JP4826657B2 - Vehicle control device - Google Patents
Vehicle control device Download PDFInfo
- Publication number
- JP4826657B2 JP4826657B2 JP2009138177A JP2009138177A JP4826657B2 JP 4826657 B2 JP4826657 B2 JP 4826657B2 JP 2009138177 A JP2009138177 A JP 2009138177A JP 2009138177 A JP2009138177 A JP 2009138177A JP 4826657 B2 JP4826657 B2 JP 4826657B2
- Authority
- JP
- Japan
- Prior art keywords
- engine
- vehicle
- rattling noise
- noise suppression
- driving force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000001629 suppression Effects 0.000 claims description 64
- 230000007423 decrease Effects 0.000 claims description 16
- 230000007246 mechanism Effects 0.000 description 25
- 239000000446 fuel Substances 0.000 description 17
- 230000006866 deterioration Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000881 depressing effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000001502 supplementing effect Effects 0.000 description 2
- 101100481912 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) tpc-1 gene Proteins 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/36—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
- B60K6/365—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/15—Control strategies specially adapted for achieving a particular effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
- B60K6/445—Differential gearing distribution type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/547—Transmission for changing ratio the transmission being a stepped gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/19—Improvement of gear change, e.g. by synchronisation or smoothing gear shift
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/0006—Vibration-damping or noise reducing means specially adapted for gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/48—Drive Train control parameters related to transmissions
- B60L2240/486—Operating parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0666—Engine torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/083—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/10—Change speed gearings
- B60W2710/1061—Output power
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Automation & Control Theory (AREA)
- General Engineering & Computer Science (AREA)
- Hybrid Electric Vehicles (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Description
本発明は、エンジン回転速度が上昇されるようにエンジンの運転点を変更してトランスアクスルのギア歯打ち音を抑制する歯打ち音抑制制御を実施する車両の制御装置に関する。 The present invention relates to a vehicle control device that performs gear rattling noise suppression control that suppresses gear rattling noise of a transaxle by changing an engine operating point so that an engine rotation speed is increased.
近年、燃費向上やエミッションの改善等を目的として、エンジンと電動機との2つの駆動源を備えるハイブリッド車両が実用されている。ハイブリッド車両には、遊星歯車機構からなる動力分配機構を備えるものがある。こうした動力分配機構付きのハイブリッド車両では、エンジン出力を駆動軸と電動機とに分配してエンジン出力の一部を用いて車両走行中に発電を行ったり、エンジン出力と電動機出力とを合成して駆動軸に出力したり、車両の制動時に駆動軸の動力で電動機に回生発電を行わせることで制動力を付与したりすることができる。 In recent years, hybrid vehicles including two drive sources, an engine and an electric motor, have been put into practical use for the purpose of improving fuel consumption and emission. Some hybrid vehicles include a power distribution mechanism including a planetary gear mechanism. In such a hybrid vehicle with a power distribution mechanism, the engine output is distributed to the drive shaft and the electric motor, and a part of the engine output is used to generate electric power while the vehicle is running, or the engine output and the electric motor output are combined for driving. The braking force can be applied by outputting to the shaft or by causing the electric motor to generate regenerative power with the power of the drive shaft during braking of the vehicle.
また上記のような動力分配機構付きのハイブリッド車両として、上記電動機(第1電動機)の他に、動力分配機構の駆動軸側にもう一つの電動機(第2電動機)を備え、2つの電動機の力行、回生を制御して車両を走行させるものが提案されてもいる。こうしたハイブリッド車両では、様々な運転モードでの車両走行が可能となる。例えば第1電動機で電力を回生し、この電力で第2電動機を駆動することで、駆動軸を低回転、高トルクで運転するオーバードライブモードや、両電動機を力行して高い加速性を実現する加速モード、一方又は双方の電動機で電力を回生することで、そのエネルギー分の制動力を駆動軸に付与する制動モードなどである。 Moreover, as a hybrid vehicle with a power distribution mechanism as described above, in addition to the electric motor (first electric motor), another electric motor (second electric motor) is provided on the drive shaft side of the power distribution mechanism. In addition, there has been proposed a vehicle that travels by controlling regeneration. Such a hybrid vehicle can travel in various driving modes. For example, by regenerating electric power with the first electric motor and driving the second electric motor with this electric power, an overdrive mode in which the drive shaft is operated with low rotation and high torque, and both motors are powered to achieve high acceleration. There are an acceleration mode, a braking mode in which power is regenerated by one or both electric motors, and a braking force corresponding to the energy is applied to the drive shaft.
更に遊星歯車機構の一軸(例えばリングギア軸)にエンジン出力軸を、他の軸(例えばサンギア軸)に電動機を、残りの一軸(例えばキャリア軸)を駆動軸にそれぞれ結合した電気式トルクコンバーターを採用するハイブリッド車両も提案されている。こうした電気式トルクコンバーターでは、電動機の三相コイルに電気を全く流さない無負荷状態とすれば、キャリア軸が空転するようになり、エンジンが運転されていても動力は出力されないようになる。この状態から電動機の三相コイルに徐々に電流が流れるように電流の回生を始めると、回生電流に応じた制動力がサンギア軸に生じるようになり、エンジントルクが倍力されて駆動軸に出力されるようになる。 Furthermore, an electric torque converter in which an engine output shaft is coupled to one shaft (for example, a ring gear shaft) of the planetary gear mechanism, an electric motor is coupled to the other shaft (for example, a sun gear shaft), and the other shaft (for example, the carrier shaft) is coupled to a drive shaft. Hybrid vehicles have also been proposed. In such an electric torque converter, if no load is applied to the three-phase coil of the electric motor, the carrier shaft will idle, and no power will be output even if the engine is operating. When current regeneration starts so that current gradually flows through the three-phase coil of the motor from this state, braking force corresponding to the regenerative current is generated in the sun gear shaft, and engine torque is boosted and output to the drive shaft Will come to be.
ところで、こうした動力分配機構や電気式トルクコンバーターを備えるハイブリッド車両では、遊星歯車機構のようなトランスアクスルのギア機構から、ガラ音と呼ばれる歯打ち音が発生することがある。こうした歯打ち音は、ギア同士の噛み合わせには僅かな隙間があり、ギアを駆動する動力の変動により、ギアの歯同士が衝突と離間とを繰り返すことで発生する。 By the way, in a hybrid vehicle including such a power distribution mechanism and an electric torque converter, a rattling sound called a rattling sound may be generated from a gear mechanism of a transaxle such as a planetary gear mechanism. Such rattling noise is generated when there is a slight gap in the meshing between the gears, and the gear teeth repeatedly collide and separate due to fluctuations in the power that drives the gears.
そこで従来、特許文献1及び2に見られるように、トランスアクスルの歯打ち音が発生するような状況となったときに、エンジン回転速度を上昇させるようにエンジンの運転点(エンジン回転速度、エンジントルク)を変更して、歯打ち音を抑制する車両の制御装置が提案されている。図6は、こうした従来の車両の制御装置における歯打ち音抑制制御時のエンジン運転点の変更態様を示している。同図に示される通常動作ラインは、通常の運転状態において各エンジン出力におけるエンジン運転点をプロットしたラインとなっている。また同図の歯打ち音抑制ラインは、各エンジン出力においてギアの歯打ち音を抑制可能なエンジンの運転点をプロットしたラインとなっている。歯打ち音の抑制は、通常動作ライン上から歯打ち音抑制ライン上へとエンジンの運転点を変更することで達成される。そして上記従来の車両の制御装置では、歯打ち音抑制制御の実施に際してエンジン出力が変化されないように、エンジン出力が一定となる等パワーラインに沿って通常動作ライン上の点から歯打ち音抑制ライン上の点へとエンジンの運転点を変更するようにしている。ちなみに同図に示される最適燃費ラインは、各エンジン出力において燃費が最善となるエンジンの運転点をプロットしたラインとなっている。
Therefore, conventionally, as seen in
ところで、上記のような歯打ち音抑制制御の実施にあたり、エンジン回転速度があまり大きく変更されると、エンジン音が変化して運転者に違和感を与えることがある。そのため、歯打ち音抑制制御を行う車両では、歯打ち音抑制ラインにある程度近いところにエンジンの通常動作ラインを設定せざるを得ないようになっており、その結果、エンジンの通常動作ラインが最適燃費ラインから離れてしまい、燃費が悪化してしまうようになっている。 By the way, in the implementation of the rattling noise suppression control as described above, if the engine rotation speed is changed too large, the engine sound may change and give the driver a sense of incongruity. For this reason, in vehicles that perform rattling noise suppression control, the normal operation line of the engine must be set somewhere close to the rattling noise suppression line, and as a result, the engine normal operation line is optimal. It leaves the fuel efficiency line and the fuel efficiency gets worse.
本発明は、こうした実状に鑑みてなされたものであって、その解決しようとする課題は、燃費の悪化を抑えつつ、トランスアクスルのギア歯打ち音を抑制することのできる車両の制御装置を提供することにある。 The present invention has been made in view of such a situation, and a problem to be solved is to provide a vehicle control device capable of suppressing gear rattling noise of a transaxle while suppressing deterioration of fuel consumption. There is to do.
以下、上記課題を解決するための手段、及びその作用効果を記載する。
本発明に係る車両の制御装置では、エンジン回転速度が上昇されるようにエンジンの運転点を変更してトランスアクスルに設けられたギアの歯打ち音を抑制する歯打ち音抑制制御を実施するようにしている。そして請求項1に記載の車両の制御装置では、このときの歯打ち音抑制制御の実施に際して、エンジン出力が低下されるようにエンジンの運転点を変更するようにしている。また請求項2に記載の車両の制御装置では、このときの歯打ち音抑制制御の実施に際して、その実施前のエンジンの等パワーラインよりも、エンジン出力が低下される側にエンジンの運転点を変更するようにしている。
Hereinafter, means for solving the above-described problems and the effects thereof will be described.
In the vehicle control apparatus according to the present invention, the rattling noise suppression control is performed to change the operating point of the engine so as to increase the engine rotation speed and to suppress the rattling noise of the gear provided in the transaxle. I have to. In the vehicle control apparatus according to the first aspect, when the gear rattle noise suppression control is performed at this time, the engine operating point is changed so that the engine output is reduced. In the vehicle control apparatus according to claim 2, when the rattling noise suppression control is performed at this time, the engine operating point is set on the side where the engine output is reduced from the equal power line of the engine before the execution. I am trying to change it.
エンジン出力が低下するように、或いはその実施前のエンジンの等パワーラインよりもエンジン出力が低下される側に、エンジンの運転点を変更した場合には、エンジン出力を一定に維持しつつエンジン運転点を変更した場合に比して、上記歯打ち音抑制ライン上に至るまでのエンジン回転速度の変更量を少なくすることができる。換言すれば、歯打ち音抑制ラインからより離れたところに、すなわち最適燃費ラインにより近いところに通常動作ラインを設定することができるようになる。そのため、上記構成によれば、燃費の悪化を抑えつつ、トランスアクスルのギア歯打ち音を抑制することができるようになる。 If the engine operating point is changed so that the engine output is reduced or the engine output is reduced from the equal power line of the engine before the engine is run, the engine operation is maintained while maintaining the engine output constant. Compared to the case where the point is changed, the amount of change in the engine speed until reaching the above-mentioned rattling noise suppression line can be reduced. In other words, the normal operation line can be set further away from the rattling noise suppression line, that is, closer to the optimum fuel consumption line. Therefore, according to the above configuration, it is possible to suppress the gear rattling noise of the transaxle while suppressing deterioration of fuel consumption.
ところで、歯打ち音抑制制御の実施に伴う車両の駆動力の低下は、運転者がアクセルペダルを踏み増しすることで対応すれば良いとの考えもある。ただし、そうした場合にも、次のような問題が生じる。すなわち、車両では、運転者のアクセル操作量の検出結果に基づいて、車両の要求駆動力を推定し、その推定結果を変速制御などの車両制御に活用するようにしている。一方、エンジン出力が低下するように歯打ち音抑制制御を実施したときには、歯打ち音抑制制御の非実施時に比べ、アクセル操作量が同じでも、発生されるエンジントルクは小さくなる。そのため、歯打ち音抑制制御の実施時には、アクセル操作量から推定される車両の要求駆動力が実情と似わなくなってしまうようになる。そこで、請求項1及び請求項2に記載の車両の制御装置では、アクセル操作量に基づき車両の要求駆動力を演算する手段であって、歯打ち音抑制制御の実施時には、その実施に伴うエンジントルクの低下分、前記要求駆動力を小さく演算するように要求駆動力演算手段を構成している。この構成によれば、歯打ち音抑制制御の実施時にも、車両の要求駆動力の推定結果を実情と一致させることができるようになる。
By the way, there is an idea that the decrease in the driving force of the vehicle accompanying the implementation of the rattling noise suppression control may be dealt with by the driver depressing the accelerator pedal. However, even in such a case, the following problems arise. That is, the vehicle estimates the required driving force of the vehicle based on the detection result of the driver's accelerator operation amount, and uses the estimation result for vehicle control such as shift control. On the other hand, when the rattling noise suppression control is performed so that the engine output decreases, the generated engine torque is small even if the accelerator operation amount is the same as when the rattling noise suppression control is not performed. Therefore, when the gear rattle noise suppression control is performed, the required driving force of the vehicle estimated from the accelerator operation amount does not resemble the actual situation. Therefore, in the vehicle control apparatus according to
以下、本発明の車両の制御装置を具体化した一実施形態を、図1〜図4を参照して詳細に説明する。
図1は、本実施形態に係る車両の制御装置の適用されるハイブリッド車両の駆動系の構成を示している。同図に示すように、このハイブリッド車両は、車両の駆動源としてエンジンENGと2つの電動機(第1電動機MG1及び第2電動機MG2)とを備えている。またこのハイブリッド車両のトランスアクスルには、動力分配機構や電気式トルクコンバーターとして機能する2つの遊星歯車機構、すなわちフロント遊星歯車機構P1及びリア遊星歯車機構P2が備えられている。
Hereinafter, an embodiment of a vehicle control device according to the present invention will be described in detail with reference to FIGS.
FIG. 1 shows a configuration of a drive system of a hybrid vehicle to which a vehicle control device according to this embodiment is applied. As shown in the figure, this hybrid vehicle includes an engine ENG and two electric motors (a first electric motor MG1 and a second electric motor MG2) as a drive source of the vehicle. Further, the transaxle of the hybrid vehicle is provided with two planetary gear mechanisms that function as a power distribution mechanism and an electric torque converter, that is, a front planetary gear mechanism P1 and a rear planetary gear mechanism P2.
同図に示すように、エンジンENGの出力軸は、フライホイールF/W及びダンパーDMPを介して、サンギアs1、キャリアc1、リングギアr1の3回転要素からなるフロント遊星歯車機構P1のキャリアc1に接続されている。こうしたフロント遊星歯車機構P1のサンギアs1は、上記第1電動機MG1の回転子に一体回転可能に接続されている。またフロント遊星歯車機構P1のリングギアr1は、リア遊星歯車機構P2のリングギアr2に一体回転可能に接続されている。リア遊星歯車機構P2は、トランスアクスルの出力軸OSに、ひいては当該ハイブリッド車両の駆動軸であるプロペラシャフトPSに一体回転可能に接続されたサンギアs2と、回転不能に固定されたキャリアc2とを備えている。そしてプロペラシャフトPSには、第2電動機MG2の回転子が一体回転可能に接続されている。 As shown in the figure, the output shaft of the engine ENG is connected to the carrier c1 of the front planetary gear mechanism P1 including three rotational elements of the sun gear s1, the carrier c1, and the ring gear r1 via the flywheel F / W and the damper DMP. It is connected. The sun gear s1 of the front planetary gear mechanism P1 is connected to the rotor of the first electric motor MG1 so as to be integrally rotatable. The ring gear r1 of the front planetary gear mechanism P1 is connected to the ring gear r2 of the rear planetary gear mechanism P2 so as to be integrally rotatable. The rear planetary gear mechanism P2 includes a sun gear s2 that is connected to the output shaft OS of the transaxle and thus to the propeller shaft PS that is a drive shaft of the hybrid vehicle, and a carrier c2 that is fixed so as not to rotate. ing. The rotor of the second electric motor MG2 is connected to the propeller shaft PS so as to be integrally rotatable.
こうしたハイブリッド車両のエンジンENG、第1電動機MG1及び第2電動機MG2は、電子制御ユニットECUにより制御されている。電子制御ユニットECUには、エンジン回転速度を検出するNEセンサーS1、車速を検出する車速センサS2、運転者のアクセル操作量を検出するアクセルセンサーS3を始めとする各種のセンサーが接続されている。そして電子制御ユニットECUは、それらセンサーにより検出されるハイブリッド車両の走行状況に基づいてエンジンENG、第1電動機MG1及び第2電動機MG2の制御を実施する。 The engine ENG, the first electric motor MG1, and the second electric motor MG2 of such a hybrid vehicle are controlled by the electronic control unit ECU. The electronic control unit ECU is connected with various sensors including an NE sensor S1 for detecting the engine speed, a vehicle speed sensor S2 for detecting the vehicle speed, and an accelerator sensor S3 for detecting the accelerator operation amount of the driver. The electronic control unit ECU controls the engine ENG, the first electric motor MG1, and the second electric motor MG2 based on the traveling state of the hybrid vehicle detected by these sensors.
さて、こうしたハイブリッド車両では、第2電動機MG2のトルクが「0」近傍となると、フロント遊星歯車機構P1及びリア遊星歯車機構P2を構成するギアの歯打ち音が発生し易くなる。こうしたギアの歯打ち音は、エンジン回転速度及びエンジントルクにより規定されるエンジンENGの運転点を、高回転、低トルク側に変更することで、その抑制が可能である。そこで電子制御ユニットECUは、第2電動機MG2のトルクが「0」近傍となるときには、エンジン回転速度が上昇されるようにエンジンENGの運転点を変更してギアの歯打ち音の抑制を図るようにしている。 Now, in such a hybrid vehicle, when the torque of the second electric motor MG2 is in the vicinity of “0”, the gear rattling noise of the front planetary gear mechanism P1 and the rear planetary gear mechanism P2 is likely to occur. Such gear rattling noise can be suppressed by changing the operating point of the engine ENG, which is defined by the engine speed and engine torque, to a higher rotation and lower torque side. Therefore, the electronic control unit ECU changes the operating point of the engine ENG so as to suppress the gear rattling noise so that the engine rotation speed is increased when the torque of the second electric motor MG2 is in the vicinity of “0”. I have to.
このとき、従来の車両の制御装置では、歯打ち音抑制制御の実施に際して、エンジン出力が変化しないように、エンジン出力が一定となる等パワーラインに沿ってエンジンENGの運転点を変更するようにしていた。すなわち、図2に実線で示すように、通常動作ライン上の点Aから歯打ち音抑制ライン上の点Bへと、等パワーラインに沿ってエンジンENGの運転点を変化させるようにしていた。 At this time, in the conventional vehicle control device, when the rattling noise suppression control is performed, the operating point of the engine ENG is changed along an equal power line where the engine output is constant so that the engine output does not change. It was. That is, as indicated by a solid line in FIG. 2, the operating point of the engine ENG is changed along the equal power line from the point A on the normal operation line to the point B on the rattling noise suppression line.
これに対して本実施形態の車両の制御装置では、このときの歯打ち音抑制制御の実施に際して、エンジン出力が低下されるようにエンジンENGの運転点を変更するようにしている。すなわち、本実施形態では、図2に点線で示すように、通常動作ライン上の点Aから、その点Aを通るエンジンENGの等パワーラインよりも、エンジン出力が低下される側の点CへとエンジンENGの運転点を変更するようにしている。 On the other hand, in the vehicle control apparatus of this embodiment, when the rattling noise suppression control is performed at this time, the operating point of the engine ENG is changed so that the engine output is reduced. That is, in the present embodiment, as indicated by a dotted line in FIG. 2, from the point A on the normal operation line to the point C on the side where the engine output is reduced from the equal power line of the engine ENG passing through the point A. And the operating point of the engine ENG is changed.
こうした本実施形態の車両の制御装置によれば、燃費の悪化を抑えつつ、トランスアクスルのギア歯打ち音を抑制することができるようになる。以下、この理由について説明する。 According to the vehicle control apparatus of the present embodiment, it is possible to suppress the gear rattling noise of the transaxle while suppressing deterioration of fuel consumption. Hereinafter, this reason will be described.
歯打ち音抑制制御に際してのエンジンENGの変更先を、等パワーライン上の点Aからエンジン出力が低下する点Cへと変更すれば、図2に示されるように、歯打ち音抑制制御によるエンジン回転速度の変更量は小さくなる。なお上述したように、歯打ち音抑制制御に際してのエンジン回転速度の変更量には、限界がある。そのため、図3に実線にて示すように、エンジンENGの通常動作ラインを歯打ち音抑制ラインにある程度近いところに設定せざるを得ず、その結果、エンジンENGの通常動作ラインが最適燃費ラインから離れてしまい、燃費が悪化してしまうことがある。 If the change destination of the engine ENG in the rattling noise suppression control is changed from the point A on the equal power line to the point C where the engine output decreases, the engine by the rattling noise suppression control as shown in FIG. The amount of change in rotational speed is small. As described above, there is a limit to the amount of change in the engine rotation speed during the rattling noise suppression control. Therefore, as indicated by a solid line in FIG. 3, the normal operation line of the engine ENG must be set to a position somewhat close to the rattling noise suppression line, and as a result, the normal operation line of the engine ENG is separated from the optimum fuel consumption line. It may leave, and fuel consumption may deteriorate.
これに対して本実施形態の車両の制御装置では、上述したように同じ運転点を起点としてエンジンENGの運転点を変更した場合、歯打ち音抑制制御に際してのエンジン回転速度の変更量は、従来の場合よりも少なくなる。換言すれば、歯打ち音抑制制御に際してのエンジン回転速度の変更量が同じであれば、従来の場合よりも、変更の起点を最適燃費ラインに近いところに設定することができるようになる。そのため、本実施形態によれば、図3に一点鎖線で示すように、エンジンENGの通常動作ラインを従来の場合よりも最適燃費ラインの近くに設定することができ、歯打ち音抑制制御を実施可能とするための燃費の悪化を抑制することができるようになる。 On the other hand, in the vehicle control device of the present embodiment, when the operating point of the engine ENG is changed starting from the same operating point as described above, the amount of change in the engine rotational speed during the rattling noise suppression control is conventionally Less than the case. In other words, if the amount of change in the engine rotation speed during the gear rattle noise suppression control is the same, the starting point of the change can be set closer to the optimum fuel consumption line than in the conventional case. Therefore, according to the present embodiment, as indicated by a one-dot chain line in FIG. 3, the normal operation line of the engine ENG can be set closer to the optimum fuel consumption line than in the conventional case, and the rattling noise suppression control is performed. It becomes possible to suppress the deterioration of fuel consumption to make it possible.
なお、こうして歯打ち音抑制制御を行った場合、その実施とともにエンジン出力が、ひいては車両の駆動力が低下してしまうようになる。そこで本実施形態では、そうした歯打ち音抑制制御の実施に伴うエンジントルクの低下分を第2電動機MG2のトルクの増加を通じて補完することで、車両の駆動力を維持するようにしている。 Note that when the rattling noise suppression control is performed in this way, the engine output and, consequently, the driving force of the vehicle will decrease with the implementation. Therefore, in the present embodiment, the driving force of the vehicle is maintained by supplementing the decrease in engine torque accompanying the implementation of such rattling noise suppression control through the increase in torque of the second electric motor MG2.
図4は、こうした本実施形態に採用される歯打ち音抑制制御ルーチンのフローチャートを示している。本ルーチンの処理は、電子制御ユニットECUによって、車両の稼働中、周期的に繰り返し実施されるものとなっている。 FIG. 4 shows a flowchart of the rattling noise suppression control routine employed in this embodiment. The processing of this routine is repeatedly performed periodically by the electronic control unit ECU during operation of the vehicle.
さて本ルーチンが開始されると、電子制御ユニットECUはまずステップS101において、歯打ち音発生条件が成立しているか否かを、すなわちトランスアクスルに設けられたギアの歯打ち音が発生し得る状況にあるか否かを判定する。具体的には、本実施形態では、第2電動機MG2の発生トルクTmが規定の判定値Tm1以下であれば、ギアの歯打ち音が発生し得る状況にあると判定するようにしている。ここで歯打ち音が発生し得る状況にないと判定されれば(S101:NO)、電子制御ユニットECUはそのまま今回の本ルーチンの処理を終了する。 When this routine is started, the electronic control unit ECU first determines in step S101 whether or not a rattling sound generation condition is satisfied, that is, a situation where a gear rattling sound can be generated in the transaxle. It is determined whether or not. Specifically, in the present embodiment, if the generated torque Tm of the second electric motor MG2 is equal to or less than a predetermined determination value Tm1, it is determined that the gear rattling sound can be generated. If it is determined that there is no situation where a rattling sound can be generated (S101: NO), the electronic control unit ECU ends the processing of this routine as it is.
一方、歯打ち音の発生の懸念があれば(S101:YES)、電子制御ユニットECUはステップS102、S103において、歯打ち音を抑制可能なエンジン回転速度Ne及びエンジントルクTeを、すなわち歯打ち音を抑制可能なエンジンENGの運転点を演算する。このときのエンジン回転速度Neは、車速spdとエンジン出力Peとの2次元マップを用いて演算され、エンジントルクTeは、車速spdと、ここで演算したエンジン回転速度Neとの2次元マップを用いて演算される。なお、このときの制御目標となるエンジンENGの運転点(Ne,Te)は、上述したようにエンジン出力が低下するように設定されるようになっている。 On the other hand, if there is a concern about the occurrence of rattling noise (S101: YES), the electronic control unit ECU determines in step S102 and S103 the engine rotational speed Ne and engine torque Te that can suppress the rattling noise, that is, rattling noise. The operating point of the engine ENG that can suppress the above is calculated. The engine rotation speed Ne at this time is calculated using a two-dimensional map of the vehicle speed spd and the engine output Pe, and the engine torque Te is calculated using a two-dimensional map of the vehicle speed spd and the calculated engine rotation speed Ne. Is calculated. Note that the operating point (Ne, Te) of the engine ENG, which is the control target at this time, is set so that the engine output decreases as described above.
続いて電子制御ユニットECUは、ステップS104において、上記運転点の変更に伴うプロペラシャフトPSの減少量を演算し、その減少分を補完可能な第2電動機MG2の発生トルク(補完トルクTm)を演算する。ここでは、この補完トルクTmを、下式を用いて演算するようにしている。なお下式において、「ρr」はリア遊星歯車機構P2のプラネタリギア比を、「ρf」はフロント遊星歯車機構P1のプラネタリギア比をそれぞれ示している。また「Tpc」は、プロペラシャフトPSの要求トルク(要求ペラ軸トルク)を示している。 Subsequently, in step S104, the electronic control unit ECU calculates the reduction amount of the propeller shaft PS accompanying the change of the operating point, and calculates the generated torque (complementary torque Tm) of the second electric motor MG2 capable of complementing the reduction amount. To do. Here, the complementary torque Tm is calculated using the following equation. In the following equation, “ρr” represents the planetary gear ratio of the rear planetary gear mechanism P2, and “ρf” represents the planetary gear ratio of the front planetary gear mechanism P1. “Tpc” indicates a required torque of the propeller shaft PS (required peller shaft torque).
Tm=−1/ρr×{Tpc−1/(1+ρf)×Te}
こうして第2電動機MG2の発生トルクTmを演算した後、電子制御ユニットECUは、今回の本ルーチンの処理を終了する。なおその後、電子制御ユニットECUは、先のステップS102,S103にて演算したエンジン回転速度Ne及びエンジントルクTeにより示される運転点へとエンジンENGを制御するとともに、ステップS104にて演算した補完トルクTmが得られるように第2電動機MG2を制御する。
Tm = −1 / ρr × {Tpc−1 / (1 + ρf) × Te}
After calculating the generated torque Tm of the second electric motor MG2 in this way, the electronic control unit ECU ends the process of this routine. After that, the electronic control unit ECU controls the engine ENG to the operating point indicated by the engine rotational speed Ne and the engine torque Te calculated in the previous steps S102 and S103, and the complementary torque Tm calculated in the step S104. The second electric motor MG2 is controlled so that
以上説明した本実施形態の車両の制御装置によれば、次の効果を奏することができる。
(1)本実施形態では、車両のトランスアクスルに設けられたギアの歯打ち音を抑制すべく、エンジン回転速度が上昇されるようにエンジンENGの運転点を変更する歯打ち音抑制制御を実施するようにしている。そして本実施形態では、このときの歯打ち音抑制制御の実施に際して、エンジン出力が低下されるようにエンジンENGの運転点を変更するようにしている。すなわち、本実施形態では、このときの歯打ち音抑制制御の実施に際して、その実施前のエンジンENGの等パワーラインよりも、エンジン出力が低下される側にエンジンENGの運転点を変更するようにしている。こうしてエンジン出力が低下するように、或いはその実施前のエンジンENGの等パワーラインよりもエンジン出力が低下される側に、エンジンENGの運転点を変更した場合には、エンジン出力を一定に維持しつつエンジン運転点を変更した場合に比して、上記歯打ち音抑制ライン上に至るまでのエンジン回転速度の変更量を少なくすることができる。換言すれば、歯打ち音抑制ラインからより離れたところに、すなわち最適燃費ラインにより近いところに通常動作ラインを設定することができるようになる。そのため、本実施形態によれば、燃費の悪化を抑えつつ、トランスアクスルのギア歯打ち音を抑制することができるようになる。
According to the vehicle control apparatus of the present embodiment described above, the following effects can be obtained.
(1) In this embodiment, gear rattling noise suppression control is performed to change the operating point of the engine ENG so that the engine rotation speed is increased in order to suppress gear rattling noise provided in the transaxle of the vehicle. Like to do. In this embodiment, when the rattling noise suppression control is performed at this time, the operating point of the engine ENG is changed so that the engine output is reduced. That is, in the present embodiment, when the rattling noise suppression control is performed at this time, the operating point of the engine ENG is changed to the side where the engine output is reduced with respect to the equal power line of the engine ENG before the execution. ing. If the operating point of the engine ENG is changed so that the engine output is reduced in this way, or the engine output is reduced to a side where the engine output is lower than the equal power line of the engine ENG before the implementation, the engine output is kept constant. However, compared with the case where the engine operating point is changed, it is possible to reduce the amount of change in the engine speed until reaching the rattling noise suppression line. In other words, the normal operation line can be set further away from the rattling noise suppression line, that is, closer to the optimum fuel consumption line. Therefore, according to the present embodiment, it is possible to suppress the gear rattling noise of the transaxle while suppressing deterioration of fuel consumption.
(2)本実施形態では、歯打ち音抑制制御の実施に伴うエンジントルクの低下分を第2電動機MG2の発生トルクTmの増加を通じて補完するようにしている。そのため、歯打ち音抑制制御の実施によるエンジン出力の低下に拘らず、車両の駆動力を維持することができるようになる。 (2) In the present embodiment, the decrease in engine torque accompanying the implementation of the rattling noise suppression control is complemented by increasing the generated torque Tm of the second electric motor MG2. Therefore, the driving force of the vehicle can be maintained regardless of a decrease in engine output due to the implementation of the rattling noise suppression control.
(第2の実施形態)
続いて、本発明の車両の制御装置を具体化した第2実施形態を、図5を併せ参照して、上記実施形態と異なる点を中心に説明する。
(Second Embodiment)
Next, a second embodiment in which the vehicle control device of the present invention is embodied will be described with a focus on differences from the above embodiment with reference to FIG.
第1の実施形態では、歯打ち音抑制制御の実施に伴うエンジントルクの低下分を第2電動機MG2の発生トルクTmの増加を通じて補完することで、車両の駆動力を維持するようにしていた。もっとも、歯打ち音抑制制御の実施に伴う車両の駆動力の低下は、運転者がアクセルペダルを踏み増しすることで対応すれば良いとの考えもある。この場合、歯打ち音抑制制御の実施時には、運転者がアクセルペダルを踏み増ししない限り、車両の駆動力は成り行きにまかせて減少するようになる。 In the first embodiment, the driving force of the vehicle is maintained by supplementing the decrease in the engine torque accompanying the execution of the rattling noise suppression control through the increase in the generated torque Tm of the second electric motor MG2. However, there is an idea that the decrease in the driving force of the vehicle accompanying the implementation of the rattling noise suppression control may be dealt with by the driver depressing the accelerator pedal. In this case, when the rattling noise suppression control is performed, unless the driver depresses the accelerator pedal, the driving force of the vehicle is reduced depending on the outcome.
ただし、そうした場合には、次のような問題が生じる。すなわち、車両では、運転者のアクセル操作量Accθの検出結果に基づいて車両の要求駆動力を推定し、その推定結果を変速制御などの車両制御に活用するようにしている。一方、エンジン出力が低下するように歯打ち音抑制制御を実施したときには、そうでないときに比して、アクセル操作量Accθが同じでも、発生されるエンジントルクは小さくなる。そのため、歯打ち音抑制制御の実施時には、アクセル操作量Accθから推定される車両の要求駆動力が実情と似わなくなってしまうようになる。 However, in such a case, the following problems arise. That is, the vehicle estimates the required driving force of the vehicle based on the detection result of the driver's accelerator operation amount Accθ, and uses the estimation result for vehicle control such as shift control. On the other hand, when the rattling noise suppression control is performed so that the engine output is reduced, the generated engine torque is small even when the accelerator operation amount Accθ is the same as compared with the case where it is not. Therefore, the required driving force of the vehicle estimated from the accelerator operation amount Accθ does not resemble the actual situation when the gear rattle noise suppression control is performed.
そこで本実施形態では、電子制御ユニットECUは、アクセル操作量Accθに基づき車両の要求駆動力を演算するとともに、歯打ち音抑制制御の実施時には、その実施に伴うエンジントルクの低下分、上記要求駆動力を小さく演算するようにしている。そしてこれにより、アクセル操作量Accθから推定される車両の要求駆動力と、その実情との乖離を回避するようにしている。 Therefore, in the present embodiment, the electronic control unit ECU calculates the required driving force of the vehicle based on the accelerator operation amount Accθ, and at the time of executing the rattling noise suppression control, the above-mentioned required driving is reduced by the engine torque reduction associated with the execution. The power is calculated to be small. Thus, a deviation between the required driving force of the vehicle estimated from the accelerator operation amount Accθ and the actual situation is avoided.
図5は、こうした本実施形態に採用される歯打ち音抑制制御のフローチャートを示している。本ルーチンの処理もまた、電子制御ユニットECUによって、車両の稼働中、周期的に繰り返し実施されるものとなっている。 FIG. 5 shows a flowchart of the rattling noise suppression control employed in this embodiment. The processing of this routine is also repeatedly performed periodically by the electronic control unit ECU during operation of the vehicle.
さて本ルーチンが開始されると、電子制御ユニットECUはまずステップS201において、トランスアクスルに設けられたギアの歯打ち音が発生し得る状況にあるか否かを判定する。具体的には、本実施形態では、第2電動機MG2の発生トルクTmが規定の判定値Tm1以下であれば、ギアの歯打ち音が発生し得る状況にあると判定するようにしている。ここで歯打ち音が発生し得る状況にないと判定されれば(S201:NO)、電子制御ユニットECUはそのまま今回の本ルーチンの処理を終了する。 When this routine is started, the electronic control unit ECU first determines in step S201 whether or not the gear rattling sound provided in the transaxle can be generated. Specifically, in the present embodiment, if the generated torque Tm of the second electric motor MG2 is equal to or less than a predetermined determination value Tm1, it is determined that the gear rattling sound can be generated. If it is determined that there is no situation where a rattling sound can be generated (S201: NO), the electronic control unit ECU ends the processing of this routine as it is.
一方、歯打ち音の発生の懸念があれば(S201:YES)、電子制御ユニットECUはステップS202、S203において、歯打ち音を抑制可能なエンジン回転速度Ne及びエンジントルクTeを、すなわち歯打ち音を抑制可能なエンジンENGの運転点を演算する。このときのエンジン回転速度Neは、車速spdとエンジン出力Peとの2次元マップを用いて演算され、エンジントルクTeは、車速spdと、ここで演算したエンジン回転速度Neとの2次元マップを用いて演算される。なお、このときの制御目標となるエンジンENGの運転点(Ne,Te)は、上述したようにエンジン出力が低下するように設定されるようになっている。 On the other hand, if there is a concern about the occurrence of rattling noise (S201: YES), the electronic control unit ECU determines the engine rotation speed Ne and the engine torque Te that can suppress the rattling noise in steps S202 and S203, that is, the rattling noise. The operating point of the engine ENG that can suppress the above is calculated. The engine rotation speed Ne at this time is calculated using a two-dimensional map of the vehicle speed spd and the engine output Pe, and the engine torque Te is calculated using a two-dimensional map of the vehicle speed spd and the calculated engine rotation speed Ne. Is calculated. Note that the operating point (Ne, Te) of the engine ENG, which is the control target at this time, is set so that the engine output decreases as described above.
そして電子制御ユニットECUは続くステップS204において、歯打ち音抑制制御の実施に伴うエンジントルクの低下分、通常よりもその値が小さくなるように、車両の要求駆動力Tdcを演算する。このときの要求駆動力Tdcは、車速spdとアクセル操作量Accθとの2次元マップTdc_mapを用いて演算されるようになっている。ここで演算された要求駆動力Tdcは、車両の駆動力についての運転者の要求を示すパラメーターとして、変速制御を始めとする各種の車両制御に用いられる。そして電子制御ユニットECUは、こうして要求駆動力Tdcを演算した後、今回の本ルーチンの処理を終了する。なお、こうした本実施形態では、電子制御ユニットECUが上記要求駆動力演算手段に相当する構成となっている。 In step S204, the electronic control unit ECU calculates the required driving force Tdc of the vehicle so that the value thereof becomes smaller than usual by the decrease in the engine torque associated with the implementation of the rattling noise suppression control. The required driving force Tdc at this time is calculated using a two-dimensional map Tdc_map of the vehicle speed spd and the accelerator operation amount Accθ. The required driving force Tdc calculated here is used for various vehicle controls including a shift control as a parameter indicating a driver's request for the driving force of the vehicle. Then, after calculating the required driving force Tdc in this way, the electronic control unit ECU ends the processing of this routine. In this embodiment, the electronic control unit ECU has a configuration corresponding to the required driving force calculating means.
以上説明した本実施形態の車両の制御装置によれば、上記(1)に記載の効果に加え、更に次の効果を奏することができるようになる。
(3)本実施形態では、電子制御ユニットECUは、アクセル操作量Accθに基づき車両の要求駆動力Tdcを演算するに際して、歯打ち音抑制制御の実施時には、その実施に伴うエンジントルクの低下分、要求駆動力Tdcを小さく演算するようにしている。そのため、本実施形態によれば、歯打ち音抑制制御の実施に伴うエンジン出力の低下に拘らず、車両の要求駆動力の推定結果を実情と一致させることができるようになる。
According to the vehicle control apparatus of the present embodiment described above, in addition to the effect described in (1) above, the following effect can be further achieved.
(3) In the present embodiment, the electronic control unit ECU calculates the required driving force Tdc of the vehicle based on the accelerator operation amount Accθ. The required driving force Tdc is calculated to be small. Therefore, according to the present embodiment, the estimation result of the required driving force of the vehicle can be matched with the actual situation regardless of the decrease in the engine output accompanying the execution of the rattling noise suppression control.
なお、上記の各実施形態は以下のように変更してもよい。
・第2実施形態では、電子制御ユニットECUは、歯打ち音抑制制御の実施時には、その実施に伴うエンジントルクの低下分、要求駆動力Tdcを小さく演算するようにしていた。もっとも、歯打ち音抑制制御の実施時におけるアクセル操作量Accθから推定される車両の要求駆動力とその実情との乖離が十分に無視し得る程度のものである場合には、こうした演算処理を割愛するようにしても良い。
In addition, you may change each said embodiment as follows.
In the second embodiment, the electronic control unit ECU calculates the required driving force Tdc by the amount corresponding to the decrease in the engine torque accompanying the execution of the rattling noise suppression control. However, when the deviation between the required driving force of the vehicle estimated from the accelerator operation amount Accθ and the actual situation when the gear rattle noise suppression control is performed is sufficiently negligible, such calculation processing is omitted. You may make it do.
・上記実施形態では、トランスアクスルの出力軸OSに直結された第2電動機MG2を備え、同第2電動機MG2の発生トルクが「0」近傍となるときに歯打ち音抑制制御を実施するようにしていた。こうした条件以外のときにも、トランスアクスルのギアの歯打ち音が発生し得る場合には、第2電動機MG2の発生トルクが「0」近傍となるとき以外に歯打ち音抑制制御を実施するようにしても良い。その場合にも、歯打ち音抑制制御の実施に際して、エンジン出力が低下されるように、或いはその実施前のエンジンENGの等パワーラインよりもエンジン出力が低下される側に、エンジンENGの運転点を変更するようにすれば、燃費の悪化を抑えつつ、トランスアクスルのギア歯打ち音を抑制することができるようになる。 In the above-described embodiment, the second electric motor MG2 directly connected to the output shaft OS of the transaxle is provided, and the rattling noise suppression control is performed when the generated torque of the second electric motor MG2 is close to “0”. It was. If the rattling noise of the transaxle gear can be generated even under conditions other than these conditions, the rattling noise suppression control is performed except when the torque generated by the second electric motor MG2 is near “0”. Anyway. Even in this case, when the gear rattle noise suppression control is performed, the operating point of the engine ENG is set so that the engine output is decreased, or on the side where the engine output is decreased from the equal power line of the engine ENG before the control. If this is changed, the gear rattling noise of the transaxle can be suppressed while suppressing the deterioration of fuel consumption.
・上記実施形態では、駆動源としてエンジンENG及び2つの電動機(MG1,MG2)を備え、トランスアクスルに2つの遊星歯車機構(P1,P2)を備えるハイブリッド車両に本発明を適用した場合について述べたが、本発明は、非ハイブリッド車両も含めて、これ以外の構成の駆動系を備える車両にも同様に適用することが可能である。 In the above embodiment, the case where the present invention is applied to a hybrid vehicle having the engine ENG and two electric motors (MG1, MG2) as drive sources and two planetary gear mechanisms (P1, P2) in the transaxle has been described. However, the present invention can be similarly applied to vehicles including drive systems having other configurations, including non-hybrid vehicles.
ENG…エンジン、MG1…第1電動機、MG2…第2電動機、P1…フロント遊星歯車機構(s1…サンギア,c1…キャリア,r1…リングギア)、P2…リア遊星歯車機構(s2…サンギア,c2キャリア,r2…リングギア)、F/W…フライホイール、DMP…ダンパー、OS…トランスアクスルの出力軸、PS…プロペラシャフト、ECU…電子制御ユニット(要求駆動力演算手段)、S1…NEセンサー、S2…車速センサー、S3…アクセルセンサー。 ENG ... engine, MG1 ... first motor, MG2 ... second motor, P1 ... front planetary gear mechanism (s1 ... sun gear, c1 ... carrier, r1 ... ring gear), P2 ... rear planetary gear mechanism (s2 ... sun gear, c2 carrier , R2 ... ring gear), F / W ... flywheel, DMP ... damper, OS ... transaxle output shaft, PS ... propeller shaft, ECU ... electronic control unit (required driving force calculation means), S1 ... NE sensor, S2 ... Vehicle speed sensor, S3 ... Accelerator sensor.
Claims (2)
前記歯打ち音抑制制御の実施に際して、エンジン出力が低下されるように前記運転点を変更する制御手段と、
アクセル操作量に基づき車両の要求駆動力を演算する手段であって、前記歯打ち音抑制制御の実施時には、その実施に伴うエンジントルクの低下分、前記要求駆動力を小さく演算する要求駆動力演算手段と
を備えることを特徴とする車両の制御装置。 In a vehicle control device that performs a rattling noise suppression control that suppresses the rattling noise of a gear provided in a transaxle by changing the operating point of the engine so that the engine rotation speed is increased.
Control means for changing the operating point so that the engine output is reduced when performing the rattling noise suppression control ,
A means for calculating a required driving force of a vehicle based on an accelerator operation amount, and a required driving force calculation for calculating a reduction in the required driving force by a decrease in engine torque accompanying the execution of the rattling noise suppression control. Means and
The control device for a vehicle, characterized in that it comprises a.
前記歯打ち音抑制制御の実施に際して、その実施前の前記エンジンの等パワーラインよりも、エンジン出力が低下される側に前記運転点を変更する制御手段と、
アクセル操作量に基づき車両の要求駆動力を演算する手段であって、前記歯打ち音抑制制御の実施時には、その実施に伴うエンジントルクの低下分、前記要求駆動力を小さく演算する要求駆動力演算手段と
を備えることを特徴とする車両の制御装置。 In a vehicle control device that performs gear rattle noise suppression control that changes the engine operating point so as to increase the engine rotation speed and suppress the gear rattling noise of the transaxle,
When the gear rattle noise suppression control is performed, control means for changing the operating point to a side where the engine output is reduced than the equal power line of the engine before the execution ,
A means for calculating a required driving force of a vehicle based on an accelerator operation amount, and a required driving force calculation for calculating a reduction in the required driving force by a decrease in engine torque accompanying the execution of the rattling noise suppression control. Means and
Control device for a vehicle, characterized in that it comprises a.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009138177A JP4826657B2 (en) | 2009-06-09 | 2009-06-09 | Vehicle control device |
PCT/IB2010/000860 WO2010143030A1 (en) | 2009-06-09 | 2010-04-16 | Control apparatus and control method for vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009138177A JP4826657B2 (en) | 2009-06-09 | 2009-06-09 | Vehicle control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010284991A JP2010284991A (en) | 2010-12-24 |
JP4826657B2 true JP4826657B2 (en) | 2011-11-30 |
Family
ID=42272425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009138177A Expired - Fee Related JP4826657B2 (en) | 2009-06-09 | 2009-06-09 | Vehicle control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4826657B2 (en) |
WO (1) | WO2010143030A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5673339B2 (en) * | 2011-05-11 | 2015-02-18 | トヨタ自動車株式会社 | Hybrid car |
JP2013082237A (en) * | 2011-10-05 | 2013-05-09 | Toyota Motor Corp | Control device of hybrid vehicle |
CN103857573A (en) * | 2011-10-06 | 2014-06-11 | 丰田自动车株式会社 | Hybrid vehicle control device |
JP5869385B2 (en) * | 2012-03-15 | 2016-02-24 | トヨタ自動車株式会社 | Hybrid vehicle control apparatus, hybrid vehicle including the same, and hybrid vehicle control method |
FR3032676B1 (en) * | 2015-02-17 | 2017-02-17 | Peugeot Citroen Automobiles Sa | METHOD AND DEVICE FOR CONTROLLING THE TORQUE PROVIDED BY A THERMAL MOTOR AND A MOTOR VEHICLE MACHINE, IN ACCORDANCE WITH THE LIMITED TORQUE SUPPORTED BY THE GEARBOX |
JP7135476B2 (en) * | 2018-06-13 | 2022-09-13 | 三菱自動車工業株式会社 | Vehicle power generation control device |
JP2020082925A (en) | 2018-11-20 | 2020-06-04 | トヨタ自動車株式会社 | Vehicular control apparatus |
KR20230049128A (en) * | 2020-09-16 | 2023-04-12 | 쩌지앙 길리 홀딩 그룹 씨오., 엘티디. | Motor noise control method, device, computer device and storage medium |
CN114368268B (en) * | 2021-08-24 | 2023-11-03 | 华为数字能源技术有限公司 | Power assembly, noise suppression method and electric automobile |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3262046B2 (en) * | 1997-09-17 | 2002-03-04 | トヨタ自動車株式会社 | Method for reducing gear rattle in gear mechanism, power output device, and hybrid vehicle equipped with this power output device |
JP3257486B2 (en) * | 1997-11-12 | 2002-02-18 | トヨタ自動車株式会社 | Power output device and internal combustion engine control device |
JP3997944B2 (en) * | 2003-04-22 | 2007-10-24 | トヨタ自動車株式会社 | Method for reducing gear rattling noise of drive train gear unit in hybrid vehicle |
JP4196958B2 (en) * | 2005-03-03 | 2008-12-17 | トヨタ自動車株式会社 | Hybrid vehicle and control method thereof |
JP4853281B2 (en) * | 2006-12-28 | 2012-01-11 | 日産自動車株式会社 | Gear rattle reduction device for hybrid vehicle |
JP4888154B2 (en) * | 2007-02-22 | 2012-02-29 | トヨタ自動車株式会社 | Vehicle and control method thereof |
-
2009
- 2009-06-09 JP JP2009138177A patent/JP4826657B2/en not_active Expired - Fee Related
-
2010
- 2010-04-16 WO PCT/IB2010/000860 patent/WO2010143030A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2010284991A (en) | 2010-12-24 |
WO2010143030A1 (en) | 2010-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4826657B2 (en) | Vehicle control device | |
JP4197013B2 (en) | Control device for hybrid vehicle | |
JP5776770B2 (en) | Vehicle control apparatus and control method | |
JP5648984B2 (en) | Hybrid vehicle | |
WO2012104904A1 (en) | Hybrid vehicle drive control device, control method, and hybrid vehicle | |
WO2012111040A1 (en) | Drive control device for hybrid vehicle and hybrid vehicle | |
JP5709093B2 (en) | Engine start control device for hybrid vehicle | |
JP2010089543A (en) | Vehicle control apparatus and control method | |
WO2013008306A1 (en) | Vehicle drive control apparatus | |
WO2008146941A1 (en) | Hybrid vehicle, hybrid vehicle control method, and computer-readable recording medium containing program for causing computer to execute the control method | |
JP6617668B2 (en) | Control device for hybrid vehicle | |
JP2011097666A (en) | Vehicle and control method therefor | |
JP2010047138A (en) | Vehicle control device | |
WO2008075479A1 (en) | Device and method for controlling vehicle | |
JP2008094238A (en) | Controller for hybrid car | |
JP2010143512A (en) | Control apparatus for hybrid vehicle | |
JP6146292B2 (en) | Hybrid car | |
JP2010163090A (en) | Hybrid car | |
WO2013005325A1 (en) | Vehicle control device and control method | |
JP5761327B2 (en) | Control device for hybrid vehicle | |
KR20160129740A (en) | Control apparatus for hybrid vehicle | |
JP5838870B2 (en) | Control device for hybrid vehicle | |
JP2012254688A (en) | Shift control device of hybrid vehicle | |
JP5869385B2 (en) | Hybrid vehicle control apparatus, hybrid vehicle including the same, and hybrid vehicle control method | |
JPWO2012104963A1 (en) | Hybrid vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110816 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110829 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140922 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140922 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |