in the region where the conductive films 20 and 21 are not formed), the same as described above. A resist layer (resin material) 22 is formed by this method.
Next, the resist layer is exposed and developed using a mask having an opening corresponding to the shape and position of the resistance element R, thereby forming an opening 22a in the resist layer 22, as shown in FIG. Then, using the resist layer 22 as a mask, only the conductive film 21b is selectively etched and removed to expose the conductive film 21a. As the etching solution at this time, for example, ferric chloride, ammonium persulfate, or the like is used.
Then, by removing the resist layer 22 using a stripping solution or the like, the resistance element R having a high resistance value is formed in the conductive film 21 as shown in FIG.

ここで、抵抗素子Rの材質や膜厚、面積は、要求される抵抗値に応じて設定される。
導電膜20a、21aを構成するTiWは、厚さ1000Åの場合、7×10-2Ω/μm2程度であり、導電膜20b、21bを構成するAuは、厚さ3000Åの場合、2×10-4Ω/μm2程度であり、抵抗素子Rに70Ωの抵抗値が要求される場合には、例えば幅10μm、長さ100μmで導電膜20b、21bを除去して抵抗素子Rを形成すればよい。このとき、下層に位置する導電膜20a、21aは、上層に位置する導電膜20b、21bよりも抵抗が大きいため、より大きな抵抗値を容易に得ることができる。
上記の導電膜の厚さ、もしくは抵抗素子Rの面積を変更することで、例えば終端抵抗値として一般的に採用される、50Ωの抵抗素子Rは、容易に形成することができる。
Here, the material, film thickness, and area of the resistance element R are set according to the required resistance value.
TiW constituting the conductive films 20a and 21a is about 7 × 10 −2 Ω / μm 2 when the thickness is 1000 mm, and Au constituting the conductive films 20b and 21b is 2 × 10 when the thickness is 3000 mm. -4 Ω / μm 2 , and when the resistance value of the resistance element R is required to be 70Ω, the resistance element R is formed by removing the conductive films 20b and 21b with a width of 10 μm and a length of 100 μm, for example Good. At this time, since the conductive films 20a and 21a located in the lower layer have higher resistance than the conductive films 20b and 21b located in the upper layer, a larger resistance value can be easily obtained.
By changing the thickness of the conductive film or the area of the resistance element R, for example, the 50Ω resistance element R generally employed as a termination resistance value can be easily formed.

この後、図4(b)に二点鎖線で示すように、抵抗素子Rをソルダーレジスト等の樹脂材(封止材)で覆うことにより封止膜23を形成する。これにより、抵抗素子Rの耐湿性等が向上する。この保護膜23は、少なくとも抵抗素子Rを覆うように形成することが好ましく、例えばフォトリソグラフィ法や液滴吐出方式、印刷法、ディスペンス法等を用いることにより形成できる。   Thereafter, as shown by a two-dot chain line in FIG. 4B, the sealing element 23 is formed by covering the resistance element R with a resin material (sealing material) such as a solder resist. Thereby, the moisture resistance of the resistance element R etc. improve. The protective film 23 is preferably formed so as to cover at least the resistance element R. For example, the protective film 23 can be formed by using a photolithography method, a droplet discharge method, a printing method, a dispensing method, or the like.

以上説明したように、本実施の形態では、導電膜21の配線諸元(線幅、厚さ)の中、一部の厚さを他の部分と異ならせることで、具体的には導電膜21の一部を導電膜21aのみにより薄く形成することで抵抗素子Rを形成しているので、新たに抵抗部材等を実装する必要がなく、容易に抵抗部を形成することができる。
また、本実施形態では、電極パッド24を介して半導体素子の近傍に抵抗素子Rを形成できるので、半導体素子から抵抗素子Rへの電気的な経路を最短にすることができ、余計な配線を極小とすることが可能になる。そのため、配線による寄生容量、スタブ等を最小に抑えることが可能になり、特に高周波領域での電気特性(ロス、ノイズ輻射)を向上させることができる。
As described above, in the present embodiment, in the wiring specifications (line width, thickness) of the conductive film 21, a part of the thickness is made different from that of other parts, so that the conductive film can be specifically described. Since the resistive element R is formed by forming a part of the thin film 21 by using only the conductive film 21a, it is not necessary to newly mount a resistance member or the like, and the resistance portion can be easily formed.
In the present embodiment, the resistance element R can be formed in the vicinity of the semiconductor element via the electrode pad 24. Therefore, the electrical path from the semiconductor element to the resistance element R can be minimized, and extra wiring is provided. It becomes possible to make it minimal. Therefore, it is possible to minimize parasitic capacitance, stubs, and the like due to wiring, and it is possible to improve electrical characteristics (loss, noise radiation) particularly in a high frequency region.

また、本実施形態では、抵抗素子Rを形成する材料及び、抵抗素子Rの面積に応じた抵抗値を設定できるため、所望の抵抗値を高精度で確保することが可能となり、半導体装置(電子基板)121としての信頼性を向上させることができる。
特に、本実施形態では、スパッタリング、メッキ、フォトリソ法等、膜組成及び厚さ精度、寸法精度に優れた方法により導電膜20、21を形成しているため、抵抗素子Rの抵抗値をより高精度に制御・管理することが可能である。
In the present embodiment, since the resistance value corresponding to the material for forming the resistance element R and the area of the resistance element R can be set, a desired resistance value can be ensured with high accuracy, and the semiconductor device (electronic The reliability of the substrate 121 can be improved.
In particular, in this embodiment, since the conductive films 20 and 21 are formed by a method having excellent film composition, thickness accuracy, and dimensional accuracy, such as sputtering, plating, and photolithography, the resistance value of the resistance element R is further increased. It is possible to control and manage with accuracy.

また、本実施形態では、二層構造の導電膜21のうちの導電膜21bを除去することにより抵抗素子Rを形成するため、上層に位置する導電膜21bの材料に応じたエッチング液を適宜選択することにより、容易に抵抗素子Rを形成することができる。
特に、本実施形態では、下層に位置する導電膜21aが上層の導電膜21bよりも大きな抵抗を有しているので、より大きな抵抗値を容易に得ることが可能である。
つまり、本実施形態では、抵抗としての必要値に応じて膜の種類や、積層構造の導電膜の中、どの層の導電膜を用いるかを選択することで、抵抗のレンジ、耐許容電流値の設計選択度を向上させることができる。
なお、三層以上の構造も同様である。
Moreover, in this embodiment, since the resistive element R is formed by removing the conductive film 21b of the conductive film 21 having a two-layer structure, an etching solution is appropriately selected according to the material of the conductive film 21b located in the upper layer. Thus, the resistance element R can be easily formed.
In particular, in the present embodiment, since the conductive film 21a located in the lower layer has a larger resistance than the upper conductive film 21b, it is possible to easily obtain a larger resistance value.
In other words, in this embodiment, the resistance range and the allowable current resistance value are selected by selecting the type of film according to the required value as the resistance and which layer of the conductive film in the laminated structure is used. The design selectivity can be improved.
The same applies to a structure of three or more layers.

(第2実施形態)
続いて、第2実施形態に係る電子基板について説明する。
第2実施形態では、本発明を電子基板としてのW−CSP(Wafer Level Chip Size Package)パッケージ体に適用する場合について図8及び図9を参照して説明する。
これらの図において、図1乃至図7に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
(Second Embodiment)
Next, the electronic substrate according to the second embodiment will be described.
In the second embodiment, a case where the present invention is applied to a W-CSP (wafer level chip size package) package as an electronic substrate will be described with reference to FIGS.
In these drawings, the same components as those of the first embodiment shown in FIGS. 1 to 7 are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態では、図8に示すパッケージ体(電子基板)CSPに対してハンダボールを形成する工程を用いて、抵抗素子を形成する。
このパッケージ体CSPにおいては、導電膜20a、20bの二層構造を有する導電膜20は、電極パッド24に接続された一端側においてパッシベーション膜26上に配線され、他端側においてパッシベーション膜26上に形成された応力緩和層33上に配線されている。
In the present embodiment, the resistance element is formed using a process of forming a solder ball on the package (electronic substrate) CSP shown in FIG.
In this package CSP, the conductive film 20 having a two-layer structure of the conductive films 20a and 20b is wired on the passivation film 26 at one end connected to the electrode pad 24, and is formed on the passivation film 26 at the other end. The wiring is formed on the formed stress relaxation layer 33.

応力緩和層33は、樹脂(合成樹脂)によって形成されている。この応力緩和層33は、を形成するための形成材料としては、ポリイミド樹脂、シリコーン変性ポリイミド樹脂、エポキシ樹脂、シリコーン変性エポキシ樹脂、アクリル樹脂、フェノール樹脂、BCB(benzocyclobutene)及びPBO(polybenzoxazole)等、絶縁性がある材料であれば良い。   The stress relaxation layer 33 is made of resin (synthetic resin). As the forming material for forming the stress relaxation layer 33, polyimide resin, silicone-modified polyimide resin, epoxy resin, silicone-modified epoxy resin, acrylic resin, phenol resin, BCB (benzocyclobutene), PBO (polybenzoxazole), etc. Any material having an insulating property may be used.

続いて、パッケージ体CSPに対して、ハンダボール及び抵抗素子を形成する手順について説明する。
まず、図8(a)に示すように、導電膜20上(導電膜20が形成されていない領域ではパッシベーション膜26または応力緩和層33上)を含む基板P上の全面に、スピンコート法、ディッピング法、スプレーコート法等によってソルダーレジスト42を塗布する(ソルダーレジスト層42を形成する)。
Next, a procedure for forming solder balls and resistance elements on the package body CSP will be described.
First, as shown in FIG. 8A, a spin coat method is performed on the entire surface of the substrate P including the conductive film 20 (on the passivation film 26 or the stress relaxation layer 33 in the region where the conductive film 20 is not formed). A solder resist 42 is applied by a dipping method, a spray coating method, or the like (a solder resist layer 42 is formed).

次に、ハンダボール部及び抵抗素子の形状・位置に対応した開口を有するマスクを用いてレジスト層に露光処理及びエッチング処理を施し、図8(b)に示すように、ソルダーレジスト層42に導電膜20(導電膜20b)が露出するハンダボール用の開口部42a及び抵抗素子用の開口部42bを形成する。この後、図8(c)に示すように、開口部42a内の導電膜20上にバンプとして、例えば鉛フリーハンダからなるハンダボール43を搭載する。   Next, an exposure process and an etching process are performed on the resist layer using a mask having an opening corresponding to the shape and position of the solder ball portion and the resistance element, and the solder resist layer 42 is electrically conductive as shown in FIG. An opening 42a for a solder ball and an opening 42b for a resistance element from which the film 20 (conductive film 20b) is exposed are formed. Thereafter, as shown in FIG. 8C, a solder ball 43 made of, for example, lead-free solder is mounted as a bump on the conductive film 20 in the opening 42a.

そして、図9(a)に示すように、ソルダーレジスト層42をマスクとして導電膜20bのみを選択的にエッチングして除去し、導電膜20aを露出させる。このときのエッチング液としては、例えば塩化第二鉄や過硫酸アンモニウム等が用いられる。
これにより、導電膜20の一部において導電膜20aで構成される抵抗素子Rが形成される。
この後、図9(b)に示すように、開口部42bを樹脂等の封止材44で封止することにより、抵抗素子Rの耐湿性等を向上させる。
このようにして、抵抗素子Rを内蔵するパッケージ体CSPが完成する。
Then, as shown in FIG. 9A, only the conductive film 20b is selectively etched and removed using the solder resist layer 42 as a mask to expose the conductive film 20a. As the etching solution at this time, for example, ferric chloride, ammonium persulfate, or the like is used.
Thereby, the resistance element R comprised by the electrically conductive film 20a in a part of the electrically conductive film 20 is formed.
Thereafter, as shown in FIG. 9B, the opening 42b is sealed with a sealing material 44 such as resin, thereby improving the moisture resistance and the like of the resistance element R.
In this manner, the package body CSP including the resistance element R is completed.

本実施形態では、上記第1実施形態と同様に、W−CSP等のパッケージ体に対しても、抵抗値を高精度に設定された抵抗素子Rを容易に内蔵させることができる。   In the present embodiment, similarly to the first embodiment, a resistance element R having a resistance value set with high accuracy can be easily incorporated in a package body such as a W-CSP.

なお、上記第2実施形態では、ハンダボール43を挟んで電極パッド24の逆側に抵抗素子Rを設ける構成としたが、これに限定されるものではなく、例えば図10に示すように、電極パッド24からハンダボール43へ向かう導電膜20(いわゆる再配置配線)の途中に抵抗素子Rを設ける構成としてもよい。   In the second embodiment, the resistance element R is provided on the opposite side of the electrode pad 24 across the solder ball 43. However, the present invention is not limited to this. For example, as shown in FIG. The resistive element R may be provided in the middle of the conductive film 20 (so-called rearrangement wiring) from the pad 24 toward the solder ball 43.

[電子機器]
次に、上述した電気光学装置又は半導体装置を備えた電子機器について説明する。
図11は、本発明に係る電子機器の一例を示す斜視図である。この図に示す携帯電話1300は、上述した電気光学装置を小サイズの表示部1301として備え、複数の操作ボタン1302、受話口1303、及び送話口1304を備えて構成されている。
上述した電気光学装置は、上記携帯電話に限らず、電子ブック、パーソナルコンピュータ、ディジタルスチルカメラ、液晶テレビ、ビューファインダ型あるいはモニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた機器等々の画像表示手段として好適に用いることができ、いずれの場合にも抵抗値が高精度に確保されて品質に優れた電子機器を提供することができる。
[Electronics]
Next, an electronic apparatus including the above-described electro-optical device or semiconductor device will be described.
FIG. 11 is a perspective view showing an example of an electronic apparatus according to the invention. A cellular phone 1300 shown in the figure includes the above-described electro-optical device as a small-sized display unit 1301 and includes a plurality of operation buttons 1302, a mouthpiece 1303, and a mouthpiece 1304.
The above-described electro-optical device is not limited to the above mobile phone, but is an electronic book, personal computer, digital still camera, liquid crystal television, viewfinder type or monitor direct-view type video tape recorder, car navigation device, pager, electronic notebook, calculator, It can be suitably used as an image display means for a word processor, a workstation, a videophone, a POS terminal, a device equipped with a touch panel, etc. In any case, a resistance value is ensured with high accuracy and an electronic device with excellent quality can be obtained Can be provided.

以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。   As described above, the preferred embodiments according to the present invention have been described with reference to the accompanying drawings, but the present invention is not limited to the examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.

例えば、上記実施形態では、導電膜21に抵抗素子Rを形成する構成としたが、これに限定されるものではなく、導電膜20に抵抗素子を形成する構成であってもよい。また、上記実施形態では、隣り合う導電膜20が導電膜21で接続される構成としたが、これに限られるものではなく、外部接続端子となる再配置配線の一部に抵抗素子が設けられる構成としてもよい。   For example, in the above embodiment, the resistance element R is formed on the conductive film 21. However, the present invention is not limited to this, and the resistance element R may be formed on the conductive film 20. Moreover, in the said embodiment, although the adjacent electrically conductive film 20 was connected by the electrically conductive film 21, it is not restricted to this, A resistance element is provided in a part of rearrangement wiring used as an external connection terminal. It is good also as a structure.

さらに、上記実施形態では、導電膜20が電極パッド24と逆側の端部で導電膜21で接続される構成としたが、この他にも、例えば図12(a)に示すように、バンプ電極10と電極パッド24との間で導電膜20が導電膜21により接続される構成や、図12(b)に示すように、電極パッド24側の端部において導電膜20が導電膜21により接続される構成であってもよい。   Furthermore, in the above embodiment, the conductive film 20 is connected to the electrode pad 24 by the conductive film 21 at the end opposite to the electrode pad 24. In addition, for example, as shown in FIG. The conductive film 20 is connected by the conductive film 21 between the electrode 10 and the electrode pad 24, or the conductive film 20 is formed by the conductive film 21 at the end on the electrode pad 24 side as shown in FIG. It may be configured to be connected.

また、上記実施形態では、二層構造の電極膜21のうちの一層を除去することにより、抵抗素子Rを形成する構成としたが、これに限定されるものではなく、一層構造の電極膜や三層以上の電極膜であっても適用可能である。例えば、一層構造の電極膜であれば、例えばエッチング時間を調整することにより、抵抗部の厚さを他の箇所の厚さよりも薄くなるよう調整して所望の抵抗値とすればよい。また三層構造の電極膜としては、例えばスパッタリングによりTiw−Cuを形成した後に、メッキによりCuを積層した構成とすることができ、Cuメッキによる電極膜を除去してスパッタリングによるTiw−Cuで抵抗素子を形成したり、Cu(スパッタリング)−Cu(メッキ)の電極膜を除去して、Tiwの電極膜のみで抵抗素子を形成することも可能である。   Moreover, in the said embodiment, it was set as the structure which forms the resistive element R by removing one layer of the electrode film 21 of a two-layer structure, However, It is not limited to this, The electrode film of a one-layer structure, Even an electrode film having three or more layers is applicable. For example, in the case of an electrode film having a single-layer structure, the resistance portion may be adjusted to have a desired resistance value by adjusting the etching time so that the thickness of the resistance portion becomes thinner than the thickness of other portions. In addition, the electrode film having a three-layer structure may have a structure in which, for example, Tiw-Cu is formed by sputtering and Cu is laminated by plating, and the electrode film is removed by Cu plating, and resistance is obtained by Tiw-Cu by sputtering. It is also possible to form an element or remove a Cu (sputtering) -Cu (plating) electrode film to form a resistance element using only a Tiw electrode film.

さらに、二層構造の電極膜であっても、上層の導電膜21bを厚さ方向に一部残し、残った導電膜21b及び下層の導電膜21aにより抵抗素子を形成してもよく、さらに導電膜21bを除去した後に、導電膜21aに対してもエッチング処理を施し、より薄い導電膜21aにより、より高い抵抗値を有する抵抗素子を形成する構成としてもよい。いずれの場合でも、所望の抵抗値に応じて導電膜を部分的に除去することにより、当該抵抗値を有する抵抗素子を容易に形成することが可能である。   Further, even in the case of an electrode film having a two-layer structure, a part of the upper conductive film 21b may be left in the thickness direction, and a resistive element may be formed by the remaining conductive film 21b and the lower conductive film 21a. After the film 21b is removed, the conductive film 21a may be etched to form a resistance element having a higher resistance value with the thinner conductive film 21a. In any case, it is possible to easily form a resistance element having the resistance value by partially removing the conductive film in accordance with a desired resistance value.

さらに、抵抗素子を形成する方法としては、厚さ方向を除去する場合に限定されるものではなく、導電膜(配線パターン)の一部の幅を他の部分よりも細くすることでも実現できる。例えば図13(a)に示すように、他の部分よりも細い線幅で九十九折り状に屈曲したミアンダ型の電極膜により形成された抵抗値の大きい抵抗素子や、図13(b)に示すように、抵抗の大きな縮径部(絞り形状)を有する抵抗素子としてもよい。   Further, the method of forming the resistance element is not limited to the case of removing the thickness direction, and can be realized by making the width of a part of the conductive film (wiring pattern) thinner than the other part. For example, as shown in FIG. 13A, a resistance element having a large resistance value formed by a meander-type electrode film bent in a ninety-nine fold shape with a narrower line width than other portions, or FIG. As shown in FIG. 6, a resistance element having a reduced diameter portion (drawing shape) having a large resistance may be used.

また、上記実施形態では、導電膜の厚さや幅で抵抗素子における抵抗値を調整するものとして説明したが、例えば図14に示すように、導電膜21の一部に導電膜21aを露出させて形成した抵抗素子Rに対して、レーザ等を用いてトリミングして導電膜21aの一部を切り欠いた(除去した)切欠部Raを設ける構成としてもよい。
この場合、切欠部Raの大きさ(すなわち導電膜21aがつながっている大きさ)を調整することにより、抵抗値を微調整することもでき、高精度の抵抗素子をより容易に形成することが可能である。特に、上記実施形態では、半導体装置121の表面近傍に抵抗素子Rが配置されるため、容易に抵抗値の微調整が可能である。
Moreover, although the said embodiment demonstrated as what adjusts the resistance value in a resistive element with the thickness and width | variety of a electrically conductive film, for example, as shown in FIG. The formed resistance element R may be trimmed using a laser or the like to provide a cutout portion Ra in which a part of the conductive film 21a is cut out (removed).
In this case, the resistance value can be finely adjusted by adjusting the size of the notch Ra (that is, the size to which the conductive film 21a is connected), and a highly accurate resistance element can be more easily formed. Is possible. In particular, in the embodiment described above, the resistance element R is disposed near the surface of the semiconductor device 121, so that the resistance value can be easily finely adjusted.

また、上記実施形態で示した導電膜(抵抗素子)の材料は一例であり、その他にも例えば、Ag、Ni、Pd、Al、Cr、Ti、W、NiV等、または鉛フリーはんだ等の導電性材料等を用いることができる。この場合でも、複数の材料を用いて積層構造の導電膜を形成する際には、下層に位置する導電膜が上層に位置する導電膜よりも抵抗値が大きくなるように材料を選択することが好ましい。
材料の選択と組み合わせによっては、単なる得たい抵抗値を得られるばかりではなく、例えば、各材料が持つ抵抗−温度特性に着目し、それらを適宜組み合わせることで、得たい抵抗−温度特性を得ることもできる。
また、上述した導電膜20、21も本実施形態ではスパッタリングやメッキ法を用いて形成されているが、インクジェット法を用いてもよい。
Moreover, the material of the conductive film (resistive element) shown in the above embodiment is an example, and other conductive materials such as Ag, Ni, Pd, Al, Cr, Ti, W, NiV, or lead-free solder are also available. Can be used. Even in this case, when a conductive film having a stacked structure is formed using a plurality of materials, the material may be selected so that the conductive film located in the lower layer has a higher resistance value than the conductive film located in the upper layer. preferable.
Depending on the selection and combination of materials, not only can the desired resistance value be obtained, but also, for example, by focusing on the resistance-temperature characteristics of each material and combining them appropriately, the desired resistance-temperature characteristics can be obtained. You can also.
The conductive films 20 and 21 described above are also formed by sputtering or plating in the present embodiment, but an inkjet method may be used.

また、上記実施形態では、電子基板が半導体素子を有してなる半導体装置の例を用いたが、本発明に係る電子基板としては、必ずしも半導体素子が設けられている必要はなく、例えば半導体チップ等の外部デバイスの搭載領域(能動領域)に外部デバイスが搭載されていない非搭載状態のシリコン基板や、ガラス基板、セラミクス基板、有機基板、フィルム基板も含まれる。この場合、本発明に係る電子基板が、例えば半導体素子を有する回路基板等に、バンプ電極10を介して接続された構成であってもよいし、それらの基板に他の電子回路が組み込まれていても良い。それらは、液晶パネル、プラズマディスプレイ、水晶発振器等の電子デバイスであっても良い。
また、これらの実施形態では、形成された抵抗素子は、配線の一部を用いて形成されていれば良いので、必ずしも電子基板の電極に接続されていなくともよく、電極同士の接続のみに寄与し、外部電極や外部端子と接続されていなくとも良い。
また、電子機器においても、上記実施形態では、電気光学装置を備えた携帯電話を例示したが、必ずしも電気光学装置を備える必要はなく、電気光学装置を備えずに、上述した電子基板を備える電子機器も本発明に含まれる。
In the above embodiment, the example of the semiconductor device in which the electronic substrate has a semiconductor element is used. However, the electronic substrate according to the present invention does not necessarily have to be provided with a semiconductor element, for example, a semiconductor chip. A non-mounting silicon substrate in which no external device is mounted in an external device mounting region (active region) such as a glass substrate, a ceramic substrate, an organic substrate, or a film substrate is also included. In this case, the electronic substrate according to the present invention may be connected to, for example, a circuit substrate having a semiconductor element via the bump electrode 10, and other electronic circuits are incorporated in those substrates. May be. They may be electronic devices such as liquid crystal panels, plasma displays, crystal oscillators and the like.
Further, in these embodiments, the formed resistance element only needs to be formed using a part of the wiring, and thus does not necessarily have to be connected to the electrodes of the electronic substrate, and contributes only to the connection between the electrodes. However, it may not be connected to the external electrode or the external terminal.
Further, in the above-described embodiment, a mobile phone including an electro-optical device is also exemplified in the electronic apparatus. However, the electronic device is not necessarily provided with an electro-optical device, and an electronic device including the above-described electronic substrate is not provided. Equipment is also included in the present invention.

さらに、本発明は、多層膜配線を用いた電子機器全般に適用可能である。例えば、温度変動に対する抵抗値の変動特性が逆の関係である導電膜を積層した配線パターンにも適用できる。例えば、図15に示すように、温度上昇に伴って抵抗値が増加する特性を有する材料(例えばRuO2)で形成された導電膜と、温度上昇に伴って抵抗値が減少する特性を有する材料(例えばTa2N)で形成された導電膜とを積層することにより、温度ドリフトをキャンセルできる配線パターンに対しても適用可能である。 Further, the present invention can be applied to all electronic devices using multilayer wiring. For example, the present invention can also be applied to a wiring pattern in which conductive films having a resistance characteristic variation characteristic with respect to temperature variation are reversed. For example, as shown in FIG. 15, a conductive film formed of a material (for example, RuO 2 ) having a property of increasing the resistance value with an increase in temperature, and a material having a property of decreasing the resistance value with an increase in temperature. The present invention can also be applied to a wiring pattern in which temperature drift can be canceled by laminating a conductive film formed of (for example, Ta 2 N).

CSP…パッケージ体(電子基板)、P…基板、R…抵抗素子、10…バンプ電極(接続端子)、20,21…導電膜(配線パターン)、20a,21a…導電膜(第1配線パターン)、20b,21b…導電膜(第2配線パターン)、22…レジスト層(マスク、樹脂材)、23…保護膜、24…電極パッド(電極部)、33…応力緩和層、44…封止材、100…液晶表示装置(電気光学装置)、121…半導体装置(電子基板)、1300…携帯電話(電子機器)。   CSP: package body (electronic substrate), P: substrate, R: resistance element, 10: bump electrode (connection terminal), 20, 21 ... conductive film (wiring pattern), 20a, 21a ... conductive film (first wiring pattern) 20b, 21b ... conductive film (second wiring pattern), 22 ... resist layer (mask, resin material), 23 ... protective film, 24 ... electrode pad (electrode part), 33 ... stress relaxation layer, 44 ... sealing material DESCRIPTION OF SYMBOLS 100 ... Liquid crystal display device (electro-optical device) 121 ... Semiconductor device (electronic substrate), 1300 ... Mobile phone (electronic device).

Claims (4)

半導体素子の電極パッドと、外部端子と、を、配線する配線パターンを有する半導体装置であって、
前記配線パターンの一部の幅を、前記配線パターンの他の部分の幅と異ならせて設けられた抵抗素子を有し、
前記抵抗素子と、前記外部端子とが、樹脂層上に形成されることを特徴とする半導体装置。
A semiconductor device having a wiring pattern for wiring an electrode pad of a semiconductor element and an external terminal,
A resistance element provided with a width of a part of the wiring pattern different from a width of another part of the wiring pattern;
The semiconductor device, wherein the resistance element and the external terminal are formed on a resin layer.
請求項1記載の半導体装置において、
前記外部端子は、樹脂材をコアとして少なくとも頂部が前記配線パターンで覆われたバンプ電極で形成されることを特徴とする半導体装置。
The semiconductor device according to claim 1,
The external device is formed of a bump electrode having a resin material as a core and at least a top portion covered with the wiring pattern.
請求項1又は2に記載の半導体装置が実装されることを特徴とする電気光学装置。 Electro-optical device, wherein a semiconductor device according to claim 1 or 2 is mounted. 請求項1又は2に記載の半導体装置を備えることを特徴とする電子機器。 An electronic apparatus comprising the semiconductor device according to claim 1 or 2.
JP2009162506A 2009-07-09 2009-07-09 Semiconductor device, electro-optical device and electronic apparatus Expired - Fee Related JP4826852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009162506A JP4826852B2 (en) 2009-07-09 2009-07-09 Semiconductor device, electro-optical device and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009162506A JP4826852B2 (en) 2009-07-09 2009-07-09 Semiconductor device, electro-optical device and electronic apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005205464A Division JP4419926B2 (en) 2005-07-14 2005-07-14 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2009278120A JP2009278120A (en) 2009-11-26
JP4826852B2 true JP4826852B2 (en) 2011-11-30

Family

ID=41443192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009162506A Expired - Fee Related JP4826852B2 (en) 2009-07-09 2009-07-09 Semiconductor device, electro-optical device and electronic apparatus

Country Status (1)

Country Link
JP (1) JP4826852B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102430876B1 (en) * 2015-04-30 2022-08-09 삼성디스플레이 주식회사 Organic light emitting diode display and method for repairing organic light emitting diode display
KR102540850B1 (en) * 2016-07-29 2023-06-07 삼성디스플레이 주식회사 Integrated circuit chip and display device comprising the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152164A (en) * 1986-12-17 1988-06-24 Fuji Electric Co Ltd Semiconductor device
JP3136714B2 (en) * 1991-11-20 2001-02-19 ヤマハ株式会社 Resistance formation method
SE511682C2 (en) * 1998-03-05 1999-11-08 Etchtech Sweden Ab Resistance in electrical conductors on or in circuit boards, substrates and semiconductor trays
WO2003007379A1 (en) * 2001-07-12 2003-01-23 Hitachi, Ltd. Electronic circuit component

Also Published As

Publication number Publication date
JP2009278120A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
KR100546346B1 (en) Method for forming redistribution bump, semiconductor chip and mount structure fabricated using same
JP4784304B2 (en) Electronic component, method for manufacturing electronic component, circuit board, and electronic device
JP3969295B2 (en) SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, CIRCUIT BOARD, ELECTRO-OPTICAL DEVICE, AND ELECTRONIC DEVICE
KR100643984B1 (en) Method for mounting semiconductor device, circuit board, electrooptic device, and electronic device
US8497432B2 (en) Electronic component mounting structure
JP4487875B2 (en) Method for manufacturing electronic substrate, method for manufacturing electro-optical device, and method for manufacturing electronic device
JP4419926B2 (en) Semiconductor device
JP3938128B2 (en) SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD, CIRCUIT BOARD, ELECTRO-OPTICAL DEVICE, AND ELECTRONIC DEVICE
JP4826852B2 (en) Semiconductor device, electro-optical device and electronic apparatus
US8237258B2 (en) Semiconductor module including a semiconductor device, a device mounting board, and a protecting layer therebetween
JP5088309B2 (en) Electronic substrate, electro-optical device, and electronic apparatus
JP4862390B2 (en) Manufacturing method of electronic substrate
JP4665631B2 (en) Electronic substrate, method for manufacturing the same, method for manufacturing electro-optical device, and method for manufacturing electronic apparatus
JP2009049154A (en) Semiconductor device, packaging structure, electrooptical device, and electronic equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4826852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees