JP2005207146A - Internal heat insulating structure of concrete building - Google Patents

Internal heat insulating structure of concrete building Download PDF

Info

Publication number
JP2005207146A
JP2005207146A JP2004015899A JP2004015899A JP2005207146A JP 2005207146 A JP2005207146 A JP 2005207146A JP 2004015899 A JP2004015899 A JP 2004015899A JP 2004015899 A JP2004015899 A JP 2004015899A JP 2005207146 A JP2005207146 A JP 2005207146A
Authority
JP
Japan
Prior art keywords
heat insulating
wall
resin foam
layer
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004015899A
Other languages
Japanese (ja)
Inventor
Seiji Takahashi
誠治 高橋
Keimei Usami
啓明 宇佐美
Norinaga Nohara
徳修 野原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2004015899A priority Critical patent/JP2005207146A/en
Publication of JP2005207146A publication Critical patent/JP2005207146A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal heat insulating structure of a concrete building with excellent heat insulating property suppressing heat loss of a heat bridge part of the concrete building and having excellent mechanical strength in regard to workability, durability, or the like without causing a lowering of heat insulating property by water absorption and moisture absorption of a heat insulating material. <P>SOLUTION: In this internal heat insulating structure, an external wall heat insulating layer 4 formed of a synthetic resin foam is provided on the indoor side of an external wall 1 of the concrete building, and a partition wall 2 continuous with the external wall 1 is provided with an internal heat insulating layer continuously with the external wall heat insulating layer. The internal heat insulating layer 3 is formed of a laminated heat insulating material provided with an adhesive surface layer at least on one side of a polystyrene-based resin foam plate with a closed cell rate of 85% or more, and having compressive strength of 0.14 MPa or more and maximum bending strength of 0.3-6 MPa. The polystyrene-based resin foam plate is provided at the partition wall 2 through the adhesive surface layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、コンクリート建造物の内断熱構造、特に外壁と連続する仕切り壁の内断熱構造に関する。   The present invention relates to an inner heat insulating structure of a concrete building, and more particularly to an inner heat insulating structure of a partition wall continuous with an outer wall.

鉄筋コンクリート造り、鉄骨鉄筋コンクリート造り、ガラス繊維入り鉄筋コンクリート造り、プレキャストコンクリート造りなどのコンクリート建造物において、省エネルギー性が高く快適で、健康で安全な住環境の住宅が求められ、高い断熱性能を有する集合住宅などの建造物が増えてきている。
住宅等建造物の断熱工法には、建造物の外壁の屋外側に断熱層を設ける外断熱工法と、外壁の室内側に断熱層を設ける内断熱工法があるが、上記のようなコンクリート造りの建造物においては、室内側に断熱層を設ける内断熱工法が一般的に行われている。
このような内断熱工法は、コンクリート建造物の駆体(コンクリート壁)表面に断熱材が貼設され、その表面に石膏ボード等の下地仕上げ材が貼設され、更にクロスなどの内装材を貼着する、いわゆる後貼り工法、コンクリート打設用型枠の内側に断熱材を固定して組込み、コンクリート打設後、型枠を取り除きコンクリートと接着している断熱材の表面に石膏ボード等の下地仕上げ材が貼設され、更にクロスなどの内装材を貼着する、いわゆる打ち込み工法があり、これらの工法によりコンクリート建造物の外壁の室内側全面に断熱層を設けた内断熱構造とすることが知られている。
In concrete structures such as reinforced concrete, steel reinforced concrete, glass fiber reinforced concrete, and precast concrete, energy-saving, comfortable, healthy and safe living environments are required, and housing with high thermal insulation performance, etc. The number of buildings is increasing.
There are two methods of heat insulation for buildings such as houses: an outer heat insulation method that provides a heat insulation layer on the exterior side of the outer wall of the building, and an inner heat insulation method that provides a heat insulation layer on the indoor side of the outer wall. In buildings, an inner heat insulation method is generally performed in which a heat insulating layer is provided on the indoor side.
In such an inner heat insulation method, a heat insulating material is pasted on the surface of a concrete building body (concrete wall), a ground finishing material such as a gypsum board is pasted on the surface, and an interior material such as a cloth is further pasted. The so-called post-pasting method to be worn, fixing the heat insulating material inside the concrete casting formwork, incorporating it, and after placing the concrete, remove the formwork and bond the surface of the heat insulating material with the concrete, such as gypsum board There is a so-called driving method in which finishing materials are pasted and interior materials such as cloth are stuck, and by these methods, an inner heat insulating structure in which a heat insulating layer is provided on the entire indoor side of the outer wall of a concrete building Are known.

近年、省エネルギー化が叫ばれ、これに伴ってさらに断熱性を高めたコンクリート建造物が要求されるようになってきている。このような要求に対して上記の内断熱工法により高い断熱性及び防湿性に優れた内断熱コンクリート壁構造体として、例えば、木質構造用パネルと合成樹脂発泡体断熱層とを接着剤を塗布した防湿性プラスチックフィルムを介して一体化した壁パネルを外壁の室内側全面に施工した内断熱構造が報告されている(例えば、特許文献1)。   In recent years, there has been a demand for energy saving, and along with this, there has been a demand for concrete buildings with further improved heat insulation. In response to such demands, for example, a wood structure panel and a synthetic resin foam heat insulating layer were applied as an inner heat insulating concrete wall structure having high heat insulation and moisture resistance by the above inner heat insulating method. There has been reported an inner heat insulating structure in which a wall panel integrated through a moisture-proof plastic film is applied to the entire indoor side of the outer wall (for example, Patent Document 1).

打ち込み工法による内断熱構造は、コンクリート打設用型枠に断熱材を固定して施工されるが、この型枠に断熱材を固定する際の釘穴や壁厚みに相当する型枠の間隔を一定に保持するためのセパレーター取り付け穴等により断熱材に必然的にキズや穴が生じる。このため断熱材自体に吸水性、吸湿性があり水分を蓄積し易いものの場合には、断熱材の表面や小口に防水層、防湿層を設けて施工することが行われているが、施工時に発生したキズや穴から時間の経過とともに水分や水蒸気が浸透し、断熱材自体が吸水、吸湿し断熱性能が低下する虞があり、壁内部に結露が生じカビの発生や内装材の汚染、剥離の要因になり室内の住環境を悪くする虞がある。
特開2000−176579号公報
The internal heat insulation structure by the driving method is constructed by fixing the heat insulating material to the concrete casting formwork, but when fixing the heat insulating material to this formwork, the distance between the moldwork corresponding to the nail holes and wall thickness is set. Scratches and holes are inevitably generated in the heat insulating material due to a separator mounting hole for keeping it constant. For this reason, in the case where the heat insulating material itself has water absorption and hygroscopic properties and easily accumulates moisture, a waterproof layer and a moisture proof layer are provided on the surface of the heat insulating material and the mouthpiece, Moisture and water vapor may permeate through the scratches and holes that occur over time, and the insulation itself may absorb water and absorb moisture, resulting in a decrease in insulation performance. This may cause the indoor living environment to deteriorate.
JP 2000-176579 A

上記の内断熱構造において、熱損失を防ぎ、より高い断熱レベルを達成するには、コンクリート建造物の構造熱橋部(以下、単に熱橋部という)である外壁と連続する仕切り壁部分、例えば、間仕切り壁、上下階を仕切る天井スラブ、梁や臥梁或いはコンクリート柱部分等からの熱損失をできるだけ抑制、防止することが重要である。また、この熱橋部の断熱性が不十分である場合には、結露が発生し易くカビの発生や内装の汚染、剥離などを引き起こす虞がある。   In the above inner heat insulating structure, in order to prevent heat loss and achieve a higher heat insulating level, a partition wall portion continuous with an outer wall which is a structural heat bridge portion (hereinafter, simply referred to as a heat bridge portion) of a concrete building, for example, It is important to suppress and prevent as much heat loss as possible from partition walls, ceiling slabs that divide the upper and lower floors, beams, beams and concrete columns. In addition, when the heat insulation property of the thermal bridge is insufficient, condensation is likely to occur, which may cause mold generation, contamination of the interior, and peeling.

本発明は、コンクリート建造物の熱橋部の熱損失を抑えた断熱性に優れたコンクリート建造物の内断熱構造であって、断熱材の吸水および吸湿による断熱性低下の課題を解決すると共に、施工性、耐久性等に関係する機械的強度に優れた内断熱構造を提供するものである。   The present invention is an inner heat insulating structure of a concrete building excellent in heat insulation that suppresses heat loss of a thermal bridge portion of the concrete building, and solves the problem of heat insulation deterioration due to water absorption and moisture absorption of the heat insulating material, The present invention provides an inner heat insulating structure excellent in mechanical strength related to workability, durability, and the like.

すなわち、本発明は(1) コンクリート建造物の外壁の室内側に合成樹脂発泡体からなる外壁断熱層が設けられており、該外壁と連続する仕切り壁に前記外壁断熱層と連続して内部断熱層が設けられた内断熱構造であって、該内部断熱層が、独立気泡率85%以上のポリスチレン系樹脂発泡板の少なくとも片面に接着表面層が設けらた圧縮強さ0.14MPa以上、最大曲げ強さ0.3〜6MPaの積層断熱材からなり、該ポリスチレン系樹脂発泡板が前記接着表面層を介して仕切り壁に設けられていることを特徴とするコンクリート建造物の内断熱構造、(2) コンクリート建造物の外壁の室内側に合成樹脂発泡体からなる外壁断熱層が設けられており、該外壁と連続する仕切り壁に前記外壁断熱層と連続して内部断熱層が設けられた内断熱構造であって、該内部断熱層が、独立気泡率85%以上のポリスチレン系樹脂発泡板の両面に接着表面層が設けらた圧縮強さ0.14MPa以上、最大曲げ強さ0.3〜6MPaの積層断熱材からなり、該ポリスチレン系樹脂発泡板は一方の接着表面層を介して仕切り壁に設けられており、該ポリスチレン系樹脂発泡板の他方の接着表面層を介して厚み1〜5mmのモルタル層が形成されていることを特徴とするコンクリート建造物の内断熱構造、(3)接着表面層が、不織布、織布または網で構成されていることを特徴とする上記(1)または(2)に記載のコンクリート建造物の内断熱構造、(4)打ち込み工法により形成されてなることを特徴とする上記(1)、(2)または(3)に記載のコンクリート建造物の内断熱構造、を要旨とするものである。   That is, the present invention provides: (1) An outer wall heat insulating layer made of a synthetic resin foam is provided on the indoor side of an outer wall of a concrete building, and a partition wall continuous with the outer wall is continuously insulated from the outer wall heat insulating layer. An inner heat insulating structure provided with a layer, wherein the inner heat insulating layer has a compressive strength of 0.14 MPa or more, provided that an adhesive surface layer is provided on at least one surface of a polystyrene-based resin foam plate having a closed cell ratio of 85% or more. An internal heat insulating structure of a concrete building, comprising a laminated heat insulating material having a bending strength of 0.3 to 6 MPa, wherein the polystyrene-based resin foam plate is provided on the partition wall through the adhesive surface layer; 2) An outer wall heat insulating layer made of a synthetic resin foam is provided on the indoor side of the outer wall of the concrete building, and an inner heat insulating layer is provided on the partition wall continuous with the outer wall and continuously with the outer wall heat insulating layer. It is a heat insulating structure, and the internal heat insulating layer has a compressive strength of 0.14 MPa or more with a bonding surface layer provided on both surfaces of a polystyrene resin foam plate having a closed cell ratio of 85% or more, and a maximum bending strength of 0.3 to It consists of a laminated heat insulating material of 6 MPa, and the polystyrene resin foam plate is provided on the partition wall via one adhesive surface layer, and the thickness is 1 to 5 mm via the other adhesive surface layer of the polystyrene resin foam plate. (3) The above-described (1) or (3), wherein the inner heat insulating structure of the concrete building is characterized in that a mortar layer is formed, and (3) the adhesive surface layer is composed of a nonwoven fabric, a woven fabric, or a net (2) The internal heat insulation structure of a concrete building according to (2), (4) The internal heat insulation of a concrete building according to (1), (2) or (3), which is formed by a driving method. Structure, the It is an effect.

本発明の請求項1に係わる発明によれば、ポリスチレン系樹脂発泡板を、コンクリート建造物の外壁と連続する仕切り壁に、外壁の室内側に設けられた合成樹脂発泡体と連続して配設して内部断熱層を形成することにより、熱橋部からの熱損失を防ぎ、高い断熱性能を有する内断熱構造となる。また、発泡板の少なくとも片面に接着表面層が設けられていることにより該接着表面層により内部断熱層のコンクリート面からの剥離、脱落の虞もなく、該断熱層は施工時や型枠解体時などに発泡板の割れや欠けが発生し難く、良好な断熱性を維持した断熱層が形成される。更に該接着表面層により発泡板の機械的強度向上を図ることができる。また、上記樹脂発泡板として独立気泡率85%以上のポリスチレン系樹脂発泡板を採用することにより、ポリスチレン系樹脂自体が殆ど吸水性、吸湿性を有しないものであることと発泡板の独立気泡率が85%以上であることにより、打ち込み工法により施工した場合、施工中に必然的に発生する釘穴やセパレーター取り付け穴や、型枠の取り外しの際にキズなどが発生しても、吸水、吸湿による断熱性能の低下が見られない。また、後貼り工法により施工した場合でも、施行時等に発泡板に穴やキズなどが発生しても、吸水、吸湿による断熱性能の低下が見られない。また、断熱層として、5%圧縮強さが0.14MPa以上、最大曲げ強さが0.3〜6MPaであることにより、耐久性に優れたものとなるため、簡単な仕上げで良好な居住空間を提供することができ、構造や作業工程の簡素化、コストの低減を図ることができる。   According to the invention relating to claim 1 of the present invention, the polystyrene resin foam board is continuously arranged on the partition wall continuous with the outer wall of the concrete building and the synthetic resin foam provided on the indoor side of the outer wall. By forming the internal heat insulating layer, heat loss from the thermal bridge portion is prevented, and an internal heat insulating structure having high heat insulating performance is obtained. In addition, since the adhesive surface layer is provided on at least one surface of the foamed plate, there is no risk of peeling or dropping of the internal heat insulating layer from the concrete surface due to the adhesive surface layer, and the heat insulating layer is at the time of construction or mold disassembly. As a result, it is difficult to cause cracks or chipping of the foamed plate, and a heat insulating layer maintaining good heat insulating properties is formed. Furthermore, the mechanical strength of the foamed plate can be improved by the adhesive surface layer. Further, by adopting a polystyrene resin foam plate having a closed cell ratio of 85% or more as the resin foam plate, the polystyrene resin itself has almost no water absorption and hygroscopicity, and the closed cell ratio of the foam plate. If it is 85% or more, when it is constructed by a driving method, it will absorb water and absorb moisture even if scratches occur when removing nail holes, separator mounting holes, and formwork that are inevitably generated during construction. No decrease in heat insulation performance due to. Moreover, even when it is constructed by the post-pasting method, even if holes or scratches are generated in the foamed plate at the time of enforcement or the like, there is no decrease in heat insulation performance due to water absorption or moisture absorption. In addition, since the heat insulation layer has a 5% compressive strength of 0.14 MPa or more and a maximum bending strength of 0.3 to 6 MPa, it has excellent durability. The structure and work process can be simplified and the cost can be reduced.

本発明の請求項2に係わる発明は、上記効果を有し、施工性、耐久性、コストにおいて特に優れたものである。また、内部断熱層の表面に薄塗り仕上げのモルタル層が形成されていることにより、日常生活音に対する遮音性能の低下を防止することができる。   The invention according to claim 2 of the present invention has the above-described effects, and is particularly excellent in workability, durability, and cost. In addition, since the mortar layer with a thin coating finish is formed on the surface of the internal heat insulating layer, it is possible to prevent a decrease in sound insulation performance with respect to daily life sounds.

本発明の請求項3に係わる発明によれば、前記接着表面層が、不織布、織布または網で構成されていることにより、内部断熱層と該断熱層の表裏面に位置する室外側コンクリート建造物の仕切り壁、内装材、或いは、モルタル層等との接合力が大きくなリ断熱層の剥離、脱落の防止性能等、上記の接着表面層を設けることによる効果がより確かなものとなる。
本発明の請求項4に係わる発明は、打ち込み工法により上記コンクリート建造物の内断熱構造を施工した場合、吸水性が殆どなく、圧縮及び曲げ強さに優れる積層断熱材からなる内部断熱層の特性を、施工時のコンクリート型枠構造を簡素化することに利用できるためその産業上の利点は大きい。
According to the invention according to claim 3 of the present invention, the adhesive surface layer is composed of a non-woven fabric, a woven fabric or a mesh, so that the outdoor concrete construction is located on the front and back surfaces of the inner heat insulating layer and the heat insulating layer. The effects obtained by providing the above-mentioned adhesive surface layer, such as the ability to prevent peeling and dropping off of the heat insulating layer having a large bonding force with the partition wall of the object, the interior material, or the mortar layer, become more certain.
In the invention according to claim 4 of the present invention, when the inner heat insulating structure of the concrete building is constructed by a driving method, the properties of the inner heat insulating layer made of a laminated heat insulating material having almost no water absorption and excellent compression and bending strength. Can be used to simplify the concrete formwork structure at the time of construction.

本発明の内断熱構造は、後貼り工法、打ち込み工法いずれの工法も採用することができるが、後貼り工法の場合には、断熱材を施工した部分の断熱材の厚み分が仕切り壁の室内側に突出するので、室内側で壁の厚さに段差を生じ壁面が面一の平面に仕上がらない難点がある。また、型枠解体後の不陸のある躯体に対して断熱材を接着材等で全面接着するのは困難であり、躯体と断熱材の間の空隙に結露が発生する虞がある。一方、打ち込み工法の場合は壁の室内側は面一の平面に仕上がるので室内環境がよく、建設にかかる全体の工程が短縮され、また躯体と断熱材の間に結露が発生する虞が殆どないため、特別な場合を除き打ち込み工法による内断熱構造が好ましい。   The inner heat insulating structure of the present invention can employ either the post-pasting method or the driving-in method, but in the case of the post-pasting method, the thickness of the heat insulating material in the part where the heat insulating material is applied is equal to the partition wall chamber. Since it protrudes inward, there is a difficulty in that the wall thickness is stepped on the indoor side and the wall surface is not finished to a flat surface. In addition, it is difficult to adhere the heat insulating material to the entire surface of the case with the unevenness after dismantling the mold with an adhesive or the like, and there is a possibility that condensation occurs in the gap between the case and the heat insulating material. On the other hand, in the case of the driving method, the interior side of the wall is finished to a flat surface, so the indoor environment is good, the entire construction process is shortened, and there is almost no risk of condensation between the housing and the heat insulating material. Therefore, an internal heat insulating structure by a driving method is preferable except for a special case.

コンクリート建造物の内断熱構造において、熱損失を防止あるいは抑制すべき個所は、外壁と連続する仕切り壁により外壁の室内側に設けられた断熱層の連続性が切断し熱橋部となる断熱欠損部である。したがって、これらの個所の熱損失を防ぐ断熱補強を行う内部断熱層を設けることが必要となる。この仕切り壁とは、隣接する部屋を仕切る間仕切り壁、上下階を仕切る天井スラブ、雁行あるいは梁や臥梁、室内側に突出したコンクリート柱部分等である。そして本発明においては内部断熱層は上記仕切り壁のいずれに設けられてもよいが、少なくとも隣接する部屋を仕切る間仕切り壁に設けられることが好ましい。また、断熱補強により仕切り壁に内部断熱層を設ける範囲は、建造物の仕様や補強個所の構造等、また建造物を建築する地域により異なり、北海道や東北等の寒冷地域では断熱補強すべき仕切り壁全面に行うことが推奨される。内部断熱層を設ける範囲は、例えば、間仕切壁や天井スラブの場合、該仕切り壁の外壁の室内側の壁面から概ね、150mm以上の範囲に断熱材が設けられ、好ましくは300mm以上、更に好ましくは450〜1000mmの範囲に設けられる。   In the inner heat insulation structure of concrete buildings, the place where heat loss should be prevented or suppressed is the heat insulation defect where the continuity of the heat insulation layer provided on the indoor side of the outer wall is cut by the partition wall continuous with the outer wall and becomes a heat bridge part Part. Therefore, it is necessary to provide an internal heat insulation layer that performs heat insulation reinforcement to prevent heat loss at these locations. This partition wall is a partition wall that partitions adjacent rooms, a ceiling slab that partitions the upper and lower floors, coasting or beams or beams, a concrete column portion protruding indoors, and the like. And in this invention, although an internal heat insulation layer may be provided in either of the said partition walls, it is preferable to be provided in the partition wall which partitions off at least the adjacent room. In addition, the range in which the inner heat insulation layer is provided on the partition wall by heat insulation reinforcement depends on the specifications of the building, the structure of the reinforcement part, etc., and the area where the building is built. It is recommended to do it on the entire wall. For example, in the case of a partition wall or a ceiling slab, the range in which the internal heat insulating layer is provided is generally provided with a heat insulating material in a range of 150 mm or more from the wall surface on the indoor side of the outer wall of the partition wall, preferably 300 mm or more, more preferably It is provided in the range of 450 to 1000 mm.

熱橋部の熱損失を防止する内部断熱層を設ける場合、断熱材は外壁の室内側に設けられた外壁断熱層と隙間なく密着させて連続して設ける。内部断熱層が、連続して設けられていない場合には断熱層の不連続部ができ十分に熱損失を防止し、抑制することができず、結露発生の要因ともなる。また遮音性にも影響を与える虞がある。   When providing the internal heat insulation layer which prevents the heat loss of a thermal bridge part, a heat insulating material is closely provided with the outer wall heat insulation layer provided in the room inner side of the outer wall without gap. When the internal heat insulating layer is not continuously provided, a discontinuous portion of the heat insulating layer is formed, and heat loss is sufficiently prevented and cannot be suppressed, which may cause condensation. There is also a possibility of affecting the sound insulation.

本発明における内部断熱層は、独立気泡率85%以上のポリスチレン系樹脂発泡板の少なくとも片面に接着表面層が設けらた圧縮強さ0.14MPa以上、最大曲げ強さ0.3〜6MPaの積層断熱材(以下、本発明の積層断熱材ということがある)から形成されている。該積層断熱材を構成するポリスチレン系樹脂発泡板は機械的強度に優れていると共に、断熱性に優れている。また、該ポリスチレン系樹脂発泡板は、ポリスチレン系樹脂自体吸水性や吸湿性が殆どなく、また独立気泡構造のものであるので仮に釘穴やスペーサー用の穴やキズなどから水分が浸透しても発泡板内部の気泡中に水等が浸入し蓄積される虞がなく、ほぼ一定の熱伝導率を示すので高い断熱性能を維持することができる。   The internal heat insulating layer in the present invention is a laminate having a compressive strength of 0.14 MPa or more and a maximum bending strength of 0.3 to 6 MPa in which an adhesive surface layer is provided on at least one surface of a polystyrene resin foam plate having an closed cell ratio of 85% or more. It is formed from a heat insulating material (hereinafter sometimes referred to as a laminated heat insulating material of the present invention). The polystyrene-based resin foam plate constituting the laminated heat insulating material is excellent in mechanical strength and heat insulating properties. In addition, the polystyrene resin foam plate has almost no water absorption or hygroscopicity in the polystyrene resin itself, and has a closed cell structure, so that even if moisture penetrates through a nail hole, a hole for a spacer or a scratch. There is no risk of water or the like invading and accumulating in the bubbles inside the foamed plate, and since it exhibits a substantially constant thermal conductivity, high heat insulation performance can be maintained.

本発明におけるポリスチレン系樹脂発泡板を芯材として両面に接着表面層としてポリエステル繊維不織布(東洋紡績(株)製、商品名:エクーレ)を積層した本発明の積層断熱材と、汎用されている硬質ポリウレタン発泡板を芯材とし両面に補強板紙を積層した市販のポリウレタン発泡板断熱材(以下、市販ポリウレタン発泡ボードということがある)について、水蒸気雰囲気下における熱伝導率(W/m・K)および吸水量(g)の経時変化を図4および図5のグラフに示した。
上記の熱伝導率および吸水量の測定試験に供した試料は、各々の断熱材から縦200mm、横200mm、厚み20mm(断熱材全厚み)の大きさの試験片を切り出して、該試験片の両面に発泡板内部に達する深さの切り込みを設けたものと、該切り込みを設けないものとを用いた。尚、試験方法は、縦200mm、横200mmの正方形の窓部を形成した板材を用意し、該板材の窓部に試験片を装着することにより仕切板を作成した。次に該仕切板にて温度40℃、湿度85%に維持した部屋と、外気条件(温度約20℃、湿度約80%)にした部屋とを仕切り、所要日数経過後の吸水量と熱伝導率を測定した。
The laminated heat insulating material of the present invention in which a polyester resin nonwoven fabric (made by Toyobo Co., Ltd., trade name: Ecule) is laminated as an adhesive surface layer on both sides with the polystyrene resin foam plate in the present invention as a core material, and a hard used widely With regard to a commercially available polyurethane foam board heat insulating material (hereinafter sometimes referred to as a commercially available polyurethane foam board) in which a polyurethane foam board is used as a core material and reinforcing paperboard is laminated on both sides, the thermal conductivity (W / m · K) in a water vapor atmosphere and Changes with time in the amount of water absorption (g) are shown in the graphs of FIGS.
Samples subjected to the above-described measurement test of thermal conductivity and water absorption amount were cut out of test pieces having a size of 200 mm in length, 200 mm in width, and 20 mm in thickness (total thickness of the heat insulation material) from each of the heat insulation materials. What provided the incision of the depth which reaches the inside of a foam board on both surfaces, and the thing which does not provide this notch were used. In addition, the test method prepared the board | plate material which formed the square window part of length 200mm and width 200mm, and attached the test piece to the window part of this board | plate material, and created the partition plate. Next, a room maintained at a temperature of 40 ° C. and a humidity of 85% is separated from a room maintained at an outside air condition (temperature of about 20 ° C. and humidity of about 80%) by the partition plate, and the water absorption and heat conduction after the required number of days have passed. The rate was measured.

図4から熱伝導率は、本発明の積層断熱材は、切り込みを設けた試験片および切り込み設けない試験片のいずれの場合も、50日経過後も初期値とほとんど変化なくほぼ一定の値を示す。これに対して市販ポリウレタン発泡ボードでは、切り込みを設けた試験片、切り込みを設けない試験片共に時間の経過とともに熱伝導率の増加が見られる。
また、図5から水分の吸水量は、本発明の積層断熱材は、切り込みを設けた試験片および切り込みを設けない試験片のいずれの場合も、変化がないのに比べ、市販ポリウレタン発泡ボードでは、切り込みを設けた試験片、切り込みを設けない試験片共に時間の経過とともに吸水量が増加し、特に切り込みを設けた試験片では7日経過後から吸水量の増加が著しい。
From FIG. 4, the thermal conductivity of the laminated heat insulating material of the present invention shows a substantially constant value with almost no change from the initial value even after 50 days in both the test piece with the cut and the test piece without the cut. . On the other hand, in the commercially available polyurethane foam board, the increase in thermal conductivity is observed with the passage of time for both the test piece provided with the cut and the test piece provided with no cut.
From FIG. 5, the moisture absorption amount of the laminated heat insulating material according to the present invention is the same as that of the commercially available polyurethane foam board compared to the case where there is no change in both the test piece provided with the cut and the test piece provided with no cut. The amount of water absorption increases with the passage of time for both the test piece provided with the cut and the test piece provided with no cut, and the increase in the water absorption is remarkable after 7 days, particularly in the test piece provided with the cut.

上記の本発明の積層断熱材は、後貼り工法、打ち込み工法いずれの工法による内断熱構造の断熱材として使用できるが、本発明にて使用されるポリスチレン系樹脂発泡板の吸湿が殆どない等の特性を生かした打ち込み工法による内断熱構造に使用するのに特に適している。本発明の積層断熱材は上記の物性を有するものであるが、5%圧縮強さが0.14MPa未満である場合には局部的な荷重負荷により座屈する虞がある。また最大曲げ強さが0.3MPaより低い場合には、破断したり欠けたりする虞がある。一方、6MPa超えるものは強度は高いが、見かけ密度が高く断熱性が不十分となる虞がある。このような点を勘案し、5%圧縮強さは0.14〜1.2MP、更に0.25〜0.8MPaの範囲にあることが好ましく、最大曲げ強さは0.4〜5MPa、更に0.6〜4MPaの範囲にあることが好ましい。
また、該積層断熱材を構成するポリスチレン系樹脂発泡板の独立気泡率が低い場合には圧縮強さや曲げ強さなどの機械的強度が低下する虞があり、吸湿や吸水により断熱性が低下する虞もある。よって、本発明にて使用されるポリスチレン系樹脂発泡板の独立気泡率は85%以上のものであり、好ましくは90%以上、更に好ましくは95%以上のものである。
また、該ポリスチレン系樹脂発泡板の見かけ密度は0.02〜0.07g/cm、更に0.028〜0.05g/cmのものが、断熱性および機械的強度などの物性面から好ましい。
また、該ポリスチレン系樹脂発泡板の熱伝導率は0.032W/m・K以下、更に0.02〜0.03W/m・K、特に0.022〜0.029W/m・Kのものが、発泡板の厚みを薄くすることができるため室内空間を広く設計することが可能となる点から好ましい。
The laminated heat insulating material of the present invention can be used as a heat insulating material for the inner heat insulating structure by any of the post-bonding method and the driving method, but there is almost no moisture absorption of the polystyrene resin foam board used in the present invention. It is particularly suitable for use in the inner heat insulation structure by the driving method utilizing the characteristics. The laminated heat insulating material of the present invention has the above physical properties, but when the 5% compressive strength is less than 0.14 MPa, there is a risk of buckling due to a local load. Moreover, when the maximum bending strength is lower than 0.3 MPa, there is a possibility of breaking or chipping. On the other hand, those exceeding 6 MPa have high strength, but there is a possibility that the apparent density is high and the heat insulating properties are insufficient. Taking such points into consideration, the 5% compressive strength is preferably in the range of 0.14 to 1.2 MPa, more preferably 0.25 to 0.8 MPa, and the maximum bending strength is 0.4 to 5 MPa. It is preferably in the range of 0.6 to 4 MPa.
In addition, when the closed cell ratio of the polystyrene resin foam plate constituting the laminated heat insulating material is low, the mechanical strength such as compressive strength and bending strength may be lowered, and the heat insulating property is lowered by moisture absorption or water absorption. There is also a fear. Therefore, the closed cell ratio of the polystyrene resin foam plate used in the present invention is 85% or more, preferably 90% or more, more preferably 95% or more.
Further, the apparent density of the polystyrene type resin foamed plate 0.02~0.07g / cm 3, is even more of 0.028~0.05g / cm 3, preferably of property, such as thermal insulation and mechanical strength .
The thermal conductivity of the polystyrene resin foam plate is 0.032 W / m · K or less, 0.02 to 0.03 W / m · K, particularly 0.022 to 0.029 W / m · K. Since the thickness of the foam plate can be reduced, it is preferable from the viewpoint that the indoor space can be designed widely.

本発明にて使用される本発明の積層断熱材またはポリスチレン系樹脂発泡板の物性は下記の通り測定される。   The physical properties of the laminated heat insulating material or polystyrene resin foam plate of the present invention used in the present invention are measured as follows.

積層断熱材の5%圧縮強度は積層断熱材から切り出した縦100mm、横100mm、厚み50mm(但し、厚みが50mmの試験片を切り出せないものについては積層断熱材の全厚み)の試験片について、JIS K 7220(1999)に準拠して、試験速度10mm/分の条件にて厚み方向に5%圧縮時の荷重(但し、5%圧縮時までに降伏点が現れる場合には降伏点荷重)を基に圧縮強さを算出する。   The 5% compressive strength of the laminated heat insulating material is about 100 mm long, 100 mm wide, and 50 mm thick cut out from the laminated heat insulating material (however, the total thickness of the laminated heat insulating material can not be cut out of the 50 mm thick test piece) In accordance with JIS K 7220 (1999), the load at the time of 5% compression in the thickness direction at the test speed of 10 mm / min (however, the yield point load when the yield point appears by the time of 5% compression) Based on this, the compression strength is calculated.

積層断熱材の最大曲げ強さは、積層断熱材から切り出した、長さ120mm以上、幅25mm、厚みが積層断熱材の全厚みの試験片について、JIS K 7221−2(1999)に準拠して、試験速度10mm/分、支点間距離100mmの条件にて3点曲げ試験を行い最大荷重における曲げ強さを算出する。尚、上記曲げ強さの測定は縦方向を長さ方向とした試験片および横方向を長さ方向とした試験片についてそれぞれ行い、縦方向および横方向の最大曲げ強さの少なくとも一方が上記値を満足するものであれば良いが、縦方向および横方向の最大曲げ強さが共に上記値を満足するものあることが好ましい。また、発泡板の片面のみに接着表面層が積層されている場合は、接着表面層側を上面にして3点曲げ試験を行なうこととする。   The maximum bending strength of the laminated heat insulating material is based on JIS K 7221-2 (1999) for a test piece cut out from the laminated heat insulating material and having a length of at least 120 mm, a width of 25 mm, and a thickness of the laminated heat insulating material. A three-point bending test is performed under the conditions of a test speed of 10 mm / min and a fulcrum distance of 100 mm to calculate the bending strength at the maximum load. In addition, the measurement of the bending strength is performed for a test piece having a longitudinal direction as a longitudinal direction and a test piece having a lateral direction as a longitudinal direction, and at least one of the maximum bending strength in the longitudinal direction and the lateral direction is the above value. However, it is preferable that both the maximum bending strength in the vertical direction and the horizontal direction satisfy the above values. When the adhesive surface layer is laminated only on one side of the foamed plate, a three-point bending test is performed with the adhesive surface layer side as the upper surface.

ポリスチレン系樹脂発泡板の独立気泡率は、ポリスチレン系樹脂発泡板から試験片を切り出し、ASTM D2856−70の手順CによりVxを求め次式により算出する。
(数1)
独立気泡率(%)=(Vx-Va(ρf/ρs))×100/(Va-Va(ρf/ρs))
Vx:試験片の実容積(独立気泡部分の容積と樹脂部分の容積との和)(cm
Va:試験片の外形寸法から求められる見掛け容積(cm
ρf:試験片の見かけ密度(g/cm
ρs:試験片の基材樹脂密度(g/cm
The closed cell ratio of the polystyrene resin foam plate is calculated by the following equation by obtaining a Vx by the procedure C of ASTM D2856-70 after cutting a test piece from the polystyrene resin foam plate.
(Equation 1)
Closed cell ratio (%) = (Vx−Va (ρf / ρs)) × 100 / (Va−Va (ρf / ρs))
Vx: actual volume of the test piece (the sum of the volume of the closed cell portion and the volume of the resin portion) (cm 3 )
Va: Apparent volume calculated from the outer dimensions of the test piece (cm 3 )
ρf: Apparent density of test piece (g / cm 3 )
ρs: base resin density of the test piece (g / cm 3 )

ポリスチレン系樹脂発泡板の熱伝導率は、ポリスチレン系樹脂発泡板から切り出した縦20cm、横20cm、厚みが発泡板厚みの試験片について、JIS A 9511(1995)4.7の記載により、英弘精機株式会社製の熱伝導率測定装置「オートΛ HC−73型」などを使用して、JIS A 1412(1994)記載の平板熱流計法(熱流計2枚方式、平均温度20℃、低温面温度5℃,高温面温度35℃)に基づいて測定する。   The thermal conductivity of the polystyrene-based resin foam plate is determined according to the description of JIS A 9511 (1995) 4.7 for a test piece having a length of 20 cm, a width of 20 cm, and a thickness of the foamed plate cut out from the polystyrene-based resin foam plate. Using a thermal conductivity measuring device “Auto Λ HC-73” manufactured by Co., Ltd., a plate heat flow meter method described in JIS A 1412 (1994) (two heat flow meters, average temperature 20 ° C., low temperature surface temperature) (5 ° C, hot surface temperature 35 ° C).

本発明の積層断熱材の圧縮強さおよび最大曲げ強さは、ポリスチレン系樹脂発泡板を構成する気泡構造および該発泡板の見かけ密度、接着表面層の種類等にて調整することができる。例えば、ポリスチレン系樹脂発泡板の気泡形状を縦長形状にすることにより圧縮強さは大きくなり、該発泡板表面に接着表面層としてポリエステル系樹脂繊維不織布を接着剤により積層接着することにより曲げ強さは大きくなる。該気泡形状の調整は、例えば、押出発泡板の場合は押出発泡時の発泡板の引き取り速度、賦形装置による厚み方向へ発泡量の制御により調整される。また、周知の方法により該発泡板の見かけ密度を大きくすること、独立気泡率の高いものとすることにより圧縮強さおよび最大曲げ強さは大きくなる。   The compressive strength and the maximum bending strength of the laminated heat insulating material of the present invention can be adjusted by the cell structure constituting the polystyrene resin foam plate, the apparent density of the foam plate, the kind of the adhesive surface layer, and the like. For example, the compressive strength is increased by making the foam shape of the polystyrene resin foam plate vertically long, and the bending strength is obtained by laminating and bonding a polyester resin fiber nonwoven fabric as an adhesive surface layer to the foam plate surface with an adhesive. Will grow. For example, in the case of an extruded foamed plate, the bubble shape is adjusted by controlling the foaming rate at the time of extrusion foaming and the foaming amount in the thickness direction by a shaping device. Further, the compression strength and the maximum bending strength are increased by increasing the apparent density of the foamed plate by a well-known method and by increasing the closed cell ratio.

また、本発明の積層断熱材を構成するポリスチレン系樹脂発泡板の熱伝導率は、発泡板の見かけ密度、発泡板の平均気泡径、発泡板の気泡形状、発泡板中の残存発泡剤の種類、発泡板中の残存発泡剤量により調整することができる。具体的には、見かけ密度を0.023〜0.08g/cm、平均気泡径0.05〜0.5mm、気泡形状が略球、ハロゲン化炭化水素系発泡剤及び炭化水素系発泡剤から選択される残存発泡剤の合計残存量を発泡板1kg当り0.45mol以上となるように調整することが好ましい。尚、上記残存発泡剤の種類及び量の測定は、ガスクロマトグラフ分析により行なわれる。 Further, the thermal conductivity of the polystyrene resin foam plate constituting the laminated heat insulating material of the present invention is the apparent density of the foam plate, the average cell diameter of the foam plate, the cell shape of the foam plate, and the type of residual foaming agent in the foam plate. The amount of residual foaming agent in the foam plate can be adjusted. Specifically, the apparent density is 0.023 to 0.08 g / cm 3 , the average bubble diameter is 0.05 to 0.5 mm, the bubble shape is substantially spherical, the halogenated hydrocarbon-based blowing agent and the hydrocarbon-based blowing agent. It is preferable to adjust the total remaining amount of the remaining foaming agent selected to be 0.45 mol or more per 1 kg of the foam board. The measurement of the type and amount of the residual blowing agent is performed by gas chromatographic analysis.

本発明にて使用されるポリスチレン系樹脂発泡板の両面には接着表面層が設けられていることが好ましい。ここでいう接着表面層とは、コンクリートやモルタルや内装用クロスなどの内装材との接着性を高めることができるものである。具体的には不織布、織布、または網等からなり、合成繊維、天然繊維、金属繊維等の繊維、合成樹脂、金属を素材とするものが挙げられる。それらの中でも吸水性が低く、軽量性、加工性に優れる合成繊維からなる不織布や織布、または網が好ましく使用される。合成樹脂繊維からなる不織布、織布、または網としては、目付量10〜200g/mのものが好ましい。尚、該接着表面層は発泡板強度を補強する機能を兼備するものが好ましい。また、接着表面層は上記のように単層の不織布から形成されていても、一方の面をポリスチレン系樹脂発泡板との接着性に優れる素材とし他方の面をコンクリートやモルタルや内装材との接着性に優れる素材にするなど多層のもので構成することもできる。また、本発明の積層断熱材はポリスチレン系樹脂発泡板と接着表面層以外にその他の層を機械的強度向上や機能性付加を目的として設けることができる。 It is preferable that an adhesive surface layer is provided on both surfaces of the polystyrene resin foam plate used in the present invention. As used herein, the adhesion surface layer can enhance adhesion to interior materials such as concrete, mortar, and interior cloth. Specific examples include non-woven fabrics, woven fabrics, nets, and the like, and synthetic fibers, natural fibers, metal fibers and other fibers, synthetic resins, and metals. Among these, non-woven fabrics, woven fabrics, or nets made of synthetic fibers that are low in water absorption and excellent in lightness and processability are preferably used. As the nonwoven fabric, woven fabric, or net made of synthetic resin fibers, those having a basis weight of 10 to 200 g / m 2 are preferable. The adhesive surface layer preferably has a function of reinforcing the strength of the foam plate. Moreover, even if the adhesive surface layer is formed of a single layer nonwoven fabric as described above, one surface is made of a material excellent in adhesiveness with a polystyrene resin foam plate, and the other surface is made of concrete, mortar or interior material. It can also be composed of multiple layers such as a material having excellent adhesiveness. In addition to the polystyrene resin foam plate and the adhesive surface layer, the laminated heat insulating material of the present invention can be provided with other layers for the purpose of improving mechanical strength and adding functionality.

なお、本発明の積層断熱材は、内断熱構造において後貼り工法にも当然使用することができる。本発明の積層断熱材を後貼り工法に使用する場合には、コンクリートの表面や後貼りする駆体の表面にポリマーセメントモルタル等の接着材を点状或いは全面に塗布し、次いでポリスチレン系樹脂発泡板の接着表面層側を該接着材に押付けることにより内部断熱層が形成される。上記後貼り工法においては、コンクリートの表面や後貼りする駆体の表面が平坦でなく多少の凹凸があっても十分な接着強度をもって該積層断熱材を貼設することができる。   In addition, naturally the laminated heat insulating material of this invention can be used also for the post-pasting method in an internal heat insulation structure. When the laminated heat insulating material of the present invention is used in the post-pasting method, an adhesive such as polymer cement mortar is applied to the surface of concrete or the surface of the post-bonding body on a spot or the entire surface, and then a polystyrene resin foam An internal heat insulating layer is formed by pressing the adhesive surface layer side of the plate against the adhesive. In the post-pasting method, the laminated heat insulating material can be applied with sufficient adhesive strength even if the surface of the concrete or the surface of the post-pasting body is not flat and has some unevenness.

また、本発明の積層断熱材は、圧縮強さ及び曲げ強さに優れ、上記したように接着表面層はモルタル等との接着強度に優れている為、接着表面層を両面に設けた積層断熱材は一方の面がコンクリートの表面と十分な接着強度をもって貼設され、他方の面は石膏ボードやモルタルなどの下地材と十分な接着強度をもって貼設される。また、接着表面層を両面に設けた積層断熱材は室内側の面に薄塗りのモルタル層を形成することが可能で、例えば、間仕切り壁室内側には1〜5mmのモルタル薄塗り後にクロス貼り仕上げができ、天井スラブや梁部分の室内側には直接クロス貼り仕上げができ、作業工程の削減および効率化を図ることができ、またコストの低減を図ることができる等の効果を奏する。該モルタル厚みは、更に1〜3mmに形成することが好ましい。また、本発明の内断熱構造において石膏ボード等が錘、断熱材がバネとして共振することにより発生する、人の話し声などの周波数帯域である500Hz〜1000Hzでの遮音性能の低下を、上記のような薄塗りのモルタル層を形成することにより共振する周波数を2000Hz以上の高周波帯域にシフトさせることができる為、防ぐことができる。   Further, the laminated heat insulating material of the present invention is excellent in compressive strength and bending strength, and as described above, the adhesive surface layer is excellent in adhesive strength with mortar and the like, and therefore, the laminated heat insulating material provided with the adhesive surface layer on both sides. One side of the material is affixed to the concrete surface with sufficient adhesive strength, and the other side is affixed to a base material such as gypsum board or mortar with sufficient adhesive strength. In addition, the laminated heat insulating material provided with the adhesive surface layer on both sides can form a thin mortar layer on the indoor side surface. For example, after the mortar is thinly coated on the partition wall indoor side, Finishing can be performed, and the ceiling slab and the beam part can be directly bonded to the interior of the room, reducing the work process and improving the efficiency, and reducing the cost. The mortar thickness is preferably 1 to 3 mm. Further, in the inner heat insulating structure of the present invention, the reduction in sound insulation performance at 500 Hz to 1000 Hz, which is a frequency band of human speech, etc., which occurs when gypsum board resonates as a weight and the heat insulating material as a spring, as described above. By forming a thin mortar layer, the resonant frequency can be shifted to a high frequency band of 2000 Hz or higher, which can be prevented.

本発明の積層断熱板の製造方法としては、例えば、ポリスチレン系樹脂溶融物、気泡調整剤、発泡剤を、押出機内で混練して得られた発泡性樹脂溶融物を大気圧下に押出発泡してポリスチレン系樹脂発泡板を製造する押出発泡法が好ましく採用され、上記接着表面層はポリスチレン系樹脂発泡板の製造時に作業効率および生産コストの面からオンラインで熱または接着剤により該発泡板に積層接着されることが好ましい方法である。尚、接着表面層形成用の不織布等は熱ロール等を使用する常法にて積層接着される。   As a method for producing the laminated heat insulating plate of the present invention, for example, a foamable resin melt obtained by kneading a polystyrene resin melt, a cell regulator, and a foaming agent in an extruder is extruded and foamed under atmospheric pressure. An extrusion foaming method for producing a polystyrene resin foam board is preferably employed, and the adhesive surface layer is laminated to the foam board online by heat or an adhesive from the viewpoint of work efficiency and production cost when producing the polystyrene resin foam board. Adhering is a preferred method. The non-woven fabric for forming the adhesive surface layer is laminated and bonded by a conventional method using a hot roll or the like.

本発明におけるポリスチレン系樹脂発泡板の大きさは、通常建材として使用される大きさのもので、例えば、幅300mm〜1200mm、好ましくは600mm〜910mm、長さ600mm〜3000mm、好ましくは1800mm〜2700mm、厚さ10mm〜30mm、好ましくは10〜25mmのものであるが、所望に応じて種々の大きさのものとすることができる。   The size of the polystyrene-based resin foam plate in the present invention is a size usually used as a building material, for example, width 300 mm to 1200 mm, preferably 600 mm to 910 mm, length 600 mm to 3000 mm, preferably 1800 mm to 2700 mm, The thickness is 10 mm to 30 mm, preferably 10 to 25 mm, but can be of various sizes as desired.

本発明におけるポリスチレン系樹脂発泡板を構成する樹脂の主成分であるポリスチレン系樹脂としては、スチレン単独重合体やスチレン−無水マレイン酸共重合体、スチレン−アクリル酸共重合体、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸共重合体、スチレン−メタクリル酸エステル共重合体、スチレン−ポリフェニレンエーテル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−アクリロニトリル−ブタジエン共重合体等のスチレン系共重合体、或いは耐衝撃性ポリスチレン等が挙げられる。上記スチレン系共重合体のスチレンの含有量は少なくとも50モル%以上であり、80モル%以上含有することが好ましい。尚、上記樹脂の主成分とは、樹脂中に50重量%以上含まれている成分を意味する。また、ポリスチレン系樹脂発泡板を構成する樹脂中にポリスチレン系樹脂が80〜100重量%含まれていることが好ましい。
上記、ポリスチレン系樹脂発泡板を得る為の発泡方法は、押出発泡法、発泡粒子成形法など周知の方法を採用することができるが、特に、曲げ強さなどの機械的強度の高いものが得られること、発泡板の長さが大きいものを得ることができる点から押出発泡法が好ましい。
Examples of the polystyrene resin, which is the main component of the resin constituting the polystyrene resin foam plate in the present invention, include styrene homopolymers, styrene-maleic anhydride copolymers, styrene-acrylic acid copolymers, and styrene-acrylic acid esters. Copolymer, Styrene-methacrylic acid copolymer, Styrene-methacrylic acid ester copolymer, Styrene-polyphenylene ether copolymer, Styrene-acrylonitrile copolymer, Styrene-butadiene copolymer, Styrene-acrylonitrile-butadiene copolymer Examples thereof include styrene-based copolymers such as coalescence, impact-resistant polystyrene, and the like. The styrene content of the styrenic copolymer is at least 50 mol% or more, preferably 80 mol% or more. The main component of the resin means a component contained in the resin by 50% by weight or more. Moreover, it is preferable that 80-100 weight% of polystyrene-type resins are contained in resin which comprises a polystyrene-type resin foam board.
As the foaming method for obtaining the polystyrene resin foam plate, a known method such as an extrusion foaming method or a foamed particle molding method can be employed. In particular, a material having high mechanical strength such as bending strength is obtained. The extrusion foaming method is preferable from the viewpoint that a foamed plate having a large length can be obtained.

ポリスチレン系樹脂発泡板を得る為に使用される発泡剤は、有機系物理発泡剤や無機系物理発泡剤などの発泡剤が挙げられる。このような発泡剤としては、例えば、プロパン、n−ブタン、iso−ブタン、iso−ペンタン、シクロペンタン、n−ペンタン、塩化メチル、塩化エチル、メタノール、エタノール、ジメチルエーテル、ジエチルエーテル等の有機系物理発泡剤、窒素ガス、炭酸ガス、空気、水などの無機系物理発泡剤などが挙げられ、これらは単独でまたは混合して使用される。前記の物理発泡剤以外に化学発泡剤を併用することもできる。上記発泡剤のうち、iso−ブタンを含み、且つ、ハロゲン系物理発泡剤を含まない混合発泡剤を使用することが、環境問題対応および断熱性の維持の面からで好ましい。   Examples of the foaming agent used for obtaining the polystyrene-based resin foam plate include foaming agents such as organic physical foaming agents and inorganic physical foaming agents. Examples of such blowing agents include organic physics such as propane, n-butane, iso-butane, iso-pentane, cyclopentane, n-pentane, methyl chloride, ethyl chloride, methanol, ethanol, dimethyl ether, diethyl ether and the like. Examples thereof include inorganic physical foaming agents such as a foaming agent, nitrogen gas, carbon dioxide gas, air, and water, and these are used alone or in combination. In addition to the physical foaming agent, a chemical foaming agent may be used in combination. Of the above-mentioned foaming agents, it is preferable to use a mixed foaming agent containing iso-butane and not containing a halogen-based physical foaming agent from the viewpoint of environmental problems and maintaining heat insulation.

また、本発明においてポリスチレン系樹脂発泡板には難燃性を付与することが好ましく、難燃性付与剤としては、例えば、ヘキサブロモシクロドデカン、2,4,6−トリブロモフェニルアリルエーテル、臭素化ビスフェノールA、臭素化ビスフェノールAアリルエーテル、臭素化ビスフェノールS、ハロゲン化燐酸エステルなどのハロゲン系難燃剤、赤燐、ポリ燐酸アンモニウム、フォスファゼン、トリフェニルフォスフェートなどの鱗系難燃剤やジフェニルアルカン、ジフェニルアルケン、三酸化アンチモン、イソシアヌル酸、トリアリルイソシアヌレート、メラミン、メラム、メレムなどの難燃助剤等が例示される。
これらの難燃性付与剤は、スチレン系樹脂発泡板中に該発泡板を構成する樹脂100重量部に対して、0.5〜15重量部の範囲で含有される。
Further, in the present invention, it is preferable to impart flame retardancy to the polystyrene resin foam plate. Examples of the flame retardancy imparting agent include hexabromocyclododecane, 2,4,6-tribromophenyl allyl ether, bromine Halogenated flame retardants such as brominated bisphenol A, brominated bisphenol A allyl ether, brominated bisphenol S, halogenated phosphoric acid esters, scale-based flame retardants such as red phosphorus, ammonium polyphosphate, phosphazene, triphenyl phosphate, diphenylalkanes, Examples include flame retardant aids such as diphenylalkene, antimony trioxide, isocyanuric acid, triallyl isocyanurate, melamine, melam, and melem.
These flame retardant imparting agents are contained in the range of 0.5 to 15 parts by weight with respect to 100 parts by weight of the resin constituting the foamed plate in the styrene resin foamed plate.

また、ポリスチレン系樹脂発泡板を押出発泡法にて製造する場合、前記の通り、発泡板の気泡径を調整し均一化する気泡調整剤が添加される。発泡板の気泡径が不揃いでバラツキが多い場合には発泡板の機械的強度が低くなるが気泡径を均一化することにより機械的強度の向上を図ることができる。この点から気泡調整剤の添加量は、一般的に、該発泡板を構成する樹脂100重量部に対して、0.5〜10重量部程度が使用される。気泡調整剤としては、例えば、クエン酸ナトリウム、ステアリン酸ナトリウム等有機酸の金属塩、微粉末クレー、タルク等の無機粉末等が挙げられ、これらは単独でまたは混合して使用することができる。   Moreover, when manufacturing a polystyrene-type resin foam board by an extrusion foaming method, as mentioned above, the bubble regulator which adjusts the bubble diameter of a foam board and makes it uniform is added. When the bubble diameters of the foamed plates are not uniform and there are many variations, the mechanical strength of the foamed plates is lowered, but the mechanical strength can be improved by making the bubble diameters uniform. From this point, the amount of the bubble regulator is generally about 0.5 to 10 parts by weight with respect to 100 parts by weight of the resin constituting the foamed plate. Examples of the air conditioner include metal salts of organic acids such as sodium citrate and sodium stearate, inorganic powders such as fine powder clay and talc, and these can be used alone or in combination.

その他にポリスチレン系樹脂発泡体の製造において添加される添加剤を所望に応じて適宜添加することができる。このような添加剤としては、例えば、着色剤、充填剤、紫外線吸収剤、酸化防止剤、防黴剤、脱臭剤等が挙げられる。   In addition, additives that are added in the production of polystyrene-based resin foams can be appropriately added as desired. Examples of such additives include colorants, fillers, ultraviolet absorbers, antioxidants, antifungal agents, deodorizers, and the like.

本発明においてコンクリート建造物の外壁の室内側略全面に設けられる合成樹脂発泡体は、上記ポリスチレン系樹脂発泡板であることが好ましいが、それに限らず、吹付け発泡ウレタン、硬質ウレタン系樹脂発泡板、ポリプロピレン系樹脂発泡板、ポリエチレン系樹脂発泡板、フェノール系樹脂発泡板、塩化ビニル系樹脂発泡板、ユリア系樹脂発泡板等が挙げらる。そして該合成樹脂発泡体が発泡板の場合は打ち込み工法或いは後貼り工法により取り付けられる等、周知の方法を採用することにより外壁の室内側略全面に形成することができる。   In the present invention, the synthetic resin foam provided on substantially the entire indoor side of the outer wall of the concrete building is preferably the polystyrene resin foam plate, but is not limited thereto, and is a blown urethane foam or a hard urethane resin foam plate. And polypropylene resin foam plates, polyethylene resin foam plates, phenol resin foam plates, vinyl chloride resin foam plates, urea resin foam plates, and the like. When the synthetic resin foam is a foamed plate, it can be formed on substantially the entire indoor side of the outer wall by adopting a known method such as mounting by a driving method or a post-pasting method.

次に、本発明の内断熱構造の実施態様の一例を図面により説明する。
図1〜3は内部断熱層を打ち込み工法によって施工した内断熱構造の一実施例を示す。図1は、外壁と連続した隣接する部屋の間仕切り壁に内部断熱層を設けた内断熱構造を示す水平断面図であり、図2は、外壁と連続する上下階を仕切る天井スラブおよび梁部分に内部断熱層を設けた内断熱構造を示す垂直断面図であり、図3は、外壁と一体に構成され室内側に突出した柱部分に内部断熱層を設けた内断熱構造を示す水平断面図である。
Next, an example of an embodiment of the inner heat insulating structure of the present invention will be described with reference to the drawings.
1 to 3 show an embodiment of an internal heat insulating structure in which an internal heat insulating layer is constructed by a driving method. FIG. 1 is a horizontal sectional view showing an inner heat insulating structure in which an inner heat insulating layer is provided on a partition wall of an adjacent room continuous with the outer wall, and FIG. 2 shows a ceiling slab and a beam portion that partition the upper and lower floors continuous with the outer wall. FIG. 3 is a vertical sectional view showing an inner heat insulating structure provided with an inner heat insulating layer, and FIG. 3 is a horizontal sectional view showing an inner heat insulating structure in which an inner heat insulating layer is provided on a pillar portion that is integrated with an outer wall and protrudes indoors. is there.

図1は、コンクリート建造物の外壁と連続した間仕切り壁の内断熱構造を示す。コンクリート建造物の外壁1の室内側には合成樹脂発泡体からなる外壁断熱層4が設けられており、外壁1と連続した間仕切り壁2の両側21,22に、本発明の積層断熱材により内部断熱層3を形成している。内部断熱層を設ける範囲Lは、外壁1と連続する間仕切り壁2により外壁断熱層4が切断された断熱欠損による熱橋部の熱損失が生じ易い範囲で、間仕切り壁2の室内側表面部における外壁との連続部から好ましくは300mm以上であり、更に好ましくは450〜1000mmの範囲であり、建造物の仕様や環境に応じ熱損失による結露の発生を防止すべき適宜の範囲に設ければ所期の目的が達成される。勿論所望により間仕切り壁全面に設けても差し支えない。   FIG. 1 shows an inner heat insulation structure of a partition wall continuous with an outer wall of a concrete building. On the indoor side of the outer wall 1 of the concrete building, an outer wall heat insulating layer 4 made of a synthetic resin foam is provided, and the inner wall 21 and 22 of the partition wall 2 continuous with the outer wall 1 are formed by the laminated heat insulating material of the present invention. The heat insulation layer 3 is formed. The range L in which the inner heat insulating layer is provided is a range in which heat loss of the thermal bridge portion due to the heat insulation defect in which the outer wall heat insulating layer 4 is cut by the partition wall 2 continuous with the outer wall 1 is likely to occur in the indoor side surface portion of the partition wall 2. It is preferably 300 mm or more from the continuous part with the outer wall, more preferably in the range of 450 to 1000 mm, provided that it is provided in an appropriate range to prevent the occurrence of condensation due to heat loss according to the specifications and environment of the building. The purpose of the period is achieved. Of course, it may be provided on the entire partition wall if desired.

図2は、コンクリート建造物の外壁と連続する上下階を仕切る天井スラブおよび梁部分に内部断熱層に係わり、コンクリート建造物の外壁1と一体に構成され室内側に突出したコンクリート梁部分11に対して上下階を仕切る天井スラブ5が水平に設けられているコンクリート建造物の天井スラブの内断熱構造を示す。外壁1の室内側には外壁断熱層4が設けられている。外壁と一体に構成された天井スラブ5の上面51に後貼り工法により本発明の積層断熱材による内部断熱層3が設けられており、外壁と一体に構成され室内側に突出したコンクリート梁部分11の室内側および天井スラブ5の下面52に後貼り工法或いは打ち込み工法により本発明の積層断熱材による内部断熱層3が設けられている。なお、天井スラブ5の上下面に設けられる本発明の積層断熱材による内部断熱層3は、後貼り工法或いは打ち込み工法いずれの工法により設けられても良いが上記の通り設けられることが好ましい。天井スラブに内部断熱層を設ける範囲はコンクリート建造物の仕様や環境に応じて異なるが、断熱層が切断された断熱欠損による熱橋部の熱損失が生じる個所であり、下の階においては天井スラブ5の内部断熱層を設ける範囲はLで示される部分で、外壁1と一体に構成されたコンクリート梁部分11の室内側表面部から好ましくは300mm以上であり、更に好ましくは450mm〜1000mmの範囲の部分に設けられる。一方、上の階においては内部断熱層は外壁を構成するコンクリート梁部分を含む外壁に連続する天井スラブ5のLで示される範囲に設けられ、外壁断熱層4の室内側の表面部から好ましくは300mm以上であり、更に好ましくは450〜1000mmの範囲に設けられる。勿論所望により天井スラブ全面に設けても差し支えない。この部分に本発明の積層断熱材による内部断熱層3を設けることにより天井スラブ部分からの熱損失が防止され結露の発生が防止される。 FIG. 2 shows an example of a concrete slab and beam part that separates the upper and lower floors that are continuous with the outer wall of the concrete building. 2 shows an inner heat insulating structure of a ceiling slab of a concrete building in which ceiling slabs 5 that partition the upper and lower floors are provided horizontally. An outer wall heat insulating layer 4 is provided on the indoor side of the outer wall 1. An inner heat insulating layer 3 made of the laminated heat insulating material of the present invention is provided on the upper surface 51 of the ceiling slab 5 integrally formed with the outer wall by a post-pasting method, and the concrete beam portion 11 is formed integrally with the outer wall and protrudes indoors. The inner heat insulating layer 3 made of the laminated heat insulating material of the present invention is provided on the indoor side and the lower surface 52 of the ceiling slab 5 by a post sticking method or a driving method. In addition, although the internal heat insulation layer 3 by the laminated heat insulating material of the present invention provided on the upper and lower surfaces of the ceiling slab 5 may be provided by any of the post-bonding method or the driving method, it is preferably provided as described above. The range in which the internal heat insulation layer is provided on the ceiling slab differs depending on the specifications and environment of the concrete building, but heat loss occurs in the thermal bridge due to the heat insulation defect where the heat insulation layer is cut. range providing the inner heat insulating layer of the slab 5 is a moiety represented by L 1, preferably from the indoor side surface portion of the concrete beam portion 11 that is configured on the outer wall 1 integral not less than 300 mm, more preferably of 450mm~1000mm Provided in the range part. On the other hand, the inner heat insulating layer in the upper floor is provided in a range indicated by L 2 of the ceiling slab 5 consecutive to the outer wall including a concrete beam portion constituting the outer wall, preferably from the surface portion of the interior side of the outer wall thermal insulation layer 4 Is 300 mm or more, and more preferably in the range of 450 to 1000 mm. Of course, it may be provided on the entire surface of the ceiling slab if desired. By providing the internal heat insulating layer 3 of the laminated heat insulating material of the present invention at this portion, heat loss from the ceiling slab portion is prevented and the occurrence of condensation is prevented.

図3は、外壁と一体に構成されたコンクリート造り柱部分に内部断熱層を設けた内断熱構造を示す。室内側に突出するコンクリート造り柱6部分により外壁の室内側に設けられた外壁断熱層4が切断されて断熱欠損による熱橋部となり熱損失が生じる。図3は、室内側に突出するコンクリート造り柱6の室内側全面(図3のL,Lで示す)にわたって、外壁断熱層4に連続して本発明の積層断熱材により内部断熱層3が設けられて、このコンクリート柱部分からの熱損失が防止され結露の発生が防止される。尚、図3において、コンクリート造り柱部分が大きく室内側に張り出しておりLを十分に断熱欠損を防ぐことができる広い範囲で形成できる場合、即ちLが好ましくは300mm以上、更に好ましくは450〜1000mmである場合には、Lで示される範囲に本発明の積層断熱材を形成しなくてもよい。 FIG. 3 shows an inner heat insulating structure in which an inner heat insulating layer is provided on a concrete pillar portion integrally formed with the outer wall. The outer wall heat insulating layer 4 provided on the indoor side of the outer wall is cut by the concrete pillar 6 projecting to the indoor side to become a heat bridge portion due to heat insulation defects, and heat loss occurs. FIG. 3 shows the interior heat insulating layer 3 formed by the laminated heat insulating material of the present invention continuously over the outer wall heat insulating layer 4 over the entire indoor side (indicated by L 3 and L 4 in FIG. 3) of the concrete pillar 6 protruding to the indoor side. Is provided to prevent heat loss from the concrete column portion and to prevent condensation. In FIG. 3, when the concrete pillar portion is large and protrudes to the indoor side, L 4 can be formed in a wide range that can sufficiently prevent a heat insulation defect, that is, L 4 is preferably 300 mm or more, more preferably 450. When it is ˜1000 mm, the laminated heat insulating material of the present invention may not be formed in the range indicated by L 3 .

上記の隣接する部屋を仕切る間仕切り壁、上下階を仕切る天井スラブや室内側に突出したコンクリート柱等の内断熱構造において、本発明の積層断熱材を施工して設けられた内部断熱層の表面には、所望に応じて石膏ボードや下地モルタル等の下地仕上げ材を貼設し、これに内装用クロスなどの内装材が貼着される。上記した打ち込み工法による内断熱構造は、間仕切り壁や天井スラブ等の仕切り壁に設けられた内部断熱層が室内側に突出して段差が形成されることがなく、内部断熱層施工後の石膏ボードや下地モルタル等の下地仕上げ材の貼設および内装材の貼着が煩雑でなく壁面が面一の平面に仕上がり室内環境が良好である。更に、本発明においては独立気泡率85%以上のポリスチレン系樹脂発泡板の少なくとも片面に接着表面層が設けらた圧縮強さ0.14MPa以上、最大曲げ強さ0.3〜6MPaの積層断熱材を使用して内断熱構造が形成されていることから、コンクリート打設時に発泡板中に水分が入り込むことも殆どなく、該積層断熱材は機械的強度に優れていることからコンクリート打設時のコンクリート型枠に加わる面圧を減少させ型枠構造の簡素化、型枠施工工程の簡略化を可能にする効果を有し、場合によっては型枠兼用積層断熱材として使用することができる。   In the inner heat insulating structure such as the partition wall for partitioning the adjacent rooms, the ceiling slab for partitioning the upper and lower floors, and the concrete pillar protruding to the indoor side, the surface of the inner heat insulating layer provided by applying the laminated heat insulating material of the present invention is provided. If necessary, a base finishing material such as a gypsum board or base mortar is attached, and an interior material such as an interior cloth is attached thereto. The internal heat insulating structure by the driving method described above is such that the internal heat insulating layer provided on the partition wall such as the partition wall or the ceiling slab does not protrude to the indoor side and a step is not formed. The installation of the base finishing material such as the base mortar and the application of the interior material is not complicated, and the wall surface is finished to be a flat surface and the indoor environment is good. Further, in the present invention, a laminated heat insulating material having a compressive strength of 0.14 MPa or more and a maximum bending strength of 0.3 to 6 MPa in which an adhesive surface layer is provided on at least one surface of a polystyrene resin foam plate having a closed cell ratio of 85% or more. Since the inner heat insulation structure is formed by using, the moisture hardly enters the foamed plate at the time of placing the concrete, and the laminated heat insulating material is excellent in mechanical strength. It has the effect of reducing the surface pressure applied to the concrete formwork, enabling simplification of the formwork structure and simplification of the formwork construction process. In some cases, it can be used as a laminated heat insulating material for formwork.

本発明の内断熱構造は先に記述したように後貼り工法による断熱補強にも当然適用できる。しかし後貼り工法の場合は、断熱補強した仕切り壁が必然的に内部断熱層等の厚みに相当する厚み分が室内側に突出し段差を生じることになり、内部断熱層施工後の石膏ボードや下地モルタル等の下地仕上げ材の貼設および内装材の貼着作業が煩雑であり、また壁面が面一でなく室内環境上にいくらか難点がある。しかしリフォーム等既に建造されたコンクリート建造物の間仕切り壁の所要範囲に断熱補強を行い内部断熱層を設ける場合は後貼り工法が適用される。この場合、本発明の内断熱構造は薄いモルタル層を形成する等の簡単な仕上げで断熱補強を完了させることを可能とするものである為、構造の簡素化を図れることにより壁面段差を小さくすることができる。   As described above, the inner heat insulating structure of the present invention is naturally applicable to heat insulating reinforcement by a post-pasting method. However, in the case of the post-pasting method, the partition wall reinforced by heat insulation inevitably has a thickness corresponding to the thickness of the internal heat insulation layer, etc., protruding to the indoor side, resulting in a step, and the gypsum board and groundwork after the construction of the internal heat insulation layer The pasting of the base finishing material such as mortar and the pasting work of the interior material are complicated, and the wall surface is not flush and there are some difficulties in the indoor environment. However, the post-pasting method is applied to the case where a heat insulating reinforcement is provided in the required range of the partition wall of a concrete building that has already been constructed such as a renovation and an internal heat insulating layer is provided. In this case, since the inner heat insulating structure of the present invention can complete the heat insulating reinforcement with a simple finish such as forming a thin mortar layer, the structure can be simplified to reduce the wall level difference. be able to.

外壁と連続した隣接する部屋の間仕切り壁に内部断熱層を設けた内断熱構造を示す水平断面図。The horizontal sectional view which shows the inner heat insulation structure which provided the internal heat insulation layer in the partition wall of the adjacent room which followed the outer wall. 外壁と連続する上下階を仕切る天井スラブおよび梁部分に内部断熱層を設けた内断熱構造を示す垂直断面図。The vertical sectional view which shows the inner heat insulation structure which provided the internal heat insulation layer in the ceiling slab and beam part which partition the upper and lower floors which continue with an outer wall. 外壁と一体に構成され室内側に突出した柱部分に内部断熱層を設けた内断熱構造を示す水平断面図。The horizontal sectional view which shows the inner heat insulation structure which provided the internal heat insulation layer in the pillar part comprised integrally with the outer wall and protruded indoors. 水蒸気雰囲気下における熱伝導率(W/m・K)の経時変化を示すグラフ。The graph which shows a time-dependent change of the thermal conductivity (W / m * K) in water vapor | steam atmosphere. 水蒸気雰囲気下における吸水量(g)の経時変化を示すグラフ。The graph which shows a time-dependent change of the water absorption amount (g) in water vapor | steam atmosphere.

符号の説明Explanation of symbols

1 外壁
11 コンクリート梁部分
2 間仕切壁
3 内部断熱層
4 外壁断熱層
5 天井スラブ
6 コンクリート柱
L,L,L,L,L 内部断熱層を設ける範囲
A、B 市販ポリウレタン発泡板断熱材
C、D 本発明の積層断熱材
1 the outer wall 11 concrete beam part 2 partition wall 3 inside the heat insulating layer 4 outer wall insulation layer 5 ceiling slab 6 concrete columns L, L 1, L 2, L 3, L 4 provided inside the heat insulating layer ranges A, B commercially available polyurethane foam board insulation Materials C and D Laminated heat insulating material of the present invention

Claims (4)

コンクリート建造物の外壁の室内側に合成樹脂発泡体からなる外壁断熱層が設けられており、該外壁と連続する仕切り壁に前記外壁断熱層と連続して内部断熱層が設けられた内断熱構造であって、該内部断熱層が、独立気泡率85%以上のポリスチレン系樹脂発泡板の少なくとも片面に接着表面層が設けらた圧縮強さ0.14MPa以上、最大曲げ強さ0.3〜6MPaの積層断熱材からなり、該ポリスチレン系樹脂発泡板が前記接着表面層を介して仕切り壁に設けられていることを特徴とするコンクリート建造物の内断熱構造。   An inner heat insulating structure in which an outer wall heat insulating layer made of a synthetic resin foam is provided on the indoor side of an outer wall of a concrete building, and an inner heat insulating layer is provided continuously to the outer wall heat insulating layer on a partition wall continuous with the outer wall The internal heat insulating layer has a compressive strength of 0.14 MPa or more and a maximum bending strength of 0.3 to 6 MPa in which an adhesive surface layer is provided on at least one surface of a polystyrene-based resin foam plate having a closed cell ratio of 85% or more. An internal heat insulating structure for a concrete building, wherein the polystyrene resin foam plate is provided on a partition wall through the adhesive surface layer. コンクリート建造物の外壁の室内側に合成樹脂発泡体からなる外壁断熱層が設けられており、該外壁と連続する仕切り壁に前記外壁断熱層と連続して内部断熱層が設けられた内断熱構造であって、該内部断熱層が、独立気泡率85%以上のポリスチレン系樹脂発泡板の両面に接着表面層が設けらた圧縮強さ0.14MPa以上、最大曲げ強さ0.3〜6MPaの積層断熱材からなり、該ポリスチレン系樹脂発泡板は一方の接着表面層を介して仕切り壁に設けられており、該ポリスチレン系樹脂発泡板の他方の接着表面層を介して厚み1〜5mmのモルタル層が形成されていることを特徴とするコンクリート建造物の内断熱構造。   An inner heat insulating structure in which an outer wall heat insulating layer made of a synthetic resin foam is provided on the indoor side of an outer wall of a concrete building, and an inner heat insulating layer is provided continuously to the outer wall heat insulating layer on a partition wall continuous with the outer wall The internal heat-insulating layer has a compressive strength of 0.14 MPa or more and a maximum bending strength of 0.3 to 6 MPa in which an adhesive surface layer is provided on both surfaces of a polystyrene resin foam plate having a closed cell ratio of 85% or more. It is made of a laminated heat insulating material, and the polystyrene resin foam plate is provided on the partition wall via one adhesive surface layer, and the mortar having a thickness of 1 to 5 mm via the other adhesive surface layer of the polystyrene resin foam plate An inner heat insulating structure of a concrete structure, characterized in that a layer is formed. 接着表面層が、不織布、織布または網で構成されていることを特徴とする請求項1または2に記載のコンクリート建造物の内断熱構造。   The inner heat insulating structure of a concrete building according to claim 1 or 2, wherein the adhesive surface layer is composed of a nonwoven fabric, a woven fabric, or a net. 打ち込み工法により形成されてなることを特徴とする請求項1、2または3に記載のコンクリート建造物の内断熱構造。
The inner heat insulating structure for a concrete building according to claim 1, 2 or 3, wherein the inner heat insulating structure is formed by a driving method.
JP2004015899A 2004-01-23 2004-01-23 Internal heat insulating structure of concrete building Pending JP2005207146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004015899A JP2005207146A (en) 2004-01-23 2004-01-23 Internal heat insulating structure of concrete building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004015899A JP2005207146A (en) 2004-01-23 2004-01-23 Internal heat insulating structure of concrete building

Publications (1)

Publication Number Publication Date
JP2005207146A true JP2005207146A (en) 2005-08-04

Family

ID=34901230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004015899A Pending JP2005207146A (en) 2004-01-23 2004-01-23 Internal heat insulating structure of concrete building

Country Status (1)

Country Link
JP (1) JP2005207146A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210224A (en) * 2006-02-10 2007-08-23 Toray Ind Inc Fiber-based board
JP2009002038A (en) * 2007-06-21 2009-01-08 Achilles Corp Unburnable insulation panel
CN103147524A (en) * 2013-03-06 2013-06-12 肇东市华奥中天建材科技有限公司 Heat-insulating wall
JP2014185447A (en) * 2013-03-22 2014-10-02 Wood One:Kk Heat insulation panel for heat insulation reform and heat insulation reform method
JP2015117550A (en) * 2013-12-19 2015-06-25 株式会社奥村組 Interior material
CN106368338A (en) * 2016-08-25 2017-02-01 陕西建工第建设集团有限公司 Construction method of external thermal insulation system of foam cement thermal insulation board outer wall
CN114215204A (en) * 2022-01-26 2022-03-22 中国建筑西南设计研究院有限公司 Sound insulation and heat preservation material, sound insulation and heat preservation structure, preparation method and application
CN114439149A (en) * 2022-01-04 2022-05-06 山东铁斯曼新材料有限公司 A wallboard for building assembled enclosure structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210224A (en) * 2006-02-10 2007-08-23 Toray Ind Inc Fiber-based board
JP2009002038A (en) * 2007-06-21 2009-01-08 Achilles Corp Unburnable insulation panel
CN103147524A (en) * 2013-03-06 2013-06-12 肇东市华奥中天建材科技有限公司 Heat-insulating wall
JP2014185447A (en) * 2013-03-22 2014-10-02 Wood One:Kk Heat insulation panel for heat insulation reform and heat insulation reform method
JP2015117550A (en) * 2013-12-19 2015-06-25 株式会社奥村組 Interior material
CN106368338A (en) * 2016-08-25 2017-02-01 陕西建工第建设集团有限公司 Construction method of external thermal insulation system of foam cement thermal insulation board outer wall
CN114439149A (en) * 2022-01-04 2022-05-06 山东铁斯曼新材料有限公司 A wallboard for building assembled enclosure structure
CN114439149B (en) * 2022-01-04 2024-03-01 山东铁斯曼新材料有限公司 Wallboard for building assembly type enclosure structure
CN114215204A (en) * 2022-01-26 2022-03-22 中国建筑西南设计研究院有限公司 Sound insulation and heat preservation material, sound insulation and heat preservation structure, preparation method and application

Similar Documents

Publication Publication Date Title
Ramli Sulong et al. Application of expanded polystyrene (EPS) in buildings and constructions: A review
US10415244B2 (en) Methods for manufacturing pre-fabricated insulated foam wall structures with high racking strength and related pre-fabricated wall structures
US10053206B2 (en) System for manufacture of foam sheet rigidized with polymer infiltration
US7658990B2 (en) Super light weight ceramic panel and process for preparing the same
JP2013545910A (en) Trim beads and a stucco system including the trim beads
CA2897558A1 (en) Composite building panel
JP2005207146A (en) Internal heat insulating structure of concrete building
US20070209867A1 (en) Soundproof panel for impact sound insulation
KR100718701B1 (en) Plate for sound insulation
KR102231260B1 (en) Floor and partition structure for insulation and soundproofing and its construction method
JPH10219866A (en) Heat insulating panel and manufacture therefor
JP5285332B2 (en) building
RU2704993C2 (en) Energy-efficient fire-resistant multilayer insulating panel
JP2010133177A (en) Structure having drainage slope of outside building excellent in heat resistance
KR101098702B1 (en) Structure of partition wall in apartment house
JP4315375B2 (en) Insulation structure and entrance of entrance to concrete building
JP3878987B2 (en) Structure between the upper floor and the lower ceiling of a house
JP2014001525A (en) Heat insulation panel, and exterior wall structure provided with the same
JP7431572B2 (en) Fireproof structure
JP2006052590A (en) Heat insulation panel used in common for form and heat insulation concrete skeleton structure using the same and its construction method
JPH1061061A (en) Sound-insulating heat-insulating panel
JP4825489B2 (en) Laminated panel and wall structure using the laminated panel
CN218492847U (en) Simple heat-insulation maintenance integrated composite wallboard
KR101454309B1 (en) Lightweight panel for nondearing inside wall
US10987895B2 (en) Roof member or ceiling member, and construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061204

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A131 Notification of reasons for refusal

Effective date: 20080910

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090422