JP4822781B2 - Nb3Al superconducting coil connection method - Google Patents

Nb3Al superconducting coil connection method Download PDF

Info

Publication number
JP4822781B2
JP4822781B2 JP2005269056A JP2005269056A JP4822781B2 JP 4822781 B2 JP4822781 B2 JP 4822781B2 JP 2005269056 A JP2005269056 A JP 2005269056A JP 2005269056 A JP2005269056 A JP 2005269056A JP 4822781 B2 JP4822781 B2 JP 4822781B2
Authority
JP
Japan
Prior art keywords
superconducting
solder
wire
connection
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005269056A
Other languages
Japanese (ja)
Other versions
JP2007081244A (en
Inventor
智数 福崎
秀明 前田
茂之 横山
司 木吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
RIKEN Institute of Physical and Chemical Research
Original Assignee
National Institute for Materials Science
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, RIKEN Institute of Physical and Chemical Research filed Critical National Institute for Materials Science
Priority to JP2005269056A priority Critical patent/JP4822781B2/en
Publication of JP2007081244A publication Critical patent/JP2007081244A/en
Application granted granted Critical
Publication of JP4822781B2 publication Critical patent/JP4822781B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本願発明は、NbAl超伝導コイルの接続方法に関する。詳しくは、本願発明は、NbAl超伝導コイル同士またはNbAl超伝導コイルとNbTi超伝導コイルやNbSn超伝導コイルなどの他の超伝導コイルとの接続を可能にするNbAl超伝導コイルの接続方法に関する。 The present invention relates to a method for connecting Nb 3 Al superconducting coils. Specifically, the present invention is Nb 3 to enable connections with other superconducting coils, such as Nb 3 Al superconductive coil together or Nb 3 Al superconductive coil and NbTi superconducting coil and Nb 3 Sn superconductive coils Al The present invention relates to a method for connecting a superconducting coil.

NMR磁石は、複数の超伝導コイルを直列に接続して構成される。NMR磁石には、NMR計測の分解能や感度を向上させるために、磁場の時間的な高安定性が必要とされる。たとえば、磁場安定性について最も厳しい仕様を持つ溶液用NMRでは、磁場減衰率が1時間当たり0.1ppm以下であることが要求される。この仕様を実現するためには、超伝導コイルの一つの接続部当たり10−11オーム以下の接続抵抗とする必要がある。 The NMR magnet is configured by connecting a plurality of superconducting coils in series. An NMR magnet is required to have high temporal stability of a magnetic field in order to improve resolution and sensitivity of NMR measurement. For example, in solution NMR having the strictest specifications regarding magnetic field stability, the magnetic field attenuation rate is required to be 0.1 ppm or less per hour. In order to realize this specification, it is necessary to set the connection resistance to 10 −11 ohm or less per connection part of the superconducting coil.

従来、超伝導コイル同士の接続には半田ディップ法が広く用いられている。半田ディップ法では、超伝導線材の銅母材またはブロンズ母材を強い酸や半田浴槽中で加熱除去し、超伝導芯線をむき出しにした後、半田ディップにより超伝導芯線の表面に半田層を形成し、線材間を半田で埋めて接続部を形成する(特許文献1、2)。   Conventionally, a solder dipping method has been widely used for connection between superconducting coils. In the solder dipping method, the copper base material or bronze base material of the superconducting wire is heated and removed in a strong acid or solder bath to expose the superconducting core wire, and then a solder layer is formed on the surface of the superconducting core wire by solder dipping Then, the connecting portion is formed by filling the wire with solder (Patent Documents 1 and 2).

NMR磁石では、NbSn超伝導コイルが高磁場領域に使用され、NbTi超伝導コイルが低磁場領域に用いられている。だが、1GHzNMRのような超高磁場NMRを実現する場合、NbSn超伝導コイルの超高磁場における超伝導特性は必ずしも十分ではないので、高磁場での超伝導特性に優れたNbAl超伝導線材の使用が望まれる。 In the NMR magnet, an Nb 3 Sn superconducting coil is used in the high magnetic field region, and an NbTi superconducting coil is used in the low magnetic field region. However, when realizing an ultra-high field NMR as 1GHzNMR, Nb 3 since Sn superconducting properties in ultra high magnetic field superconducting coil is not always sufficient, Nb 3 Al than having excellent superconducting properties in high magnetic field Use of conductive wire is desired.

また、医療用の高磁場MRIでは、超伝導コイルの直径が大きく、超伝導コイルには大きな電磁応力が加わる。NbSn超伝導コイルには、電磁応力によって超伝導特性が劣化するという問題があり、応力特性に優れたNbAl超伝導コイルの使用が望まれる。
米国特許第5690991号公報 米国特許第4744506号公報
In high magnetic field MRI for medical use, the diameter of the superconducting coil is large, and a large electromagnetic stress is applied to the superconducting coil. The Nb 3 Sn superconducting coil has a problem that its superconducting characteristics deteriorate due to electromagnetic stress, and it is desired to use an Nb 3 Al superconducting coil having excellent stress characteristics.
US Pat. No. 5,690,991 U.S. Pat. No. 4,744,506

しかしながら、NbAl超伝導線材はニオブを母材としているので、従来の半田ディップ法に不可欠な金属母材の除去と超伝導芯線の露出が不可能であり、NbAl超伝導コイルを接続することができず、これまでNbAl超伝導コイルをNMRやMRIに適用することはできなかった。 However, since the Nb 3 Al superconducting wire uses niobium as the base material, it is impossible to remove the metal base material and to expose the superconducting core wire, which are indispensable for the conventional solder dipping method, and to connect the Nb 3 Al superconducting coil. Until now, Nb 3 Al superconducting coils could not be applied to NMR and MRI.

NbAl超伝導線材の典型的な断面構成を図1に示す。ニオブ母材1の中にニオブとアルミニウムの複合芯線2が多数埋め込まれ、外周部は安定化銅3でクラッドされている。ニオブ母材1は酸などの薬品に溶けにくく、半田浴槽中でも除去が不可能であるので、半田ディップ法に不可欠な母材の除去と超伝導芯線の露出が不可能であり、超伝導接続を形成することができなかった。 A typical cross-sectional configuration of the Nb 3 Al superconducting wire is shown in FIG. A large number of niobium and aluminum composite core wires 2 are embedded in the niobium base material 1, and the outer peripheral portion is clad with the stabilized copper 3. The niobium base material 1 is difficult to dissolve in chemicals such as acids and cannot be removed even in a solder bath. Therefore, it is impossible to remove the base material essential for the solder dipping method and to expose the superconducting core wire. Could not be formed.

本願発明は、このような事情に鑑みてなされたものであり、NbAl超伝導コイル同士またはNbAl超伝導コイルとNbTi超伝導コイルやNbSn超伝導コイルなどの他の超伝導コイルとの接続を可能にするNbAl超伝導コイルの接続方法を提供することを課題としている。 The present invention has been made in view of such circumstances, and other superconducting coils such as Nb 3 Al superconducting coils or Nb 3 Al superconducting coils and NbTi superconducting coils and Nb 3 Sn superconducting coils. It is an object of the present invention to provide a method for connecting an Nb 3 Al superconducting coil that enables connection to the Nb 3 Al.

本願発明は、上記の課題を解決するものとして、第1に、熱処理前のNb Al超伝導線材の表面を半田でコートした後、Nb Al超伝導コイルと共に熱処理を行い、該熱処理と同時にニオブ母材の外周にNbSn層を形成し、次いでNbSn層の外周を半田で被覆した後、相手側の超伝導線材と半田を介して接続することを特徴としている。 The present invention solves the above-mentioned problems. First, after the surface of the Nb 3 Al superconducting wire before heat treatment is coated with solder, heat treatment is performed together with the Nb 3 Al superconducting coil. Nb 3 Sn layer was formed on the outer periphery of the niobium base metal, followed after coating the outer circumference of the Nb 3 Sn layer by soldering, it is characterized in that connected via the solder mating superconducting wire.

本願発明は、第に、NbSn層の外周に鉛ビスマススズ半田層を形成することを特徴としている。 Second , the present invention is characterized in that a lead bismuth tin solder layer is formed on the outer periphery of the Nb 3 Sn layer.

本願発明は、第に、NbAl超伝導線材と接続するNbTi超伝導線材から金属母材を除去し、NbTi超伝導芯線の表面を、NbAl超伝導線材の表面をコートした半田と同じ半田でコートすることを特徴としている。 The present invention, in the third to remove the metal base material from NbTi superconducting wire connected to the Nb 3 Al superconductive wire, the surface of the NbTi superconducting wire, solder coated surface of the Nb 3 Al superconductive wire It is characterized by coating with the same solder.

本願発明は、第に、NbAl超伝導線材と接続するNbSn超伝導線材について、加熱処理により芯線にNbSnを形成した後、金属母材を除去し、NbSn超伝導芯線の表面を、NbAl超伝導線材の表面をコートした半田と同じ半田でコートすることを特徴としている。 The present invention, in the fourth, the Nb 3 Sn superconducting wire connected to the Nb 3 Al superconductive wire, after forming the Nb 3 Sn in the core by the heat treatment, removing the metal matrix, Nb 3 Sn superconducting The surface of the core wire is coated with the same solder as the solder coated on the surface of the Nb 3 Al superconducting wire.

本願発明によれば、NbAl超伝導コイルを形成するNbAl超伝導線材を半田を用いて他の超伝導線材と接続することができ、NbAl超伝導コイルの超伝導接続が可能となる。NbAl超伝導コイルをNMRやMRIの超伝導コイルとして使用することができ、特にNbAl超伝導線材の高磁場特性を生かした1GHzNMRの実現が可能になる。 According to the present invention, the Nb 3 Al superconducting wire forming the Nb 3 Al superconducting coil can be connected to another superconducting wire using solder, and the superconducting connection of the Nb 3 Al superconducting coil is possible. It becomes. The Nb 3 Al superconducting coil can be used as a superconducting coil for NMR or MRI. In particular, 1 GHz NMR can be realized by taking advantage of the high magnetic field characteristics of the Nb 3 Al superconducting wire.

本願発明のNbAl超伝導コイルの接続方法では、図1に示した二オブ母材1の外周に、図2に示すようにNbSn層4を形成し、そして、図3に示すように、鉛ビスマススズ半田のような超伝導特性に優れた半田層6を被覆して接続する。具体的には次のように操作する。 The Nb 3 Al superconductive coil connection method of the present invention, the niobium periphery of the base material 1 shown in FIG. 1, to form a Nb 3 Sn layer 4 as shown in FIG. 2, and, as shown in FIG. 3 In addition, a solder layer 6 excellent in superconducting characteristics such as lead bismuth tin solder is coated and connected. Specifically, the following operation is performed.

NbAl超伝導コイルからNbAl超伝導線材を引き出し、接続部を半田でコートした後、接続部をNbAl超伝導コイルとともに800℃で10時間加熱し、図1に示した複合芯線2にNbAlを形成させ、安定化銅3を図2に示すようにブロンズ5に変化させる。ブロンズ5中のスズ原子は熱処理中に拡散するので、ニオブ母材1の外周にNbSn層4が形成される。次いで、接続部を超伝導特性に優れた鉛ビスマススズ半田などの半田浴槽中に浸漬し、図3に示すように、ブロンズ5を除去し、NbSn層4の表面に半田層6を形成する。このように処理したNbAl超伝導線材を従来の半田ディップ法により相手側のNbAl超伝導線材、NbSn超伝導線材、NbTi超伝導線材と接続する。 The Nb 3 Al superconducting wire is drawn out from the Nb 3 Al superconducting coil, the connecting part is coated with solder, and the connecting part is heated together with the Nb 3 Al superconducting coil at 800 ° C. for 10 hours, and the composite core wire shown in FIG. 2, Nb 3 Al is formed, and the stabilized copper 3 is changed to bronze 5 as shown in FIG. Since tin atoms in the bronze 5 diffuse during the heat treatment, the Nb 3 Sn layer 4 is formed on the outer periphery of the niobium base material 1. Next, the connecting portion is immersed in a solder bath such as lead bismuth tin solder excellent in superconducting characteristics, and the bronze 5 is removed as shown in FIG. 3 to form a solder layer 6 on the surface of the Nb 3 Sn layer 4. . The Nb 3 Al superconducting wire thus treated is connected to the counterpart Nb 3 Al superconducting wire, Nb 3 Sn superconducting wire, and NbTi superconducting wire by a conventional solder dipping method.

NbAl超伝導芯線を通った超伝導電流は、超伝導特性を示すニオブ母材1を超伝導状態で流れ、NbSn層4および半田層6を介して接続した超伝導線材に流れ、超伝導接続を形成する。接続部をニオブや鉛ビスマススズ半田の臨界磁場である0.4T以下に磁気シールドすると、磁石の発生する磁場下で超伝導接続が良好に維持される。 The superconducting current passing through the Nb 3 Al superconducting core wire flows in the superconducting state through the niobium base material 1 exhibiting superconducting characteristics, and flows to the superconducting wire connected via the Nb 3 Sn layer 4 and the solder layer 6. Form a superconducting connection. When the connecting portion is magnetically shielded to 0.4 T or less, which is the critical magnetic field of niobium or lead bismuth tin solder, superconducting connection is favorably maintained under the magnetic field generated by the magnet.

1.NbAl超伝導コイルとNbTi超伝導コイルの接続
まず、NbAl超伝導線材に対して次のような3段階の工程で処理を行う。
1. Connection of Nb 3 Al Superconducting Coil and NbTi Superconducting Coil First, the Nb 3 Al superconducting wire is processed in the following three steps.

処理1:NbAl超伝導コイルから引き出した熱処理前のNbAl超伝導線材の接続部から絶縁被覆を取り除き、外周を低スズ組成の鉛スズ系の半田で被覆した後、接続部をNbAl超伝導コイルとともに800℃で10時間加熱処理する。この加熱処理により、図1に示した複合芯線2にNbAlが形成するとともに、外周部の安定化銅3が図2に示すようにブロンズ5に変化する。ブロンズ5中のスズ原子は、ニオブ母材1に固相拡散し、ニオブ母材1の外周にNbSn層4が形成する。 Process 1: The insulation coating is removed from the connection portion of the Nb 3 Al superconducting wire before heat treatment drawn from the Nb 3 Al superconducting coil, the outer periphery is covered with a lead tin solder having a low tin composition, and the connection portion is then coated with Nb. Heat treatment is performed at 800 ° C. for 10 hours together with 3 Al superconducting coil By this heat treatment, Nb 3 Al is formed on the composite core wire 2 shown in FIG. 1, and the stabilized copper 3 on the outer peripheral portion is changed to the bronze 5 as shown in FIG. Tin atoms in the bronze 5 are solid-phase diffused in the niobium base material 1, and an Nb 3 Sn layer 4 is formed on the outer periphery of the niobium base material 1.

処理2:接続部をArガスなどの不活性ガスまたは真空中で溶融したスズ組成の高い鉛フリー半田に浸し、ブロンズ5を半田浴槽中に拡散させて除去するとともに、NbSn層の周りに鉛フリー半田層を形成させる。スズ組成の高い鉛フリー半田の溶融温度は、半田が溶融する200℃程度を下限とし、NbAlの特性が変化する600℃を上限とする範囲内の温度とする。たとえば300℃とすることができる。 Process 2: The connecting portion is immersed in an inert gas such as Ar gas or a lead-free solder having a high tin composition melted in a vacuum, and the bronze 5 is diffused and removed in the solder bath, and around the Nb 3 Sn layer. A lead-free solder layer is formed. The melting temperature of the lead-free solder having a high tin composition is set to a temperature within a range where the lower limit is about 200 ° C. at which the solder melts and the upper limit is 600 ° C. at which the characteristics of Nb 3 Al change. For example, it can be 300 degreeC.

処理3:接続部をArガスなどの不活性ガスまたは真空中で250℃程度で溶融した鉛ビスマススズ半田浴槽に浸し、鉛フリー半田層を超伝導臨界磁場に優れた鉛ビスマススズ半田層に置き換える。   Process 3: The connecting portion is immersed in an inert gas such as Ar gas or a lead bismuth tin solder bath melted in vacuum at about 250 ° C., and the lead-free solder layer is replaced with a lead bismuth tin solder layer excellent in superconducting critical magnetic field.

次に、接続相手であるNbTi超伝導線材に対して次のような表面処理を行う。   Next, the following surface treatment is performed on the NbTi superconducting wire that is the connection partner.

処理4:NbTi超伝導コイルから引き出したNbTi超伝導線材の接続部の絶縁被覆を取り除き、安定化銅を露出させた後、Arガスなどの不活性ガスまたは真空中で溶融したスズ組成の高い鉛フリー半田に浸し、銅母材を除去するとともに、NbTi超伝導芯線の周りを鉛フリー半田でコートする。スズ組成の高い鉛フリー半田の溶融温度は、半田が溶融する200℃程度を下限とし、NbTiのピンニング特性が変化し始める500℃を上限とする範囲内の温度とする。たとえば300℃とすることができる。なお、銅母材を除去する方法は、半田浴槽への浸漬に限られず、硝酸などの薬品による除去とすることもできる。   Process 4: Lead having a high tin composition melted in an inert gas such as Ar gas or vacuum after removing the insulation coating from the connection portion of the NbTi superconducting wire drawn from the NbTi superconducting coil and exposing the stabilized copper The copper base material is removed by dipping in free solder, and the periphery of the NbTi superconducting core wire is coated with lead-free solder. The melting temperature of the lead-free solder having a high tin composition is set to a temperature within a range where the lower limit is about 200 ° C. at which the solder melts and the upper limit is 500 ° C. at which the pinning characteristics of NbTi start to change. For example, it can be 300 degreeC. The method for removing the copper base material is not limited to immersion in a solder bath, but may be removal with a chemical such as nitric acid.

処理5:接続部をArガスなどの不活性ガスまたは真空中で溶融した鉛ビスマススズ半田浴槽に浸し、鉛フリー半田層を鉛ビスマススズ半田層に置き換える。鉛ビスマススズ半田の溶融温度は、半田が溶融する200℃程度を下限とし、NbTiのピンニング特性が変化し始める500℃を上限とする範囲内の温度とする。たとえば250℃〜300℃とすることができる。   Process 5: The connecting portion is immersed in an inert gas such as Ar gas or a lead bismuth tin solder bath melted in vacuum, and the lead-free solder layer is replaced with a lead bismuth tin solder layer. The melting temperature of the lead bismuth tin solder is a temperature within a range where the lower limit is about 200 ° C. at which the solder melts and the upper limit is 500 ° C. at which the pinning characteristics of NbTi start to change. For example, it can be set to 250 ° C to 300 ° C.

そして、図4に示すように、NbAl超伝導コイルから引き出し、処理の終了したNbAl超伝導線材7とNbTi超伝導コイルから引き出し、処理の終了したNbTi超伝導線材8をスイッチバックの方法で近接して並べ、Arガスなどの不活性ガスまたは真空中で溶融した鉛ビスマススズ半田浴槽9に浸し、鉛ビスマススズ半田により超伝導線材7、8を接続して超伝導接続10を形成させる。鉛ビスマススズ半田の溶融温度は、半田が溶融する200℃程度を下限とし、NbTiのピンニング特性が変化し始める500℃を上限とする範囲内の温度とする。たとえば300℃とすることができる。超伝導線材7、8を配置する方法は、図4に示したスイッチバックに限定されない。交差配置でもよく、また、超伝導線材7、8の末端端面を平面加工しておき、両超伝導線材7、8を突き合わせるようにしてもよい。 Then, as shown in FIG. 4, the Nb 3 Al superconducting wire is drawn out from the Nb 3 Al superconducting coil 7 and the NbTi superconducting wire 7 and the NbTi superconducting coil after the processing are finished. A superconducting connection 10 is formed by connecting the superconducting wires 7 and 8 with lead bismuth tin solder 9 by immersing them in a lead bismuth tin solder bath 9 which is arranged close by the method and melted in an inert gas such as Ar gas or vacuum. The melting temperature of the lead bismuth tin solder is a temperature within a range where the lower limit is about 200 ° C. at which the solder melts and the upper limit is 500 ° C. at which the pinning characteristics of NbTi start to change. For example, it can be 300 degreeC. The method of arranging the superconducting wires 7 and 8 is not limited to the switchback shown in FIG. Alternatively, the superconducting wires 7 and 8 may be flattened and the superconducting wires 7 and 8 may be abutted.

なお、最後の接続工程は、上記処理3と処理5の同時処理に替えることができる。   In addition, the last connection process can be changed to the simultaneous process of the said process 3 and the process 5. FIG.

接続後には、NbAl超伝導芯線を通った超伝導電流は、第2種超伝導材料であるニオブ母材を超伝導状態で流れ、NbAl層および鉛ビスマススズ半田層を介してNbTi超伝導線材に流れ、超伝導接続を形成する。 After connection, the superconducting current through the Nb 3 Al superconductive wire is a niobium base metal, which is the second type superconducting material flow superconducting state, through an Nb 3 Al layer and lead Bisumasusuzu solder layer NbTi than Flows through the conducting wire and forms a superconducting connection.

実際に処理3まで行ったNbAl超伝導線材の断面写真を図5(a)(b)に示す。ニオブ母材の外周にNbSn層が形成し、NbSn層の周りに鉛ビスマススズ半田層が形成している。処理後のNbAl超伝導線材とNbTi超伝導線材のスイッチバッグ接続部について、4.2ケルビンで接続抵抗を計測した結果を図6に示す。図の横軸は接続部の電流を示し、縦軸は接続部の電圧を示す。電圧が発生していない状態が超伝導状態であり、0.4Tまで超伝導状態を保っている。特に0.1T以下では十分大きな超伝導電流が流れる。したがって、図7に示すように、超伝導接続14を磁石11から十分遠方に置くか、超伝導接続14を、超伝導コイルや強磁性体15を用いて0.4T以下に磁気シールドすることにより、超伝導接続14を維持することが可能である。磁気シールドに使用する超伝導コイルには、NbTi、NbSnなどの金属系超伝導線材や酸化物高温超伝導線材を巻回したものを用いることができる。また、磁気シールドは、超伝導バルクによるものとすることもできる。 Sectional photographs of the Nb 3 Al superconducting wire actually processed up to treatment 3 are shown in FIGS. An Nb 3 Sn layer is formed on the outer periphery of the niobium base material, and a lead bismuth tin solder layer is formed around the Nb 3 Sn layer. FIG. 6 shows the result of measuring the connection resistance with 4.2 Kelvin for the switch bag connecting portion of the Nb 3 Al superconducting wire and the NbTi superconducting wire after the treatment. In the figure, the horizontal axis indicates the current at the connection portion, and the vertical axis indicates the voltage at the connection portion. A state where no voltage is generated is a superconducting state, and the superconducting state is maintained up to 0.4T. In particular, a sufficiently large superconducting current flows below 0.1T. Therefore, as shown in FIG. 7, the superconducting connection 14 is placed sufficiently far from the magnet 11 or the superconducting connection 14 is magnetically shielded to 0.4 T or less using a superconducting coil or a ferromagnetic body 15. The superconducting connection 14 can be maintained. As the superconducting coil used for the magnetic shield, a metal superconducting wire such as NbTi, Nb 3 Sn or a high temperature superconducting wire wound can be used. The magnetic shield can also be a superconducting bulk.

本実施例では、NbAl超伝導線材と接続するNbTi超伝導線材として銅母材のものを例に挙げたが、NbTi超伝導線材は、たとえば永久電流スイッチに用いられるキュプロニッケル母材のものとしてもよい。また、NbTi超伝導線材はNbTi超伝導コイルから引き出したものとしたが、数mのNbTi超伝導線材を用い、このNbTi超伝導線材の一端をNbAl超伝導線材と接続し、他端を半田ディップ法などによりNbSn超伝導コイル、NbTi超伝導コイル、NbTi永久電流スイッチなどと接続することも可能である。さらに、NbAl超伝導コイルを形成するNbAl超伝導線材についても特に制限はなく、図1に示した断面構成を有するすべてのNbAl超伝導線材を対象とすることができる。急熱急冷変態法によるNbAl超伝導線材、低温拡散法によるNbAl超伝導線材、TRUQ法やDRHQ法などによる改良型のNbAl超伝導線材などの様々なNbAl超伝導線材があるが、基本的な断面構成は図1に示したものと同様である。
2.NbAl超伝導コイルとNbSn超伝導コイルの接続
NbAl超伝導コイルから接続のために引き出したNbAl超伝導線材に上記処理1〜処理3の3段階の処理を行う。接続する相手側のNbSn超伝導コイルから引き出したNbSn超伝導線材には、以下の2段階の工程で表面処理を行う。
In the present embodiment, the copper base material is taken as an example of the NbTi superconducting wire connected to the Nb 3 Al superconducting wire. However, the NbTi superconducting wire is made of, for example, a cupronickel base material used for a permanent current switch. It is good. The NbTi superconducting wire was drawn from the NbTi superconducting coil, but a NmTi superconducting wire of several meters was used, one end of this NbTi superconducting wire was connected to the Nb 3 Al superconducting wire, and the other end was connected. It is also possible to connect to an Nb 3 Sn superconducting coil, an NbTi superconducting coil, an NbTi permanent current switch, or the like by a solder dip method or the like. Furthermore, no particular restriction on the Nb 3 Al superconductive wire to form a Nb 3 Al superconductive coil, it is possible to cover all the Nb 3 Al superconductive wire having a cross sectional structure shown in FIG. Nb 3 Al superconducting wire according to rapid heating and quenching transformation method, Nb 3 Al superconducting wire according to the low temperature diffusion method, various Nb 3 Al superconductive wire, such as Nb 3 Al superconductive wire improved due TRUQ method or DRHQ method However, the basic cross-sectional configuration is the same as that shown in FIG.
2. Performing three-step process in the processing 1 processing 3 Nb 3 Al connection Nb 3 Al superconducting coil of a superconducting coil and Nb 3 Sn superconductive coils Nb 3 Al superconductive wire drawn out for connection. The Nb 3 Sn superconducting wire drawn out from the other side of the Nb 3 Sn superconducting coil connecting, surface treatment of the following two steps.

処理6:NbSn化加熱処理の終了したNbSn超伝導コイルの接続部から絶縁被覆を取り除いた後、接続部をArガスなどの不活性ガスまたは真空中でスズ組成の高い鉛フリー半田浴槽に浸し、NbSn超伝導線材の安定化銅やブロンズ母材を除去する。スズ組成の高い鉛フリー半田の溶融温度は、半田が溶融する200℃程度を下限とし、NbSnが形成され始める500℃を上限とする範囲内の温度とする。たとえば300℃とすることができる。NbSn超伝導芯線が露出した後、周りに鉛フリー半田層が形成する。なお、安定化銅やブロンズ母材の除去に際しては、硝酸などの強い酸で粗除去する工程を付加することもできる。 Process 6: Nb 3 After removing the finished Nb 3 Sn insulating coating from the connecting portion of the superconducting coil of Sn of heat treatment, the connecting portion of the high lead-free solder of tin composition with an inert gas or in vacuum, such as Ar gas Immerse in a bath and remove the stabilized copper and bronze base material of the Nb 3 Sn superconducting wire. The melting temperature of the lead-free solder having a high tin composition is set to a temperature within a range where the lower limit is about 200 ° C. at which the solder melts and the upper limit is 500 ° C. at which Nb 3 Sn begins to be formed. For example, it can be 300 degreeC. After the Nb 3 Sn superconducting core wire is exposed, a lead-free solder layer is formed around it. When removing the stabilized copper or bronze base material, a step of rough removal with a strong acid such as nitric acid can be added.

処理7:接続部をArガスなどの不活性ガスまたは真空中で溶融した鉛ビスマススズ半田浴槽に浸し、接続部の外周の鉛フリー半田層を超伝導臨界磁場に優れた鉛ビスマススズ半田層に置き換える。鉛ビスマススズ半田の溶融温度は、半田が溶融する200℃程度を下限とし、NbSnが形成され始める500℃を上限とする範囲内と温度とする。たとえば300℃とすることができる。 Process 7: The connecting portion is immersed in an inert gas such as Ar gas or a lead bismuth tin solder bath melted in vacuum, and the lead-free solder layer on the outer periphery of the connecting portion is replaced with a lead bismuth tin solder layer excellent in superconducting critical magnetic field. The melting temperature of the lead bismuth tin solder is set to a temperature within a range where the lower limit is about 200 ° C. at which the solder melts and the upper limit is 500 ° C. at which Nb 3 Sn begins to be formed. For example, it can be 300 degreeC.

処理の終了したNbAl超伝導線材とNbSn超伝導線材をスイッチバックの方法などで近接して並べ、Arガスなどの不活性ガスまたは真空中で溶融した鉛ビスマススズ半田浴槽に浸し、高い超伝導臨界磁場特性を持つ鉛ビスマススズ半田を介して接続する。鉛ビスマススズ半田の溶融温度は、半田が溶融する200℃程度を下限とし、NbSnが形成され始める500℃を上限とする範囲内の温度とする。たとえば250℃とすることができる。両超伝導線材を接続するための配置方法はスイッチバックに限定されず、交差配置や端面突合せなどとすることもできる。 Nb 3 Al superconducting wire and Nb 3 Sn superconducting wire that have been processed are arranged in close proximity by a switchback method, etc., and immersed in an inert gas such as Ar gas or a lead bismuth tin solder bath melted in a vacuum. Connected via lead bismuth tin solder with superconducting critical magnetic field characteristics. The melting temperature of the lead bismuth tin solder is a temperature within a range where the lower limit is about 200 ° C. at which the solder melts and the upper limit is 500 ° C. at which Nb 3 Sn begins to be formed. For example, it can be 250 degreeC. The arrangement method for connecting both superconducting wires is not limited to switchback, and may be cross arrangement or end face butt.

なお、最後の接続工程は、上記処理3と処理7の同時処理に替えることができる。   In addition, the last connection process can be changed to the simultaneous process of the said process 3 and the process 7. FIG.

NbAl超伝導コイルとNbSn超伝導コイルの接続の場合にも、図7に示すように、超伝導接続14は、磁石11から十分遠方で0.4T以下の磁場に置くか、超伝導コイルや強磁性体15を用いて0.4T以下に磁気シールドして、超伝導接続14を維持させることができる。超伝導コイルにはNbTiやNbSnなどの金属系超伝導線材を巻回したもの、酸化物高温超伝導線材を巻回したものを採用することができる。また、磁気シールドは超伝導バルクを用いたものとすることもできる。
3.NbAl超伝導コイルとNbAl超伝導コイルの接続
NbAl超伝導コイルから接続のために引き出した2本のNbAl超伝導線材に上記処理1〜処理3の処理を行う。
Also in the case of the connection between the Nb 3 Al superconducting coil and the Nb 3 Sn superconducting coil, as shown in FIG. 7, the superconducting connection 14 is placed in a magnetic field of 0.4 T or less sufficiently far from the magnet 11, The superconducting connection 14 can be maintained by magnetically shielding to 0.4 T or less using the conductive coil or the ferromagnetic material 15. As the superconducting coil, a coil in which a metal superconducting wire such as NbTi or Nb 3 Sn is wound, or a coil in which an oxide high-temperature superconducting wire is wound can be employed. The magnetic shield can also be a superconducting bulk.
3. It performs processing of the processing 1 processing 3 Nb 3 Al superconductive coil and Nb 3 Al 2 pieces of Nb 3 Al superconducting wire from the connection Nb 3 Al superconductive coil drawn out for connection of the superconducting coil.

処理の終了した2本のNbAl超伝導線材をスイッチバックの方法で近接して並べ、Arガスまたは真空中で溶融した鉛ビスマススズ半田浴槽に浸し、高い超伝導臨界磁場特性を持つ鉛ビスマススズ半田を介して接続する。鉛ビスマススズ半田の溶融温度は、半田が溶融する200℃程度を下限とし、NbAlの形成が始まる500℃を上限とする範囲内の温度とする。たとえば250℃とすることができる。両超伝導線材を接続のために配置する方法はスイッチバックに限られず、交差配置や端面接合などとすることができる。 Two Nb 3 Al superconducting wires that have been processed are arranged in close proximity by a switchback method, immersed in a lead bismuth tin solder bath melted in Ar gas or vacuum, and lead bismuth tin solder having high superconducting critical magnetic field characteristics Connect through. The melting temperature of the lead bismuth tin solder is a temperature within a range where the lower limit is about 200 ° C. at which the solder melts and the upper limit is 500 ° C. at which Nb 3 Al formation starts. For example, it can be 250 degreeC. The method of arranging both superconducting wires for connection is not limited to switchback, and may be crossed arrangement or end face bonding.

形成する超伝導接続は、図7に示すように、磁石11から十分遠方で0.4T以下の漏れ磁場の場所に置くか、超伝導コイルや強磁性体15によって0.4T以下の磁場に磁気シールドして、維持させることができる。   As shown in FIG. 7, the superconducting connection to be formed is placed at a location where a leakage magnetic field of 0.4 T or less is sufficiently far from the magnet 11, or is magnetized to a magnetic field of 0.4 T or less by a superconducting coil or a ferromagnetic material 15. Can be shielded and maintained.

NbAl超伝導線材の断面構成を模式的に示した図である。The cross-sectional configuration of nb 3 Al superconductive wire is a diagram schematically showing. ニオブ母材の外周にNbSn層が形成し、安定化銅がブロンズに変化した状態を示した図である。Nb 3 Sn layer is formed on the outer periphery of the niobium base metal, a diagram showing a state in which the stabilizing copper is changed into bronze. NbSn層の外周に半田層が形成した状態を示した図である。Nb is a diagram solder layer on an outer peripheral showed a state in which the formation of the 3 Sn layer. 接続部をスイッチバック方式で近接させ、半田浴槽中に浸した状態を示した図である。It is the figure which showed the state which made the connection part adjoin by a switchback system and was immersed in the solder bath. (a)(b)は、それぞれ、接続前のNbAl超伝導線材を示した断面写真である。(A) and (b) are cross-sectional photographs each showing a Nb 3 Al superconducting wire before connection. NbAl超伝導線材とNbTi超伝導線材を接続した時の接続部の電圧−電流特性を示した図である。Nb 3 Al superconductive wire and NbTi voltage at the connection when connecting the superconducting wires - is a graph showing the current characteristics. 形成する超伝導接続の配置等について示した図である。It is the figure shown about arrangement | positioning etc. of the superconducting connection to form.

符号の説明Explanation of symbols

1 ニオブ母材
2 ニオブとアルミニウムの複合芯線
3 安定化銅
4 NbSn層
5 ブロンズ
6 半田層
7 NbAl超伝導線材
8 NbTi超伝導線材
9 鉛ビスマススズ半田浴槽
10 超伝導接続
11 磁石
14 超伝導接続
15 超伝導コイルや強磁性体
DESCRIPTION OF SYMBOLS 1 Niobium base material 2 Niobium and aluminum composite core wire 3 Stabilized copper 4 Nb 3 Sn layer 5 Bronze 6 Solder layer 7 Nb 3 Al superconducting wire 8 NbTi superconducting wire 9 Lead bismuth tin solder bath 10 Superconducting connection 11 Magnet 14 Super Conductive connection 15 Superconducting coils and ferromagnets

Claims (4)

熱処理前のNb Al超伝導線材の表面を半田でコートした後、Nb Al超伝導コイルと共に熱処理を行い、該熱処理と同時にニオブ母材の外周にNbSn層を形成し、次いでNbSn層の外周を半田で被覆した後、相手側の超伝導線材と半田を介して接続することを特徴とするNbAl超伝導コイルの接続方法。 After the surface of the Nb 3 Al superconducting wire before heat treatment is coated with solder, heat treatment is performed together with the Nb 3 Al superconducting coil, and simultaneously with the heat treatment , an Nb 3 Sn layer is formed on the outer periphery of the niobium base material, and then Nb 3 A method of connecting an Nb 3 Al superconducting coil, wherein the outer periphery of the Sn layer is coated with solder and then connected to the superconducting wire on the other side via solder. Nb Sn層の外周に鉛ビスマススズ半田層を形成する請求項1記載のNbAl超伝導コイルの接続方法。 Nb 3 Sn layer Nb 3 Al connection of the superconducting coil according to claim 1, wherein the outer circumference to form a lead Bisumasusuzu solder layer. Nb Al超伝導線材と接続するNbTi超伝導線材から金属母材を除去し、NbTi超伝導芯線の表面を、Nb Al超伝導線材の表面をコートした半田と同じ半田でコートする請求項1又は2に記載のNbAl超伝導コイルの接続方法。 Nb 3 Al superconducting wire and the metal matrix is removed from the NbTi superconducting wire which connects, NbTi surface of the superconducting wire, Nb 3 Al claim 1 same solder coated with solder and coated the surface of the superconducting wire or 2 Nb 3 Al connection of the superconducting coil according to. Nb Al超伝導線材と接続するNb Sn超伝導線材について、加熱処理により芯線にNb Snを形成した後、金属母材を除去し、Nb Sn超伝導芯線の表面を、Nb Al超伝導線材の表面をコートした半田と同じ半田でコートする請求項1又は2に記載のNbAl超伝導コイルの接続方法。 For Nb 3 Sn superconducting wire connected to the Nb 3 Al superconductive wire, after forming the Nb 3 Sn in the core by the heat treatment, removing the metal matrix, the surface of the Nb 3 Sn superconducting wire, Nb 3 Al Nb 3 Al connection of the superconducting coil according to claim 1 or 2 coated with the same solder as solder coated surface of the superconducting wire.
JP2005269056A 2005-09-15 2005-09-15 Nb3Al superconducting coil connection method Expired - Fee Related JP4822781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005269056A JP4822781B2 (en) 2005-09-15 2005-09-15 Nb3Al superconducting coil connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005269056A JP4822781B2 (en) 2005-09-15 2005-09-15 Nb3Al superconducting coil connection method

Publications (2)

Publication Number Publication Date
JP2007081244A JP2007081244A (en) 2007-03-29
JP4822781B2 true JP4822781B2 (en) 2011-11-24

Family

ID=37941198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269056A Expired - Fee Related JP4822781B2 (en) 2005-09-15 2005-09-15 Nb3Al superconducting coil connection method

Country Status (1)

Country Link
JP (1) JP4822781B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2459253B (en) 2008-04-09 2010-07-07 Siemens Magnet Technology Ltd Method of forming a coupled coil arrangement
CN103633529B (en) * 2013-11-26 2016-01-06 中国科学院电工研究所 A kind of Nb3Al superconducting joint preparation method
KR102154674B1 (en) * 2018-09-07 2020-09-10 (주)금룡테크 Method of bonding superconducting wire

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2848618B2 (en) * 1989-01-25 1999-01-20 株式会社東芝 How to connect compound superconducting wires
JPH0653025A (en) * 1992-08-03 1994-02-25 Mitsubishi Electric Corp Joint structure of superconductor
JPH10326634A (en) * 1997-05-26 1998-12-08 Toshiba Corp Method for connecting superconductor
JP3447990B2 (en) * 1999-09-30 2003-09-16 株式会社神戸製鋼所 Superconducting connection method and superconducting connection structure for superconducting wires
US6358888B1 (en) * 1999-12-27 2002-03-19 General Electric Company Shielded superconducting magnet joints
JP2004153146A (en) * 2002-10-31 2004-05-27 Japan Superconductor Technology Inc Superconductive magnet unit
JP3944573B2 (en) * 2002-12-25 2007-07-11 独立行政法人物質・材料研究機構 Manufacturing method of Nb3Al superconducting wire and Nb3Al superconducting wire obtained by the method

Also Published As

Publication number Publication date
JP2007081244A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
US20120061139A1 (en) Superconductive Connecting Device For The End Pieces Of Two Superconductors And Method For The Production Thereof
JP2008124014A (en) Method for producing superconductor
JPH05283116A (en) Superconductive wire and coil for superconductive connection part and manufacture thereof
JP4391403B2 (en) Magnesium diboride superconducting wire connection structure and connection method thereof
JP2009187743A (en) Superconductive tape wire rod, and repair method of defective portion
JP4822781B2 (en) Nb3Al superconducting coil connection method
JP2015185211A (en) METHOD OF PRODUCING Nb3Sn SUPERCONDUCTING WIRE ROD
JP5258424B2 (en) Precursor for producing Nb3Sn superconducting wire, method for producing the same, and Nb3Sn superconducting wire
JP2006127939A (en) Electric conductor and its manufacturing method
CA2042150A1 (en) Method of melt forming a superconducting joint between superconducting tapes
JP5977261B2 (en) Ultra-low resistance connection between superconducting wires and method of forming the connection
JP3866926B2 (en) Powder method Nb (3) Superconducting connection structure manufacturing method using Sn superconducting wire
JP3447990B2 (en) Superconducting connection method and superconducting connection structure for superconducting wires
JP3397038B2 (en) Superconducting connection method and superconducting connection structure for superconducting wires
CA1042640A (en) Method for stabilizing a superconductor
JP2916214B2 (en) Superconducting wire connection method
JP2020009709A (en) Superconducting wire rod and insulated superconducting wire rod
KR102621320B1 (en) winding method for superconducting wire
KR102154674B1 (en) Method of bonding superconducting wire
KR102429818B1 (en) Joint Structure of Multi-filament Core Superconducting Wire And Manufacturing Method Thereof
JP2008159404A (en) Connection structure of superconducting wire material
JP2022139398A (en) Rare earth-based oxide superconductive multi-core wire rod and method for producing the same
JPS6381709A (en) Superconductor
JPH08181014A (en) Superconductive magnet device and its manufacture
JP2013062210A (en) CONNECTION METHOD OF NbTi SUPERCONDUCTING WIRE AND CONNECTION STRUCTURE OF THE SAME

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees