JP4823283B2 - Manufacturing method of measuring roller - Google Patents

Manufacturing method of measuring roller Download PDF

Info

Publication number
JP4823283B2
JP4823283B2 JP2008226772A JP2008226772A JP4823283B2 JP 4823283 B2 JP4823283 B2 JP 4823283B2 JP 2008226772 A JP2008226772 A JP 2008226772A JP 2008226772 A JP2008226772 A JP 2008226772A JP 4823283 B2 JP4823283 B2 JP 4823283B2
Authority
JP
Japan
Prior art keywords
cavity
measuring roller
roller
resin
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008226772A
Other languages
Japanese (ja)
Other versions
JP2009001023A (en
Inventor
昭宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2008226772A priority Critical patent/JP4823283B2/en
Publication of JP2009001023A publication Critical patent/JP2009001023A/en
Application granted granted Critical
Publication of JP4823283B2 publication Critical patent/JP4823283B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、計量ローラの製造方法に関する。   The present invention relates to a method for manufacturing a metering roller.

(静電)印刷機の現像ローラに定量のインキ(現像用の液体又は粉体)を供給する計量ローラがあり、計量ローラは、その周面にインキを収容する微細な凹状パターンが形成されている。
従来、計量ローラは金属製又はセラミック製であり、表面の凹状パターンは機械的切削加工やレーザー加工(例えば、特許文献1参照)にて形成されていた。あるいは、放電加工にて凹状パターンを形成する方法もあった(例えば、特許文献2参照)。また、計量ローラは取り換えることがほとんどなく半永久的に使用されていた。
特開2006−75854号公報 特開平7−24652号公報
There is a metering roller that supplies a certain amount of ink (developing liquid or powder) to the developing roller of an (electrostatic) printing machine, and the metering roller has a fine concave pattern that accommodates ink on its peripheral surface. Yes.
Conventionally, the measuring roller is made of metal or ceramic, and the concave pattern on the surface is formed by mechanical cutting or laser processing (for example, see Patent Document 1). Alternatively, there is a method of forming a concave pattern by electric discharge machining (see, for example, Patent Document 2). Further, the measuring roller is almost never changed and has been used semipermanently.
JP 2006-75854 A Japanese Patent Laid-Open No. 7-24652

近年では、頻繁に色替えをして印刷機を使用する場合があり、色替えする度に計量ローラを洗浄するのは面倒であった。そのため色毎の計量ローラを用意し、計量ローラを簡単に交換して色替えを行うことが考えられている。
しかし、上記機械的切削やレーザー加工によって凹状パターンを形成する製造方法は、コストがかかり、凹状パターンの再現性も低いため、大量生産には不向きであった。また、このような大量生産には、射出成形にて樹脂製の計量ローラを製造する方法が好ましいが、計量ローラの表面には金型のパーティングラインが生じるので、高精度の凹状パターンを作製することができなかった。
また、パーティングラインが生じないように金型を継ぎ目のない非分割形状とする場合、その内周面に(ローラ表面に凹状パターンを転写するための)微細な凹凸を機械的切削やレーザー加工にて形成することは非常に困難であった。そして、上記特許文献2の放電加工では、全長が 100mm未満の非分割形状の金型しか製作ができなかった。
In recent years, there are cases in which the color is frequently changed and a printing press is used, and it has been troublesome to wash the measuring roller each time the color is changed. For this reason, it is considered to prepare a measuring roller for each color and easily change the color by changing the measuring roller.
However, the manufacturing method for forming a concave pattern by mechanical cutting or laser processing is not suitable for mass production because it is costly and the reproducibility of the concave pattern is low. For such mass production, a method of manufacturing a resin-made measuring roller by injection molding is preferable, but since a parting line of a mold is formed on the surface of the measuring roller, a highly accurate concave pattern is produced. I couldn't.
In addition, when the mold is made into a seamless non-divided shape so that no parting line is generated, fine irregularities (for transferring the concave pattern on the roller surface) are mechanically cut or laser processed on the inner peripheral surface. It was very difficult to form with. In the electric discharge machining of Patent Document 2, only a non-divided mold having a total length of less than 100 mm can be manufactured.

そこで、本発明は、表面に高精度の凹状パターンを有する計量ローラの製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for manufacturing a metering roller having a highly accurate concave pattern on the surface.

上記目的を達成するために、本発明に係る計量ローラの製造方法は、円孔状の貫通孔を有する継ぎ目のない非分割形状の金型本体の内周面に電気鋳造による凸状パターンを全面均等に形成してキャビティを形成し、次に、芯材を上記キャビティ内に挿通し、その後、上記キャビティ内に溶融樹脂を注入し、表面に凹状パターンを有しかつ中心に上記芯材を有する円柱状樹脂成形品としての計量ローラを成形すると共に、上記溶融樹脂が固化するまでの冷却収縮に伴う外径寸法の減少により完全冷却固化後の上記計量ローラを上記キャビティの内面から遊離させ、該計量ローラを上記キャビティ内から引き抜くようにすると共に、上記キャビティの内径寸法をφDとし、上記完全冷却固化後の計量ローラの外径寸法をφdとすると、(φD−φd)≧0.10mmなる関係式が成立するように上記溶融樹脂が固化するまで上記冷却収縮を行わせて、長さ寸法が 100mm〜 500mmの計量ローラを製造する方法である。
また、上記溶融樹脂を注入して上記キャビティ内へ充填された充填直後溶融状態の樹脂層の肉厚寸法Tを、 1.5mm以上 2.5mm以下に形成した。
In order to achieve the above object, a method for manufacturing a metering roller according to the present invention provides a convex pattern formed by electroforming on the inner peripheral surface of a seamless non-divided mold body having a circular through hole. Cavity is formed by uniform formation, and then the core material is inserted into the cavity, and then the molten resin is injected into the cavity, having a concave pattern on the surface and the core material in the center. In addition to molding a metering roller as a cylindrical resin molded product, the metering roller after complete cooling and solidification is released from the inner surface of the cavity due to a decrease in outer diameter due to cooling shrinkage until the molten resin is solidified. When the measuring roller is pulled out from the cavity, the inner diameter of the cavity is φD, and the outer diameter of the measuring roller after complete cooling and solidification is φd, (φD−φd ≧ 0.10 mm relational expression is made to perform the cooling shrinkage until the molten resin is solidified to stand, a method of length to produce a metering roller of 100 mm to 500 mm.
Further, the thickness T of the resin layer in the molten state immediately after filling, which was filled in the cavity by injecting the molten resin, was formed to be 1.5 mm or more and 2.5 mm or less.

本発明は、次のような著大な効果を奏する。
本発明に係る製造方法によれば、表面に高精度の凹状パターンを有する計量ローラを容易に大量生産することができる。
金型(金型本体)が継ぎ目のない非分割形状であるので、計量ローラの表面にパーティングラインが生じることがなく、高精度に凹状パターンを形成することができる。
また、溶融樹脂の冷却収縮に伴う外径寸法の減少により計量ローラをキャビティの内面から遊離させるので、計量ローラを金型のキャビティ内から簡単に引き抜くことができ、引き抜く際に凹状パターンが潰れる虞れもない。特に高精度な凹状パターンを要求される計量ローラに好適な発明である。
The present invention has the following remarkable effects.
According to the manufacturing method of the present invention, it is possible to easily mass-produce measuring rollers having a highly accurate concave pattern on the surface.
Since the mold (mold body) has a seamless non-divided shape, no parting line is generated on the surface of the measuring roller, and a concave pattern can be formed with high accuracy.
In addition, since the measuring roller is released from the inner surface of the cavity due to the decrease in outer diameter due to the cooling shrinkage of the molten resin, the measuring roller can be easily pulled out from the cavity of the mold, and the concave pattern may be collapsed when pulling out. There is nothing. In particular, the invention is suitable for a measuring roller that requires a highly accurate concave pattern.

以下、実施の形態を示す図面に基づき本発明を詳説する。
本発明は、円柱状の樹脂成形品としての計量ローラの製造方法であって、例えば、(静電)印刷機に使用され液体又は粉体のインキを計量するための計量ローラの製造方法である。
図1は、本発明の製造方法に使用する製造装置の実施の一形態を示し、この装置は、射出成形用の金型1と、上下分離自在の上部本体22と下部本体23とを有する溶融樹脂供給路本体14とを、備えている。
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments.
The present invention is a method of manufacturing a metering roller as a cylindrical resin molded article, for example, a method of manufacturing a metering roller for measuring liquid or powder ink used in an (electrostatic) printing machine. .
FIG. 1 shows an embodiment of a manufacturing apparatus used in the manufacturing method of the present invention. This apparatus has a mold 1 for injection molding, and an upper body 22 and a lower body 23 that can be separated vertically. And a resin supply channel main body 14.

図2と図3に於て、金型1は、円孔状の貫通孔7を有する継ぎ目のない非分割形状の金型本体6を有し、金型本体6の内周面全面均等に凸状パターンXが電気鋳造にて形成されている。詳しくは、金型1は、金型本体6と、金型本体6の内周面に形成されたメッキ層9とから成り、メッキ層9は多条の微細な凸状パターンXを有している。そして、この凸状パターンXが形成された金型1の内面10にてキャビティ2が形成される。
なお、図1に於て、金型1の二点鎖線で示す境界線より外周側が金型本体6であり、内周側が凸状パターンXを有するメッキ層9である。
2 and 3, the mold 1 has a seamless non-divided mold body 6 having a circular through-hole 7, and the entire inner peripheral surface of the mold body 6 is projected evenly. The pattern X is formed by electroforming. Specifically, the mold 1 includes a mold body 6 and a plating layer 9 formed on the inner peripheral surface of the mold body 6, and the plating layer 9 has a plurality of fine convex patterns X. Yes. The cavity 2 is formed on the inner surface 10 of the mold 1 on which the convex pattern X is formed.
In FIG. 1, the outer peripheral side from the boundary line indicated by the two-dot chain line of the mold 1 is the mold body 6, and the inner peripheral side is the plating layer 9 having the convex pattern X.

図1に於て、溶融樹脂供給路本体14について説明すると、溶融樹脂供給路本体14は溶融樹脂を金型1内に供給するための供給路16を具備し、供給路16は、複数本のスプル17と、拡大円環空室状の樹脂溜18と、図1の状態で金型1のキャビティ2と連通するフィルムゲート19とを、有している。
また、20はキャビティ2内に注入される溶融樹脂に抵抗を与え流入速度のバラツキを無くすと共に芯材12を調芯するための抵抗付加手段であり、ピストン等のアクチュエーターにて上下動自在となっている。21は芯材12の上端を支持する支持アームである。
Referring to FIG. 1, the molten resin supply path main body 14 will be described. The molten resin supply path main body 14 includes a supply path 16 for supplying the molten resin into the mold 1, and the supply path 16 includes a plurality of supply paths 16. A sprue 17, an enlarged annular vacant resin reservoir 18, and a film gate 19 communicating with the cavity 2 of the mold 1 in the state shown in FIG.
Reference numeral 20 denotes resistance adding means for resisting the molten resin injected into the cavity 2 to eliminate variation in inflow speed and aligning the core material 12, and can be moved up and down by an actuator such as a piston. ing. Reference numeral 21 denotes a support arm that supports the upper end of the core member 12.

図1〜図5に於て、樹脂成形品44としての計量ローラ27について、その製造方法を説明する。
図1に示すように、金型1を鉛直方向縦向きに溶融樹脂供給路本体14の上に設置する。そして、抵抗付加手段20をキャビティ2の下端部まで挿入する。また、芯材12をキャビティ2内に挿通して、芯材12の下端を溶融樹脂供給路本体14の上面の孔部に挿嵌し、上端を支持アーム21で支持する。
1 to 5, the manufacturing method of the measuring roller 27 as the resin molded product 44 will be described.
As shown in FIG. 1, the metal mold | die 1 is installed on the molten resin supply path main body 14 in the vertical direction. Then, the resistance adding means 20 is inserted to the lower end of the cavity 2. Further, the core material 12 is inserted into the cavity 2, the lower end of the core material 12 is inserted into the hole on the upper surface of the molten resin supply path main body 14, and the upper end is supported by the support arm 21.

次に、図4に於て、図示省略の射出用ノズルから供給路16内に溶融樹脂3を供給する。溶融樹脂3はスプル17から一旦樹脂溜18に充填され、フィルムゲート19からキャビティ2内へ注入される。ピストンを作動させて抵抗付加手段20を上昇させつつ溶融樹脂3をキャビティ2内へ充填していくと、中心の芯材12の周囲に(溶融)樹脂層13を有する計量ローラ27が成形される。   Next, in FIG. 4, the molten resin 3 is supplied into the supply path 16 from an injection nozzle (not shown). The molten resin 3 is once filled into the resin reservoir 18 from the sprue 17 and injected into the cavity 2 from the film gate 19. When the molten resin 3 is filled into the cavity 2 while raising the resistance adding means 20 by operating the piston, the measuring roller 27 having the (melted) resin layer 13 around the central core material 12 is formed. .

その後、図5、又は、図23に示すように、(溶融)樹脂層13が冷却されるとその肉厚寸法Tが減少するので、計量ローラ27(円柱状樹脂成形品44)の外径寸法φdがキャビティ2の内径寸法φDより小さくなる。即ち、溶融樹脂3(樹脂層13)の冷却収縮に伴う計量ローラ27(樹脂成形品44)の外径寸法φdの減少により、計量ローラ27(樹脂成形品44)をキャビティ2の内面10から遊離させる。内面10から遊離した計量ローラ27(樹脂層13)の表面には、図6に示すように、凸状パターンXが転写された凹状パターンYが形成されている。なお、図5と図6は、完全冷却固化後の樹脂層13を示している。
そして、図10に示すように、計量ローラ27(樹脂成形品44)を金型1から引き抜いて(又は押し出して)表面に凹状パターンYを有する計量ローラが作製される。
Thereafter, as shown in FIG. 5 or FIG. 23, when the (melted) resin layer 13 is cooled, its thickness T decreases, so the outer diameter of the measuring roller 27 (columnar resin molded product 44). φd becomes smaller than the inner diameter dimension φD of the cavity 2. That is, the measuring roller 27 (resin molded product 44) is released from the inner surface 10 of the cavity 2 by the decrease in the outer diameter dimension φd of the measuring roller 27 (resin molded product 44) accompanying the cooling shrinkage of the molten resin 3 (resin layer 13). Let On the surface of the measuring roller 27 (resin layer 13) separated from the inner surface 10, a concave pattern Y to which the convex pattern X is transferred is formed as shown in FIG. 5 and 6 show the resin layer 13 after complete cooling and solidification.
Then, as shown in FIG. 10, the measuring roller 27 (resin molded product 44) is pulled out (or extruded) from the mold 1 to produce a measuring roller having a concave pattern Y on the surface.

また、図5に戻って、溶融樹脂3がキャビティ2内へ充填された直後の樹脂層13の肉厚寸法T(充填直後溶融状態の樹脂層13の肉厚寸法T)は、 1.5mm以上 2.5mm以下に形成されることが好ましい。充填直後溶融状態の肉厚寸法Tが 1.5mm未満の場合は、冷却収縮量が小さいので、内面10と樹脂層13の外面との間に十分な隙間Sができず(図6参照)、計量ローラ27を金型1から引き抜きにくかったり、引き抜く際に凹状パターンYが潰れてしまう虞があるからである。また、充填直後溶融状態の肉厚寸法Tが 2.5mmを越える場合は、計量ローラ27の(横断面の)真円度を確保できなくなるからである。
なお、凹状パターンYは、例えば、深さ10μmの微細凹溝であるので、樹脂層13の肉厚寸法Tを考えるにあたってその凹凸は無視するものとする。
Returning to FIG. 5, the thickness T of the resin layer 13 immediately after the molten resin 3 is filled into the cavity 2 (the thickness T of the resin layer 13 in the molten state immediately after filling) is 1.5 mm or more. It is preferable to be formed to mm or less. When the wall thickness dimension T in the molten state immediately after filling is less than 1.5 mm, the cooling shrinkage is small, so that a sufficient gap S cannot be formed between the inner surface 10 and the outer surface of the resin layer 13 (see FIG. 6). This is because it is difficult to pull out the roller 27 from the mold 1 or the concave pattern Y may be crushed when it is pulled out. Further, if the thickness T in the melted state immediately after filling exceeds 2.5 mm, the roundness (in the cross section) of the measuring roller 27 cannot be secured.
The concave pattern Y is, for example, a fine concave groove having a depth of 10 μm. Therefore, when considering the thickness T of the resin layer 13, the concave and convex portions are ignored.

ところで、図23に於て、同図(a)は、理想的なキャビティ2と樹脂成形品44(計量ローラ27)の形状の場合を示し、同図(b)は実際上のキャビティ2と樹脂成形品44(計量ローラ27)の形状寸法を極端に図示している。理想的とは、金型1のキャビティ2が円筒度が零、成形品44(計量ローラ27)の円筒度も零の場合を言い、そのような理想の場合には、φD−φd≧0.02mm、従って、隙間(クリアランス)Sが0.01mmであれば、冷却固化後の樹脂成形品44(計量ローラ27)を同図下方へ(矢印Fのように)引き抜くことができる。
しかしながら、現実には、図23(b)に示すように、金型1のキャビティ2の円筒度が0.02〜0.03mm程度であり、かつ、樹脂成形品44(計量ローラ27)の(外径の)円筒度も0.02〜0.03mm程度である。従って、無理なく樹脂成形品44(計量ローラ27)を矢印F方向へ引き抜くためには、φD−φd≧0.10mmとして、隙間(クリアランス)Sを0.05mm以上とする。
In FIG. 23, FIG. 23A shows an ideal cavity 2 and resin molded product 44 (metering roller 27), and FIG. 23B shows the actual cavity 2 and resin. The shape dimension of the molded product 44 (the measuring roller 27) is extremely illustrated. “Ideal” means that the cavity 2 of the mold 1 has zero cylindricity and the cylindricity of the molded product 44 (metering roller 27) is also zero. In such an ideal case, φD−φd ≧ 0.02 mm. Therefore, if the clearance (clearance) S is 0.01 mm, the resin-molded product 44 (measurement roller 27) after cooling and solidification can be pulled out downward (as indicated by arrow F) in FIG.
However, in reality, as shown in FIG. 23B, the cylindricity of the cavity 2 of the mold 1 is about 0.02 to 0.03 mm, and the outer diameter of the resin molded product 44 (the measuring roller 27) ) Cylindricity is also about 0.02 to 0.03 mm. Therefore, in order to pull out the resin molded product 44 (metering roller 27) in the direction of arrow F without difficulty, φD−φd ≧ 0.10 mm and the clearance (clearance) S is set to 0.05 mm or more.

さらに望ましいのは、φD−φd≧0.13mmとして、隙間(クリアランス)Sを 0.065mm以上とする。
即ち、図23(b)に於て、※印の部位にて、計量ローラ27と、キャビティ2内面とが接触する虞のあることを、(極端に描いて)図示しており、このように※印にて接触して(擦れて)傷が計量ローラ27の表面に発生する。
外径を研削するタイプのローラであれば、このような傷の発生は問題ないのであるが、成形後の外径研削を行わない計量ローラ27であれば、外観不良・品質不良となる。特に、計量ローラ27としては、凹状パターンYの溝深さが変動してしまい、品質上問題が発生する。
More preferably, φD−φd ≧ 0.13 mm and the clearance (clearance) S is 0.065 mm or more.
That is, in FIG. 23 (b), it is illustrated that there is a possibility that the measuring roller 27 and the inner surface of the cavity 2 may come into contact with each other at the part marked with *. * Contact with the mark (scratches) causes scratches on the surface of the measuring roller 27.
The occurrence of such scratches is not a problem with a roller that grinds the outer diameter. However, if the measuring roller 27 does not grind the outer diameter after molding, the appearance and quality are poor. In particular, as the measuring roller 27, the groove depth of the concave pattern Y varies, which causes a quality problem.

図7〜図10に於て、金型1内で固化した計量ローラ27(樹脂成形品44)を、金型1から引き抜く工程を説明する。
図7では、樹脂層13は完全に固化した状態であり、計量ローラ27(樹脂成形品44)は金型1の内面10から遊離している(図6参照)。この状態で、計量ローラ27の上端から抵抗付加手段20と支持アーム21とを上方へ離間させる。また、溶融樹脂供給路本体14の上部本体22と下部本体23とを上下に分離すると、計量ローラ27の下方の不要樹脂部40はスプル17の先端位置で2つにちぎれる。ちぎれた一方の不要樹脂部40aは樹脂溜18内に残り、他方の不要樹脂部40bは下部本体23の上面に付着している。
7 to 10, the process of pulling out the measuring roller 27 (resin molded product 44) solidified in the mold 1 from the mold 1 will be described.
In FIG. 7, the resin layer 13 is in a completely solidified state, and the measuring roller 27 (resin molded product 44) is released from the inner surface 10 of the mold 1 (see FIG. 6). In this state, the resistance adding means 20 and the support arm 21 are separated upward from the upper end of the measuring roller 27. Further, when the upper main body 22 and the lower main body 23 of the molten resin supply path main body 14 are separated vertically, the unnecessary resin portion 40 below the measuring roller 27 is divided into two at the tip end position of the sprue 17. One unnecessary resin portion 40 a that has been torn off remains in the resin reservoir 18, and the other unnecessary resin portion 40 b is attached to the upper surface of the lower body 23.

次に、図8に於て、金型1と上部本体22とを分離させ、樹脂溜18から不要樹脂部40aを抜き出す。また、下部本体23に付着する不要樹脂部40bは、下部本体23の上下貫通孔内を挿通自在の押出棒24にて上方へ押し出され除去される。
そして、計量ローラ27の下部に付着する不要樹脂部40aは、図9に示すように、下方から切断具25によって切断除去される。
その後、図10に示す如く、キャビティ2内に挿入される抜出手段26にて、計量ローラ27は金型1内から引き抜かれる(押し出される)。
Next, in FIG. 8, the mold 1 and the upper body 22 are separated, and the unnecessary resin portion 40 a is extracted from the resin reservoir 18. Further, the unnecessary resin portion 40b adhering to the lower main body 23 is removed by being pushed upward by the push rod 24 which can be inserted through the upper and lower through holes of the lower main body 23.
And the unnecessary resin part 40a adhering to the lower part of the measurement roller 27 is cut and removed by the cutting tool 25 from below as shown in FIG.
Thereafter, as shown in FIG. 10, the measuring roller 27 is pulled out (extruded) from the mold 1 by the extracting means 26 inserted into the cavity 2.

図11は、上述したように金型1から引き抜いて製造した計量ローラ27の拡大正面図であり、計量ローラ27の樹脂層13の表面には凹状パターンYが形成されている。
多条の凹状パターンYは、一点鎖線にて示す計量ローラ27の周面上の軸心と平行な長手直線Lに対し、45°傾斜して配設されることが好ましい。また、一条の凹状パターンYを螺旋状に形成し、又は、多条の凹状パターンYをひとまとまりとして螺旋状に形成してもよい。また、凹状パターンYをそれぞれ独立状に形成してもよい。
FIG. 11 is an enlarged front view of the measuring roller 27 manufactured by pulling out from the mold 1 as described above, and a concave pattern Y is formed on the surface of the resin layer 13 of the measuring roller 27.
The multi-patterned concave pattern Y is preferably disposed with an inclination of 45 ° with respect to a longitudinal straight line L parallel to the axis on the peripheral surface of the measuring roller 27 indicated by a one-dot chain line. Alternatively, the single concave pattern Y may be formed in a spiral shape, or the multiple concave pattern Y may be formed in a spiral shape. The concave patterns Y may be formed independently.

また、図20(a)に示す如く、計量ローラ27としては、凹状パターンYを独立状の凹溝を形成し、かつ、各凹溝の幅寸法W1 ,W2 を相違してもよい。あるいは、図20(b)に示す如く、凹溝の幅寸法W1 ,W2 ,W3 を相違させてもよい。この際、凹溝を多条の凹状パターンYをひとまとまりとして螺旋状とするか、又は、各凹溝を独立状に形成する。 Further, as shown in FIG. 20A, as the measuring roller 27, the concave pattern Y may be formed as independent concave grooves, and the width dimensions W 1 and W 2 of the concave grooves may be different. Alternatively, as shown in FIG. 20B, the width dimensions W 1 , W 2 , W 3 of the concave grooves may be different. At this time, the concave grooves are spirally formed as a group of multiple concave patterns Y, or each concave groove is formed independently.

また、図21(a)に示す如く、各凹溝相互間の凸条部の幅寸法W4 ,W5 ,W6 を相違させてもよい場合があり、しかも、図21(a)では、図20(a)又は(b)と同様に凹溝の幅寸法も同時に相違させた場合を例示している。なお、凸条部の幅寸法W4 ,W5 ,W6 を相違させて、凹溝の幅寸法を同一としても自由である(図示省略)。
また、図21(b)に示したように、各凹溝の深さ寸法H1 ,H2 ,H3 を相違させるも好ましいが、その際、凹溝の幅寸法を相違させたり、又は、同一としてもよい。あるいは、図21(a)のように凸条部の幅寸法W4 ,W5 ,W6 を相違させる構成と、図21(b)の凹溝の深さ寸法H1 ,H2 ,H3 を相違させる構成とを、組合せるも好ましい(図示省略)。
Further, as shown in FIG. 21 (a), the width dimensions W 4 , W 5 , W 6 of the ridges between the grooves may be different, and in FIG. 21 (a), The case where the width dimension of the ditch | groove is made to differ simultaneously similarly to FIG. 20 (a) or (b) is illustrated. Note that the width W 4, W 5, W 6 of the convex portion is different, it is also free as the same width dimension of the groove (not shown).
Further, as shown in FIG. 21 (b), it is preferable to make the depth dimensions H 1 , H 2 , H 3 of the respective concave grooves different, but in this case, the width dimensions of the concave grooves are made different, or It may be the same. Alternatively, as shown in FIG. 21A, the widths W 4 , W 5 , and W 6 of the ridges are different from each other, and the depths H 1 , H 2 , and H 3 of the concave grooves in FIG. It is also preferable to combine them with configurations that make them different (not shown).

また、凹状パターンYの断面形状としては、例えば、図12(a)に示すように、ストレート状底部29と、その底部29に連設する凹曲面状の側壁部30,30とを、有する長半円形状や、図12(b)に示す円弧形状等が好ましい。言い換えれば、凹状パターンYの断面形状が矩形やV字形等の折曲げ状の角部を有する形状の場合は、角部にインキが残って正確な計量ができないので好ましくない。
また、凹状パターンYは、図13(a)に示すような六角形の蜂の巣状や、(b)に示すような鱗状であってもよく、これら以外の形状としては、図22(a)〜(e)に示すように種々の模様や図形や記号を表現しても、自由である。つまり、図22(a)のように、大きな六角形を重ね合わせた模様や、図22(b)のように、大小の鱗状を組み合わせて、模様としたりすることもでき、また、図22(c)のように、円の図形(記号)を散点状に配置したり、図22(d)のように、三角の図形(記号)を配置したり、さらには、図22(e)のように、円と三角の図形(記号)を混在させたりすることも、好ましい。
Moreover, as a cross-sectional shape of the concave pattern Y, for example, as shown in FIG. 12A, a length having a straight bottom 29 and concave curved side walls 30, 30 connected to the bottom 29. A semicircular shape, an arc shape shown in FIG. In other words, when the cross-sectional shape of the concave pattern Y has a bent corner portion such as a rectangle or a V shape, it is not preferable because ink remains in the corner portion and accurate measurement cannot be performed.
Further, the concave pattern Y may be a hexagonal honeycomb shape as shown in FIG. 13 (a) or a scale shape as shown in FIG. 13 (b). Even if various patterns, figures and symbols are expressed as shown in (e), it is free. That is, a pattern in which large hexagons are superimposed as shown in FIG. 22 (a), or a combination of large and small scales as shown in FIG. 22 (b) can be formed into a pattern. As shown in c), circular figures (symbols) are arranged in a dotted pattern, triangular figures (symbols) are arranged as shown in FIG. 22 (d), and further, as shown in FIG. Thus, it is also preferable to mix a circle and a triangular figure (symbol).

なお、樹脂成形品44としては、上述の計量ローラ27の場合には全面均等に凹状パターンYを形成する。
また、芯材12は金属製であっても樹脂製であってもよい。
なお、図1・図4・図7に於て、抵抗付加手段20を省略し、かつ、支持アーム21の代わりに、キャビティ2の上端を施蓋する蓋状の部材をもって、芯材12の上端を支持するとしても自由である(図示省略)。
As the resin molded product 44, in the case of the above-described measuring roller 27, the concave pattern Y is formed evenly over the entire surface.
Further, the core material 12 may be made of metal or resin.
1, 4, and 7, the resistance adding means 20 is omitted, and instead of the support arm 21, a lid-like member that covers the upper end of the cavity 2 is used, and the upper end of the core 12 is It is free to support (not shown).

次に、金型1の製造方法について説明する。
図14に示すように、低融点の金属丸棒11の外周面に凹状パターンモデルZを(機械的切削やレーザー加工にて)全面均等に形成してマスター5を作製する。なお、図13及び図22に示したような凹状パターンYの場合には、各々に対応した模様や図形・記号等をもって、凹状パターンモデルZを作製する。金属丸棒11は加工のし易い軟質金属製であることが望ましく、例えば、アルミニウムや銅や真鍮が好ましい。
Next, a method for manufacturing the mold 1 will be described.
As shown in FIG. 14, a concave pattern model Z is formed evenly on the outer peripheral surface of a low-melting metal round bar 11 (by mechanical cutting or laser processing) to produce a master 5. In the case of the concave pattern Y as shown in FIG. 13 and FIG. 22, a concave pattern model Z is created with a pattern, figure, symbol, etc. corresponding to each. The metal round bar 11 is preferably made of a soft metal that can be easily processed, and for example, aluminum, copper, or brass is preferable.

次に、図15に示すように、円孔状の貫通孔7を有する継ぎ目のない非分割形状の金型本体6を用意し、その貫通孔7内に上記マスター5を挿通し、図示省略の治具でマスター5をセンタリングして貫通孔7内に固定する。なお、金型本体6は鋼系の素材で形成されている。   Next, as shown in FIG. 15, a seamless non-divided mold body 6 having a circular through hole 7 is prepared, and the master 5 is inserted into the through hole 7, and the illustration is omitted. The master 5 is centered with a jig and fixed in the through hole 7. The mold body 6 is made of a steel material.

図16に於て、28は(ニッケル等を含む)メッキ液8を満たしたメッキ槽であり、メッキ液の中にマスター5を挿通させた金型本体6を浸漬させる。図17に示すように、メッキ液8は、金型本体6の内周面とマスター5との間に浸入して充填される。   In FIG. 16, reference numeral 28 denotes a plating tank filled with a plating solution 8 (including nickel or the like), in which a mold body 6 having a master 5 inserted is immersed in the plating solution. As shown in FIG. 17, the plating solution 8 enters and fills between the inner peripheral surface of the mold body 6 and the master 5.

そして、マスター5と金型本体6との間に電流を流して、図18に示すメッキ層9を形成する。メッキ層9の外面は金型本体6の内周面に付着し、メッキ層9の内面にはマスター5の凹状パターンモデルZを転写させた凸状パターンXが形成される。このように、電気鋳造にて金型本体6の内周面に凸状パターンXを有するメッキ層9を形成する。   Then, a current is passed between the master 5 and the mold body 6 to form the plating layer 9 shown in FIG. The outer surface of the plating layer 9 adheres to the inner peripheral surface of the mold body 6, and a convex pattern X formed by transferring the concave pattern model Z of the master 5 is formed on the inner surface of the plating layer 9. Thus, the plating layer 9 having the convex pattern X is formed on the inner peripheral surface of the mold body 6 by electroforming.

その後、メッキ液8中から金型本体6・マスター5を取り出す。そして、マスター5を加熱溶融して貫通孔7から流出除去すると、図19に示すように、凸状パターンXが露出し金型1(のキャビティ2)が作製される。ところで、上記計量ローラ27の長さ寸法は、 100mm〜 500mmとするのが望ましく、特に、 150mm〜 400mmが好ましい。下限値未満であれば、従来の放電加工法にて金型本体を製作できるので、本願発明の電気鋳造の特長を十分に活かせないためであり、逆に、上限値を越すと製作費が急に高くなるためである。ところで、本発明に於て、上記長さ寸法とは、芯材12を除いた部分───即ち樹脂層13───の長さを言うものとする。   Thereafter, the mold body 6 and the master 5 are taken out from the plating solution 8. Then, when the master 5 is heated and melted and removed from the through-hole 7, the convex pattern X is exposed and the mold 1 (cavity 2) is produced as shown in FIG. By the way, the length of the measuring roller 27 is preferably 100 mm to 500 mm, and more preferably 150 mm to 400 mm. If it is less than the lower limit value, the die body can be manufactured by the conventional electric discharge machining method, so that the features of the electrocasting of the present invention cannot be fully utilized. It is because it becomes high. By the way, in the present invention, the length dimension means the length of the portion excluding the core material 12, that is, the resin layer 13.

なお、マスター5の凹状パターンモデルZの形状は、長半円状や円弧状等であることが好ましい(図12参照)。言い換えれば、矩形やV字形等の折曲げ状の角部を有する形状は、加工しにくいので好ましくない。   The shape of the concave pattern model Z of the master 5 is preferably a long semicircular shape or an arc shape (see FIG. 12). In other words, a shape having a bent corner such as a rectangle or a V shape is not preferable because it is difficult to process.

以上のように、本発明の計量ローラの製造方法は、円孔状の貫通孔7を有する継ぎ目のない非分割形状の金型本体6の内周面に電気鋳造による凸状パターンXを全面均等に形成してキャビティ2を形成し、次に、芯材12を上記キャビティ2内に挿通し、その後、上記キャビティ2内に溶融樹脂3を注入し、表面に凹状パターンYを有しかつ中心に上記芯材12を有する円柱状樹脂成形品44としての計量ローラ27を成形すると共に、上記溶融樹脂3が固化するまでの冷却収縮に伴う外径寸法の減少により完全冷却固化後の上記計量ローラ27を上記キャビティ2の内面10から遊離させ、該計量ローラ27を上記キャビティ2内から引き抜くようにすると共に、上記キャビティ2の内径寸法をφDとし、上記完全冷却固化後の計量ローラ27の外径寸法をφdとすると、(φD−φd)≧0.10mmなる関係式が成立するように上記溶融樹脂3が固化するまで上記冷却収縮を行わせて、長さ寸法が 100mm〜 500mmの計量ローラ27を製造する方法であるので、表面に高精度の凹状パターンYを有する計量ローラ27を容易に大量生産することができる。特に、金型1(金型本体6)が継ぎ目のない非分割形状であるので、計量ローラの表面にパーティングラインが生じることがなく、高精度に凹状パターンYを形成することができる。   As described above, according to the method for manufacturing the metering roller of the present invention, the convex pattern X formed by electroforming is uniformly applied to the inner peripheral surface of the seamless non-divided mold body 6 having the circular through holes 7. Then, the core material 12 is inserted into the cavity 2, and then the molten resin 3 is injected into the cavity 2 so that the surface has the concave pattern Y and the center. The metering roller 27 as the cylindrical resin molded product 44 having the core material 12 is molded, and the metering roller 27 after complete cooling and solidification due to a decrease in outer diameter due to cooling contraction until the molten resin 3 is solidified. Is released from the inner surface 10 of the cavity 2 so that the metering roller 27 is pulled out from the cavity 2 and the inner diameter of the cavity 2 is φD, and the outer diameter of the metering roller 27 after the complete cooling and solidification. With φd Then, the cooling shrinkage is performed until the molten resin 3 is solidified so that the relational expression (φD−φd) ≧ 0.10 mm is established, and the measuring roller 27 having a length dimension of 100 mm to 500 mm is manufactured. Therefore, the measuring roller 27 having the concave pattern Y with high accuracy on the surface can be easily mass-produced. In particular, since the mold 1 (mold body 6) has a seamless non-divided shape, there is no parting line on the surface of the measuring roller, and the concave pattern Y can be formed with high accuracy.

また、溶融樹脂3の冷却収縮に伴う外径寸法φdの減少により樹脂成形品44をキャビティ2の内面10から遊離させるので、樹脂成形品44を金型1のキャビティ2内から簡単に引き抜くことができ、引き抜く際に凹状パターンYが潰れる虞れもない。
また、従来は、継ぎ目のない非分割形状の筒状体の内周面に機械的切削やレーザー加工にて微細な凹凸(凸状パターンX)を形成することは困難であったが、本発明では、電気鋳造により金型本体6の内周面に凸状パターンXを簡単かつ高精度に形成することができる。
Further, since the resin molded product 44 is released from the inner surface 10 of the cavity 2 due to the decrease in the outer diameter dimension φd accompanying the cooling shrinkage of the molten resin 3, the resin molded product 44 can be easily pulled out from the cavity 2 of the mold 1. In addition, there is no possibility that the concave pattern Y is crushed when it is pulled out.
Conventionally, it has been difficult to form fine irregularities (convex pattern X) on the inner peripheral surface of a seamless non-divided cylindrical body by mechanical cutting or laser processing. Then, the convex pattern X can be easily and accurately formed on the inner peripheral surface of the mold body 6 by electroforming.

そして、上記キャビティ2の内径寸法をφDとし、上記冷却収縮した計量ローラ27の外径寸法をφdとすると、(φD−φd)≧0.10mmなる関係式が成立することによって、金型1のキャビティ2の内面に、引き抜きの際に、樹脂成形品44が接触して(図23(b)中の※印参照)傷付くことが防止でき、無理なくスムーズに引き抜くことが可能となる。このようにして、表面に高精度な深さ寸法と形状の凹状パターンYを形成できて、樹脂製の計量ローラ27に好適な製法であるといえる。   Then, assuming that the inner diameter dimension of the cavity 2 is φD and the outer diameter dimension of the cooling and shrinking measuring roller 27 is φd, a relational expression of (φD−φd) ≧ 0.10 mm is established. It is possible to prevent the resin molded product 44 from coming into contact with the inner surface of No. 2 (see the mark * in FIG. 23 (b)) when being pulled out, and to be pulled out smoothly without difficulty. In this way, it is possible to form a concave pattern Y having a highly accurate depth dimension and shape on the surface, and it can be said that this is a suitable manufacturing method for the resin-made measuring roller 27.

さらに、上記凸状パターンXが上記金型本体6の内周面に全面均等に形成されているので、計量ローラ等に特に好適となる。また、上記樹脂成形品44が計量ローラ27であることで、高精度な形状・寸法の凹状パターンYが得られる本願発明の特長が最大に活かされることとなる。しかも、長さ寸法が、 100mm〜 500mmであることにより、本願発明の電気鋳造による利点が活かされ、従来の放電加工では不可能であった長さ寸法の計量ローラ27を高精度に製造可能となった。   Further, since the convex pattern X is uniformly formed on the entire inner peripheral surface of the mold body 6, it is particularly suitable for a measuring roller or the like. In addition, since the resin molded product 44 is the measuring roller 27, the feature of the present invention that can obtain the concave pattern Y having a highly accurate shape and size is maximized. In addition, since the length dimension is 100 mm to 500 mm, the advantages of the electrocasting of the present invention can be utilized, and it is possible to manufacture the measuring roller 27 having a length dimension that is impossible with conventional electric discharge machining with high accuracy. became.

また、本発明は、上記溶融樹脂3を注入して上記キャビティ2内へ充填された充填直後溶融状態の樹脂層13の肉厚寸法Tを、 1.5mm以上 2.5mm以下に形成した。充填直後溶融状態の肉厚寸法Tが 1.5mm未満の場合は、冷却収縮量が小さいので、内面10と樹脂層13の外面との間に十分な隙間Sができず(図6参照)、計量ローラ27を金型1から引き抜きにくかったり、引き抜く際に凹状パターンYが潰れてしまう虞があるからである。また、充填直後溶融状態の肉厚寸法Tが 2.5mmを越える場合は、計量ローラ27の(横断面の)真円度を確保できなくなるからである。言い換えると、 1.5mm≦T≦ 2.5mmとしたことによって、十分な隙間S(図6参照)が形成できて、金型から計量ローラ27を引き抜きしやすくなり、かつ、凹状パターンYも潰れずに済む。さらに、計量ローラ27の真円度を確保できる。   Further, according to the present invention, the thickness T of the resin layer 13 in a molten state immediately after filling, in which the molten resin 3 is injected and filled into the cavity 2, is formed to be 1.5 mm or more and 2.5 mm or less. When the wall thickness dimension T in the molten state immediately after filling is less than 1.5 mm, the cooling shrinkage is small, so that a sufficient gap S cannot be formed between the inner surface 10 and the outer surface of the resin layer 13 (see FIG. 6). This is because it is difficult to pull out the roller 27 from the mold 1 or the concave pattern Y may be crushed when it is pulled out. Further, if the thickness T in the melted state immediately after filling exceeds 2.5 mm, the roundness (in the cross section) of the measuring roller 27 cannot be secured. In other words, by setting 1.5 mm ≦ T ≦ 2.5 mm, a sufficient gap S (see FIG. 6) can be formed, the measuring roller 27 can be easily pulled out from the mold, and the concave pattern Y is not crushed. That's it. Further, the roundness of the measuring roller 27 can be ensured.

本発明の計量ローラの製造方法に使用する製造装置の実施の一形態を示す断面図である。It is sectional drawing which shows one Embodiment of the manufacturing apparatus used for the manufacturing method of the measurement roller of this invention. 金型の斜視図である。It is a perspective view of a metal mold | die. 金型の拡大断面図である。It is an expanded sectional view of a metal mold | die. 本発明の計量ローラの製造方法の説明用断面図である。It is sectional drawing for description of the manufacturing method of the measurement roller of this invention. 説明用拡大横断面図である。It is an expanded cross-sectional view for description. 説明用拡大縦断面図である。It is an enlarged vertical longitudinal sectional view for explanation. 説明用断面図である。It is sectional drawing for description. 説明用断面図である。It is sectional drawing for description. 説明用断面図である。It is sectional drawing for description. 説明用断面図である。It is sectional drawing for description. 計量ローラの拡大要部正面図である。It is an enlarged principal part front view of a measurement roller. 凹状パターンの拡大断面図であって、(a)は実施の一形態を示す拡大断面図、(b)は他の実施の形態を示す拡大断面図である。It is an expanded sectional view of a concave pattern, (a) is an expanded sectional view showing one embodiment, and (b) is an enlarged sectional view showing other embodiments. 凹状パターンの拡大正面図であって、(a)は他の実施の形態を示す拡大正面図、(b)は別の実施の形態を示す拡大正面図である。It is an enlarged front view of a concave pattern, (a) is an enlarged front view showing another embodiment, (b) is an enlarged front view showing another embodiment. マスターの拡大正面図である。It is an enlarged front view of a master. 金型の製造方法を示す説明用斜視図である。It is an explanatory perspective view which shows the manufacturing method of a metal mold | die. 説明用断面図である。It is sectional drawing for description. 説明用拡大断面図である。It is an expanded sectional view for explanation. 説明用拡大断面図である。It is an expanded sectional view for explanation. 説明用拡大断面図である。It is an expanded sectional view for explanation. 計量ローラの他の実施の形態の拡大要部正面図である。It is an enlarged principal part front view of other embodiment of a measurement roller. 計量ローラの別の実施の形態の拡大要部正面図である。It is an enlarged principal part front view of another embodiment of a measurement roller. 凹状パターンの種々の変形例を示す拡大正面図である。It is an enlarged front view which shows the various modifications of a concave pattern. 本発明に係る計量ローラの製造方法における引き抜きの際を説明する図である。It is a figure explaining the time of extraction in the manufacturing method of the measuring roller concerning the present invention.

符号の説明Explanation of symbols

2 キャビティ
3 溶融樹脂
5 マスター
6 金型本体
7 貫通孔
8 メッキ液
9 メッキ層
10 内面
11 金属丸棒
12 芯材
13 樹脂層
27 計量ローラ
44 樹脂成形品
T 肉厚寸法
X 凸状パターン
Y 凹状パターン
φD 内径寸法
φd 外径寸法
2 Cavity 3 Molten resin 5 Master 6 Mold body 7 Through-hole 8 Plating solution 9 Plating layer
10 Inside
11 Metal round bar
12 Core
13 Resin layer
27 Weighing roller
44 Plastic molded product T Thickness X Convex pattern Y Concave pattern φD Inner diameter φd Outer diameter

Claims (2)

円孔状の貫通孔(7)を有する継ぎ目のない非分割形状の金型本体(6)の内周面に電気鋳造による凸状パターン(X)を全面均等に形成してキャビティ(2)を形成し、次に、芯材(12)を上記キャビティ(2)内に挿通し、その後、上記キャビティ(2)内に溶融樹脂(3)を注入し、表面に凹状パターン(Y)を有しかつ中心に上記芯材(12)を有する円柱状樹脂成形品(44)としての計量ローラ(27)を成形すると共に、上記溶融樹脂(3)が固化するまでの冷却収縮に伴う外径寸法の減少により完全冷却固化後の上記計量ローラ(27)を上記キャビティ(2)の内面(10)から遊離させ、該計量ローラ(27)を上記キャビティ(2)内から引き抜くようにすると共に、上記キャビティ(2)の内径寸法を(φD)とし、上記完全冷却固化後の計量ローラ(27)の外径寸法を(φd)とすると、(φD−φd)≧0.10mmなる関係式が成立するように上記溶融樹脂(3)が固化するまで上記冷却収縮を行わせて、長さ寸法が 100mm〜 500mmの計量ローラ(27)を製造することを特徴とする計量ローラの製造方法。   A cavity (2) is formed by uniformly forming a convex pattern (X) by electroforming on the inner peripheral surface of a seamless non-divided mold body (6) having a circular through hole (7). Then, the core material (12) is inserted into the cavity (2), and then the molten resin (3) is injected into the cavity (2) to have a concave pattern (Y) on the surface. In addition, the measuring roller (27) as the cylindrical resin molded product (44) having the core material (12) at the center is formed, and the outer diameter dimension of the molten resin (3) is reduced due to cooling shrinkage until solidified. The metering roller (27) that has been completely cooled and solidified due to the decrease is released from the inner surface (10) of the cavity (2), and the metering roller (27) is pulled out from the cavity (2). The inner diameter of (2) is (φD) and complete cooling and solidification If the outer diameter dimension of the later measuring roller (27) is (φd), the cooling shrinkage is performed until the molten resin (3) is solidified so that the relational expression (φD−φd) ≧ 0.10 mm is satisfied. A measuring roller manufacturing method, characterized in that a measuring roller (27) having a length of 100 mm to 500 mm is manufactured. 上記溶融樹脂(3)を注入して上記キャビティ(2)内へ充填された充填直後溶融状態の樹脂層(13)の肉厚寸法(T)を、 1.5mm以上 2.5mm以下に形成した請求項1記載の計量ローラの製造方法。   The wall thickness dimension (T) of the resin layer (13) in a molten state immediately after being filled by injecting the molten resin (3) into the cavity (2) is formed to be 1.5 mm or more and 2.5 mm or less. 1. A method for producing a metering roller according to 1.
JP2008226772A 2006-09-04 2008-09-04 Manufacturing method of measuring roller Expired - Fee Related JP4823283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008226772A JP4823283B2 (en) 2006-09-04 2008-09-04 Manufacturing method of measuring roller

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006238639 2006-09-04
JP2006238639 2006-09-04
JP2006315119 2006-11-22
JP2006315119 2006-11-22
JP2008226772A JP4823283B2 (en) 2006-09-04 2008-09-04 Manufacturing method of measuring roller

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007140777A Division JP4757229B2 (en) 2006-09-04 2007-05-28 Manufacturing method of measuring roller

Publications (2)

Publication Number Publication Date
JP2009001023A JP2009001023A (en) 2009-01-08
JP4823283B2 true JP4823283B2 (en) 2011-11-24

Family

ID=39652403

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007140777A Expired - Fee Related JP4757229B2 (en) 2006-09-04 2007-05-28 Manufacturing method of measuring roller
JP2008226772A Expired - Fee Related JP4823283B2 (en) 2006-09-04 2008-09-04 Manufacturing method of measuring roller

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007140777A Expired - Fee Related JP4757229B2 (en) 2006-09-04 2007-05-28 Manufacturing method of measuring roller

Country Status (1)

Country Link
JP (2) JP4757229B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089347A (en) * 2008-10-07 2010-04-22 Mitsubishi Cable Ind Ltd Resin roller
IT201800007184A1 (en) * 2018-07-13 2020-01-13 Process for the production of lipsticks with special three-dimensional surface effects and lipsticks thus obtainable

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278967A (en) * 1975-12-26 1977-07-02 Fuji Xerox Co Ltd Method of producing flexible roll having fine ruggedness on surface
JPH09286035A (en) * 1996-04-22 1997-11-04 Nippon Petrochem Co Ltd Cylindrical body made of synthetic resin and injection molding thereof
JPH10156841A (en) * 1996-11-29 1998-06-16 Fuji Xerox Co Ltd Elastic roller and manufacture thereof
JP3632335B2 (en) * 1996-12-02 2005-03-23 株式会社カネカ Mold for molding magnet roll
JP2000289053A (en) * 1999-04-02 2000-10-17 Canon Inc Method for molding roller
JP4260389B2 (en) * 2001-03-28 2009-04-30 三菱電線工業株式会社 Resin long body molding equipment
JP2003334820A (en) * 2002-05-22 2003-11-25 Bridgestone Corp Cylindrical mold and its manufacturing method

Also Published As

Publication number Publication date
JP4757229B2 (en) 2011-08-24
JP2009001023A (en) 2009-01-08
JP2008149698A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
US6841114B2 (en) Molding method and apparatus for resin long body
JP6108916B2 (en) Molded product manufacturing method and molding die
JP2003056552A (en) Resin-made bearing part and method for manufacturing the same
JPS5976230A (en) Method of injection-molding plastic
JP3864065B2 (en) Manufacturing method of resin bearing parts
WO2019230196A1 (en) Method for producing molded product
JP4823283B2 (en) Manufacturing method of measuring roller
JP2006281765A (en) Method and apparatus for improving surface accuracy of optical element
US20080054517A1 (en) Manufacturing method for resin molded product
JP5884302B2 (en) INJECTION MOLDING METHOD, INJECTION MOLDED ARTICLE, INK TANK, RECORDING DEVICE AND INJECTION MOLD
JP2008221682A (en) Plastic roller
JPWO2006073035A1 (en) Circular resin molded product having a circular hole in the center, and method and apparatus for molding the circular resin molded product
JP5006621B2 (en) Mold injection mold and mold injection molding method using the same
JP4260389B2 (en) Resin long body molding equipment
CN109414857B (en) Sprue bush
JP2006110606A (en) Casting method
JP2002283406A (en) Method and apparatus for molding hollow resin long object
JP5630476B2 (en) Injection molding method and injection molding apparatus
JP3606715B2 (en) Mold assembly and molding method for molded product having hollow portion and fin-like projection
EP1112828B1 (en) Method for manufacturing molds suitable for plastic injection
JP4157659B2 (en) Manufacturing method of resin molded products
JP6214592B2 (en) Mold for resin molding
KR100529972B1 (en) Method of mold-forming holes in castings, core for the carrying out of method, and support device for the core
JP2010089347A (en) Resin roller
JP4202653B2 (en) Resin long body molding die and molding method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees