WO2008146941A1 - Hybrid vehicle, hybrid vehicle control method, and computer-readable recording medium containing program for causing computer to execute the control method - Google Patents

Hybrid vehicle, hybrid vehicle control method, and computer-readable recording medium containing program for causing computer to execute the control method Download PDF

Info

Publication number
WO2008146941A1
WO2008146941A1 PCT/JP2008/060119 JP2008060119W WO2008146941A1 WO 2008146941 A1 WO2008146941 A1 WO 2008146941A1 JP 2008060119 W JP2008060119 W JP 2008060119W WO 2008146941 A1 WO2008146941 A1 WO 2008146941A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
accelerator pedal
hybrid vehicle
accelerator
accelerator opening
Prior art date
Application number
PCT/JP2008/060119
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Goda
Kenji Itagaki
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2008146941A1 publication Critical patent/WO2008146941A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • TECHNICAL FIELD A control method for a hybrid vehicle, a hybrid vehicle, and a computer-readable recording medium storing a program for causing a computer to execute the control method
  • the present invention relates to a hybrid vehicle equipped with an internal combustion engine and an electric motor for vehicle travel, a control method for a hybrid vehicle, and a computer-readable recording medium on which a program for causing a computer to execute the control method is recorded.
  • Hybrid vehicles are attracting much attention as environmentally friendly vehicles.
  • a hybrid vehicle is a vehicle in which a power storage device, an inverter, and a motor driven by an inverter are mounted as a power source in addition to a conventional engine.
  • hybrid vehicle there is known a vehicle that can travel only by a motor without starting an engine (hereinafter, such traveling is referred to as “EV (Electric Vehicle) traveling”).
  • EV Electric Vehicle
  • HV Hybrid Vehicle
  • a hybrid vehicle equipped with an EV traveling switch that enables EV traveling by the driver's intention is also known (see, for example, Japanese Patent Application Laid-Open No. 2000-033 3705).
  • the driver wants to run EV with the EV travel switch turned on: • To maintain EV driving, the driver must operate the accelerator pedal so that it does not step on the accelerator pedal too much. In particular, in vehicles with high driving power, the ratio of the driving power that can maintain EV driving to the driving power that the vehicle can output is Therefore, in order to maintain EV driving when the EV driving switch is on, the driver may be forced to perform subtle accelerator operations. Disclosure of the invention
  • an object of the present invention is to provide a hybrid vehicle that can maintain EV traveling without forcing the driver to perform delicate accelerator operations.
  • Another object of the present invention is to provide a computer-readable recording method that records a program for causing a computer to execute a control method of a hybrid vehicle that can maintain EV traveling without forcing the driver to perform a delicate accelerator operation, and the control method. It is to provide a possible recording medium.
  • the hybrid vehicle includes an internal combustion engine, an electric motor as a power source for traveling the vehicle, a control unit, and an input device.
  • the control unit travels by operating both the internal combustion engine and the electric motor in the first mode (EV mode) in which the internal combustion engine is stopped based on the accelerator opening that changes according to the operation amount of the accelerator pedal. It controls the switching of driving modes including the second mode (HV mode).
  • the input device is provided to restrict the transition from the first mode to the second mode by the control unit based on the operation input of the driver.
  • the control unit shifts from the first mode switch to the second mode when the input device is operated by the driver to restrict the shift from the first mode to the second mode.
  • the relation between the accelerator pedal operation amount and the accelerator opening is changed so that the accelerator opening with respect to the same accelerator pedal operation amount becomes smaller than when the engine is not restricted.
  • the control unit makes the relationship between the accelerator pedal operation amount and the accelerator opening non-linear according to a predetermined convex function.
  • the relationship between the amount of operation of the accelerator pedal and the accelerator opening is linear.
  • the control method is a control method for a hybrid vehicle.
  • the hybrid vehicle is equipped with an internal combustion engine and an electric motor as a power source for running the vehicle, and the internal combustion engine is controlled based on the accelerator opening that changes according to the amount of operation of the accelerator pedal.
  • the vehicle can travel in one of the first mode (EV mode) for traveling with the vehicle stopped and the second mode (HV mode) for traveling with both the internal combustion engine and the motor operated.
  • the hybrid vehicle includes an input device for restricting the transition from the first mode to the second mode based on a driver's operation input.
  • the control method includes a step of determining whether or not the transition from the first mode to the second mode is restricted by the operation of the input device by the driver, and from the first mode to the first mode.
  • the accelerator opening for the same accelerator pedal operation amount than when the transition from the first mode to the second mode is not restricted. And a step of changing a relationship between the amount of operation of the accelerator pedal and the accelerator opening so as to decrease.
  • the relationship between the amount of operation of the accelerator pedal and the accelerator opening is made non-linear according to a predetermined convex function.
  • the relationship between the operation amount of the accelerator pedal and the accelerator opening is a saddle shape.
  • the recording medium is a computer-readable recording medium, and records a program for causing a computer to execute the above-described control method.
  • the hybrid vehicle can travel in one of the travel modes of the first mode (EV mode) and the second mode (HV mode). Further, it is possible to limit the transition from the first mode to the second mode based on the driver's operation input from the input device.
  • the transition from the first mode to the second mode is restricted.
  • the relationship between the accelerator pedal operation amount and the accelerator opening is changed so that the accelerator opening for the same accelerator pedal operation amount is smaller than when there is no accelerator pedal operation.
  • the transition from the first mode to the second mode is suppressed. Therefore, according to the present invention, it is possible to maintain EV traveling even when the driver operates the accelerator pedal roughly. As a result, the EV The operability of the pedal is improved.
  • FIG. 1 is an overall block diagram of a hybrid vehicle according to an embodiment of the present invention.
  • Fig. 2 is a functional block diagram of ECU shown in Fig. 1.
  • FIG. 3 is a view showing an example of the accelerator pedal manipulated variable-accelerator opening non-linearization map.
  • FIG. 4 is a flowchart of accelerator opening calculation processing by the travel mode control unit shown in FIG.
  • FIG. 5 is a flowchart of the torque command value calculation process by the travel mode control unit shown in FIG.
  • Fig. 6 is a diagram showing threshold values for switching the driving mode.
  • FIG. 1 is an overall block diagram of a hybrid vehicle according to an embodiment of the present invention.
  • hybrid vehicle 100 includes an engine 4, motor generators MG 1 and MG 2, a power split mechanism 3, and wheels 2.
  • the hybrid vehicle 100 includes a power storage device B, a boost converter 10, inverters 20, 30, an ECU (Electronic Control Unit) 50, an EV priority switch 60, a capacitor C 1, C 2, positive lines PL 1 and PL 2, and negative lines NL 1 and NL 2 are further provided.
  • a boost converter 10 inverters 20, 30, an ECU (Electronic Control Unit) 50, an EV priority switch 60, a capacitor C 1, C 2, positive lines PL 1 and PL 2, and negative lines NL 1 and NL 2 are further provided.
  • ECU Electronic Control Unit
  • Power split device 3 is coupled to engine 4 and motor generators MG 1 and MG 2 to distribute power between them.
  • the power split mechanism 3 can be a planetary gear having three rotating shafts: a sun gear, a planetary carrier and a ring gear. These three rotating shafts are connected to the rotating shafts of engine 4 and motor generators MGl and MG2, respectively.
  • motor generator The engine 4 and motor generators MG 1 and MG 2 can be mechanically connected to the power split mechanism 3 by passing the crank shaft of the engine 4 through the center of the MG 1 rotor.
  • the power generated by the engine 4 is distributed to the wheels 2 and the motor generator MG 1 by the power split mechanism 3.
  • engine 4 is incorporated into hybrid vehicle 100 as a power source for driving wheel 2 and motor generator MG 1.
  • Motor generator MG 1 operates as a generator driven by engine 4 and is incorporated in hybrid vehicle 10 0 as an electric motor that can start engine 4, and motor generator MG 2 As a power source for driving the wheel 2, it is incorporated into the hybrid vehicle 100.
  • the positive electrode of power storage device B is connected to positive electrode line P L 1
  • the negative electrode of power storage device B is connected to negative electrode line N L 1.
  • Capacitor C 1 is connected between positive line P L 1 and negative line N L 1.
  • Boost converter 10 is connected between positive electrode line P L 1 and negative electrode line N L 1 and positive electrode line P L 2 and negative electrode line N L 2.
  • Capacitor C 2 is connected between positive electrode line P L 2 and negative electrode line N L 2.
  • Inverter 20 is connected between positive and negative lines P L 2 and N L 2 and motor generator MG 1.
  • Inverter 30 is connected between positive line P L 2 and negative line N L 2 and motor generator MG 2.
  • the power storage device ⁇ is a DC power source that can be charged and discharged, and is composed of, for example, a secondary battery such as nickel metal hydride ion. Power storage device ⁇ outputs DC power to boost converter 10. In addition, power storage device ⁇ receives power output from boost converter 10 and is charged. A large-capacity capacitor may be used as the power storage device ⁇ . Capacitor C 1 smoothes the voltage fluctuation between positive line P L 1 and negative line N L 1.
  • Boost converter 10 boosts the DC voltage output from power storage device ⁇ ⁇ ⁇ based on signal P WC from ECU 50, and outputs the boosted voltage to positive line PL 2.
  • boosting converter 10 charges power storage device B by reducing the DC voltage output from inverters 20 and 30 to the voltage level of power storage device B based on signal PWC.
  • the step-up converter 10 is composed of, for example, a step-up / step-down type chitsuba circuit.
  • Capacitor C 2 smoothes voltage fluctuations between positive line PL 2 and negative line NL 2.
  • Inverters 20 and 30 convert DC power supplied from positive electrode line PL 2 and negative electrode line NL 2 into AC power and output it to motor generators MG 1 and MG 2, respectively.
  • Inverters 20 and 30 convert AC power generated by motor generators MG 1 and MG 2 to DC power, respectively, and output them as regenerative power to positive line PL 2 and negative line NL 2.
  • Each inverter 20 and 30 is composed of a bridge circuit including switching elements for three phases, for example.
  • Inverters 20 and 30 drive corresponding motor generators by performing switching operations in accordance with signals PWI 1 and PWI 2 from ECU 50, respectively.
  • Motor generators MG 1 and MG2 are three-phase AC motors, for example, three-phase AC synchronous motors.
  • Motor generator MG 1 uses the power of engine 4 to generate three-phase AC power and outputs the generated three-phase AC power to inverter 20.
  • Motor generator MG 1 generates driving force by the three-phase AC power received from inverter 20 and starts engine 4.
  • Motor generator MG 2 generates vehicle driving torque by the three-phase AC power received from inverter 30.
  • Motor generator MG 2 generates three-phase AC power and outputs it to inverter 30 during regenerative braking of the vehicle.
  • ECU 50 generates signals PWC for driving boost converter 10 and signals PWI 1 and PWI 2 for driving motor generators MG1 and MG2, respectively, and boosts the generated signals PWC, PWI 1 and PWI 2 respectively. Output to comparator 10 and inverters 20 and 30.
  • the ECU 50 stops the engine 4 and travels using only the motor generator MG 2 based on the accelerator opening and the vehicle state that change according to the operation amount of the accelerator pedal. (EV mode) or whether to run with engine 4 running (HV mode).
  • EV mode operation amount of the accelerator pedal.
  • HV mode whether to run with engine 4 running
  • the ECU 50 is configured such that when the EV priority switch 60 (described later) is on, the accelerator opening relative to the same accelerator pedal operation amount is reduced even when the EV priority switch 60 is off. , Accelerator pedal operation amount and accelerator Change the relationship with the opening. More specifically, when the EV priority switch 60 is in the OFF state, the relationship between the accelerator pedal operation amount and the accelerator opening is linear, but when the EV priority switch 60 is turned on, the ECU 50 The relationship between the pedal operation amount and the accelerator opening is delinearized according to a pre-defined map.
  • the EV priority switch 60 is an operation switch for restricting the start of the engine 4 and restricting the transition from the EV mode to the HV mode.
  • the EV priority switch 60 activates the signal EV output to the ECU 50.
  • FIG. 2 is a functional block diagram of ECU 50 shown in FIG. Referring to FIG. 2, ECU 50 includes a converter control unit 82, first and second inverter control units 84, 86, and a travel mode control unit 88.
  • Converter control unit 82 controls voltage VB of power storage device B, voltage VDC between positive line PL 2 and negative line NL 2, motor generators MG 1 and 102, rotation speeds 1 ⁇ 1 1 ⁇ 1, MRN2, and travel mode control. Generates a signal PWC for driving boost converter 10 based on torque command values TR 1 and TR 2 of motor generators MG 1 and MG 2 received from section 88, and outputs the generated signal PWC to boost converter 10 To do.
  • the voltages VB and VDC and the rotation speeds MRN 1 and MRN2 are detected by a sensor (not shown).
  • the first inverter control unit 84 is a signal for driving the motor generator MG 1 based on the voltage VDC, the motor current MCRT 1 of the motor generator MG 1, the rotor rotational position 0 1, and the torque command value TR 1. PWI 1 is generated, and the generated signal PWI 1 is output to the inverter 20. Note that each of the motor current MC RT 1 and the rotor rotational position 01 is detected by a sensor (not shown).
  • the second inverter control unit 86 drives the motor generator MG 2 based on the voltage VDC, the motor current MCRT 2 of the motor generator MG 2, the rotor rotational position ⁇ 2, and the torque command value TR 2.
  • the signal PWI 2 is generated, and the generated signal PWI 2 is output to the inverter 30.
  • the motor current MC RT 2 and the rotor rotational position ⁇ 2 are each measured by a sensor not shown. Detected.
  • the travel mode control unit 88 includes an accelerator position signal ACC indicating the amount of operation of the accelerator pedal, a vehicle speed signal SPD indicating the vehicle speed, a shift position signal SP indicating the shift position, and a state of charge of the power storage device B (SOC: State Of Charge). It receives the signal EV from the state priority SOC and EV priority switch 60. Then, the travel mode control unit 88 determines whether to operate the engine 4 by the method described later, that is, whether to travel in the EV mode or the HV mode, and based on the determination result, the torque command value TR 1 and TR 2 are generated and output to the converter control unit 82 and the first and second inverter control units 84 and 86.
  • SOC State Of Charge
  • the traveling mode control unit 88 determines that the accelerator position signal AC C according to the accelerator pedal operation amount-accelerator opening non-linearization map defined in advance. Calculate the accelerator opening based on.
  • the travel mode control unit 88 calculates an engine output request value based on the calculated accelerator opening, vehicle speed signal SPD, shift position signal SP, and state quantity SOC, and calculates the engine output.
  • the driving mode is determined depending on whether the required value exceeds a predetermined threshold.
  • the operation amount of the accelerator pedal is detected by an accelerator position sensor (not shown). Further, the vehicle speed and the shift position are detected by a vehicle speed sensor and a shift position sensor (not shown), respectively.
  • FIG. 3 is a diagram showing an example of an accelerator pedal operation amount vs. an accelerator opening degree non-linearization map.
  • a straight line k 1 indicated by a dotted line shows the relationship between the accelerator pedal operation amount and the accelerator opening when the EV priority switch 60 is in the OFF state. In other words, when the EV priority switch 60 is in the OFF state, the relationship between the accelerator pedal operation amount and the accelerator opening is linear.
  • a curve k2 indicated by a solid line shows the relationship between the amount of operation of the accelerator pedal and the accelerator opening when the EV priority switch 60 is in the on state.
  • the relationship between the accelerator pedal operation amount and the accelerator opening is made non-linear according to the curve k2. More specifically, even when the EV priority switch 60 is in the OFF state, the convexity is reduced so that the accelerator opening with respect to the same accelerator pedal operation amount becomes smaller.
  • the relationship between the accelerator pedal operation amount and the accelerator opening is nonlinearized according to the curve k 2 consisting of numbers.
  • the relationship between the accelerator pedal operation amount and the accelerator opening when the EV priority switch 60 is on is a convex function as indicated by the curve k2, because the accelerator pedal operation amount is normally This is to increase the amount of change in the accelerator opening from the straight line k1 in the operation range (medium). That is, in order to obtain the maximum effect of improving the operability of the accelerator pedal in the normal operation range (medium).
  • FIG. 4 is a flowchart of accelerator opening degree calculation processing by the travel mode control unit 88 shown in FIG. It should be noted that the processing of this flowchart is called from the main routine and executed every certain time or when a predetermined condition is satisfied when the vehicle is ready to travel (for example, when the vehicle system is being activated). .
  • traveling mode control unit 8 8 determines whether or not EV priority switch 60 is on based on signal EV from EV priority switch 60 (step S 1 0 ) If it is determined that EV priority switch 6 is off (NO in step S 10), traveling mode control unit 88 performs processing to the main routine without executing the subsequent series of processing. return.
  • step S 10 If it is determined in step S 10 that the EV priority switch 60 is on (YES in step S 10), the travel mode control unit 8 8 makes the accelerator pedal operation amount one accelerator opening non-linearization described above. Using the map (curve k 2), the accelerator opening is calculated based on the accelerator position signal ACC (step S 2 0). Then, traveling mode control unit 88 actually performs the accelerator opening changing process (step S 30). Specifically, when the accelerator opening is suddenly changed when the EV priority switch 60 is turned on, the engine output request value changes rapidly. Therefore, the travel mode control unit 8 8 determines that the accelerator pedal operation amount is equal to the accelerator opening non-linearization map (curve k 2) from the accelerator opening according to the straight line k 1 shown in FIG. ) Limit the change rate when changing to the accelerator opening according to.
  • the traveling mode control unit 88 determines whether or not the EV priority switch 60 is off based on the signal EV from the EV priority switch 60 (step S 40). If it is determined that EV priority switch 60 is off (YES in step S 40), travel mode control unit 88 actually performs the accelerator opening return process (step S 5 0). Specifically, if the accelerator opening is suddenly returned at the timing when the EV priority switch 60 is turned off, the engine output request value may change abruptly, which may adversely affect the running of the vehicle. Therefore, the travel mode control unit 8 8 returns from the accelerator opening according to the accelerator pedal operation amount to the accelerator opening non-linearization map (curve k 2) shown in FIG. 3 to the accelerator opening according to the straight line k 1. Limit the rate of change.
  • step S10 If it is determined in step S10 that the EV priority switch 60 is in the OFF state, the accelerator pedal opening is not changed to the accelerator opening according to the accelerator pedal operation amount minus the accelerator opening non-linearization map.
  • the accelerator opening is determined based on the accelerator position signal ACC according to the prescribed linear relationship indicated by the straight line k 1 shown.
  • FIG. 5 is a flowchart of a torque command value calculation process by the travel mode control unit 88 shown in FIG. The process of this flowchart is also called and executed from the main routine every certain time or when a predetermined condition is satisfied when the vehicle is ready to travel (for example, when the vehicle system is starting up). .
  • traveling mode control unit 8 8 includes accelerator position calculated based on accelerator position signal ACC according to the flowchart shown in FIG. 4, and vehicle speed signal SPD and shift position signal SP.
  • the required drive torque (axle) of the vehicle is calculated using a preset map or calculation formula (step S 1 1 0).
  • traveling mode control unit 88 calculates a drive request output of the vehicle based on the calculated drive request torque and axle rotation speed (step S 1 2 0). Specifically, the required drive output is obtained by multiplying the required drive torque by the axle speed. Calculated.
  • traveling mode control unit 88 calculates an engine output request value based on the calculated drive request output and SOC of power storage device B (step S130). Specifically, the required charge amount of power storage device B is calculated based on the SOC of power storage device B, and the required engine output value is calculated by adding the required charge amount to the drive request output.
  • traveling mode control unit 88 determines whether or not EV priority switch 60 is in the ON state based on signal EV from EV priority switch 60 (step S140). If it is determined that EV priority switch 60 is in the ON state (YES in step S 140), traveling mode control unit 88 corrects the threshold value for determining whether to switch the traveling mode (step S). 150).
  • This threshold value is a value for determining whether or not the engine 4 needs to be started, in other words, a threshold value for switching the running mode.
  • Fig. 6 is a diagram showing threshold values for switching the driving mode.
  • the vertical axis represents the required engine output value
  • the horizontal axis represents the vehicle speed.
  • a threshold value k 3 indicated by a solid line indicates a switching threshold value when the EV priority switch 60 is in the OFF state.
  • EV mode When the engine output request value is less than or equal to the threshold k3, it is determined that the engine 4 is stopped and the vehicle is traveling (EV mode). It is determined that the vehicle will start and run (HV mode).
  • This threshold value k 3 changes according to the vehicle speed, for example, it is large at low speed (ie, emphasizing EV mode), and becomes 0 when the vehicle speed exceeds the specified ffi! SPDO (ie, Always in HV mode).
  • a threshold value k 4 indicated by a dotted line indicates a switching threshold value when the EV priority switch 60 is in an ON state. That is, when the EV priority switch 60 is in the ON state, the travel mode switching threshold value is corrected so that the travel range in the EV mode is expanded.
  • traveling mode control unit 88 determines whether or not the engine output request value calculated in step S 1 30 is larger than the traveling mode switching threshold value (step S 160). .
  • the engine output request value is determined to be below the threshold value. If determined (NO in step S160), the process proceeds to step S190 described later.
  • traveling mode control unit 88 calculates target speed of engine 4 and actually controls engine 4. Execute (Step S170). Then, traveling mode control unit 88 calculates target rotational speed of motor generator MG 1 for maintaining engine 4 at the target rotational speed, and torque command value TR 1 for controlling motor generator MG 1 to the target rotational speed. Is calculated (step S 180).
  • traveling mode control unit 88 calculates the generated torque (engine direct torque) of engine 4 from torque command value TR 1 of motor generator MG 1 (step S 1 90).
  • the engine direct torque can be calculated from the torque command value TR 1 based on the geometric configuration (number of teeth ratio) of the power split mechanism 3.
  • the traveling mode control unit 88 subtracts the engine direct torque from the drive request torque calculated in step S 1 10, so that the motor generator MG 2 torque command is issued.
  • the value TR 2 is calculated (step S 200).
  • hybrid vehicle 100 can travel in either the EV mode or the HV mode.
  • the transition from EV mode to HV mode can be restricted based on the driver's operation input from EV priority switch 60.
  • the EV priority switch 60 When the EV priority switch 60 is in the ON state, the relationship between the accelerator pedal operation amount and the accelerator opening is changed according to the accelerator pedal operation amount vs. the accelerator opening non-linearization map, so that the accelerator opening used for control is suppressed.
  • the required engine output value is suppressed, and as a result, the transition from EV mode to HV mode is suppressed. Therefore, according to this embodiment, it is possible to maintain EV traveling even when the driver operates the accelerator pedal roughly. As a result, the operability of the acceleration pedal during EV driving is improved.
  • the relationship between the accelerator pedal operation amount and the accelerator opening when the EV priority switch 60 is on is a convex function as shown by the curve k2
  • the accelerator pedal In the normal operation range (medium) the amount of change in the accelerator opening from when the EV priority switch 60 is off is large. Therefore, the effect of improving the operability of the accelerator pedal can be maximized when the amount of operation of the accelerator pedal is normal (medium).
  • the relationship between the accelerator pedal operation amount and the accelerator opening when the EV priority switch 60 is in the ON state is in accordance with a predetermined accelerator pedal operation amount-accelerator opening non-linearization map.
  • an arithmetic expression may be used instead of the map.
  • the threshold value for switching from EV mode to HV mode and the threshold value for switching from HV mode to EV mode are the same. However, these threshold values are different. It is also possible to provide a hysteresis for switching the driving mode.
  • the hybrid vehicle is a series Z parallel type in which the power of the engine 4 can be divided and transmitted to the axle and the motor generator MG 1 by the power split mechanism 3, but the present invention is a motor generator MG 1
  • the engine 4 is used only to drive the vehicle, and the electric power generated by the motor generator MG 1 is used.
  • the present invention can also be applied to a series type hybrid vehicle that generates the driving force of the vehicle only by the motor generator MG 2.
  • the CPU reads a program including each step of the flowcharts shown in FIGS. 4 and 5 from a ROM (Read Only Memory), and executes the read program to execute FIGS.
  • the process is executed according to the flowchart shown in. Therefore, the ROM corresponds to a computer (CPU) readable recording medium in which a program including the steps of the flowcharts shown in FIGS. 4 and 5 is recorded.
  • CPU computer
  • engine 4 corresponds to an embodiment of “internal combustion engine” in the present invention
  • motor generator MG 2 corresponds to an embodiment of “electric motor” in the present invention
  • travel mode control unit 88 of the ECU 50 corresponds to one embodiment of the “control unit” in the present invention
  • the EV priority switch 60 corresponds to one embodiment of the “input device” in the present invention.
  • the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

When an EV priority switch is judged to be ON (YES in S10), a travel mode control unit calculates an accelerator open degree based on an accelerator position signal according to a predetermined accelerator pedal operation amount - accelerator open degree nonlinearization map (S20). More specifically, the relationship between the accelerator pedal operation amount and the accelerator open degree is nonlinearized according to the accelerator pedal operation amount - accelerator open degree nonlinearization map so that the accelerator open degree for the same accelerator pedal operation amount is reduced as compared to the one when the EV priority switch is OFF.

Description

明細書 ハイプリッド車両、 ハイブリッド車両の制御方法およびその制御方法をコンビュ ータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体 技術分野  TECHNICAL FIELD A control method for a hybrid vehicle, a hybrid vehicle, and a computer-readable recording medium storing a program for causing a computer to execute the control method
この発明は、 内燃機関および車両走行用の電動機を搭載したハイプリッド車両、 ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるた めのプログラムを記録したコンピュータ読取可能な記録媒体に関する。  The present invention relates to a hybrid vehicle equipped with an internal combustion engine and an electric motor for vehicle travel, a control method for a hybrid vehicle, and a computer-readable recording medium on which a program for causing a computer to execute the control method is recorded.
背景技術 Background art
環境に配慮した車両として、 ハイブリッド車両 (Hybrid Vehicle) が大きく注 目されている。 ハイブリッド車両は、 従来のエンジンに加え、 蓄電装置とインバ ータとインバータによって駆動されるモータとを動力源として搭載した車両であ る。  Hybrid vehicles (Hybrid Vehicles) are attracting much attention as environmentally friendly vehicles. A hybrid vehicle is a vehicle in which a power storage device, an inverter, and a motor driven by an inverter are mounted as a power source in addition to a conventional engine.
このようなハイプリッド車両において、 エンジンを始動させずにモータのみで 走行することが可能な車両が知られている (以下では、 このような走行を 「E V (Electric Vehicle) 走行」 と称し、 これに対してエンジンおよびモータの双方 を用いての走行を 「HV (Hybrid Vehicle) 走行」 と称する。 ) 。 さらに、 運転 者の意思により E V走行を可能とする E V走行スィッチを備えたハイプリッド車 両も知られている (たとえば、 特開 2 0 0 3— 3 3 3 7 0 5号公報参照) 。  In such a hybrid vehicle, there is known a vehicle that can travel only by a motor without starting an engine (hereinafter, such traveling is referred to as “EV (Electric Vehicle) traveling”). On the other hand, traveling using both the engine and motor is referred to as “HV (Hybrid Vehicle) traveling”. Further, a hybrid vehicle equipped with an EV traveling switch that enables EV traveling by the driver's intention is also known (see, for example, Japanese Patent Application Laid-Open No. 2000-033 3705).
上記のような E V走行スィッチを備えたハイブリッド車両において E V走行ス ィツチがオンされているときでも、 運転者によりァクセノレペダルが踏込まれると、 要求される走行パヮ一を満たすためにエンジンが始動され、 E V走行から H V走 行に切替わる。  Even when the EV drive switch is turned on in a hybrid vehicle equipped with the EV drive switch as described above, if the driver depresses the accelerator pedal, the engine is started to satisfy the required drive performance, Switch from EV driving to HV driving.
したがって、 運転者が E V走行スィツチをオンして E V走行を希望する場合、 · E V走行を維持するためには、 運転者はアクセルペダルを踏込みすぎないように アクセルペダルを操作する必要がある。 特に、 走行パワーの大きい車両では、 車 両が出力可能な走行パヮーに対して、 E V走行を維持可能な走行パヮ一の割合が 小さくなるので、 E V走行スィツチがオン状態のときに E V走行を維持するため には、 運転者に微妙なアクセル操作を強いることとなり得る。 発明の開示 Therefore, if the driver wants to run EV with the EV travel switch turned on: • To maintain EV driving, the driver must operate the accelerator pedal so that it does not step on the accelerator pedal too much. In particular, in vehicles with high driving power, the ratio of the driving power that can maintain EV driving to the driving power that the vehicle can output is Therefore, in order to maintain EV driving when the EV driving switch is on, the driver may be forced to perform subtle accelerator operations. Disclosure of the invention
それゆえに、 この発明の目的は、 運転者に微妙なアクセル操作を強いることな く E V走行を維持可能なハイプリッド車両を提供することである。  Therefore, an object of the present invention is to provide a hybrid vehicle that can maintain EV traveling without forcing the driver to perform delicate accelerator operations.
また、 この発明の別の目的は、 運転者に微妙なアクセル操作を強いることなく E V走行を維持可能なハイプリッド車両の制御方法およびその制御方法をコンビ ユータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒 体を提供することである。  Another object of the present invention is to provide a computer-readable recording method that records a program for causing a computer to execute a control method of a hybrid vehicle that can maintain EV traveling without forcing the driver to perform a delicate accelerator operation, and the control method. It is to provide a possible recording medium.
この発明によれば、 ハイブリッド車両は、 内燃機関と、 車両走行用の動力源と しての電動機と、 制御部と、 入力装置とを備える。 制御部は、 アクセルペダルの 操作量に応じて変化するァクセル開度に基づいて、 内燃機関を停止させて走行す る第 1のモード (E Vモード) と内燃機関および電動機の双方を動作させて走行 する第 2のモード (HVモード) とを含む走行モードの切替を制御する。 入力装 置は、 運転者の操作入力に基づいて、 制御部による第 1のモードから第 2のモー ドへの移行を制限するために設けられる。 そして、 制御部は、 運転者によって入 力装置が操作されることにより第 1のモードから第 2のモードへの移行が制限さ れているとき、 第 1のモードカ ら第 2のモードへの移行が制限されていないとき よりも同一のァクセノレペダル操作量に対するアクセル開度が小さくなるように、 ァクセルペダルの操作量とアクセル開度との関係を変更する。  According to the present invention, the hybrid vehicle includes an internal combustion engine, an electric motor as a power source for traveling the vehicle, a control unit, and an input device. The control unit travels by operating both the internal combustion engine and the electric motor in the first mode (EV mode) in which the internal combustion engine is stopped based on the accelerator opening that changes according to the operation amount of the accelerator pedal. It controls the switching of driving modes including the second mode (HV mode). The input device is provided to restrict the transition from the first mode to the second mode by the control unit based on the operation input of the driver. The control unit shifts from the first mode switch to the second mode when the input device is operated by the driver to restrict the shift from the first mode to the second mode. The relation between the accelerator pedal operation amount and the accelerator opening is changed so that the accelerator opening with respect to the same accelerator pedal operation amount becomes smaller than when the engine is not restricted.
好ましくは、 制御部は、 第 1のモードから第 2のモードへの移行が制限されて いるとき、 ァクセルペダルの操作量とアクセル開度との関係を予め規定された凸 関数に従って非線形化する。  Preferably, when the transition from the first mode to the second mode is restricted, the control unit makes the relationship between the accelerator pedal operation amount and the accelerator opening non-linear according to a predetermined convex function.
さらに好ましくは、 第 1のモードから第 2のモードへの移行が制限されていな いとき、 ァクセルペダルの操作量とァクセル開度との関係は線形である。  More preferably, when the transition from the first mode to the second mode is not restricted, the relationship between the amount of operation of the accelerator pedal and the accelerator opening is linear.
また、 この発明によれば、 制御方法は、 ハイブリッド車両の制御方法である。 ハイプリッド車両は、 内燃機関と車両走行用の動力源としての電動機とを搭載し、 ァクセルペダルの操作量に応じて変化するァクセル開度に基づいて、 内燃機関を 停止させて走行する第 1のモード (E Vモード) ならびに内燃機関および電動機 の双方を動作させて走行する第 2のモード (HVモード) のいずれかの走行モー ドで走行可能である。 ハイブリッド車両は、 運転者の操作入力に基づいて、 第 1 のモードから第 2のモードへの移行を制限するための入力装置を備える。 そして、 制御方法は、 運転者によって入力装置が操作されることにより第 1のモードから 第 2のモードへの移行が制限されているか否かを判定するステップと、 第 1のモ 一ドから第 2のモードへの移行が制限されていると判定されたとき、 第 1のモー ドから第 2のモードへの移行が制限されていないときよりも同一のアクセルぺダ ノレ操作量に対するアクセル開度が小さくなるように、 アクセルペダルの操作量と アクセル開度との関係を変更するステップとを含む。 According to the present invention, the control method is a control method for a hybrid vehicle. The hybrid vehicle is equipped with an internal combustion engine and an electric motor as a power source for running the vehicle, and the internal combustion engine is controlled based on the accelerator opening that changes according to the amount of operation of the accelerator pedal. The vehicle can travel in one of the first mode (EV mode) for traveling with the vehicle stopped and the second mode (HV mode) for traveling with both the internal combustion engine and the motor operated. The hybrid vehicle includes an input device for restricting the transition from the first mode to the second mode based on a driver's operation input. The control method includes a step of determining whether or not the transition from the first mode to the second mode is restricted by the operation of the input device by the driver, and from the first mode to the first mode. When it is determined that the transition to the second mode is restricted, the accelerator opening for the same accelerator pedal operation amount than when the transition from the first mode to the second mode is not restricted. And a step of changing a relationship between the amount of operation of the accelerator pedal and the accelerator opening so as to decrease.
好ましくは、 アクセルペダルの操作量とアクセル開度との関係を変更するステ ップにおいて、 アクセルペダルの操作量とアクセル開度との関係は、 予め規定さ れた凸関数に従って非線形化される。  Preferably, in the step of changing the relationship between the amount of operation of the accelerator pedal and the accelerator opening, the relationship between the amount of operation of the accelerator pedal and the accelerator opening is made non-linear according to a predetermined convex function.
さらに好ましくは、 第 1のモードから第 2のモードへの移行が制限されていな いとき、 ァクセノレぺダルの操作量とアクセル開度との関係は,锒形である。  More preferably, when the transition from the first mode to the second mode is not restricted, the relationship between the operation amount of the accelerator pedal and the accelerator opening is a saddle shape.
また、 この発明によれば、 記録媒体は、 コンピュータ読取可能な記録媒体であ つて、 上述したレ、ずれかの制御方法をコンピュータに実行させるためのプログラ ムを記録する。  Further, according to the present invention, the recording medium is a computer-readable recording medium, and records a program for causing a computer to execute the above-described control method.
この発明においては、 ハイブリッド車両は、 第 1のモード (E Vモード) およ び第 2のモード (HVモード) のいずれかの走行モードで走行可能である。 また、 入力装置からの運転者の操作入力に基づいて、 第 1のモードから第 2のモードへ の移行を制限可能である。 そして、 運転者によって入力装置が操作されることに より第 1のモードから第 2のモードへの移行が制限されているとき、 第 1のモー ドから第 2のモードへの移行が制限されていないときよりも同一のアクセルぺダ ル操作量に対するアクセル開度が小さくなるように、 アクセルペダルの操作量と ァクセル開度との関係が変更されるので、 実際に制御に用いられるァクセル開度 が抑制され、 その結果、 第 1のモードから第 2のモードへの移行が抑制される。 したがって、 この発明によれば、 運転者によるアクセルペダルの操作がラフで あっても E V走行を維持することが可能となる。 その結果、 E V走行時のァクセ ルペダルの操作性が向上する 図面の簡単な説明 In the present invention, the hybrid vehicle can travel in one of the travel modes of the first mode (EV mode) and the second mode (HV mode). Further, it is possible to limit the transition from the first mode to the second mode based on the driver's operation input from the input device. When the input device is operated by the driver and the transition from the first mode to the second mode is restricted, the transition from the first mode to the second mode is restricted. The relationship between the accelerator pedal operation amount and the accelerator opening is changed so that the accelerator opening for the same accelerator pedal operation amount is smaller than when there is no accelerator pedal operation. As a result, the transition from the first mode to the second mode is suppressed. Therefore, according to the present invention, it is possible to maintain EV traveling even when the driver operates the accelerator pedal roughly. As a result, the EV The operability of the pedal is improved.
図 1は、 この発明の実施の形態によるハイブリッド車両の全体ブロック図であ る。  FIG. 1 is an overall block diagram of a hybrid vehicle according to an embodiment of the present invention.
図 2は、 図 1に示す E C Uの機能ブロック図である。  Fig. 2 is a functional block diagram of ECU shown in Fig. 1.
図 3は、 ァクセルぺダノレ操作量—ァクセル開度非線形化マップの一例を示した 図である。  FIG. 3 is a view showing an example of the accelerator pedal manipulated variable-accelerator opening non-linearization map.
図 4は、 図 2に示す走行モード制御部によるアクセル開度算出処理のフローチ ヤートである。  FIG. 4 is a flowchart of accelerator opening calculation processing by the travel mode control unit shown in FIG.
図 5は、 図 2に示す走行モード制御部によるトルク指令値算出処理のフローチ ヤートである。  FIG. 5 is a flowchart of the torque command value calculation process by the travel mode control unit shown in FIG.
図 6は、 走行モードの切替しきい値を示した図である。 発明を実施するための最良の形態  Fig. 6 is a diagram showing threshold values for switching the driving mode. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について、 図面を参照しながら詳細に説明する。 な お、 図中同一または相当部分には同一符号を付してその説明は繰返さない。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated.
図 1は、 この発明の実施の形態によるハイブリッド車両の全体ブロック図であ る。 図 1を参照して、 ハイブリッド車両 1 0 0は、 エンジン 4と、 モータジエネ レータ MG 1, MG 2と、 動力分割機構 3と、 車輪 2とを備える。 また、 ハイブ リツド車両 1 0 0は、 蓄電装置 Bと、 昇圧コンバータ 1 0と、 インバータ 2 0, 3 0と、 E C U (Electronic Control Unit) 5 0と、 E V優先スィッチ 6 0と、 コンデンサ C 1, C 2と、 正極線 P L 1 , P L 2と、 負極線 N L 1 , N L 2とを さらに備える。  FIG. 1 is an overall block diagram of a hybrid vehicle according to an embodiment of the present invention. Referring to FIG. 1, hybrid vehicle 100 includes an engine 4, motor generators MG 1 and MG 2, a power split mechanism 3, and wheels 2. The hybrid vehicle 100 includes a power storage device B, a boost converter 10, inverters 20, 30, an ECU (Electronic Control Unit) 50, an EV priority switch 60, a capacitor C 1, C 2, positive lines PL 1 and PL 2, and negative lines NL 1 and NL 2 are further provided.
動力分割機構 3は、 エンジン 4とモータジェネレータ MG 1, MG 2とに結合 されてこれらの間で動力を分配する。 たとえば、 動力分割機構 3として、 サンギ ャ、 ブラネタリキヤリャおよぴリングギヤの 3つの回転軸を有する遊星歯車を用 いることができる。 この 3つの回転軸がエンジン 4およびモータジェネレータ M G l, MG 2の各回転軸にそれぞれ接続される。 たとえば、 モータジェネレータ MG 1のロータを中空としてその中心にエンジン 4のクランク軸を通すことで動 力分割機構 3にエンジン 4とモータジェネレータ MG 1, MG 2とを機械的に接 続することができる。 Power split device 3 is coupled to engine 4 and motor generators MG 1 and MG 2 to distribute power between them. For example, the power split mechanism 3 can be a planetary gear having three rotating shafts: a sun gear, a planetary carrier and a ring gear. These three rotating shafts are connected to the rotating shafts of engine 4 and motor generators MGl and MG2, respectively. For example, motor generator The engine 4 and motor generators MG 1 and MG 2 can be mechanically connected to the power split mechanism 3 by passing the crank shaft of the engine 4 through the center of the MG 1 rotor.
エンジン 4が発生する動力は、 動力分割機構 3によって車輪 2とモータジエネ レータ MG 1とに分配される。 すなわち、 エンジン 4は、 車輪 2を駆動するとと もにモータジェネレータ MG 1を駆動する動力源としてハイプリッド車両 1 0 0 に組込まれる。 また、 モータジェネレータ MG 1は、 エンジン 4によって駆動さ れる発電機として動作し、 かつ、 エンジン 4の始動を行ない得る電動機として動 作するものとしてハイブリッド車両 1 0 0に組込まれ、 モータジェネレータ MG 2は、 車輪 2を駆動する動力源としてハイプリッド車両 1 0 0に組込まれる。 蓄電装置 Bの正電極は、 正極線 P L 1に接続され、 蓄電装置 Bの負電極は、 負 極線 N L 1に接続される。 コンデンサ C 1は、 正極線 P L 1と負極線 N L 1との 間に接続される。 昇圧コンバータ 1 0は、 正極線 P L 1および負極線 N L 1と正 極線 P L 2および負極線 N L 2との間に接続される。 コンデンサ C 2は、 正極線 P L 2と負極線 N L 2との間に接続される。 インバータ 2 0は、 正極線 P L 2お よび負極線 N L 2とモータジェネレータ MG 1との間に接続される。 インバータ 3 0は、 正極線 P L 2および負 線 N L 2とモータジェネレータ MG 2との間に 接続される。  The power generated by the engine 4 is distributed to the wheels 2 and the motor generator MG 1 by the power split mechanism 3. In other words, engine 4 is incorporated into hybrid vehicle 100 as a power source for driving wheel 2 and motor generator MG 1. Motor generator MG 1 operates as a generator driven by engine 4 and is incorporated in hybrid vehicle 10 0 as an electric motor that can start engine 4, and motor generator MG 2 As a power source for driving the wheel 2, it is incorporated into the hybrid vehicle 100. The positive electrode of power storage device B is connected to positive electrode line P L 1, and the negative electrode of power storage device B is connected to negative electrode line N L 1. Capacitor C 1 is connected between positive line P L 1 and negative line N L 1. Boost converter 10 is connected between positive electrode line P L 1 and negative electrode line N L 1 and positive electrode line P L 2 and negative electrode line N L 2. Capacitor C 2 is connected between positive electrode line P L 2 and negative electrode line N L 2. Inverter 20 is connected between positive and negative lines P L 2 and N L 2 and motor generator MG 1. Inverter 30 is connected between positive line P L 2 and negative line N L 2 and motor generator MG 2.
蓄電装置 Βは、 充放電可能な直流電源であり、 たとえば、 ニッケル水素ゃリチ ゥムイオン等の二次電池から成る。 蓄電装置 Βは、 直流電力を昇圧コンバータ 1 0へ出力する。 また、 蓄電装置 Βは、 昇圧コンバータ 1 0から出力される電力を 受けて充電される。 なお、 蓄電装置 Βとして、 大容量のキャパシタを用いてもよ レ、。 コンデンサ C 1は、 正極線 P L 1と負極線 N L 1との間の電圧変動を平滑化 する。  The power storage device で is a DC power source that can be charged and discharged, and is composed of, for example, a secondary battery such as nickel metal hydride ion. Power storage device Β outputs DC power to boost converter 10. In addition, power storage device Β receives power output from boost converter 10 and is charged. A large-capacity capacitor may be used as the power storage device 装置. Capacitor C 1 smoothes the voltage fluctuation between positive line P L 1 and negative line N L 1.
昇圧コンバータ 1 0は、 E C U 5 0からの信号 P WCに基づいて、 蓄電装置 Β から出力される直流電圧を昇圧して正極線 P L 2へ出力する。 また、 昇圧コンパ ータ 1 0は、 信号 P WCに基づいて、 インバータ 2 0, 3 0から出力される直流 電圧を蓄電装置 Bの電圧レベルに降圧して蓄電装置 Bを充電する。 昇圧コンバー タ 1 0は、 たとえば、 昇降圧型のチヨツバ回路によって構成される。 コンデンサ C 2は、 正極線 P L 2と負極線 N L 2との間の電圧変動を平滑化す る。 インバータ 20, 30は、 正極線 P L 2および負極線 NL 2から供給される 直流電力を交流電力に変換してそれぞれモータジェネレータ MG 1, MG2へ出 力する。 また、 インバータ 20, 30は、 それぞれモータジェネレータ MG 1 , MG 2が発電する交流電力を直流電力に変換して回生電力として正極線 P L 2お よび負極線 NL 2へ出力する。 Boost converter 10 boosts the DC voltage output from power storage device 基 づ い based on signal P WC from ECU 50, and outputs the boosted voltage to positive line PL 2. In addition, boosting converter 10 charges power storage device B by reducing the DC voltage output from inverters 20 and 30 to the voltage level of power storage device B based on signal PWC. The step-up converter 10 is composed of, for example, a step-up / step-down type chitsuba circuit. Capacitor C 2 smoothes voltage fluctuations between positive line PL 2 and negative line NL 2. Inverters 20 and 30 convert DC power supplied from positive electrode line PL 2 and negative electrode line NL 2 into AC power and output it to motor generators MG 1 and MG 2, respectively. Inverters 20 and 30 convert AC power generated by motor generators MG 1 and MG 2 to DC power, respectively, and output them as regenerative power to positive line PL 2 and negative line NL 2.
なお、 各インバータ 20, 30は、 たとえば、 三相分のスィツチング素子を含 むブリッジ回路から成る。 そして、 インバータ 20, 30は、 それぞれ ECU 5 0からの信号 PWI 1, PWI 2に応じてスイッチング動作を行なうことにより、 対応のモータジエネレータを駆動する。  Each inverter 20 and 30 is composed of a bridge circuit including switching elements for three phases, for example. Inverters 20 and 30 drive corresponding motor generators by performing switching operations in accordance with signals PWI 1 and PWI 2 from ECU 50, respectively.
モータジェネレータ MG 1 , MG2は、 三相交流電動機であり、 たとえば三相 交流同期電動機から成る。 モータジェネレータ MG 1は、 エンジン 4の動力を用 いて三相交流電力を発生し、 その発生した三相交流電力をィンバータ 20へ出力 する。 また、 モータジェネレータ MG 1は、 ィンバータ 20から受ける三相交流 電力によって駆動力を発生し、 エンジン 4の始動を行なう。 モータジェネレータ MG 2は、 インバータ 30から受ける三相交流電力によって車両の駆動トルクを 発生する。 また、 モータジェネレータ MG 2は、 車両の回生制動時、 三相交流電 力を発生してインバータ 30へ出力する。  Motor generators MG 1 and MG2 are three-phase AC motors, for example, three-phase AC synchronous motors. Motor generator MG 1 uses the power of engine 4 to generate three-phase AC power and outputs the generated three-phase AC power to inverter 20. Motor generator MG 1 generates driving force by the three-phase AC power received from inverter 20 and starts engine 4. Motor generator MG 2 generates vehicle driving torque by the three-phase AC power received from inverter 30. Motor generator MG 2 generates three-phase AC power and outputs it to inverter 30 during regenerative braking of the vehicle.
ECU 50は、 昇圧コンバータ 10を駆動するための信号 PWCおよびモータ ジェネレータ MG1, MG2をそれぞれ駆動するための信号 PWI 1, PWI 2 を生成し、 その生成した信号 PWC, PWI 1, PWI 2をそれぞれ昇圧コンパ ータ 10およびインバータ 20, 30へ出力する。  ECU 50 generates signals PWC for driving boost converter 10 and signals PWI 1 and PWI 2 for driving motor generators MG1 and MG2, respectively, and boosts the generated signals PWC, PWI 1 and PWI 2 respectively. Output to comparator 10 and inverters 20 and 30.
ここで、 ECU 50は、 後述の方法により、 アクセルペダルの操作量に応じて 変化するアクセル開度および車両状態に基づいて、 エンジン 4を停止してモータ ジェネレータ MG 2のみを用いて走行するか (EVモード) 、 それともエンジン 4を作動させて走行するか (HVモード) の切替を制御する。  Here, according to the method described later, the ECU 50 stops the engine 4 and travels using only the motor generator MG 2 based on the accelerator opening and the vehicle state that change according to the operation amount of the accelerator pedal. (EV mode) or whether to run with engine 4 running (HV mode).
さらにここで、 ECU 50は、 EV優先スィッチ 60 (後述) がオン状態のと き、 EV優先スィツチ 60がオフ状態のときょりも同一のアクセルペダルの操作 量に対するァクセル開度が小さくなるように、 ァクセルペダル操作量とアクセル 開度との関係を変更する。 より具体的には、 EV優先スィッチ 60がオフ状態の ときは、 アクセルぺダル操作量とァクセル開度との関係は線形であるところ、 E V優先スィッチ 60がオンされると、 ECU 50は、 アクセルペダル操作量とァ クセル開度との関係を予め規定されたマップに従って非線形化する。 Further, here, the ECU 50 is configured such that when the EV priority switch 60 (described later) is on, the accelerator opening relative to the same accelerator pedal operation amount is reduced even when the EV priority switch 60 is off. , Accelerator pedal operation amount and accelerator Change the relationship with the opening. More specifically, when the EV priority switch 60 is in the OFF state, the relationship between the accelerator pedal operation amount and the accelerator opening is linear, but when the EV priority switch 60 is turned on, the ECU 50 The relationship between the pedal operation amount and the accelerator opening is delinearized according to a pre-defined map.
EV優先スィッチ 60は、 エンジン 4の始動を制限し、 EVモードから HVモ ードへの移行を制限するための操作スィッチである。 そして、 運転者により EV 優先スィッチ 6◦がオン操作されると、 EV優先スィッチ 60は、 ECU 50へ 出力される信号 E Vを活性化する。  The EV priority switch 60 is an operation switch for restricting the start of the engine 4 and restricting the transition from the EV mode to the HV mode. When the EV priority switch 6◦ is turned on by the driver, the EV priority switch 60 activates the signal EV output to the ECU 50.
図 2は、 図 1に示した ECU 50の機能ブロック図である。 図 2を参照して、 ECU 50は、 コンバータ制御部 82と、 第 1および第 2のインバータ制御部 8 4, 86と、 走行モード制御部 88とを含む。  FIG. 2 is a functional block diagram of ECU 50 shown in FIG. Referring to FIG. 2, ECU 50 includes a converter control unit 82, first and second inverter control units 84, 86, and a travel mode control unit 88.
コンバータ制御部 82は、 蓄電装置 Bの電圧 V B、 正極線 P L 2および負極線 NL 2間の電圧 VDC、 モータジェネレータ MG 1, 1 02の回転数1^1 1^1, MRN2、 ならびに走行モード制御部 88から受けるモータジェネレータ MG 1, MG 2のトルク指令値 TR 1, TR 2に基づいて、 昇圧コンバータ 10を駆動す るための信号 PWCを生成し、 その生成した信号 PWCを昇圧コンバータ 10へ 出力する。 なお、 電圧 VB, VDCおよび回転数 MRN 1, MRN2の各々につ いては、 図示されないセンサによって検出される。  Converter control unit 82 controls voltage VB of power storage device B, voltage VDC between positive line PL 2 and negative line NL 2, motor generators MG 1 and 102, rotation speeds 1 ^ 1 1 ^ 1, MRN2, and travel mode control. Generates a signal PWC for driving boost converter 10 based on torque command values TR 1 and TR 2 of motor generators MG 1 and MG 2 received from section 88, and outputs the generated signal PWC to boost converter 10 To do. The voltages VB and VDC and the rotation speeds MRN 1 and MRN2 are detected by a sensor (not shown).
第 1のインバータ制御部 84は、 電圧 VDC、 モータジェネレータ MG 1のモ ータ電流 MCRT 1およびロータ回転位置 0 1、 ならびにトルク指令値 TR 1に 基づいて、 モータジェネレータ MG 1を駆動するための信号 PWI 1を生成し、 その生成した信号 PWI 1をインバータ 20へ出力する。 なお、 モータ電流 MC RT 1およびロータ回転位置 0 1の各々については、 図示されないセンサによつ て検出される。  The first inverter control unit 84 is a signal for driving the motor generator MG 1 based on the voltage VDC, the motor current MCRT 1 of the motor generator MG 1, the rotor rotational position 0 1, and the torque command value TR 1. PWI 1 is generated, and the generated signal PWI 1 is output to the inverter 20. Note that each of the motor current MC RT 1 and the rotor rotational position 01 is detected by a sensor (not shown).
第' 2のインバータ制御部 86は、 電圧 VDC、 モータジェネレータ MG 2のモ ータ電流 MCRT 2およびロータ回転位置 Θ 2、 ならびにトルク指令値 TR 2に 基づいて、 モータジェネレータ MG 2を駆動するための信号 PWI 2を生成し、 その生成した信号 PWI 2をインバータ 30へ出力する。 なお、 モータ電流 MC RT 2およびロータ回転位置 Θ 2の各々については、 図示されないセンサによつ て検出される。 The second inverter control unit 86 drives the motor generator MG 2 based on the voltage VDC, the motor current MCRT 2 of the motor generator MG 2, the rotor rotational position Θ 2, and the torque command value TR 2. The signal PWI 2 is generated, and the generated signal PWI 2 is output to the inverter 30. The motor current MC RT 2 and the rotor rotational position Θ 2 are each measured by a sensor not shown. Detected.
走行モード制御部 88は、 ァクセルペダルの操作量を示すァクセルポジション 信号 ACC、 車両速度を示す車速信号 S PD、 シフトポジションを示すシフトポ ジシヨン信号 S P、 蓄電装置 Bの充電状態 (SOC : State Of Charge) を示す 状態量 SOC、 および EV優先スィッチ 60からの信号 EVを受ける。 そして、 走行モード制御部 88は、 後述の方法により、 エンジン 4を作動させるか否か、 すなわち EVモードで走行するか HVモードで走行するかを判定し、 その判定結 果に基づきトルク指令値 TR 1, TR 2を生成してコンバータ制御部 82ならび に第 1および第 2のインバータ制御部 84, 86へ出力する。  The travel mode control unit 88 includes an accelerator position signal ACC indicating the amount of operation of the accelerator pedal, a vehicle speed signal SPD indicating the vehicle speed, a shift position signal SP indicating the shift position, and a state of charge of the power storage device B (SOC: State Of Charge). It receives the signal EV from the state priority SOC and EV priority switch 60. Then, the travel mode control unit 88 determines whether to operate the engine 4 by the method described later, that is, whether to travel in the EV mode or the HV mode, and based on the determination result, the torque command value TR 1 and TR 2 are generated and output to the converter control unit 82 and the first and second inverter control units 84 and 86.
ここで、 走行モード制御部 88は、 EV優先スィッチ 60からの信号 EVが活 性化されているとき、 予め規定されたァクセノレペダル操作量一アクセル開度非線 形化マップに従って、 アクセルポジション信号 AC Cに基づいてアクセル開度を 算出する。 そして、 走行モード制御部 88は、 その算出されたアクセル開度、 車 速信号 S PD、 シフトポジション信号 S Pおよび状態量 SO Cに基づいてェンジ ン出力要求値を算出し、 その算出されたエンジン出力要求値が所定のしきい値を 超えているか否かに応じて走行モードを決定する。  Here, when the signal EV from the EV priority switch 60 is activated, the traveling mode control unit 88 determines that the accelerator position signal AC C according to the accelerator pedal operation amount-accelerator opening non-linearization map defined in advance. Calculate the accelerator opening based on. The travel mode control unit 88 calculates an engine output request value based on the calculated accelerator opening, vehicle speed signal SPD, shift position signal SP, and state quantity SOC, and calculates the engine output. The driving mode is determined depending on whether the required value exceeds a predetermined threshold.
なお、 アクセルペダルの操作量は、 図示されないアクセルポジションセンサに よって検出される。 また、 車両速度およびシフトポジションは、 それぞれ図示さ れない車速センサおよぴシフトポジションセンサによって検出される。  The operation amount of the accelerator pedal is detected by an accelerator position sensor (not shown). Further, the vehicle speed and the shift position are detected by a vehicle speed sensor and a shift position sensor (not shown), respectively.
図 3は、 ァクセルペダル操作量一ァクセル開度非線形化マップの一例を示した 図である。 図 3を参照して、 点線で示される直線 k 1は、 EV優先スィッチ 60 がオフ状態のときのアクセルぺダル操作量とアクセル開度との関係を示す。 すな わち、 EV優先スィッチ 60がオフ状態のときは、 アクセルペダル操作量とァク セル開度との関係は線形である。  FIG. 3 is a diagram showing an example of an accelerator pedal operation amount vs. an accelerator opening degree non-linearization map. Referring to FIG. 3, a straight line k 1 indicated by a dotted line shows the relationship between the accelerator pedal operation amount and the accelerator opening when the EV priority switch 60 is in the OFF state. In other words, when the EV priority switch 60 is in the OFF state, the relationship between the accelerator pedal operation amount and the accelerator opening is linear.
実線で示される曲線 k 2は、 EV優先スィツチ 60がオン状態のときのァクセ ノレペダル操作量とアクセル開度との関係を示す。 EV優先スィッチ 60がオン状 態のとき、 ァクセノレペダル操作量とアクセル開度との関係は、 曲線 k 2に従って 非線形化される。 より具体的には、 EV優先スィッチ 60がオフ状態のときょり も同一のァクセルペダル操作量に対するァクセル開度が小さくなるように、 凸関 数からなる曲線 k 2に従ってァクセルペダル操作量とァクセル開度との関係が非 線形化される。 A curve k2 indicated by a solid line shows the relationship between the amount of operation of the accelerator pedal and the accelerator opening when the EV priority switch 60 is in the on state. When the EV priority switch 60 is in the ON state, the relationship between the accelerator pedal operation amount and the accelerator opening is made non-linear according to the curve k2. More specifically, even when the EV priority switch 60 is in the OFF state, the convexity is reduced so that the accelerator opening with respect to the same accelerator pedal operation amount becomes smaller. The relationship between the accelerator pedal operation amount and the accelerator opening is nonlinearized according to the curve k 2 consisting of numbers.
これにより、 アクセルペダルがラフに操作されても、 アクセルペダル操作量に 対するアクセル開度が抑えられていることによりエンジン出力要求値が抑えられ、 その結果、 E Vモードから H Vモードへの移行が抑制される。 すなわち、 ァクセ ルペダルがラフに操作されても E V走行を維持可能であり、 アクセルペダルの操 作性が向上する。  As a result, even if the accelerator pedal is operated roughly, the required engine output value is suppressed by suppressing the accelerator opening relative to the accelerator pedal operation amount, and as a result, the transition from EV mode to HV mode is suppressed. Is done. In other words, EV driving can be maintained even if the accelerator pedal is operated roughly, and the operability of the accelerator pedal is improved.
なお、 E V優先スィッチ 6 0がオン状態のときのアクセルペダル操作量とァク セル開度との関係を曲線 k 2で示されるような凸関数としたのは、 アクセルぺダ ル操作量が通常の操作領域 (中程度) において、 直線 k 1からのアクセル開度の 変更量を大きくするためである。 すなわち、 アクセルペダル操作量が通常の操作 領域 (中程度) において、 アクセルペダルの操作性向上の効果を最大限に得るた めである。  It should be noted that the relationship between the accelerator pedal operation amount and the accelerator opening when the EV priority switch 60 is on is a convex function as indicated by the curve k2, because the accelerator pedal operation amount is normally This is to increase the amount of change in the accelerator opening from the straight line k1 in the operation range (medium). That is, in order to obtain the maximum effect of improving the operability of the accelerator pedal in the normal operation range (medium).
図 4は、 図 2に示した走行モード制御部 8 8によるアクセル開度算出処理のフ ローチャートである。 なお、 このフローチャートの処理は、 車両が走行可能な状 態にあるとき (たとえば、 車両システムの起動中) 、 一定時間毎または所定の条 件が成立するごとにメインルーチンから呼び出されて実行される。  FIG. 4 is a flowchart of accelerator opening degree calculation processing by the travel mode control unit 88 shown in FIG. It should be noted that the processing of this flowchart is called from the main routine and executed every certain time or when a predetermined condition is satisfied when the vehicle is ready to travel (for example, when the vehicle system is being activated). .
図 4を参照して、 走行モード制御部 8 8は、 E V優先スィツチ 6 0からの信号 E Vに基づいて、 E V優先スィッチ 6 0がオン状態であるか否かを判定する (ス テツプ S 1 0 ) 。 E V優先スィッチ 6◦がオフ状態であると判定されると (ステ ップ S 1 0において N O) 、 走行モード制御部 8 8は、 以降の一連の処理を実行 することなく、 メインルーチンへ処理を返す。  Referring to FIG. 4, traveling mode control unit 8 8 determines whether or not EV priority switch 60 is on based on signal EV from EV priority switch 60 (step S 1 0 ) If it is determined that EV priority switch 6 is off (NO in step S 10), traveling mode control unit 88 performs processing to the main routine without executing the subsequent series of processing. return.
ステップ S 1 0において E V優先スィツチ 6 0がオン状態であると判定される と (ステップ S 1 0において Y E S ) 、 走行モード制御部 8 8は、 上述したァク セルペダル操作量一アクセル開度非線形化マップ (曲線 k 2 ) を用いて、 ァクセ ルポジション信号 A C Cに基づいてアクセル開度を算出する (ステップ S 2 0 ) 。 そして、 走行モード制御部 8 8は、 実際にアクセル開度の変更処理を行なう (ステップ S 3 0 ) 。 具体的には、 E V優先スィッチ 6 0がオン操作されたタイ ミングでアクセル開度が急激に変更されると、 エンジン出力要求値が急激に変化 し、 車両の走行に悪影響を及ぼす可能性があるので、 走行モード制御部 8 8は、 図 3に示した直線 k 1に従うァクセル開度からァクセルペダル操作量一アクセル 開度非線形化マップ (曲線 k 2 ) に従うアクセル開度へ変更する際の変更レート を制限する。 If it is determined in step S 10 that the EV priority switch 60 is on (YES in step S 10), the travel mode control unit 8 8 makes the accelerator pedal operation amount one accelerator opening non-linearization described above. Using the map (curve k 2), the accelerator opening is calculated based on the accelerator position signal ACC (step S 2 0). Then, traveling mode control unit 88 actually performs the accelerator opening changing process (step S 30). Specifically, when the accelerator opening is suddenly changed when the EV priority switch 60 is turned on, the engine output request value changes rapidly. Therefore, the travel mode control unit 8 8 determines that the accelerator pedal operation amount is equal to the accelerator opening non-linearization map (curve k 2) from the accelerator opening according to the straight line k 1 shown in FIG. ) Limit the change rate when changing to the accelerator opening according to.
次いで、 走行モード制御部 8 8は、 E V優先スィッチ 6 0からの信号 E Vに基 づいて、 E V優先スィッチ 6 0がオフ状態であるか否かを判定する (ステップ S 4 0 ) 。 そして、 E V優先スィッチ 6 0がオフ状態であると判定されると (ステ ップ S 4 0において Y E S ) 、 走行モード制御部 8 8は、 実際にアクセル開度の 復帰処理を行なう (ステップ S 5 0 ) 。 具体的には、 E V優先スィッチ 6 0がォ フ操作されたタイミングでアクセル開度を急激に復帰させると、 エンジン出力要 求値が急激に変化し、 車両の走行に悪影響を及ぼす可能性があるので、 走行モー ド制御部 8 8は、 図 3に示したァクセルペダル操作量一ァクセル開度非線形化マ ップ (曲線 k 2 ) に従うアクセル開度から直線 k 1に従うアクセル開度へ復帰す る際の変更レートを制限する。  Next, the traveling mode control unit 88 determines whether or not the EV priority switch 60 is off based on the signal EV from the EV priority switch 60 (step S 40). If it is determined that EV priority switch 60 is off (YES in step S 40), travel mode control unit 88 actually performs the accelerator opening return process (step S 5 0). Specifically, if the accelerator opening is suddenly returned at the timing when the EV priority switch 60 is turned off, the engine output request value may change abruptly, which may adversely affect the running of the vehicle. Therefore, the travel mode control unit 8 8 returns from the accelerator opening according to the accelerator pedal operation amount to the accelerator opening non-linearization map (curve k 2) shown in FIG. 3 to the accelerator opening according to the straight line k 1. Limit the rate of change.
なお、 ステップ S 1 0において E V優先スィツチ 6 0がオフ状態であると判定 された場合、 アクセルぺダル操作量一ァクセル開度非線形化マップに従うァクセ ル開度への変更は行なわれず、 図 3に示した直線 k 1で示される規定の線形関係 に従って、 アクセルポジション信号 A C Cに基づいてアクセル開度が決定される。 図 5は、 図 2に示した走行モード制御部 8 8によるトルク指令値算出処理のフ ローチャートである。 なお、 このフローチャートの処理も、 車両が走行可能な状 態にあるとき (たとえば、 車両システムの起動中) 、 一定時間毎または所定の条 件が成立するごとにメインルーチンから呼び出されて実行される。  If it is determined in step S10 that the EV priority switch 60 is in the OFF state, the accelerator pedal opening is not changed to the accelerator opening according to the accelerator pedal operation amount minus the accelerator opening non-linearization map. The accelerator opening is determined based on the accelerator position signal ACC according to the prescribed linear relationship indicated by the straight line k 1 shown. FIG. 5 is a flowchart of a torque command value calculation process by the travel mode control unit 88 shown in FIG. The process of this flowchart is also called and executed from the main routine every certain time or when a predetermined condition is satisfied when the vehicle is ready to travel (for example, when the vehicle system is starting up). .
図 5を参照して、 走行モード制御部 8 8は、 図 4に示したフローチヤ一トに従 つてアクセルポジション信号 A C Cに基づいて算出されたアクセル開度、 ならび に車速信号 S P Dおよびシフトポジション信号 S Pに基づいて、 予め設定された マップまたは演算式を用いて車両の駆動要求トルク (車軸) を算出する (ステツ プ S 1 1 0 ) 。 そして、 走行モード制御部 8 8は、 算出された駆動要求トルクと 車軸回転数とに基づいて、 車両の駆動要求出力を算出する (ステップ S 1 2 0 ) 。 具体的には、 駆動要求トルクに車軸回転数を乗算することにより駆動要求出力が 算出される。 Referring to FIG. 5, traveling mode control unit 8 8 includes accelerator position calculated based on accelerator position signal ACC according to the flowchart shown in FIG. 4, and vehicle speed signal SPD and shift position signal SP. Based on the above, the required drive torque (axle) of the vehicle is calculated using a preset map or calculation formula (step S 1 1 0). Then, traveling mode control unit 88 calculates a drive request output of the vehicle based on the calculated drive request torque and axle rotation speed (step S 1 2 0). Specifically, the required drive output is obtained by multiplying the required drive torque by the axle speed. Calculated.
次いで、 走行モード制御部 88は、 算出された駆動要求出力と蓄電装置 Bの S OCとに基づいてエンジン出力要求値を算出する (ステップ S 130) 。 具体的 には、 蓄電装置 Bの SOCに基づいて蓄電装置 Bの充電要求量が算出され、 その 充電要求量を駆動要求出力に加算することによりエンジン出力要求値が算出され る。  Next, traveling mode control unit 88 calculates an engine output request value based on the calculated drive request output and SOC of power storage device B (step S130). Specifically, the required charge amount of power storage device B is calculated based on the SOC of power storage device B, and the required engine output value is calculated by adding the required charge amount to the drive request output.
次いで、 走行モード制御部 88は、 EV優先スィッチ 60からの信号 EVに基 づいて、 EV優先スィッチ 60がオン状態であるか否かを判定する (ステップ S 140) 。 そして、 EV優先スィッチ 60がオン状態であると判定されると (ス テツプ S 140において Y E S ) 、 走行モード制御部 88は、 走行モードの切替 判定を行なうためのしきい値を補正する (ステップ S 150) 。 なお、 このしき レ、値は、 エンジン 4を始動させる必要があるか否かを判定するための値であり、 言い換えると、 走行モードの切替しきい値である。  Next, traveling mode control unit 88 determines whether or not EV priority switch 60 is in the ON state based on signal EV from EV priority switch 60 (step S140). If it is determined that EV priority switch 60 is in the ON state (YES in step S 140), traveling mode control unit 88 corrects the threshold value for determining whether to switch the traveling mode (step S). 150). This threshold value is a value for determining whether or not the engine 4 needs to be started, in other words, a threshold value for switching the running mode.
図 6は、 走行モードの切替しきい値を示した図である。 図 6を参照して、 縦軸 はエンジン出力要求値を示し、 横軸は車速を示す。 実線で示されるしきい値 k 3 は、 EV優先スィッチ 60がオフ状態のときの切替しきい値を示す。 エンジン出 力要求値がしきい値 k 3以下の時は、 エンジン 4を停止して走行 (EVモード) するものと判定され、 エンジン出力要求値がしきい値 k 3を超えると、 エンジン 4を始動させて走行 (HVモード) するものと判定される。 なお、 このしきい値 k 3は、 車速に応じて変化し、 たとえば、 低速時は大きく (すなわち、 EVモー ド重視となる。 ) 、 車速が規定 ffi!SPDOを越えると 0となる (すなわち、 常時 HVモードとなる) 。  Fig. 6 is a diagram showing threshold values for switching the driving mode. Referring to Fig. 6, the vertical axis represents the required engine output value, and the horizontal axis represents the vehicle speed. A threshold value k 3 indicated by a solid line indicates a switching threshold value when the EV priority switch 60 is in the OFF state. When the engine output request value is less than or equal to the threshold k3, it is determined that the engine 4 is stopped and the vehicle is traveling (EV mode). It is determined that the vehicle will start and run (HV mode). This threshold value k 3 changes according to the vehicle speed, for example, it is large at low speed (ie, emphasizing EV mode), and becomes 0 when the vehicle speed exceeds the specified ffi! SPDO (ie, Always in HV mode).
また、 点線で示されるしきい値 k 4は、 EV優先スィッチ 60がオン状態のと きの切替しきい値を示す。 すなわち、 EV優先スィッチ 60がオン状態のとき、 E Vモードでの走行領域が拡大するように、 走行モードの切替しきい値が補正さ れる。  A threshold value k 4 indicated by a dotted line indicates a switching threshold value when the EV priority switch 60 is in an ON state. That is, when the EV priority switch 60 is in the ON state, the travel mode switching threshold value is corrected so that the travel range in the EV mode is expanded.
再び図 5を参照して、 走行モード制御部 88は、 ステップ S 1 30において算 出されたエンジン出力要求値が走行モードの切替しきい値よりも大きいか否かを 判定する (ステップ S 160) 。 エンジン出力要求値がしきい値以下であると判 定されると (ステップ S 160において NO) 、 後述のステップ S 190へ処理 が移行する。 Referring again to FIG. 5, traveling mode control unit 88 determines whether or not the engine output request value calculated in step S 1 30 is larger than the traveling mode switching threshold value (step S 160). . The engine output request value is determined to be below the threshold value. If determined (NO in step S160), the process proceeds to step S190 described later.
一方、 エンジン出力要求値がしきい値よりも大きいと判定されると (ステップ S 160において YES) 、 走行モード制御部 88は、 エンジン 4の目標回転数 を算出し、 実際にエンジン 4の制御を実行する (ステップ S 170) 。 そして、 走行モード制御部 88は、 エンジン 4を目標回転数に維持するためのモータジェ ネレータ MG 1の目標回転数を算出し、 モータジェネレータ MG 1を目標回転数 に制御するためのトルク指令値 TR 1を算出する (ステップ S 180) 。  On the other hand, when it is determined that the required engine output value is larger than the threshold value (YES in step S 160), traveling mode control unit 88 calculates target speed of engine 4 and actually controls engine 4. Execute (Step S170). Then, traveling mode control unit 88 calculates target rotational speed of motor generator MG 1 for maintaining engine 4 at the target rotational speed, and torque command value TR 1 for controlling motor generator MG 1 to the target rotational speed. Is calculated (step S 180).
次いで、 走行モード制御部 88は、 モータジェネレータ MG 1のトルク指令値 TR 1からエンジン 4の発生トルク (エンジン直行トルク) を算出する (ステツ プ S 1 90) 。 なお、 エンジン直行トルクは、 動力分割機構 3の幾何学的構成 (歯数比) に基づいてトルク指令値 TR 1から算出することができる。 なお、 ェ ンジン出力要求値がしきい値以下のときは、 エンジン 4は停止するので、 ェンジ ン直行トルクは 0となる。 そして、 エンジン直行トルクが算出されると、 走行モ ード制御部 88は、 ステップ S 1 10において算出された駆動要求トルクからェ ンジン直行トルクを減算することにより、 モータジェネレータ MG 2のトノレク指 令値 TR 2を算出する (ステップ S 200) 。  Next, traveling mode control unit 88 calculates the generated torque (engine direct torque) of engine 4 from torque command value TR 1 of motor generator MG 1 (step S 1 90). The engine direct torque can be calculated from the torque command value TR 1 based on the geometric configuration (number of teeth ratio) of the power split mechanism 3. When the engine output request value is less than or equal to the threshold value, the engine 4 stops and the engine direct torque becomes zero. When the engine direct torque is calculated, the traveling mode control unit 88 subtracts the engine direct torque from the drive request torque calculated in step S 1 10, so that the motor generator MG 2 torque command is issued. The value TR 2 is calculated (step S 200).
以上のように、 この実施の形態においては、 ハイブリッド車両 100は、 EV モードおよび HVモードのいずれかの走行モードで走行可能である。 また、 EV 優先スィッチ 60からの運転者の操作入力に基づいて、 EVモードから HVモー ドへの移行を制限可能である。 そして、 EV優先スィッチ 60がオン状態のとき、 ァクセルペダル操作量一ァクセル開度非線形化マップに従ってァクセルペダル操 作量とアクセル開度との関係が変更されるので、 制御に用いられるアクセル開度 が抑制されることによりエンジン出力要求値が抑えられ、 その結果、 EVモード から HVモードへの移行が抑制される。 したがって、 この実施の形態によれば、 運転者によるアクセルぺダルの操作がラフであっても EV走行を維持することが 可能となる。 その結果、 EV走行時のァクセノレペダルの操作性が向上する。  As described above, in this embodiment, hybrid vehicle 100 can travel in either the EV mode or the HV mode. In addition, the transition from EV mode to HV mode can be restricted based on the driver's operation input from EV priority switch 60. When the EV priority switch 60 is in the ON state, the relationship between the accelerator pedal operation amount and the accelerator opening is changed according to the accelerator pedal operation amount vs. the accelerator opening non-linearization map, so that the accelerator opening used for control is suppressed. As a result, the required engine output value is suppressed, and as a result, the transition from EV mode to HV mode is suppressed. Therefore, according to this embodiment, it is possible to maintain EV traveling even when the driver operates the accelerator pedal roughly. As a result, the operability of the acceleration pedal during EV driving is improved.
また、 E V優先スィツチ 60がオン状態のときのァクセルペダル操作量とァク セル開度との関係を曲線 k 2で示されるような凸関数としたので、 アクセルぺダ ル操作量が通常の操作領域 (中程度) において、 E V優先スィッチ 6 0がオフ状 態の場合からのアクセル開度の変更量が大きくなる。 したがって、 アクセルぺダ ル操作量が通常の操作領域 (中程度) において、 ァクセノレペダルの操作性向上の 効果を最大限に得ることができる。 In addition, since the relationship between the accelerator pedal operation amount and the accelerator opening when the EV priority switch 60 is on is a convex function as shown by the curve k2, the accelerator pedal In the normal operation range (medium), the amount of change in the accelerator opening from when the EV priority switch 60 is off is large. Therefore, the effect of improving the operability of the accelerator pedal can be maximized when the amount of operation of the accelerator pedal is normal (medium).
なお、 上記の実施の形態においては、 E V優先スィッチ 6 0がオン状態のとき のァクセルペダル操作量とァクセル開度との関係は、 予め規定されたァクセルぺ ダル操作量一アクセル開度非線形化マップに従うものとしたが、 マップに代えて 演算式を用いてもよい。  In the above embodiment, the relationship between the accelerator pedal operation amount and the accelerator opening when the EV priority switch 60 is in the ON state is in accordance with a predetermined accelerator pedal operation amount-accelerator opening non-linearization map. Although it was assumed, an arithmetic expression may be used instead of the map.
また、 上記においては、 E Vモードから HVモードへの切替しきい値と HVモ 一ドから E Vモードへの切替しきい値とは同じであるものとしたが、 これらのし きいィ直を異なるィ直とし、 走行モードの切替にヒステリシスを設けてもよい。  In the above description, the threshold value for switching from EV mode to HV mode and the threshold value for switching from HV mode to EV mode are the same. However, these threshold values are different. It is also possible to provide a hysteresis for switching the driving mode.
また、 上記においては、 ハイブリッド車両は、 動力分割機構 3によりエンジン 4の動力を車軸とモータジェネレータ MG 1とに分割して伝達可能なシリーズ Z パラレル型としたが、 この発明は、 モータジェネレータ MG 1を駆動するために のみエンジン 4を用い、 モータジェネレータ MG 1により発電された電力を使う モータジェネレータ MG 2でのみ車両の駆動力を発生するシリーズ型のハイブリ ッド車両にも適用することができる。  Further, in the above, the hybrid vehicle is a series Z parallel type in which the power of the engine 4 can be divided and transmitted to the axle and the motor generator MG 1 by the power split mechanism 3, but the present invention is a motor generator MG 1 The engine 4 is used only to drive the vehicle, and the electric power generated by the motor generator MG 1 is used. The present invention can also be applied to a series type hybrid vehicle that generates the driving force of the vehicle only by the motor generator MG 2.
なお、 上記において、 E C U 5 0における制御は、 実際には、 C P U In the above, the control in E C U 50 is actually C P U
(Central Processing Unit) によって行なわれ、 C P Uは、 図 4 , 図 5に示し たフローチャートの各ステップを備えるプログラムを R O M (Read Only Memory) から読出し、 その読出したプログラムを実行して図 4, 図 5に示したフ ローチャートに従って処理を実行する。 したがって、 R OMは、 図 4 , 図 5に示 したフローチャートの各ステップを備えるプログラムを記録したコンピュータ ( C P U) 読取可能な記録媒体に相当する。 (Central Processing Unit), the CPU reads a program including each step of the flowcharts shown in FIGS. 4 and 5 from a ROM (Read Only Memory), and executes the read program to execute FIGS. The process is executed according to the flowchart shown in. Therefore, the ROM corresponds to a computer (CPU) readable recording medium in which a program including the steps of the flowcharts shown in FIGS. 4 and 5 is recorded.
なお、 上記において、 エンジン 4は、 この発明における 「内燃機関」 の一実施 例に対応し、 モータジェネレータ MG 2は、 この発明における 「電動機」 の一実 施例に対応する。 また、 E C U 5 0の走行モード制御部 8 8は、 この発明におけ る 「制御部」 の一実施例に対応し、 E V優先スィッチ 6 0は、 この発明における 「入力装置」 の一実施例に対応する。 今回開示された実施の形態は、 すべての点で例示であつて制限的なものではな いと考えられるべきである。 本発明の範囲は、 上記した実施の形態の説明ではな くて請求の範囲によって示され、 請求の範囲と均等の意味および範囲内でのすべ ての変更が含まれることが意図される。 In the above, engine 4 corresponds to an embodiment of “internal combustion engine” in the present invention, and motor generator MG 2 corresponds to an embodiment of “electric motor” in the present invention. Further, the travel mode control unit 88 of the ECU 50 corresponds to one embodiment of the “control unit” in the present invention, and the EV priority switch 60 corresponds to one embodiment of the “input device” in the present invention. Correspond. It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.

Claims

請求の範囲 The scope of the claims
1. 内燃機関 (4) と、 1. Internal combustion engine (4),
車両走行用の動力源としての電動機 (MG2) と、  An electric motor (MG2) as a power source for vehicle travel;
ァクセルペダルの操作量に応じて変化するァクセル開度に基づいて、 前記内燃 機関 (4) を停止させて走行する第 1のモード (EVモード) と前記内燃機関 (4) および前記電動機 (MG 2) の双方を動作させて走行する第 2のモード (HVモード) とを含む走行モードの切替を制御する制御部 (88) と、 運転者の操作入力に基づいて、 前記制御部 (88) による前記第 1のモード (EVモード) から前記第 2のモード (HVモード) への移行を制限するための 入力装置 (60) とを備え、  The first mode (EV mode), the internal combustion engine (4), and the electric motor (MG 2) are operated by stopping the internal combustion engine (4) on the basis of the accelerator opening that changes according to the amount of operation of the accelerator pedal. A control unit (88) that controls switching of a travel mode including a second mode (HV mode) that travels by operating both of the above and the control unit (88) based on the operation input of the driver An input device (60) for restricting the transition from the first mode (EV mode) to the second mode (HV mode),
前記制御部 (88) は、 運転者によって前記入力装置 (60) が操作されるこ とにより前記第 1のモード (EVモード) から前記第 2のモード (HVモード) への移行が制限されているとき、 前記第 1のモード (EVモード) から前記第 2 のモード (HVモード) への移行が制限されていないときよりも同一のアクセル ペダル操作量に対するァクセル開度が小さくなるように、 前記ァクセルペダルの 操作量と前記アクセル開度との関係を変更する、 ハイプリッド車両。  The control unit (88) is restricted from shifting from the first mode (EV mode) to the second mode (HV mode) by operating the input device (60) by a driver. The accelerator opening for the same accelerator pedal operation amount is smaller than when the transition from the first mode (EV mode) to the second mode (HV mode) is not restricted. A hybrid vehicle that changes the relationship between the accelerator pedal operation amount and the accelerator opening.
2. 前記制御部 (88) は、 前記第 1のモード ( E Vモード) から前記第 2 のモード (HVモード) への移行が制限されているとき、 前記アクセルペダルの 操作量と前記アクセル開度との関係を予め規定された凸関数に従って非線形化す る、 請求の範囲 1に記載のハイブリッド車両。  2. When the transition from the first mode (EV mode) to the second mode (HV mode) is restricted, the control unit (88) operates the accelerator pedal operation amount and the accelerator opening degree. The hybrid vehicle according to claim 1, wherein the relationship is made non-linear according to a predetermined convex function.
3. 前記第 1のモード (EVモード) から前記第 2のモード (HVモード) への移行が制限されていないとき、 前記ァクセルぺダルの操作量と前記アクセル 開度との関係は線形である、 請求の範囲 2に記載のハイブリッド車両。  3. When the transition from the first mode (EV mode) to the second mode (HV mode) is not restricted, the relationship between the manipulated variable of the accelerator pedal and the accelerator opening is linear. The hybrid vehicle according to claim 2.
4. 内燃機関 (4) と車両走行用の動力源としての電動機 (MG2) とを搭 載し、 アクセルペダルの操作量に応じて変化するアクセル開度に基づいて、 前記 内燃機関 (4) を停止させて走行する第 1のモード (EVモード) ならびに前記 内燃機関 (4) および前記電動機 (MG2) の双方を動作させて走行する第 2の モード (HVモード) のいずれかの走行モードで走行可能なハイブリッド車両 ( 1 0 0 ) の制御方法であって、 4. An internal combustion engine (4) and an electric motor (MG2) as a power source for vehicle travel are mounted, and the internal combustion engine (4) is controlled based on the accelerator opening that changes according to the operation amount of the accelerator pedal. Traveling in one of the travel modes of the first mode (EV mode) in which the vehicle is stopped and the second mode (HV mode) in which both the internal combustion engine (4) and the electric motor (MG2) are operated Possible hybrid vehicle (1 0 0) control method,
前記ハイブリッド車両 (1 0 0 ) は、 運転者の操作入力に基づいて、 前記第 1 のモード (E Vモード) から前記第 2のモード (HVモード) への移行を制限す るための入力装置 (6 0 ) を備え、  The hybrid vehicle (100) has an input device for restricting a transition from the first mode (EV mode) to the second mode (HV mode) based on a driver's operation input. 6 0)
前記制御方法は、  The control method is:
運転者によって前記入力装置 (6 0 ) が操作されることにより前記第 1のモー ド (E Vモード) から前記第 2のモード (HVモード) への移行が制限されてい るか否かを判定するステツプと、  It is determined whether or not the transition from the first mode (EV mode) to the second mode (HV mode) is restricted by the driver operating the input device (60). Steps,
前記第 1のモード (E Vモード) から前記第 2のモード (HVモード) への移 行が制限されていると判定されたとき、 前記第 1のモード (E Vモード) から前 記第 2のモード (HVモード) への移行が制限されていないときよりも同一のァ クセルペダル操作量に対するアクセル開度が小さくなるように、 前記アクセルぺ ダルの操作量と前記ァクセル開度との関係を変更するステップとを含む、 ハイブ リッド車両の制御方法。  When it is determined that the transition from the first mode (EV mode) to the second mode (HV mode) is restricted, the second mode is changed from the first mode (EV mode) to the second mode. The step of changing the relationship between the accelerator pedal operation amount and the accelerator opening so that the accelerator opening with respect to the same accelerator pedal operation amount becomes smaller than when the transition to the (HV mode) is not restricted. A method for controlling a hybrid vehicle, including:
5 . 前記ァクセルペダルの操作量と前記ァクセル開度との関係を変更するス テップにおいて、 前記ァクセルペダルの操作量と前記ァクセル開度との関係は、 予め規定された凸関数に従って非線形化される、 請求の範囲 4に記載のハイプリ ッド車両の制御方法。  5. In a step of changing the relationship between the amount of operation of the accelerator pedal and the opening degree of the accelerator pedal, the relationship between the amount of operation of the accelerator pedal and the opening degree of the accelerator is made non-linear according to a predetermined convex function. The control method of a hybrid vehicle according to 4 of the above.
6 . 前記第 1のモード (E Vモード) から前記第 2のモード (H Vモード) への移行が制限されていないとき、 前記ァクセルペダルの操作量と前記ァクセル 開度との関係は線形である、 請求の範囲 5に記載のハイブリッド車両の制御方法。  6. When the transition from the first mode (EV mode) to the second mode (HV mode) is not restricted, the relationship between the operation amount of the accelerator pedal and the accelerator opening is linear. The hybrid vehicle control method according to claim 5.
7 . 請求の範囲 4から 6のいずれかに記載のハイブリッド車両の制御方法を コンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な 記録媒体。  7. A computer-readable recording medium storing a program for causing a computer to execute the hybrid vehicle control method according to any one of claims 4 to 6.
PCT/JP2008/060119 2007-05-29 2008-05-27 Hybrid vehicle, hybrid vehicle control method, and computer-readable recording medium containing program for causing computer to execute the control method WO2008146941A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007141915A JP2008296619A (en) 2007-05-29 2007-05-29 Hybrid vehicle, control method thereof, and computer readable recording medium with program for making computer execute the method recorded thereon
JP2007-141915 2007-05-29

Publications (1)

Publication Number Publication Date
WO2008146941A1 true WO2008146941A1 (en) 2008-12-04

Family

ID=40170560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/060119 WO2008146941A1 (en) 2007-05-29 2008-05-27 Hybrid vehicle, hybrid vehicle control method, and computer-readable recording medium containing program for causing computer to execute the control method

Country Status (2)

Country Link
JP (1) JP2008296619A (en)
WO (1) WO2008146941A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201151A (en) * 2010-11-08 2013-07-10 丰田自动车株式会社 Hybrid automobile
CN103249624A (en) * 2011-12-13 2013-08-14 丰田自动车株式会社 Control device for hybrid system
CN105235678A (en) * 2014-07-04 2016-01-13 丰田自动车株式会社 Hybrid vehicle
CN104554266B (en) * 2013-10-24 2019-12-10 福特全球技术公司 Hybrid vehicle with dynamic mapping of pedal position to wheel output demand

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023052A (en) * 2011-07-20 2013-02-04 Mitsubishi Motors Corp Control unit for hybrid vehicle
EP2786909A4 (en) * 2011-12-02 2015-12-30 Toyota Motor Co Ltd Hybrid vehicle
JPWO2013080376A1 (en) * 2011-12-02 2015-04-27 トヨタ自動車株式会社 Hybrid vehicle
WO2013088545A1 (en) * 2011-12-15 2013-06-20 トヨタ自動車株式会社 Hybrid vehicle
EP2815945B1 (en) 2012-02-17 2019-10-09 Toyota Jidosha Kabushiki Kaisha Vehicle and vehicle control method
US9789873B2 (en) 2014-02-16 2017-10-17 Ford Global Technologies, Llc Vehicle coasting control system and method
JP6156259B2 (en) * 2014-06-10 2017-07-05 トヨタ自動車株式会社 Hybrid vehicle and control method thereof
JP6332172B2 (en) * 2015-07-06 2018-05-30 トヨタ自動車株式会社 Hybrid car
JP6332173B2 (en) * 2015-07-06 2018-05-30 トヨタ自動車株式会社 Hybrid car

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148391A (en) * 1997-09-15 1999-06-02 Honda Motor Co Ltd Hybrid vehicle controlling device
JP2005185055A (en) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd Device for controlling hybrid vehicle
JP2006180626A (en) * 2004-12-22 2006-07-06 Toyota Motor Corp Control device of hybrid vehicle
JP2007091073A (en) * 2005-09-29 2007-04-12 Toyota Motor Corp Drive unit, automobile mounted therewith, and control method of the drive unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148391A (en) * 1997-09-15 1999-06-02 Honda Motor Co Ltd Hybrid vehicle controlling device
JP2005185055A (en) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd Device for controlling hybrid vehicle
JP2006180626A (en) * 2004-12-22 2006-07-06 Toyota Motor Corp Control device of hybrid vehicle
JP2007091073A (en) * 2005-09-29 2007-04-12 Toyota Motor Corp Drive unit, automobile mounted therewith, and control method of the drive unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201151A (en) * 2010-11-08 2013-07-10 丰田自动车株式会社 Hybrid automobile
CN103249624A (en) * 2011-12-13 2013-08-14 丰田自动车株式会社 Control device for hybrid system
CN103249624B (en) * 2011-12-13 2015-06-24 丰田自动车株式会社 Control device for hybrid system
CN104554266B (en) * 2013-10-24 2019-12-10 福特全球技术公司 Hybrid vehicle with dynamic mapping of pedal position to wheel output demand
CN105235678A (en) * 2014-07-04 2016-01-13 丰田自动车株式会社 Hybrid vehicle
CN105235678B (en) * 2014-07-04 2018-04-03 丰田自动车株式会社 Motor vehicle driven by mixed power

Also Published As

Publication number Publication date
JP2008296619A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
WO2008146941A1 (en) Hybrid vehicle, hybrid vehicle control method, and computer-readable recording medium containing program for causing computer to execute the control method
JP5423898B2 (en) Electric vehicle and control method thereof
JP6392653B2 (en) Hybrid car
WO2010001692A1 (en) Hybrid vehicle
WO2008032494A1 (en) Hybrid vehicle, method of controlling hybrid vehicle, and computer readable recording medium having recorded thereon program for causing computer to execute control of hybrid vehicle
JP5477477B2 (en) Control device and control method for electric vehicle
JP4826657B2 (en) Vehicle control device
JP2016107684A (en) Hybrid vehicle
JP2018019536A (en) Automobile
CN108515844B (en) Hybrid electric vehicle and control method for hybrid electric vehicle
JP2021084537A (en) Hybrid vehicle
WO2012105021A1 (en) Hybrid vehicle and control method thereof
JP2018079786A (en) Hybrid automobile
JP2018184133A (en) Hybrid vehicle
JP2018154237A (en) Hybrid vehicle
JP2018127021A (en) Hybrid automobile
JP6451692B2 (en) Automobile
JP2012135124A (en) Vehicle
JP6489100B2 (en) Hybrid car
JP2012182912A (en) Electric vehicle and control method therefor
JP2018144687A (en) Hybrid vehicle
JP2014217112A (en) Control device of vehicle
JP6812895B2 (en) Hybrid vehicle
JP6607217B2 (en) Hybrid car
JP2016049867A (en) Hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08764968

Country of ref document: EP

Kind code of ref document: A1