JP4826300B2 - Control device and control method for internal combustion engine - Google Patents

Control device and control method for internal combustion engine Download PDF

Info

Publication number
JP4826300B2
JP4826300B2 JP2006068718A JP2006068718A JP4826300B2 JP 4826300 B2 JP4826300 B2 JP 4826300B2 JP 2006068718 A JP2006068718 A JP 2006068718A JP 2006068718 A JP2006068718 A JP 2006068718A JP 4826300 B2 JP4826300 B2 JP 4826300B2
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
internal combustion
pressure
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006068718A
Other languages
Japanese (ja)
Other versions
JP2007247440A (en
Inventor
秀治 門岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006068718A priority Critical patent/JP4826300B2/en
Publication of JP2007247440A publication Critical patent/JP2007247440A/en
Application granted granted Critical
Publication of JP4826300B2 publication Critical patent/JP4826300B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高圧燃料配管を備えた内燃機関の制御技術に関する。   The present invention relates to a control technique for an internal combustion engine provided with a high-pressure fuel pipe.

内燃機関、特に燃焼室内に直接燃料を噴射する筒内直噴式火花点火内燃機関では、高い燃料噴射圧力を安定して得るために、機関出力により機械的に駆動される高圧燃料ポンプにより昇圧した高圧燃料を、複数の燃料噴射弁に接続する高圧燃料配管へ逆止弁を介して供給する燃料システムが知られている。このような燃料システムでは、機関減速時やアイドルストップ時のように燃料噴射を一時的に停止する燃料カット運転から燃料噴射を再開する燃料カットリカバー(以下、単にリカバーとも呼ぶ)運転の開始時に、燃料噴射期間を最小にしても燃料噴射量を十分に低減することができず、一時的に機関出力トルクが増大して不快なトルク変動を招く、という課題があった。   In an internal combustion engine, particularly a direct injection type spark ignition internal combustion engine that directly injects fuel into a combustion chamber, a high pressure boosted by a high-pressure fuel pump mechanically driven by the engine output in order to stably obtain a high fuel injection pressure. There is known a fuel system that supplies fuel to a high-pressure fuel pipe connected to a plurality of fuel injection valves via a check valve. In such a fuel system, at the start of a fuel cut recover operation (hereinafter also referred to simply as a recover) that restarts fuel injection from a fuel cut operation that temporarily stops fuel injection, such as during engine deceleration or idle stop, Even if the fuel injection period is minimized, the amount of fuel injection cannot be sufficiently reduced, and the engine output torque temporarily increases, causing unpleasant torque fluctuations.

このようなトルク変動を低減・解消するために、特許文献1には、下記の三つの手法が提案されている。第1の手法では、高圧燃料配管の燃圧室内の燃料を逃すための逃し弁を追加し、燃料カットリカバー時に逃し弁を開くことにより、高圧燃料配管内の燃圧を下げている。第2の手法では、成層燃焼運転と均質燃焼運転の双方を実現可能な内燃機関において、上記燃料カットリカバー時に、吸入空気量を減少するとともに吸気行程中に燃料を噴射する均質燃焼運転を行うことによって、高圧燃料配管内の燃圧を低下させている。第3の手法では、吸気通路に燃料を噴射する吸気通路噴射用燃料噴射弁と、燃焼室内に燃料を噴射する筒内噴射用燃料噴射弁と、の双方を備える内燃機関において、上記燃料カットリカバー時に、吸入空気量を減少させるとともに、吸気通路噴射用燃料噴射弁から燃料噴射を行うことによって、高圧燃料配管内の燃圧を低下させている。
特許第3170974号公報
In order to reduce and eliminate such torque fluctuations, Patent Document 1 proposes the following three methods. In the first method, a relief valve for releasing fuel in the fuel pressure chamber of the high-pressure fuel pipe is added, and the fuel pressure in the high-pressure fuel pipe is lowered by opening the relief valve at the time of fuel cut recovery. In the second method, in an internal combustion engine capable of realizing both stratified combustion operation and homogeneous combustion operation, performing the homogeneous combustion operation of reducing the intake air amount and injecting fuel during the intake stroke at the time of the fuel cut recovery. As a result, the fuel pressure in the high-pressure fuel pipe is reduced. In the third technique, in the internal combustion engine including both an intake passage injection fuel injection valve for injecting fuel into the intake passage and an in-cylinder injection fuel injection valve for injecting fuel into the combustion chamber, the fuel cut recovery is performed. Sometimes, the fuel pressure in the high-pressure fuel pipe is lowered by reducing the amount of intake air and performing fuel injection from the fuel injection valve for intake passage injection.
Japanese Patent No. 3170974

しかしながら、上記第1及び第3の手法では、逃し弁や吸気通路噴射用燃料噴射弁及び筒内噴射用燃料噴射弁といった追加の部品が必要となり、大型化・重量増加やコストの増加を招いてしまう。また、上記第2の手法は成層燃焼運転と均質燃焼運転の双方を実現可能な内燃機関でないと採用できない。更に、第2及び第3の手法では、燃料カットリカバー後の運転条件がアイドル運転のように元々吸入空気量が少ない運転状態である場合、スロットル弁により吸入空気量を更に減少させることが非常に困難である。しかも、第2及び第3の手法のようにリカバー時の吸入空気量を減少させると、排気の空燃比がリッチ化して排気性能を阻害するおそれがある。   However, the above first and third methods require additional parts such as a relief valve, an intake passage injection fuel injection valve, and an in-cylinder injection fuel injection valve, leading to an increase in size, weight, and cost. End up. Further, the second method can be used only for an internal combustion engine that can realize both stratified combustion operation and homogeneous combustion operation. Further, in the second and third methods, when the operation condition after the fuel cut recovery is an operation state in which the intake air amount is originally low like the idle operation, it is extremely possible to further reduce the intake air amount by the throttle valve. Have difficulty. Moreover, if the intake air amount at the time of recovery is reduced as in the second and third methods, the air-fuel ratio of the exhaust gas may become rich, and the exhaust performance may be hindered.

本発明はこのような課題に鑑みてなされたものであって、内燃機関の燃焼室又は吸気系への燃料噴射を行う燃料噴射弁と、逆止弁を介して高圧燃料が供給され、上記燃料噴射弁へ燃料を供給する高圧燃料配管と、を有する内燃機関の制御に関し、上記燃料噴射を一時的に停止する燃料カット運転から燃料噴射を再開する燃料カットリカバー運転の開始時に、予め設定された所定期間、効率低下運転を行い、この効率低下運転では、燃焼効率を低下するように補正しつつ、燃料噴射量を要求燃料噴射量と比して増加するように補正するとともに、吸入空気量を要求吸入空気量と比して増加するように補正することを特徴としている。 The present invention has been made in view of such a problem, and is provided with a fuel injection valve for injecting fuel into a combustion chamber or an intake system of an internal combustion engine, and high-pressure fuel via a check valve, and the fuel Regarding control of an internal combustion engine having a high-pressure fuel pipe for supplying fuel to an injection valve, the control is preset at the start of a fuel cut recovery operation for restarting fuel injection from a fuel cut operation for temporarily stopping the fuel injection . The efficiency reduction operation is performed for a predetermined period. In this efficiency reduction operation, while correcting the combustion efficiency to be reduced, the fuel injection amount is corrected so as to increase compared to the required fuel injection amount, and the intake air amount is adjusted. It is characterized by correcting so as to increase compared to the required intake air amount .

本発明によれば、追加部品を敢えて必要とすることのない簡素な構成で、排気性能を低下させることなく、またトルク変動を招くことなく、燃料カットリカバー運転の開始後に高圧燃料配管の燃圧を速やかに低下させることができる。   According to the present invention, the fuel pressure of the high-pressure fuel pipe is reduced after the start of the fuel cut recovery operation with a simple configuration that does not require any additional parts, without deteriorating the exhaust performance and without causing torque fluctuation. It can be quickly reduced.

図1は、本発明の一実施例に係る筒内直接噴射式火花点火内燃機関の燃料システムを簡略的に示す構成図である。この燃料システムには、内燃機関の各気筒の燃焼室(図示せず)へ燃料を直接的に噴射する高圧タイプの複数の燃料噴射弁11と、機関出力により機械的に駆動される高圧燃料ポンプ12と、この高圧燃料ポンプ12により昇圧された高圧燃料が逆止弁15を介して供給され、この高圧燃料を複数の燃料噴射弁11へ供給する高圧燃料配管13と、を有している。   FIG. 1 is a configuration diagram schematically showing a fuel system of a direct injection type spark ignition internal combustion engine according to an embodiment of the present invention. The fuel system includes a plurality of high-pressure fuel injection valves 11 that directly inject fuel into a combustion chamber (not shown) of each cylinder of an internal combustion engine, and a high-pressure fuel pump that is mechanically driven by engine output. 12 and a high-pressure fuel pipe 13 that is supplied with high-pressure fuel boosted by the high-pressure fuel pump 12 via a check valve 15 and supplies the high-pressure fuel to a plurality of fuel injection valves 11.

高圧燃料ポンプ12は、機関出力軸であるクランクシャフト(図示せず)により回転駆動されるカムシャフトのカム12Aによって、プランジャ12Bがリターンスプリング12Cのバネ力に抗して往復駆動されることによって、クランクシャフトの回転に連動して機械的に駆動される。高圧燃料配管13には、複数の燃料噴射弁11と接続された高圧燃料レール14と、高圧燃料レール14から高圧燃料ポンプ12側への逆流を防止する逆止弁15と、が設けられている。また、高圧燃料レール14内(燃圧室)の燃圧を検出する燃圧センサ16が設けられている。   The high-pressure fuel pump 12 is driven in a reciprocating manner against the spring force of the return spring 12C by a cam shaft 12A of a camshaft that is rotationally driven by a crankshaft (not shown) that is an engine output shaft. It is mechanically driven in conjunction with the rotation of the crankshaft. The high-pressure fuel pipe 13 is provided with a high-pressure fuel rail 14 connected to the plurality of fuel injection valves 11 and a check valve 15 for preventing a back flow from the high-pressure fuel rail 14 to the high-pressure fuel pump 12 side. . A fuel pressure sensor 16 that detects the fuel pressure in the high-pressure fuel rail 14 (fuel pressure chamber) is also provided.

燃料が貯留される燃料タンク17と高圧燃料ポンプ12とは低圧燃料配管18により接続されている。この低圧燃料配管18には、ポンプ駆動モータ20により駆動される低圧燃料ポンプ19と、燃料圧レギュレータ21と、燃料フィルタ22,23と、電磁弁24と、が設けられている。燃料圧レギュレータ21は、低圧燃料ポンプ19から吐出された燃料の燃料圧が予め定められた設定燃料圧よりも高くなると、低圧燃料ポンプ19から吐出された燃料の一部を燃料タンク17に戻すことにより、高圧燃料ポンプ12に供給される燃料圧を一定に維持する。電磁弁24は、低圧燃料ポンプ19から高圧燃料ポンプ12側への燃料供給を断続することによって、高圧燃料ポンプ12から高圧燃料配管13側へ供給される燃料量を調整する。   The fuel tank 17 in which the fuel is stored and the high pressure fuel pump 12 are connected by a low pressure fuel pipe 18. The low-pressure fuel pipe 18 is provided with a low-pressure fuel pump 19 driven by a pump drive motor 20, a fuel pressure regulator 21, fuel filters 22 and 23, and an electromagnetic valve 24. The fuel pressure regulator 21 returns a part of the fuel discharged from the low-pressure fuel pump 19 to the fuel tank 17 when the fuel pressure of the fuel discharged from the low-pressure fuel pump 19 becomes higher than a predetermined set fuel pressure. Thus, the fuel pressure supplied to the high-pressure fuel pump 12 is kept constant. The solenoid valve 24 adjusts the amount of fuel supplied from the high pressure fuel pump 12 to the high pressure fuel pipe 13 side by intermittently supplying fuel from the low pressure fuel pump 19 to the high pressure fuel pump 12 side.

制御部25は、周知のように、各種制御処理を記憶及び実行する機能を有するデジタルコンピュータであり、上記燃圧センサ16の他、機関水温を検出する水温センサ27や吸気温度を検出する吸気温センサ28等の各種センサからの検出信号に基づいて、上記の燃料噴射弁11,ポンプ駆動モータ20及び電磁弁24の他、吸気通路(図示せず)を開閉する電制のスロットル弁26等へ制御信号を出力して、その動作を制御する。   As is well known, the control unit 25 is a digital computer having a function of storing and executing various control processes, and in addition to the fuel pressure sensor 16, a water temperature sensor 27 for detecting the engine water temperature and an intake air temperature sensor for detecting the intake air temperature. Based on detection signals from various sensors such as 28, control is made to the fuel injection valve 11, the pump drive motor 20 and the electromagnetic valve 24 as well as an electrically controlled throttle valve 26 which opens and closes an intake passage (not shown). A signal is output to control its operation.

なお、この燃料システムは、高圧燃料配管13から燃料タンク17への戻りラインのないリターンレス方式となっている。このようなリターンレス方式は、配管類が簡素化されて小型・軽量化を図れるとともに、高圧・高温の燃料が燃料タンク17に戻されることがないので、燃料タンク17内での蒸発燃料の発生を抑制することができるといった利点がある。   This fuel system is a returnless system having no return line from the high-pressure fuel pipe 13 to the fuel tank 17. Such a returnless system simplifies piping and can be reduced in size and weight, and high-pressure and high-temperature fuel is not returned to the fuel tank 17, so that evaporated fuel is generated in the fuel tank 17. There is an advantage that can be suppressed.

図2は本実施例の制御の流れを簡略的に示すフローチャートである。機関減速時やアイドルストップ車両におけるアイドルストップ時には、燃料噴射弁11からの燃料噴射を一時的に停止する燃料カット運転が行われる。このような燃料カット運転の開始時P0(図3参照)には、ステップ11からステップ12へ進み、各種センサ16,27,28等により検出される燃圧,水温,吸気温等の機関運転状態を読み込むとともに、ステップ13において、燃料カット運転の継続時間Tの計測を開始する。ステップ14では、機関運転状態に基づいて燃料噴射を再開する燃料カットリカバー運転を行うか否かを判定する。例えば、減速状態からの車両停止時やアイドルストップからの車両再発進時に燃料カットリカバー運転を開始すべきと判定されて、ステップ15へ進み、燃料カットリカバー運転を開始する。   FIG. 2 is a flowchart schematically showing the control flow of this embodiment. At the time of engine deceleration or idle stop in an idle stop vehicle, a fuel cut operation for temporarily stopping fuel injection from the fuel injection valve 11 is performed. At the start P0 (see FIG. 3) of such fuel cut operation, the process proceeds from step 11 to step 12, and the engine operating state such as fuel pressure, water temperature, intake air temperature detected by the various sensors 16, 27, 28, etc. At the same time, the measurement of the duration T of the fuel cut operation is started in step 13. In step 14, it is determined whether or not to perform a fuel cut recovery operation for restarting fuel injection based on the engine operating state. For example, it is determined that the fuel cut recovery operation should be started when the vehicle stops from the deceleration state or when the vehicle restarts from the idle stop, and the process proceeds to step 15 to start the fuel cut recovery operation.

そして本実施例では、このような燃料カットリカバー運転の開始時P1(図3参照)に、ステップ16〜18の所定の判定条件が成立すると、ステップ20又はステップ21において、燃焼効率を低下させつつ、燃料噴射量を増加するとともに、吸入空気量を増加する燃焼効率低下運転を行う。具体的には、ステップ16では、燃料カット運転の継続時間Tが、機関温度に対応する水温又は吸気温に基づいて設定される所定の第1判定時間TTW以下であるかを判定する。この第1判定時間TTWは、燃料カット運転による排気温度の低下によって排気通路に配設される触媒が非活性温度まで低下する時間に相当する。ステップ17では、リカバー後の要求燃料噴射量に基づいて、燃圧の上限値Aを算出する。この上限値Aは、要求燃料噴射量を安定して実現し得る燃圧の上限値に相当する。ステップ18では、燃圧センサ16により検出される燃圧が上記の燃圧上限値A以上であるかを判定する。継続時間Tが第1判定時間TTW以下であり、かつ、燃圧が上限値A未満である場合に限り、ステップ19へ進んで通常運転を行い、それ以外の場合には、ステップ20又は21へ進み、上記の効率低下運転を行う。   In this embodiment, when the predetermined determination condition of Steps 16 to 18 is satisfied at the start P1 of the fuel cut recovery operation (see FIG. 3), the combustion efficiency is reduced in Step 20 or Step 21. Then, the fuel injection amount is increased, and the combustion efficiency decreasing operation is performed to increase the intake air amount. Specifically, in step 16, it is determined whether the duration T of the fuel cut operation is equal to or shorter than a predetermined first determination time TTW set based on the water temperature or intake air temperature corresponding to the engine temperature. The first determination time TTW corresponds to a time during which the catalyst disposed in the exhaust passage is lowered to the inactive temperature due to a decrease in the exhaust temperature due to the fuel cut operation. In step 17, an upper limit value A of fuel pressure is calculated based on the required fuel injection amount after recovery. This upper limit value A corresponds to an upper limit value of the fuel pressure that can stably realize the required fuel injection amount. In step 18, it is determined whether the fuel pressure detected by the fuel pressure sensor 16 is equal to or higher than the fuel pressure upper limit A. Only when the duration time T is equal to or shorter than the first determination time TTW and the fuel pressure is less than the upper limit value A, the routine proceeds to step 19 and normal operation is performed. Otherwise, the routine proceeds to step 20 or 21. Then, the above efficiency reduction operation is performed.

ステップ19の通常運転では、通常通りの制御、つまりスロットル開度がリカバー後の要求スロットル開度に設定され、燃料噴射時期が1サイクル中に1回で吸気行程に設定され、その燃料噴射量がリカバー後の要求燃料噴射量に設定され、点火時期が圧縮行程中の最適点火時期に設定される。   In the normal operation of step 19, normal control, that is, the throttle opening is set to the required throttle opening after recovery, the fuel injection timing is set to the intake stroke once in one cycle, and the fuel injection amount is The required fuel injection amount after recovery is set, and the ignition timing is set to the optimal ignition timing during the compression stroke.

一方、ステップ20や21の効率低下運転では、燃焼効率を低下させるために、図4に示すように、1サイクル中の燃料噴射が複数回に分けて行われる。より具体的には、圧縮行程と膨張行程の二回に分けて燃料噴射が行われる。この場合、燃料噴射量は1サイクル中の各噴射の総和となる。典型的には、前半の燃料噴射量と後半の燃料噴射量との割合が約6:4である。加えて、この効率低下運転では、燃焼効率を低下させるために、図5に示すように、点火時期を遅角化している。より具体的には、点火時期を通常の要求点火時期よりも圧縮上死点側へ遅角させている。そして、燃料噴射量及び吸入空気量を、上記通常通りの制御に比して増加させている(図3参照)。   On the other hand, in the efficiency reduction operation in steps 20 and 21, in order to reduce the combustion efficiency, as shown in FIG. 4, fuel injection in one cycle is performed in a plurality of times. More specifically, fuel injection is performed in two steps, a compression stroke and an expansion stroke. In this case, the fuel injection amount is the sum of each injection in one cycle. Typically, the ratio between the first half and the second half is about 6: 4. In addition, in this efficiency reduction operation, the ignition timing is retarded as shown in FIG. 5 in order to reduce the combustion efficiency. More specifically, the ignition timing is retarded to the compression top dead center side than the normal required ignition timing. Then, the fuel injection amount and the intake air amount are increased as compared with the normal control (see FIG. 3).

継続時間Tが第1判定時間TTWを越える場合には、ステップ22において、リカバー後の経過時間、つまり燃焼効率低下運転の経過時間TRが、上記の第1判定時間TTWに基づいて設定される所定の第2判定時間TTRに達するまで、上記の効率低下運転が継続される。この第2判定時間TTRは、排気通路に設けられた触媒を活性化させるのに十分な時間に対応している。   When the duration T exceeds the first determination time TTW, in step 22, the elapsed time after recovery, that is, the elapsed time TR of the combustion efficiency lowering operation is set based on the first determination time TTW. Until the second determination time TTR is reached. This second determination time TTR corresponds to a time sufficient to activate the catalyst provided in the exhaust passage.

図3は、機関減速による燃料カット運転を経て燃料カットリカバー運転を行う運転状況での燃料噴射量(燃料流量)や吸入空気量(スロットル開度)等の変化の様子を示すタイムチャートである。図中、実線の特性が上記効率低下運転を実施する本実施例に対応し、破線の特性が上記効率低下運転を行わない比較例に対応している。   FIG. 3 is a time chart showing changes in the fuel injection amount (fuel flow rate), the intake air amount (throttle opening), and the like in an operation state in which the fuel cut recovery operation is performed after the fuel cut operation by engine deceleration. In the figure, the solid line characteristic corresponds to the present embodiment in which the efficiency reduction operation is performed, and the broken line characteristic corresponds to a comparative example in which the efficiency reduction operation is not performed.

燃料カット運転の開始時P0には、燃料噴射を停止して燃料噴射量を0(ゼロ)とし、かつ、リカバー後の運転状態(典型的にはアイドル運転)での要求吸入空気量に応じて、吸入空気量(スロットル開度)を減少させる。このような燃料カット運転中であっても、上述したリターンレス方式の燃料システムでは高圧燃料配管13内の燃圧が高く維持される。   At the start P0 of the fuel cut operation, the fuel injection is stopped to set the fuel injection amount to 0 (zero), and according to the required intake air amount in the operation state after recovery (typically idle operation). Reduce the intake air amount (throttle opening). Even during such a fuel cut operation, the fuel pressure in the high-pressure fuel pipe 13 is maintained high in the above-described returnless fuel system.

そして本実施例では燃料カットリカバー運転の開始時P1における燃圧が上限値Aよりも高く、要求される燃料噴射量に抑制することができない場合に、効率低下運転が行われる。つまり、燃焼効率を低下させつつ、燃料噴射量が本来のリカバー後の要求燃料噴射量(比較例参照)よりも増加され、かつ、吸入空気量が本来のリカバー後の要求吸入空気量(比較例参照)よりも増加される。このため、燃焼効率の低下により燃料噴射量の増量分のトルク増加を吸収・相殺することができ、燃料噴射量を増加しているにもかかわらず、これによるトルク変動を十分に低減又は解消することができる。また、吸入空気量を増加させることによって、点火時期の遅角化(燃焼効率の低下)に伴う燃焼安定性の低下を相殺して所期の燃焼安定性を確保することができ、かつ、燃料増加に伴う排気の空燃比のリッチ化を抑制・回避して、この効率低下運転時の排気性能の低下を防止することができる。しかも、複数回の燃料噴射や点火時期の遅角化によって燃焼効率を低下させており、上記従来例のように追加部品を敢えて必要とすることがないので、簡素化・軽量化・小型化及び低コスト化等を図ることができる。そして、このように追加部品を敢えて必要とすることのない簡素な構成で、排気性能を低下させることなく、またトルク変動を招くことなく、燃料カットリカバー後に高圧燃料配管13内の燃圧を速やかに低下させることができ、ひいては燃料噴射弁を適切なサイズに選択でき、流量のばらつきを抑制して、排気・燃費・出力の向上を図ることができる。   In this embodiment, when the fuel pressure at the start P1 of the fuel cut recovery operation is higher than the upper limit value A and cannot be suppressed to the required fuel injection amount, the efficiency reduction operation is performed. That is, while reducing the combustion efficiency, the fuel injection amount is increased from the original required fuel injection amount after the recovery (see the comparative example), and the intake air amount is the original required intake air amount after the recovery (the comparative example) Than see). Therefore, it is possible to absorb and cancel the torque increase corresponding to the increase in the fuel injection amount due to the decrease in the combustion efficiency, and sufficiently reduce or eliminate the torque fluctuation due to the increase in the fuel injection amount. be able to. In addition, by increasing the intake air amount, the expected combustion stability can be ensured by offsetting the decrease in combustion stability caused by retarding the ignition timing (decreasing combustion efficiency), and fuel. It is possible to suppress and avoid the richness of the air-fuel ratio of the exhaust gas accompanying the increase, and to prevent the exhaust performance from being deteriorated during the efficiency reduction operation. In addition, the combustion efficiency is reduced by multiple fuel injections and retarded ignition timing, and there is no need for additional parts as in the above-described conventional example. Cost reduction and the like can be achieved. The fuel pressure in the high-pressure fuel pipe 13 can be quickly increased after recovering the fuel cut without reducing exhaust performance and causing torque fluctuations with a simple configuration that does not require additional parts. Therefore, the fuel injection valve can be selected to an appropriate size, and variations in flow rate can be suppressed to improve exhaust, fuel consumption, and output.

燃料カット運転中には、排気温度が低下するため、この燃料カット運転が長引くと、排気通路に配設される触媒(図示せず)の温度が過度に低下して、燃料カットリカバー後における排気エミッションの低下を招くおそれがある。本実施例では、燃料カット運転の継続時間Tが第1判定時間TTWを越えると、強制的に燃焼効率低下運転が行われて、燃料効率の低下分により排気温度の上昇、ひいては触媒の昇温が促進され、この燃焼効率運転の経過時間TRが所定の第2判定時間TTRを超えるまで、この燃焼効率低下運転が継続される。従って、燃料カット運転による触媒温度の過度な低下を回避することができるとともに、リカバー後に触媒を速やかに昇温することができ、燃料カット運転に伴う排気エミッションの低下を効果的に低減・回避することができる。   Since the exhaust temperature decreases during the fuel cut operation, if the fuel cut operation is prolonged, the temperature of the catalyst (not shown) disposed in the exhaust passage excessively decreases, and the exhaust after the fuel cut recovery is performed. May reduce emissions. In this embodiment, when the duration T of the fuel cut operation exceeds the first determination time TTW, the combustion efficiency reduction operation is forcibly performed, and the exhaust temperature rises due to the fuel efficiency reduction, and consequently the catalyst temperature rises. The combustion efficiency decreasing operation is continued until the elapsed time TR of the combustion efficiency operation exceeds a predetermined second determination time TTR. Accordingly, it is possible to avoid an excessive decrease in the catalyst temperature due to the fuel cut operation, and to quickly raise the temperature of the catalyst after the recovery, effectively reducing and avoiding a decrease in exhaust emission associated with the fuel cut operation. be able to.

以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。例えば、吸気系の吸気ポートへ燃料を噴射するポート噴射型の内燃機関に本発明を適用することもできる。また、上記実施例では、燃焼効率を低下させる手法として、複数回の燃料噴射と点火時期の遅角化とを併用しているが、いずれか一方の手法を用いても良く、また、その他の手法を組み合わせて又は単独で用いても良い。   As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the above-described embodiments, and includes various modifications and changes without departing from the spirit of the present invention. . For example, the present invention can be applied to a port injection type internal combustion engine that injects fuel into an intake port of an intake system. Further, in the above embodiment, as a method for reducing the combustion efficiency, a plurality of fuel injections and retarding the ignition timing are used in combination, but either one of the methods may be used, and the other The methods may be combined or used alone.

本発明の一実施例に係る内燃機関の燃料システムを簡略的に示す構成図。The block diagram which shows simply the fuel system of the internal combustion engine which concerns on one Example of this invention. 本実施例の制御の流れを示すフローチャート。The flowchart which shows the flow of control of a present Example. 燃料カット運転を経て燃料カットリカバー運転を行う運転状況での燃料噴射量や吸入空気量等の変化の様子を示すタイムチャート。The time chart which shows the mode of a change of the fuel injection quantity, the amount of intake air, etc. in the driving | running condition which performs a fuel cut recovery driving | operation after a fuel cut driving | operation. 燃焼効率を低下させるために燃料噴射を複数回に分割する手法を説明するための説明図。Explanatory drawing for demonstrating the method of dividing | segmenting fuel injection into multiple times in order to reduce combustion efficiency. 燃焼効率を低下させるために点火時期を遅角化する手法を説明するための説明図。Explanatory drawing for demonstrating the method of retarding ignition timing in order to reduce combustion efficiency.

符号の説明Explanation of symbols

11…燃料噴射弁
12…高圧燃料ポンプ
13…高圧燃料配管
15…逆止弁
25…制御部
DESCRIPTION OF SYMBOLS 11 ... Fuel injection valve 12 ... High pressure fuel pump 13 ... High pressure fuel piping 15 ... Check valve 25 ... Control part

Claims (8)

内燃機関の燃焼室又は吸気系への燃料噴射を行う燃料噴射弁と、逆止弁を介して高圧燃料が供給され、上記燃料噴射弁へ燃料を供給する高圧燃料配管と、を有する内燃機関の制御装置において、
上記燃料噴射を一時的に停止する燃料カット運転から燃料噴射を再開する燃料カットリカバー運転の開始時に、予め設定された所定期間、効率低下運転を行い、この効率低下運転では、燃焼効率を低下するよう補正しつつ、燃料噴射量要求燃料噴射量と比して増加するよう補正するとともに、吸入空気量要求吸入空気量と比して増加するよう補正することを特徴とする内燃機関の制御装置。
An internal combustion engine having a fuel injection valve that injects fuel into a combustion chamber or an intake system of an internal combustion engine, and a high-pressure fuel pipe that is supplied with high-pressure fuel through a check valve and supplies fuel to the fuel injection valve. In the control device,
At the start of the fuel cut recovery operation in which the fuel injection is resumed from the fuel cut operation in which the fuel injection is temporarily stopped , the efficiency reduction operation is performed for a predetermined period, and in this efficiency reduction operation, the combustion efficiency is reduced. while correcting such, with correction for to increase the fuel injection amount compared to the required fuel injection amount, and correcting to increase compared to the required intake air amount of intake air quantity internal combustion Engine control device.
内燃機関の燃焼室又は吸気系への燃料噴射を行う燃料噴射弁と、逆止弁を介して高圧燃料が供給され、上記燃料噴射弁へ燃料を供給する高圧燃料配管と、を有する内燃機関の制御装置において、
上記燃料噴射を一時的に停止する燃料カット運転から燃料噴射を再開する燃料カットリカバー運転の開始時であって、かつ、燃圧が所定値より大きいと判定された場合に、燃焼効率を低下させつつ、燃料噴射量を増加するとともに、吸入空気量を増加する効率低下運転を行うことを特徴とする内燃機関の制御装置。
An internal combustion engine having a fuel injection valve that injects fuel into a combustion chamber or an intake system of an internal combustion engine, and a high-pressure fuel pipe that is supplied with high-pressure fuel through a check valve and supplies fuel to the fuel injection valve. In the control device,
While starting the fuel cut recovery operation in which the fuel injection is restarted from the fuel cut operation in which the fuel injection is temporarily stopped and when it is determined that the fuel pressure is greater than a predetermined value, the combustion efficiency is reduced. A control device for an internal combustion engine that performs an efficiency reduction operation that increases the fuel injection amount and increases the intake air amount.
上記効率低下運転では、燃焼効率を低下するために、1サイクル中に燃料噴射を複数回に分けて行うことを特徴とする請求項1又は2に記載の内燃機関の制御装置。 3. The control device for an internal combustion engine according to claim 1, wherein in the efficiency reduction operation, in order to reduce combustion efficiency, fuel injection is performed in a plurality of times during one cycle. 上記効率低下運転では、燃焼効率を低下するために、点火時期を遅角化することを特徴とする請求項1〜3のいずれかに記載の内燃機関の制御装置。 The control apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein , in the efficiency reduction operation, the ignition timing is retarded in order to reduce the combustion efficiency. 上記燃料カットリカバー運転の開始時に燃料カット運転の継続時間が所定の第1判定時間を超えている場合に、上記効率低下運転を行うことを特徴とする請求項1〜のいずれかに記載の内燃機関の制御装置。 If the duration of the fuel cut operation at the start of the fuel cut recovery operation exceeds the first determination time given, according to any one of claims 1 to 4, characterized in that the efficiency decreasing operation Control device for internal combustion engine. 上記効率低下運転の経過時間が所定の第2判定時間を超えるまで、上記効率低下運転を継続することを特徴とする請求項に記載の内燃機関の制御装置。 6. The control device for an internal combustion engine according to claim 5 , wherein the efficiency reduction operation is continued until an elapsed time of the efficiency reduction operation exceeds a predetermined second determination time. 上記高圧燃料配管内の燃圧を検出する燃圧検出手段を有し、
上記燃料カットリカバー運転の開始時の燃圧が所定の上限値以上のときに、上記効率低下運転を行うことを特徴とする請求項1〜のいずれかに記載の内燃機関の制御装置。
A fuel pressure detecting means for detecting the fuel pressure in the high-pressure fuel pipe;
The control apparatus for an internal combustion engine according to any one of claims 1 to 6 , wherein the efficiency reduction operation is performed when a fuel pressure at the start of the fuel cut recovery operation is equal to or greater than a predetermined upper limit value.
内燃機関の燃焼室又は吸気系への燃料噴射を行う燃料噴射弁と、逆止弁を介して高圧燃料が供給され、上記燃料噴射弁へ燃料を供給する高圧燃料配管と、を有する内燃機関の制御方法において、
上記燃料噴射を一時的に停止する燃料カット運転から燃料噴射を再開する燃料カットリカバー運転の開始時に、予め設定された所定期間、効率低下運転を行い、この効率低下運転では、燃焼効率を低下するよう補正しつつ、燃料噴射量要求燃料噴射量と比して増加するよう補正するとともに、吸入空気量要求吸入空気量と比して増加するよう補正することを特徴とする内燃機関の制御方法。
An internal combustion engine having a fuel injection valve that injects fuel into a combustion chamber or an intake system of an internal combustion engine, and a high-pressure fuel pipe that is supplied with high-pressure fuel through a check valve and supplies fuel to the fuel injection valve. In the control method,
At the start of the fuel cut recovery operation in which the fuel injection is resumed from the fuel cut operation in which the fuel injection is temporarily stopped , the efficiency reduction operation is performed for a predetermined period, and in this efficiency reduction operation, the combustion efficiency is reduced. while correcting such, with correction for to increase the fuel injection amount compared to the required fuel injection amount, and correcting to increase compared to the required intake air amount of intake air quantity internal combustion How to control the engine.
JP2006068718A 2006-03-14 2006-03-14 Control device and control method for internal combustion engine Expired - Fee Related JP4826300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006068718A JP4826300B2 (en) 2006-03-14 2006-03-14 Control device and control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006068718A JP4826300B2 (en) 2006-03-14 2006-03-14 Control device and control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007247440A JP2007247440A (en) 2007-09-27
JP4826300B2 true JP4826300B2 (en) 2011-11-30

Family

ID=38592013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006068718A Expired - Fee Related JP4826300B2 (en) 2006-03-14 2006-03-14 Control device and control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4826300B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261335A (en) * 2009-04-30 2010-11-18 Hitachi Automotive Systems Ltd Control device of cylinder injection type engine
GB201316439D0 (en) * 2013-09-16 2013-10-30 Delphi Tech Holding Sarl Hybrid fuel injection equipment
EP3225825B1 (en) * 2014-11-27 2019-10-30 Nissan Motor Co., Ltd Internal combustion engine control device and control method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3141563B2 (en) * 1992-09-21 2001-03-05 日産自動車株式会社 Air flow control device for internal combustion engine
JP3281993B2 (en) * 1993-03-31 2002-05-13 マツダ株式会社 Engine control device
JPH11107824A (en) * 1997-09-30 1999-04-20 Mazda Motor Corp Controller for engine
JP2001271698A (en) * 2000-03-29 2001-10-05 Mazda Motor Corp Catalyst deterioration diagnostic device
JP2002047973A (en) * 2000-08-03 2002-02-15 Denso Corp Fuel injection controller of direct injection engine
JP2002235587A (en) * 2001-02-09 2002-08-23 Toyota Motor Corp Method and device for controlling fuel injection pressure of internal combustion engine
JP4086486B2 (en) * 2001-07-26 2008-05-14 株式会社日立製作所 Fuel pressure control device
JP3611556B2 (en) * 2002-05-27 2005-01-19 本田技研工業株式会社 Control device for hybrid vehicle
JP3962920B2 (en) * 2003-02-13 2007-08-22 株式会社デンソー Fuel injection control device for in-cylinder internal combustion engine

Also Published As

Publication number Publication date
JP2007247440A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
JP4333619B2 (en) In-cylinder injection type internal combustion engine start control device
JP5587836B2 (en) In-cylinder injection engine control device
JP2002317669A (en) Fuel injection control device of internal combustion engine
JP4023020B2 (en) Fuel pressure control device for high pressure fuel injection system
JP2013113145A (en) Control device for internal combustion engine
US10612487B2 (en) Fuel injection control device for internal combustion engine
JP3807270B2 (en) Accumulated fuel injection system
JP4816466B2 (en) Internal combustion engine control apparatus and method
JP4826300B2 (en) Control device and control method for internal combustion engine
JP2008223583A (en) Control device for engine
JPH11315730A (en) Fuel pressure controller of accumulation type fuel injection mechanism
JP3610894B2 (en) Abnormality diagnosis device for high pressure fuel supply system of internal combustion engine
JP4300582B2 (en) Fuel supply device
JP5899996B2 (en) Control device for internal combustion engine
JP4529943B2 (en) Fuel injection control device for internal combustion engine
JP2006329151A (en) Anomaly determination system in fuel system of internal combustion engine
JP5381747B2 (en) Fuel injection device
JP2010163898A (en) Starter of internal combustion engine
JPH09166039A (en) Fuel injector for inter-cylinder direct injection type spark ignition internal combustion engine
JP2000130234A (en) Fuel injection control device for direct injection internal combustion engine
JP2011208560A (en) Fuel supply control device of cylinder injection engine with idle stop function
JP4421451B2 (en) Abnormality detection device for fuel supply system for internal combustion engine
JP5787029B2 (en) Ignition timing control device for internal combustion engine
JP2008297949A (en) Start control device of internal combustion engine
WO2015186759A1 (en) Fuel pump control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4826300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees