JP4825489B2 - Laminated panel and wall structure using the laminated panel - Google Patents

Laminated panel and wall structure using the laminated panel Download PDF

Info

Publication number
JP4825489B2
JP4825489B2 JP2005298539A JP2005298539A JP4825489B2 JP 4825489 B2 JP4825489 B2 JP 4825489B2 JP 2005298539 A JP2005298539 A JP 2005298539A JP 2005298539 A JP2005298539 A JP 2005298539A JP 4825489 B2 JP4825489 B2 JP 4825489B2
Authority
JP
Japan
Prior art keywords
laminated panel
styrene
resin foam
bending strength
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005298539A
Other languages
Japanese (ja)
Other versions
JP2007107248A (en
Inventor
修 鈴木
孝次 小浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2005298539A priority Critical patent/JP4825489B2/en
Publication of JP2007107248A publication Critical patent/JP2007107248A/en
Application granted granted Critical
Publication of JP4825489B2 publication Critical patent/JP4825489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)

Description

本発明は、積層パネルに関するもので、特に、断熱性能及び遮音性能に優れた積層パネルに関するするものである。   The present invention relates to a laminated panel, and more particularly to a laminated panel having excellent heat insulation performance and sound insulation performance.

建築物の内壁材として、石膏ボードと発泡合成樹脂ボードとを組み合わせて使用することがある。石膏ボードは、壁紙を貼り付けたり塗装仕上げを行ったりするための内装下地材に適している。一方、発泡合成樹脂ボードは、断熱性能に優れている。そこで、建築物の壁面において、コンクリート躯体壁に発泡合成樹脂ボード及び石膏ボードを順次貼り付け、石膏ボードの表面を壁紙などで仕上げる壁構造が実施されている。   A gypsum board and a foamed synthetic resin board may be used in combination as an inner wall material of a building. The gypsum board is suitable as an interior base material for attaching wallpaper or painting. On the other hand, the foamed synthetic resin board is excellent in heat insulation performance. Therefore, a wall structure is implemented in which a foamed synthetic resin board and a gypsum board are sequentially attached to a concrete frame wall on a wall surface of a building, and the surface of the gypsum board is finished with wallpaper or the like.

このような壁構造の施工作業性を向上させるため、工場での製造段階で、石膏ボードと発泡合成樹脂ボードとを接着剤等を用いて貼り合わせておき、この貼り合わせた積層パネルを建築現場に搬入し、取り付け施工を行うことが提案されている(例えば、特許文献1)。   In order to improve the construction workability of such a wall structure, gypsum board and foamed synthetic resin board are pasted together using adhesive etc. at the manufacturing stage in the factory, and this laminated panel is built at the construction site It is proposed to carry it in and install it (for example, Patent Document 1).

この技術では、現場施工の手間が省けるとともに、工場で厳重な品質管理のもとに貼り合わせることができるので、石膏ボードと発泡合成樹脂ボードとの一体性が向上する。また、断熱性能もさらに向上し、石膏ボードと発泡合成樹脂ボードの間に結露が発生したりする問題も解消できる。   This technology saves labor on site construction and can be bonded together under strict quality control in the factory, improving the unity between the gypsum board and the foamed synthetic resin board. Further, the heat insulation performance is further improved, and the problem of dew condensation occurring between the gypsum board and the foamed synthetic resin board can be solved.

特開平8−232368号公報JP-A-8-232368

しかしながら、上記したような石膏ボードと発泡合成樹脂ボードからなる積層パネルは、該積層パネルを躯体壁に接着剤等を介して張り付けた場合、人の耳にとって耳障りな中高音域(250〜8000Hz)において遮音欠損を起こし、必ずしも遮音性能が十分なものではなかった。
これは、積層パネルの固有振動が中高音域にあり、中高音域の入射音と共振現象を起こして遮音欠損が生じるものと考えられる。
However, the laminated panel composed of the gypsum board and the foamed synthetic resin board as described above has a medium and high frequency range (250 to 8000 Hz) which is annoying to human ears when the laminated panel is attached to the housing wall via an adhesive or the like. In this case, the sound insulation defect was caused and the sound insulation performance was not always sufficient.
This is thought to be due to the fact that the natural vibration of the laminated panel is in the mid-high range, causing a resonance phenomenon with the incident sound in the mid-high range and causing a sound insulation defect.

本発明は、上述した背景技術が有する実情に鑑みて成されたものであって、その目的は、断熱性能のみならず、遮音性能にも優れた積層パネルを提供することにある。   The present invention has been made in view of the circumstances of the background art described above, and an object of the present invention is to provide a laminated panel that is excellent not only in heat insulation performance but also in sound insulation performance.

本発明者等は、上記した目的を達成すべく試験・研究を重ねた結果、曲げ物性値である曲げ弾性率と曲げ強さの比が所定の範囲内にあるスチレン系樹脂発泡体を用いた積層パネルは、驚くべきことに中高音域の入射音に対して共振現象を起こし難く、優れた遮音性能を発揮することを見いだし、本発明を完成させた。
即ち、本発明は、スチレン系樹脂発泡ビーズの型内成形体からなり、密度が18〜35kg/m 、厚みが20〜150mm、曲げ強さが25N/cm 以上、曲げ弾性率と曲げ強さの比が38〜52のスチレン系樹脂発泡体を、石膏ボードからなる面材に積層接着した積層パネルとした。
As a result of repeated testing and research to achieve the above object, the present inventors used a styrenic resin foam in which the ratio of bending elastic modulus and bending strength, which is a bending physical property value, is within a predetermined range. Surprisingly, it was found that the laminated panel hardly causes a resonance phenomenon with respect to the incident sound in the middle and high range, and exhibits excellent sound insulation performance, and the present invention has been completed.
That is, the present invention comprises an in-mold molded body of styrene resin foam beads, the density is 18 to 35 kg / m 3 , the thickness is 20 to 150 mm, the bending strength is 25 N / cm 2 or more, the bending elastic modulus and bending strength. A styrene-based resin foam having a thickness ratio of 38 to 52 was laminated and adhered to a face material made of gypsum board .

また、本発明は、上記積層パネルを、建築物のコンクリート躯体壁に取り付けた壁構造とした。Moreover, this invention made it the wall structure which attached the said laminated panel to the concrete frame wall of the building.

上記した本発明に係る積層パネルによれば、断熱性能のみならず、遮音性能にも優れた積層パネルとなる。   According to the above-described laminated panel according to the present invention, the laminated panel is excellent not only in heat insulation performance but also in sound insulation performance.

以下、上記した本発明に係る積層パネルの実施の形態を、詳細に説明する。   Hereinafter, embodiments of the above-described laminated panel according to the present invention will be described in detail.

本発明は、石膏ボードからなる面材に、曲げ弾性率と曲げ強さの比が38〜52のスチレン系樹脂発泡体を積層接着した積層パネルとしたことに最大の特徴があり、これによって、断熱性能のみならず、遮音性能にも優れた積層パネルとなる。
The present invention has the greatest feature in a laminated panel obtained by laminating and bonding a styrene resin foam having a ratio of bending elastic modulus and bending strength of 38 to 52 to a face material made of gypsum board , The laminated panel is excellent not only in heat insulation performance but also in sound insulation performance.

ここで、上記曲げ弾性率は、材料の剛性を示す物性値であり、曲げ強さは、材料の剛性と柔軟性を加味した材料強度を示す物性値である。そのため、この曲げ弾性率と曲げ強さの比は、材料の剛性と柔軟性のバランスを示すものと考えられ、この比が小さいほど剛性と柔軟性のバランスにおいて柔軟性が高く、大きいほど剛性が高い材料といえる。樹脂発泡体の剛性は、樹脂発泡体を構成する独立気泡自体の剛性に起因するものであり、柔軟性は、発泡粒子同士の融着性に起因すると考える。剛性または柔軟性の一方が支配的な材料は、中高音域の入射音に対して共振現象を起こし易くなると考えられる。本発明者は、この曲げ弾性率と曲げ強さの比が38〜52のスチレン系樹脂発泡体が、中高音域の入射音に対して共振現象を起こし難く、優れた遮音性能を発揮することを見いだした。このような観点から、曲げ弾性率と曲げ強さの比は、39〜51であることが好ましく、40〜50であることが更に好ましい。   Here, the bending elastic modulus is a physical property value indicating the rigidity of the material, and the bending strength is a physical property value indicating the material strength in consideration of the rigidity and flexibility of the material. Therefore, the ratio of the flexural modulus to the bending strength is considered to indicate the balance between the rigidity and flexibility of the material. The smaller this ratio, the higher the flexibility and the balance between the rigidity and the flexibility. It can be said that it is a high material. The rigidity of the resin foam is attributed to the rigidity of the closed cells themselves constituting the resin foam, and the flexibility is considered to be due to the fusibility between the expanded particles. It is considered that a material in which one of rigidity and flexibility is dominant is likely to cause a resonance phenomenon with respect to an incident sound in a mid-high range. The present inventor believes that the styrene resin foam having a bending elastic modulus to bending strength ratio of 38 to 52 hardly causes a resonance phenomenon with respect to an incident sound in a mid-high range and exhibits excellent sound insulation performance. I found. From such a viewpoint, the ratio between the flexural modulus and the flexural strength is preferably 39 to 51, and more preferably 40 to 50.

また、この際、上記スチレン系樹脂発泡体の曲げ強さは、25N/cm以上とする。これは、曲げ強さが25N/cmに満たないものは、融着が悪く、発泡体の固有振動を拘束することができず、例え曲げ弾性率と曲げ強さの比が38〜52のものであっても、遮音性能がやや劣るために好ましくない。かかる観点から、スチレン系樹脂発泡体の曲げ強さは、26N/cm以上であることがより好ましく、27N/cm以上であることが特に好ましい。また、上記スチレン系樹脂発泡体の曲げ強さが大き過ぎると、曲げ弾性率と曲げ強さの比を38以上にすることが困難となる虞がある。従って、上記スチレン系樹脂発泡体の曲げ強さは、65N/cm以下であることが好ましく、60N/cm以下であることがより好ましい。
なお、上記曲げ弾性率は、JIS K 7221−2:1999でいう見掛け曲げ弾性率のことであり、また、上記曲げ強さは、JIS K 7221−2:1999でいう曲げ強さ(最大荷重)を意味する。上記曲げ弾性率及び上記曲げ強さは、JIS K 7221−2:1999に記載の試験装置Bを採用し、試験片のサイズは300×75×25mmとし、支点間を200mmとし、試験速度を10mm/minとして測定される。
At this time, the bending strength of the styrene-based resin foam, and 25 N / cm 2 or more. This is because when the bending strength is less than 25 N / cm 2 , the fusion is poor and the natural vibration of the foam cannot be constrained, and the ratio of bending elastic modulus to bending strength is 38 to 52, for example. Even if it is a thing, since sound insulation performance is somewhat inferior, it is not preferable. From this viewpoint, the bending strength of the styrenic resin foam, more preferably 26N / cm 2 or more, and particularly preferably 27N / cm 2 or more. Further, if the bending strength of the styrene resin foam is too large, it may be difficult to make the ratio of bending elastic modulus and bending strength to be 38 or more. Therefore, the bending strength of the styrene-based resin foam is preferably at 65N / cm 2 or less, more preferably 60N / cm 2 or less.
The flexural modulus is the apparent flexural modulus as defined in JIS K 7221-2: 1999, and the flexural strength is the flexural strength (maximum load) as defined in JIS K 7221-2: 1999. Means. The bending elastic modulus and the bending strength employ the test apparatus B described in JIS K 7221-2: 1999, the size of the test piece is 300 × 75 × 25 mm, the fulcrum is 200 mm, and the test speed is 10 mm. Measured as / min.

上記スチレン系樹脂発泡体の曲げ強さと曲げ弾性率は、いずれも、発泡体の密度が大きいほど、独立気泡率が高いほど大きい値を示す。特に、後述する加熱発泡成形するビーズ法を採用すると、発泡体の密度と、成形時の発泡粒子間の融着性の調節により、容易に曲げ弾性率と曲げ強さの比を調節できるので好ましい。曲げ弾性率と曲げ強さの比が38〜52である本発明のパネルに使用されるスチレン系樹脂発泡板は、ビーズ法を採用し、得られる発泡体の密度を18〜35kg/m3とし、発泡粒子間の融着度を高めることにより容易に得られる。発泡粒子間の融着度を高めるには、成形時に予備発泡粒子を十分に予備加熱してから、融着のための成形スチーム圧力を0.5〜0.7kg/cm2(G)とし、この圧力を10〜20秒間保持することが好ましい。 Both the bending strength and the flexural modulus of the styrene resin foam show larger values as the density of the foam is higher and the closed cell ratio is higher. In particular, it is preferable to employ a bead method for heat foam molding, which will be described later, because the ratio of the flexural modulus and the flexural strength can be easily adjusted by adjusting the density of the foam and the fusion property between the foam particles during molding. . The styrene resin foam plate used in the panel of the present invention having a flexural modulus / bending strength ratio of 38 to 52 employs a bead method, and the density of the obtained foam is 18 to 35 kg / m 3. It can be easily obtained by increasing the degree of fusion between the expanded particles. In order to increase the degree of fusion between the expanded particles, the pre-expanded particles are sufficiently preheated at the time of molding, and then the molding steam pressure for fusion is 0.5 to 0.7 kg / cm 2 (G), It is preferable to hold this pressure for 10 to 20 seconds.

また、本発明において使用する上記面材としては、石膏ボード、合板の他に、珪酸カルシウム板、セメント系板、更には合成樹脂板等の従来から内装ボードとして使用されているものを挙げることができるが、中でも、石膏ボードが、安価で強度が大きく、火にも強く、製造時の硬化の過程でヒビが入り難いことから、本発明においては石膏ボードを使用する
また、上記面材の板厚としては、使用材料、使用目的、施工条件等によっても異なるが、通常、5〜15mmの範囲に設定される。
In addition to the gypsum board and plywood, the face material used in the present invention includes those conventionally used as interior boards such as calcium silicate boards, cement boards, and synthetic resin boards. However, among them, gypsum board is used in the present invention because gypsum board is inexpensive, has high strength, is resistant to fire, and is difficult to crack during curing during production.
The plate thickness of the face material is usually set in a range of 5 to 15 mm, although it varies depending on the material used, purpose of use, construction conditions, and the like.

また、本発明において使用する上記スチレン系樹脂発泡体は、密度が18〜35kg/m である。また、独立気泡率が80%以上であることが好ましい。これは、密度が18kg/m未満では、強度が低下するおそれがあり、また固有振動を拘束することができず、遮音性能が低下するおそれがある。逆に密度が3kg/mを超える場合、断熱性能が低下するおそれがある。また、独立気泡率が80%未満である場合は、断熱性能が低下するおそれがある。同様の理由から、密度は19〜34kg/mであることが更に好ましく、22〜33kg/mであることが特に好ましい。独立気泡率は85%以上であることが更に好ましく、90%以上であることが特に好ましい。
なお、発泡体の密度は、JIS A 9511:2005の5.6項に示された密度を意味する。また、独立気泡率は、スチレン系樹脂発泡体から30×30×20mm程度の試験体を切り出し、空気比較式比重計(東京サイエンス社製 空気比較式比重計1000型)により求めた試験体容積をV1(cm)とし、また水置換法により求めた試験体容積をV2(cm)とし、さらに試験体の重量W(g)及び合成樹脂の密度d(g/cm)を計測し、次の式により算出される値である。
独立気泡率(%)=(V1−W/d)÷(V2−W/d)×100
Moreover, the styrenic resin foams used in the present invention, density of 18~35kg / m 3. Moreover, it is preferable that a closed cell rate is 80% or more. If the density is less than 18 kg / m 3 , the strength may be lowered, and the natural vibration cannot be restrained, and the sound insulation performance may be lowered. If the density exceeds 3 5 kg / m 3 Conversely, there is a possibility that the heat insulating performance is lowered. Moreover, when the closed cell ratio is less than 80%, the heat insulation performance may be reduced. For the same reason, the density is more preferably from 19~34kg / m 3, particularly preferably 22~33kg / m 3. The closed cell ratio is more preferably 85% or more, and particularly preferably 90% or more.
In addition, the density of a foam means the density shown by 5.6 term of JIS A 9511: 2005. In addition, the closed cell ratio is obtained by cutting a test body of about 30 × 30 × 20 mm from a styrene resin foam and obtaining the test body volume obtained by an air comparison type hydrometer (air comparison type hydrometer 1000 model manufactured by Tokyo Science). V1 (cm 3 ), the specimen volume determined by the water displacement method is V2 (cm 3 ), and the weight W (g) of the specimen and the density d (g / cm 3 ) of the synthetic resin are measured, It is a value calculated by the following formula.
Closed cell ratio (%) = (V1−W / d) ÷ (V2−W / d) × 100

また、スチレン系樹脂発泡体の平均気泡径は、20〜1000μmであることが好ましい。これは、20μm未満では気泡膜が薄くなるため、容易に破れ、独立気泡率が低下して断熱性能及び遮音性能が低下するおそれがある。逆に1000μmを超えると、得られるスチレン系樹脂発泡体の断熱性能が低下するおそれがある。
ここで、上記平均気泡径とは、セル(樹脂の壁と壁との間で区切られた部分)1個当りの直径で、スチレン系樹脂発泡体を任意の位置で刃物によりきれいに切断し、その切断面において無作為に選んだ20ケの気泡(セル)を対象とし、各気泡について気泡壁とそれとは異なる気泡壁を結ぶ直線(内寸法)のなかで最も長い直線の長さを各気泡の直径とし、20ケの気泡の直径の数平均値を上記平均気泡径とする。なお、上記平均気泡径は、好ましくは45〜250μmである。この平均気泡径は、タルク、ポリエチレンワックスなどの気泡核剤の添加量や発泡剤の種類や組成を変更することなどにより、調整することができる。
Moreover, it is preferable that the average cell diameter of a styrene resin foam is 20-1000 micrometers. This is because if the thickness is less than 20 μm, the bubble film becomes thin, so that it is easily broken, and the closed cell ratio is lowered, which may lower the heat insulation performance and the sound insulation performance. On the other hand, if it exceeds 1000 μm, the heat insulation performance of the resulting styrene resin foam may be lowered.
Here, the average cell diameter is a diameter per cell (part divided between the walls of the resin), and the styrenic resin foam is cleanly cut with a blade at an arbitrary position. Targeting 20 randomly selected bubbles (cells) on the cut surface, the length of the longest straight line (inner dimensions) connecting the bubble wall and the different bubble wall is determined for each bubble. Let the diameter be the number average value of the diameters of the 20 bubbles. The average cell diameter is preferably 45 to 250 μm. This average cell diameter can be adjusted by changing the amount of the cell nucleating agent such as talc or polyethylene wax or the type and composition of the foaming agent.

更に、上記スチレン系樹脂発泡体の厚みは、20〜150mmであり、20〜130mmが好ましく、20〜100mmが更に好ましく、20〜80mmが特に好ましい。スチレン系樹脂発泡体の厚みが薄すぎる場合は、断熱性能及び遮音性能が不十分になり、機械的強度も弱くなる。一方、厚みが厚すぎる場合は、形成される積層パネルが厚くなり、該積層パネルを使用して構築した壁構造が厚くなるすぎるために好ましくない。
Further, the thickness of the styrene-based resin foam is 20 to 150 mm, preferably 20~130Mm, more preferably 20 to 100 mm, 20 to 80 mm is particularly preferred. When the thickness of the styrene resin foam is too thin, the heat insulation performance and the sound insulation performance become insufficient, and the mechanical strength also becomes weak. On the other hand, when the thickness is too thick, the laminated panel to be formed becomes thick, and the wall structure constructed using the laminated panel becomes too thick, which is not preferable.

本発明で使用する上記スチレン系樹脂発泡体を構成するスチレン系樹脂としては、ポリスチレン、ゴム変性ポリスチレン、ABS樹脂、AS樹脂、AES樹脂などがある。上記スチレン系樹脂は単独で用いても、2種類以上混合して用いても良い。   Examples of the styrenic resin constituting the styrenic resin foam used in the present invention include polystyrene, rubber-modified polystyrene, ABS resin, AS resin, and AES resin. The above styrenic resins may be used alone or in combination of two or more.

上記スチレン系樹脂を製造するに当たっての主原料となるスチレン系モノマーの種類としては、特に制限はないが、例えば、スチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、ビニルトルエン、p−エチルスチレン、2,4−ジメチルスチレン、p−メトキシスチレン、p−フェニルスチレン、o−クロロスチレン、m−クロロスチレン、p−クロロスチレン、2,4−ジクロロスチレン、p−n−ブチルスチレン、p−t−ブチルスチレン、p−n−ヘキシルスチレン、p−オクチルスチレン、スチレンスルホン酸、スチレンスルホン酸ナトリウム等が挙げられる。また、スチレン系モノマーと共重合可能なモノマー成分(副原料)としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸−2−エチルヘキシル等のアクリル酸の炭素数が1〜10のアルキルエステル等;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸−2−エチルヘキシル等のメタクリル酸の炭素数が1〜10のアルキルエステル等;アクリロニトリル、メタクリロニトリル等のニトリル基含有不飽和化合物等のモノマーを単独で、または二種以上を組み合わせて、スチレン系モノマーと共重合した樹脂を使用することができる。
なお、スチレン系モノマーと共重合可能なモノマー成分(スチレン系モノマー以外)を、非スチレン系モノマーと称する。
但し、主原料であるスチレン系モノマー以外に、副原料としてのこれら非スチレン系モノマーを併用する場合には、スチレン系樹脂を重合する際の全モノマーの全重量に対して、スチレン系モノマーの重量を、50%以上にすることが好ましく、70%以上にすることがより好ましく、90%以上にすることが更に好ましい。
There are no particular restrictions on the type of styrene monomer that is the main raw material for producing the styrene resin, but examples include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, and p-methylstyrene. , Vinyltoluene, p-ethylstyrene, 2,4-dimethylstyrene, p-methoxystyrene, p-phenylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, 2,4-dichlorostyrene, p- Examples thereof include n-butyl styrene, pt-butyl styrene, pn-hexyl styrene, p-octyl styrene, styrene sulfonic acid, sodium styrene sulfonate, and the like. In addition, as a monomer component (secondary material) copolymerizable with a styrene monomer, for example, the number of carbon atoms of acrylic acid such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate 1-10 alkyl esters, etc .; methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, alkyl esters having 1-10 carbon atoms of methacrylic acid, such as methacrylic acid-2-ethylhexyl, etc .; acrylonitrile, methacrylate Resins obtained by copolymerizing monomers such as nitrile group-containing unsaturated compounds such as nitrile alone or in combination of two or more with styrenic monomers can be used.
A monomer component (other than the styrene monomer) copolymerizable with the styrene monomer is referred to as a non-styrene monomer.
However, when these non-styrene monomers as auxiliary materials are used in addition to the styrene monomer as the main raw material, the weight of the styrene monomer with respect to the total weight of all monomers when polymerizing the styrene resin. Is preferably 50% or more, more preferably 70% or more, and still more preferably 90% or more.

本発明で用いられる上記スチレン系樹脂発泡体は、次のビーズ法により製造される。
上記ビーズ法の具体例としては、先ず、スチレン系樹脂粒子を密閉容器内の水性媒体中に分散させ、密閉容器内にプロパン、ノルマルブタン、イソペンタン、ノルマルペンタン、イソペンタン、ネオペンタン、ヘキサン等の脂肪族炭化水素、シクロブタン、シクロペンタン等の脂環族炭化水素等の発泡剤を圧入し、スチレン系樹脂粒子に発泡剤を含浸させ、密閉容器から発泡剤を含有するスチレン系樹脂粒子を取り出した後、スチーム等により発泡剤を含有するスチレン系樹脂粒子を加熱し、所定の発泡倍率に予備発泡させた後、成形型内に充填し、再びスチーム等により加熱発泡成形する方法が挙げられる
この際、特に、上記成形型内における加熱発泡成形は十分に行い、ビーズ間の融着状況を良好なものとし、曲げ強さが25N/cm以上、曲げ弾性率と曲げ強さの比が38〜52のスチレン系樹脂発泡体を得る。
この方法によれば、断熱性能及び遮音性能に優れ、かつ寸法安定性にも優れたスチレン系樹脂発泡体を製造することができる。
The styrene-based resin foam used in the present invention, Ru is prepared by the following bead method.
As a specific example of the bead method, first, styrene resin particles are dispersed in an aqueous medium in a sealed container, and aliphatic such as propane, normal butane, isopentane, normal pentane, isopentane, neopentane, hexane, etc. in the sealed container. After injecting a foaming agent such as hydrocarbon, cyclobutane, cyclopentane or the like, impregnating the styrene resin particles with the foaming agent, and taking out the styrene resin particles containing the foaming agent from the sealed container, A method may be mentioned in which styrene resin particles containing a foaming agent are heated with steam or the like, pre-foamed at a predetermined foaming ratio, filled in a mold, and again heated and foamed with steam or the like.
At this time, in particular, the heat-foaming molding in the above-mentioned mold is sufficiently performed, the fusion state between the beads is made favorable, the bending strength is 25 N / cm 2 or more, and the ratio of the bending elastic modulus to the bending strength is A styrene resin foam of 38 to 52 is obtained.
According to this method, it is possible to produce a styrene-based resin foam that is excellent in heat insulation performance and sound insulation performance and also excellent in dimensional stability.

本発明に係る積層パネルは、上記した石膏ボードである面材と、上記した所定の曲げ弾性率と曲げ強さの比のスチレン系樹脂発泡体とを接着剤によって一体的に貼着したものである。
接着剤としては、合成樹脂エマルジョン系接着剤、合成ゴムエマルジョン系接着剤、反応型樹脂系接着剤、モルタル系接着剤、樹脂モルタル系接着剤等を用いることができ、好ましくは接着面の全面に塗布し、隙間なく面材とスチレン系樹脂発泡体とを一体化させる。また、接着剤の節約のために接着面に田の字状やロの字状等に塗布して、面材とスチレン系樹脂発泡体とを部分的に一体化させることもできる。
The laminated panel according to the present invention is obtained by integrally bonding a face material which is the above-described gypsum board and a styrene resin foam having a predetermined bending elastic modulus to bending strength ratio described above with an adhesive. is there.
As the adhesive, synthetic resin emulsion adhesives, synthetic rubber emulsion adhesives, reactive resin adhesives, mortar adhesives, resin mortar adhesives, etc. can be used, preferably over the entire adhesive surface. Apply and integrate the face material and styrene resin foam without gaps. Further, in order to save the adhesive, the face material and the styrene resin foam can be partially integrated by applying to the adhesive surface in a square shape or a square shape.

本発明に係る壁構造は、上記した本発明に係る積層パネルを、建築物のコンクリート躯体壁に取り付けることにより構成される。
取り付けの方法は、建築物のコンクリート躯体壁に、本発明に係る積層パネルをタッピングネジ等で直接固定する方法、建築物の躯体壁にモルタル団子、接着樹脂団子などの接着剤を使用し、本発明に係る積層パネルを団子貼りする方法、更には、建築物のコンクリート躯体壁にガイドレールを一定間隔でビス止め等により設け、該ガイドレールに本発明に係る積層パネルを固定する方法、などが挙げられる。
The wall structure according to the present invention is configured by attaching the above-described laminated panel according to the present invention to a concrete frame wall of a building.
The method of attachment is to fix the laminated panel according to the present invention directly to the concrete frame wall of the building with a tapping screw or the like, and use an adhesive such as mortar dumpling or adhesive resin dumpling on the building wall of the building. A method of sticking the laminated panel according to the invention, and a method of fixing the laminated panel according to the present invention to the guide rail by providing guide rails on the concrete frame wall of the building with screws or the like at regular intervals. Can be mentioned.

上記した取り付け方法の中でも、接着剤を介して本発明に係る積層パネルを躯体壁に取付ける方法が、施工性、信頼性、施工費等において優れていることから好ましい。接着剤としては、有機系接着剤、セメントモルタル、樹脂モルタル等、従来公知のものを用いることができ、不陸の大きいコンクリート躯体壁に対しては、施工性の面からモルタル団子が好ましく使用できる。   Among the above-described attachment methods, the method of attaching the laminated panel according to the present invention to the housing wall via an adhesive is preferable because it is excellent in workability, reliability, construction cost, and the like. As the adhesive, conventionally known ones such as organic adhesives, cement mortar, resin mortar, etc. can be used, and mortar dumpling can be preferably used from the viewpoint of workability for the concrete wall with large unevenness. .

本発明に係る積層パネル、及び該積層パネルを用いた壁構造の好ましい態様の一例を、図1に示す。
図1に示す壁構造においては、躯体壁1に接着剤2を用いて接着することにより、本発明に係る積層パネル3が取り付けられている。本発明に係る積層パネル3は、スチレン系樹脂発泡板4と面材5とが接着剤6によって一体的に貼着された構成であり、該積層パネル3のスチレン系樹脂発泡板4側が躯体壁1に固定され、面材5の表面には、接着材7を介して壁紙等の表面仕上げ材8が設けられている。
An example of a preferred embodiment of a laminated panel according to the present invention and a wall structure using the laminated panel is shown in FIG.
In the wall structure shown in FIG. 1, the laminated panel 3 according to the present invention is attached by bonding to the housing wall 1 using an adhesive 2. The laminated panel 3 according to the present invention has a configuration in which a styrene resin foam plate 4 and a face material 5 are integrally attached by an adhesive 6, and the styrene resin foam plate 4 side of the laminate panel 3 is a housing wall. 1 and a surface finishing material 8 such as wallpaper is provided on the surface of the face material 5 via an adhesive material 7.

以下に、本発明に関する実施例及び比較例について説明する。
−スチレン系樹脂発泡体の製造−
Below, the Example and comparative example regarding this invention are described.
-Production of styrene resin foam-

(実施例1)
株式会社ジェイエスピー製の発泡性ポリスチレン樹脂粒子、商品名「スチロダイア JFN200」を使用し、これを発泡性ポリスチレン用のスチーム発泡機(ダイセン工業社製 DYH1000)で、0.2kg/cm2(G)のスチーム圧力でスチーム加熱して19kg/m3の嵩密度を有する予備発泡樹脂粒子を得た。尚、得られる予備発泡樹脂粒子の嵩密度は、19kg/m3の嵩密度となった時に発泡機内の空間を満たすように発泡機への発泡性ポリスチレン樹脂粒子の充填量を調節することによりコントロールされた。この予備発泡樹脂粒子を室温で24時間熟成させた後、発泡ポリスチレン用成形機(ダイセン工業社製 VS−500型物成形機)の成形型内に充填し、次いで、0kg/cm2(G)のスチームを一方のチャンバー(ドレン弁閉)から、成形型内を経て他方のチャンバー(ドレン弁開)に10秒間流し、次に0kg/cm2(G)スチームを他方のチャンバー(ドレン弁閉)から、成形型内を経て一方のチャンバー(ドレン弁開)に10秒間流し、これにより予備発泡粒子を予備加熱すると共に予備発泡粒子間の空気を排出し、続いて両チャンバー(ドレン弁開)にスチームを導いてスチーム圧力が0.6kg/cm2(G)となったところでこの圧力を15秒間維持して予備発泡粒子を発泡成形し、次いで、冷却して、300×200×50mmの板状の密度19kg/m3のスチレン系樹脂発泡板を得た。
尚、この発泡成形時のスチーム圧力は成形機下部に配置されたドレン配管内で測定された。また、上記スチロダイア JFN200は、発泡性ポリスチレン樹脂粒子中に発泡剤としてブタン3.5重量%およびペンタン1.5重量%含有するものである。
Example 1
Using foam polystyrene resin particles made by JSP Co., Ltd., trade name “Styrodia JFN200”, this is 0.2 kg / cm 2 (G) with a steam foaming machine (DYH1000 manufactured by Daisen Kogyo Co., Ltd.) for expandable polystyrene. The pre-foamed resin particles having a bulk density of 19 kg / m 3 were obtained by steam heating at a steam pressure of 1 kg / m 3 . The bulk density of the pre-expanded resin particles obtained is controlled by adjusting the filling amount of expandable polystyrene resin particles into the foaming machine so as to fill the space in the foaming machine when the bulk density becomes 19 kg / m 3. It was done. After this pre-expanded resin particle was aged at room temperature for 24 hours, it was filled in a mold of a molding machine for expanded polystyrene (VS-500 type molding machine manufactured by Daisen Kogyo Co., Ltd.), and then 0 kg / cm 2 (G). Of steam from one chamber (drain valve closed) through the mold to the other chamber (drain valve open) for 10 seconds, and then 0 kg / cm 2 (G) steam is supplied to the other chamber (drain valve closed). From the inside of the mold, it flows into one chamber (drain valve open) for 10 seconds, thereby preheating the pre-foamed particles and exhausting the air between the pre-foamed particles, and subsequently to both chambers (drain valve open). steam pressure led steam maintains the pressure for 15 seconds upon reaching a 0.6kg / cm 2 (G) and foam molding the pre-expanded particles, then cooled, 300 × 200 × 5 to obtain a styrene resin foamed plate mm plate-like density 19 kg / m 3.
The steam pressure at the time of foam molding was measured in a drain pipe arranged at the lower part of the molding machine. Further, the above-mentioned Styrodia JFN200 contains 3.5% by weight of butane and 1.5% by weight of pentane as a foaming agent in the expandable polystyrene resin particles.

(実施例2)
予備発泡機への発泡性ポリスチレン樹脂粒子(商品名「スチロダイア JFN200」)の充填量を実施例1よりも多くした以外は実施例1と同様にして、23kg/m3の嵩密度を有する予備発泡樹脂粒子を得た。得られた予備発泡粒子を、実施例1と同様にして、熟成させた後、成形し、冷却し、300×200×50mmの板状の密度23kg/m3のスチレン系樹脂発泡板を得た。
(Example 2)
Pre-foaming having a bulk density of 23 kg / m 3 in the same manner as in Example 1 except that the filling amount of expandable polystyrene resin particles (trade name “Styrodia JFN200”) in the pre-foaming machine is larger than that in Example 1. Resin particles were obtained. The obtained pre-expanded particles were aged in the same manner as in Example 1 and then molded and cooled to obtain a styrene-based resin foam plate having a plate shape of 300 × 200 × 50 mm and a density of 23 kg / m 3 . .

(実施例3)
予備発泡機への発泡性ポリスチレン樹脂粒子(商品名「スチロダイア JFN200」)の充填量を実施例2よりもさらに多くした以外は実施例1と同様にして、32kg/m3の嵩密度を有する予備発泡樹脂粒子を得た。得られた予備発泡粒子を、実施例1と同様にして、熟成させた後、成形し、冷却し、300×200×50mmの板状の密度32kg/m3のスチレン系樹脂発泡板を得た。
(Example 3)
A preliminary having a bulk density of 32 kg / m 3 in the same manner as in Example 1 except that the amount of expandable polystyrene resin particles (trade name “Styrodia JFN200”) in the preliminary foaming machine was further increased than in Example 2. Expanded resin particles were obtained. The obtained pre-expanded particles were aged in the same manner as in Example 1, and then molded and cooled to obtain a styrene resin foam plate having a plate density of 300 × 200 × 50 mm and a density of 32 kg / m 3 . .

(比較例1)
株式会社ジェイエスピー製の厚み50mmの押出発泡ポリスチレン板(商品名「ミラフォーム MKS」、密度39kg/m3)より、全面に製造時の表皮を持たない300×200×25mmサイズの板を切り出した。
(Comparative Example 1)
A 300 × 200 × 25 mm-size plate having no epidermis during production was cut out from an extruded polystyrene foam plate (trade name “Mirafoam MKS”, density 39 kg / m 3 ) manufactured by JSP Co., Ltd. .

(比較例2)
予備発泡機への発泡性ポリスチレン樹脂粒子(商品名「スチロダイア JFN200」)の充填量を実施例2よりも若干多くした以外は実施例1と同様にして、28kg/m3の嵩密度を有する予備発泡樹脂粒子を得た。得られた予備発泡粒子を、実施例1と同様に熟成させた後、成形時のスチーム圧力が0.6kg/cm2(G)となったところでこの圧力を1秒間維持して予備発泡粒子を発泡成形した以外は実施例1と同様にして、成形し、冷却し、300×200×50mmの板状の密度28kg/m3のスチレン系樹脂発泡板を得た。
(Comparative Example 2)
A preliminary having a bulk density of 28 kg / m 3 in the same manner as in Example 1 except that the filling amount of expandable polystyrene resin particles (trade name “Styrodia JFN200”) into the preliminary foaming machine is slightly larger than that in Example 2. Expanded resin particles were obtained. After aging the obtained pre-expanded particles in the same manner as in Example 1, when the steam pressure during molding reached 0.6 kg / cm 2 (G), this pressure was maintained for 1 second to prepare the pre-expanded particles. Except for foam molding, it was molded and cooled in the same manner as in Example 1 to obtain a 300 × 200 × 50 mm plate-like density 28 kg / m 3 styrene resin foam plate.

(比較例3)
予備発泡機への発泡性ポリスチレン樹脂粒子(商品名「スチロダイア JFN200」)の充填量を実施例1よりも少なくした以外は実施例1と同様にして、14kg/m3の嵩密度を有する予備発泡樹脂粒子を得た。得られた予備発泡粒子を、実施例1と同様にして、熟成させた後、成形し、冷却し、300×200×50mmの板状の密度14kg/m3のスチレン系樹脂発泡板を得た。
(Comparative Example 3)
Pre-foaming having a bulk density of 14 kg / m 3 in the same manner as in Example 1 except that the filling amount of expandable polystyrene resin particles (trade name “Styrodia JFN200”) into the pre-foaming machine is less than that in Example 1. Resin particles were obtained. The obtained pre-expanded particles were aged in the same manner as in Example 1, and then molded and cooled to obtain a styrene-based resin foam plate having a plate-like density of 14 kg / m 3 of 300 × 200 × 50 mm. .

(比較例4)
予備発泡機への発泡性ポリスチレン樹脂粒子(商品名「スチロダイア JFN200」)の充填量を比較例3よりも少し多くした以外は実施例1と同様にして、16kg/m3の嵩密度を有する予備発泡樹脂粒子を得た。得られた予備発泡粒子を、実施例1と同様に熟成させた後、成形時のスチーム圧力が0.6kg/cm2(G)となったところでこの圧力を1秒間維持して予備発泡粒子を発泡成形した以外は実施例1と同様にして、成形し、冷却し、300×200×50mmの板状の密度16kg/m3のスチレン系樹脂発泡板を得た。
(Comparative Example 4)
A preliminary having a bulk density of 16 kg / m 3 in the same manner as in Example 1 except that the filling amount of expandable polystyrene resin particles (trade name “Styrodia JFN200”) into the preliminary foaming machine is slightly larger than that in Comparative Example 3. Expanded resin particles were obtained. After aging the obtained pre-expanded particles in the same manner as in Example 1, when the steam pressure during molding reached 0.6 kg / cm 2 (G), this pressure was maintained for 1 second to prepare the pre-expanded particles. Except for foam molding, it was molded and cooled in the same manner as in Example 1 to obtain a 300 × 200 × 50 mm plate-like density 16 kg / m 3 styrene resin foam plate.

比較例1については上記全面に製造時の表皮を持たない300×200×25mmサイズの板に対し、実施例1〜3及び比較例2〜4の発泡板については型内から取り出した発泡板を60℃で7日間養生した後、厚み25mmにスライスした上下面に製造時の表皮を持たない発泡板(300×200×25mmサイズ)に対し、熱伝導率を測定した。また、上下面に製造時の表皮を持たない300×75×25mmサイズに切り出した試験片に対し、各々曲げ弾性率、曲げ強さを測定し、各々の曲げ弾性率と曲げ強さの比を算出した。その測定結果及び算出結果を表1に示す。
なお、熱伝導率は、JIS A 9511:1995の4.7項の記載により、JIS A 1412:1994記載の平板熱流計法(熱流計2枚方式、高温側35℃、低温側5℃、平均温度20℃)に基づいて測定した。
For Comparative Example 1, the foam plate taken out of the mold for Examples 1 to 3 and Comparative Examples 2 to 4 was used for the 300 × 200 × 25 mm size plate that did not have a manufacturing skin on the entire surface. After curing at 60 ° C. for 7 days, the thermal conductivity was measured on a foamed plate (300 × 200 × 25 mm size) having no skin at the time of manufacture on the upper and lower surfaces sliced to a thickness of 25 mm. In addition, the bending elastic modulus and bending strength were measured for each test piece cut to a size of 300 × 75 × 25 mm without the production skin on the upper and lower surfaces, and the ratio of each bending elastic modulus and bending strength was determined. Calculated. The measurement results and calculation results are shown in Table 1.
The thermal conductivity is measured according to the description in Section 4.7 of JIS A 9511: 1995. The plate heat flow meter method described in JIS A 1412: 1994 (two heat flow meters, high temperature side 35 ° C., low temperature side 5 ° C., average Temperature).

−積層パネルの製造−
上記実施例1〜3及び比較例1〜4の厚み25mmの各スチレン系樹脂発泡板(300×200×25mmサイズ)の片面に、300×200mmサイズに切り出した石膏ボード(吉野石膏社製商品名「タイガーボード」厚さ:9.5mm)を接着剤(セメダイン社製 酢酸ビニルマルジョン木材接着剤605)によって全面接着し、300×200×35mmの積層パネルを得た。
-Manufacture of laminated panels-
A gypsum board (Yoshino Gypsum Co., Ltd. product name) cut into 300 × 200 mm size on one side of each 25 mm thick styrene resin foam plate (300 × 200 × 25 mm size) of Examples 1 to 3 and Comparative Examples 1 to 4 “Tiger board” (thickness: 9.5 mm) was adhered to the entire surface with an adhesive (Vinyl acetate wood adhesive 605 manufactured by Cemedine Co., Ltd.) to obtain a 300 × 200 × 35 mm laminated panel.

−性能試験−
鉄筋コンクリート造りの建築物において、各積層パネルを、2部屋の間仕切り壁(鉄筋コンクリート厚さ180mm)の一方に各々接着剤(コニシ社製 変性シリコーン樹脂系 KMP10S)によって全面接着し、積層パネルが貼られていない部屋から雑音(ホワイトノイズ)を発生させ、積層パネルの表面振動をピックアップセンサー(振動測定装置:リオン社製 SA−28 1/Nオクターブバンドリアルタイムアナライザー 加速度センサー:リオン社製 PV−85 ピックアップセンサー)にて周波数25〜10000Hzの範囲において加速度測定を実施した。この際の加速度測定条件は、1/3オクターブ分析、音響特性:平たん特性、リニアー平均、平均演算時間10秒とした。これら加速度測定結果のチャートを、それぞれ、図2乃至図8に示した。
なお、加速度は、振動とそこから放射される音の大きさと相関関係がある。
得られた各積層パネルの最大加速度を表1に併記する。また、各スチレン系樹脂発泡体の密度〔JIS A 9511(2005)〕を表1に併記する。
-Performance test-
In a reinforced concrete building, each laminated panel is adhered to one side of a partition wall (reinforced concrete thickness: 180 mm) with an adhesive (modified silicone resin KMP10S manufactured by Konishi Co., Ltd.) and the laminated panel is attached. Noise (white noise) is generated from a non-existing room, and the surface vibration of the laminated panel is picked up sensor (vibration measuring device: SA-28 1 / N octave band real-time analyzer made by Lion Co., Ltd. acceleration sensor: PV-85 pickup sensor made by Lion Co.) Acceleration measurement was performed in a frequency range of 25 to 10,000 Hz. The acceleration measurement conditions at this time were 1/3 octave analysis, acoustic characteristics: flat characteristics, linear average, and average calculation time of 10 seconds. The charts of these acceleration measurement results are shown in FIGS. 2 to 8, respectively.
The acceleration has a correlation with the vibration and the magnitude of sound radiated therefrom.
Table 1 shows the maximum acceleration of each obtained laminated panel. The density of each styrene resin foam [JIS A 9511 (2005)] is also shown in Table 1.

Figure 0004825489
Figure 0004825489

上記表1から、曲げ弾性率と曲げ強さの比が38〜52の範囲にあるスチレン系樹脂発泡板を面材に接着した実施例1〜3の積層パネルは、曲げ弾性率と曲げ強さの比が38未満又は52超のスチレン系樹脂発泡板を面材に接着した比較例1〜4の積層パネルに比して、最大加速度が半分程度と低く、遮音性能が優れていることが分かる。   From Table 1 above, the laminated panels of Examples 1 to 3 in which the ratio of the flexural modulus to the flexural strength is in the range of 38 to 52 and the styrene resin foam plate bonded to the face material are the flexural modulus and flexural strength. Compared with the laminated panels of Comparative Examples 1 to 4 in which a styrene-based resin foam plate having a ratio of less than 38 or more than 52 is bonded to the face material, the maximum acceleration is as low as about half, and it is understood that the sound insulation performance is excellent. .

本発明に係る積層パネル、及び該積層パネルを用いた壁構造の好ましい態様の一例を示した断面図である。It is sectional drawing which showed an example of the preferable aspect of the laminated structure which concerns on this invention, and the wall structure using this laminated panel. 実施例1の積層パネルを使用して測定された加速度測定のチャートを示した図である。It is the figure which showed the chart of the acceleration measurement measured using the laminated panel of Example 1. FIG. 実施例2の積層パネルを使用して測定された加速度測定のチャートを示した図である。It is the figure which showed the chart of the acceleration measurement measured using the laminated panel of Example 2. FIG. 実施例3の積層パネルを使用して測定された加速度測定のチャートを示した図である。It is the figure which showed the chart of the acceleration measurement measured using the laminated panel of Example 3. FIG. 比較例1の積層パネルを使用して測定された加速度測定のチャートを示した図である。It is the figure which showed the chart of the acceleration measurement measured using the laminated panel of the comparative example 1. 比較例2の積層パネルを使用して測定された加速度測定のチャートを示した図である。It is the figure which showed the chart of the acceleration measurement measured using the laminated panel of the comparative example 2. 比較例3の積層パネルを使用して測定された加速度測定のチャートを示した図である。It is the figure which showed the chart of the acceleration measurement measured using the laminated panel of the comparative example 3. 比較例4の積層パネルを使用して測定された加速度測定のチャートを示した図である。It is the figure which showed the chart of the acceleration measurement measured using the laminated panel of the comparative example 4.

符号の説明Explanation of symbols

1 躯体壁
2 接着剤
3 積層パネル
4 スチレン系樹脂発泡体
5 面材
6 接着剤
7 接着材
8 表面仕上げ材
DESCRIPTION OF SYMBOLS 1 Housing wall 2 Adhesive 3 Laminated panel 4 Styrenic resin foam 5 Face material 6 Adhesive 7 Adhesive 8 Surface finish material

Claims (4)

スチレン系樹脂発泡ビーズの型内成形体からなり、密度が18〜35kg/m 、厚みが20〜150mm、曲げ強さが25N/cm 以上、曲げ弾性率と曲げ強さの比が38〜52のスチレン系樹脂発泡体を、石膏ボードからなる面材に積層接着したことを特徴とする、積層パネル。 It consists of an in-mold molded product of styrene resin foam beads, density is 18 to 35 kg / m 3 , thickness is 20 to 150 mm, bending strength is 25 N / cm 2 or more, and the ratio of bending elastic modulus to bending strength is 38 to A laminated panel, wherein 52 styrene resin foam is laminated and adhered to a face material made of gypsum board . 上記スチレン系樹脂発泡体の曲げ弾性率と曲げ強さの比が40〜50であることを特徴とする、請求項1に記載の積層パネル。 The laminate panel according to claim 1, wherein the ratio of the flexural modulus and the flexural strength of the styrenic resin foam is 40 to 50 . 上記スチレン系樹脂発泡体の曲げ強さが65N/cm 以下であることを特徴とする、請求項1又は2に記載の積層パネル。 The laminated panel according to claim 1 or 2, wherein the bending strength of the styrenic resin foam is 65 N / cm 2 or less . 上記請求項1〜3のいずれかに記載の積層パネルを、建築物のコンクリート躯体壁に取り付けたことを特徴とする、壁構造。A wall structure, wherein the laminated panel according to any one of claims 1 to 3 is attached to a concrete frame wall of a building.
JP2005298539A 2005-10-13 2005-10-13 Laminated panel and wall structure using the laminated panel Active JP4825489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298539A JP4825489B2 (en) 2005-10-13 2005-10-13 Laminated panel and wall structure using the laminated panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298539A JP4825489B2 (en) 2005-10-13 2005-10-13 Laminated panel and wall structure using the laminated panel

Publications (2)

Publication Number Publication Date
JP2007107248A JP2007107248A (en) 2007-04-26
JP4825489B2 true JP4825489B2 (en) 2011-11-30

Family

ID=38033323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298539A Active JP4825489B2 (en) 2005-10-13 2005-10-13 Laminated panel and wall structure using the laminated panel

Country Status (1)

Country Link
JP (1) JP4825489B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6892799B2 (en) * 2017-07-20 2021-06-23 株式会社近畿興業エンジニアリングサポート Truck berth expansion platform and how to build it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000190412A (en) * 1998-12-25 2000-07-11 Nippon Polyester Co Ltd Lightweight laminated sheet
JP2005067148A (en) * 2003-08-27 2005-03-17 Sankyo Yunaito Kogyo Kk Laminated composite plate

Also Published As

Publication number Publication date
JP2007107248A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
ES2903083T3 (en) Plaster plates and methods for their manufacture
JP2010532500A (en) Acoustic soundproofing material with improved attenuation characteristics at selected frequency and method for producing the same
TW201638198A (en) Phenol resin foam and method for producing same
CN107429065A (en) The system of the foam sheet of hardening is penetrated into polymer for manufacture
WO2008120909A1 (en) An impact sound insulation material of floors and floor construction method using the same
WO2012058177A1 (en) Method of forming a shaped foam laminate article
JP4825489B2 (en) Laminated panel and wall structure using the laminated panel
JP4927368B2 (en) Laminated panel and wall structure using the laminated panel
RU120675U1 (en) UNIVERSAL INSULATION PANEL
RU77574U1 (en) GYPSUM CARDON HEART
JP2005207146A (en) Internal heat insulating structure of concrete building
AU2014295025A1 (en) Acoustic panel
WO2009126065A1 (en) Gypsum wallboard core composition
JP3477072B2 (en) Building floor structure
JP2006207114A (en) External heat insulation structure
WO2001039969A1 (en) Acoustical wall board and wall system
CN103381673A (en) Sound absorption and insulation foam polyurethane composite structure with combination arrays of soild pipes and hollow pipes
JP2016098548A (en) Floor material for bathroom
TW401475B (en) Sound insulating product and method of fabricating such product
JP2000234402A (en) Wall panel structure
JPH1061061A (en) Sound-insulating heat-insulating panel
JP2005308596A (en) Acoustic model experimental method
US20220251828A1 (en) Constrained layer floor and wall damping systems using high-density reinforced cement panels
US20220347971A1 (en) Gypsum Board Including a Laminate Layer
JP2001342703A (en) Structure of section between upper floor and underfloor ceiling of residence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

R150 Certificate of patent or registration of utility model

Ref document number: 4825489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250