JP4821810B2 - Carburizing heat treatment method and carburizing source material - Google Patents

Carburizing heat treatment method and carburizing source material Download PDF

Info

Publication number
JP4821810B2
JP4821810B2 JP2008159173A JP2008159173A JP4821810B2 JP 4821810 B2 JP4821810 B2 JP 4821810B2 JP 2008159173 A JP2008159173 A JP 2008159173A JP 2008159173 A JP2008159173 A JP 2008159173A JP 4821810 B2 JP4821810 B2 JP 4821810B2
Authority
JP
Japan
Prior art keywords
carburizing
steel material
heat treatment
iron carbide
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008159173A
Other languages
Japanese (ja)
Other versions
JP2010001508A (en
Inventor
浩司 田中
博之 高宮
康宏 与語
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008159173A priority Critical patent/JP4821810B2/en
Publication of JP2010001508A publication Critical patent/JP2010001508A/en
Application granted granted Critical
Publication of JP4821810B2 publication Critical patent/JP4821810B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、鉄鋼材の浸炭熱処理方法およびそれに用いる浸炭源材に関するものである。   The present invention relates to a carburizing heat treatment method for a steel material and a carburizing source material used therefor.

各種の機械部品には、強度、剛性、コスト等の観点から鉄鋼材料が多用されている。鉄鋼材料を用いた場合、合金元素の種類やその含有量、熱処理条件などを適切に選択することで、所望する強度や延性などをもつ部材を得ることが容易である。   Steel materials are frequently used for various machine parts from the viewpoints of strength, rigidity, cost, and the like. When a steel material is used, it is easy to obtain a member having desired strength, ductility, and the like by appropriately selecting the type of alloy element, its content, heat treatment conditions, and the like.

もっとも、強度(硬さ)と延性等とは背反関係にあるため、一般的な焼入れ・焼戻し(調質処理)などの熱処理のみでは、各種特性が高次元でバランスした鉄鋼部材を得ることは容易ではない。そこで、耐疲労性や耐摩耗性等の点で、大きな硬さが必要な表面部のみ硬くし、内部は比較的柔らかくして、強度と延性とが高次元でバランスさせ得る浸炭熱処理(表面硬化方法の一つ)がしばしば用いられる。   However, since strength (hardness) and ductility are in a trade-off relationship, it is easy to obtain a steel member with various characteristics balanced at a high level only by heat treatment such as general quenching and tempering (tempering treatment). is not. Therefore, in terms of fatigue resistance, wear resistance, etc., carburizing heat treatment (surface hardening) that only hardens the surface where high hardness is required and the inside is relatively soft, and strength and ductility can be balanced at a high level. One of the methods is often used.

浸炭熱処理は、肌焼鋼等のように比較的C含有量の少ない鉄鋼材料に対して、その表面から炭素(C)を浸透させ、表面部のC濃度を高くしてから焼入れを行う処理である。これにより、全体としては延性が保持されつつも、破壊や摩耗の起点となり易い表面部のみが強化された、いわゆる「外硬内柔」の金属組織が得られる。これにより、耐疲労性や耐摩耗性等と、耐衝撃性等との両方に優れた鉄鋼部材が得られる。
このような浸炭熱処理方法には、一般的に用いる浸炭源(浸炭剤)の相違により、固体浸炭法、ガス浸炭法、液体浸炭法がある。
Carburizing heat treatment is a treatment in which carbon (C) is infiltrated from the surface of a steel material having a relatively small C content, such as case-hardened steel, and the C concentration in the surface portion is increased before quenching. is there. As a result, a so-called “hard and soft” metal structure is obtained in which only the surface portion that tends to be the starting point of breakage or wear is reinforced while maintaining ductility as a whole. Thereby, the steel member excellent in both fatigue resistance, wear resistance, etc. and impact resistance can be obtained.
Such a carburizing heat treatment method includes a solid carburizing method, a gas carburizing method, and a liquid carburizing method depending on differences in carburizing sources (carburizing agents) that are generally used.

このうち現在多用されているのは、形成される浸炭層の制御が比較的容易なガス浸炭法である。このガス浸炭法は、一般的に、炭化水素系ガスを変性させたガス(RXガス)を浸炭源とし、雰囲気制御によりCO濃度と温度を調整してなされる。もっとも、ガス浸炭法は、COガスと鉄鋼材料表面との間の平衡(気−固平衡)に依存している。このため、0.6〜1mm程度の厚さ(浸炭深さ)の浸炭層を形成するのに、800〜900℃程度の浸炭ガス中で被処理材(鉄鋼部材)を2〜4時間加熱することが必要となる。   Of these, the gas carburizing method that is currently used frequently is relatively easy to control the formed carburized layer. This gas carburizing method is generally performed by using a gas obtained by modifying a hydrocarbon gas (RX gas) as a carburizing source and adjusting the CO concentration and temperature by controlling the atmosphere. However, the gas carburizing method relies on an equilibrium (gas-solid equilibrium) between the CO gas and the steel material surface. For this reason, in order to form a carburized layer having a thickness (carburizing depth) of about 0.6 to 1 mm, the material to be treated (steel member) is heated in a carburizing gas of about 800 to 900 ° C. for 2 to 4 hours. It will be necessary.

ところが最近、CO2排出量の削減、省エネルギー化、プロセスの迅速化などの要請が一層強くなってきている。そこで従来のガス浸炭法に対して、環境負荷の低減、省エネルギー化、処理時間の短縮などを図れる真空浸炭法が用いられつつある。真空浸炭法は、真空炉に導入された微量の炭化水素系ガス(浸炭性ガス)が分解して生じる炭素(Gr)を鉄鋼材料の表面に付着させて浸炭する方法である。真空浸炭法によれば、Grと鉄(Fe)との間の平衡(固−固平衡)により浸炭が生じるため、浸炭能力(Cの浸透力)が高く、短時間の浸炭処理が可能となる。なお、真空浸炭法に関する開示は、例えば、下記の特許文献などにある。   Recently, however, demands for reducing CO2 emissions, saving energy, and speeding up processes have become stronger. Therefore, a vacuum carburizing method capable of reducing the environmental load, saving energy, shortening the processing time and the like is being used with respect to the conventional gas carburizing method. The vacuum carburizing method is a method in which carbon (Gr) generated by decomposition of a small amount of a hydrocarbon-based gas (carburizing gas) introduced into a vacuum furnace is adhered to the surface of a steel material and carburized. According to the vacuum carburizing method, carburization occurs due to an equilibrium (solid-solid equilibrium) between Gr and iron (Fe), so that the carburizing ability (C penetrating power) is high, and a short time carburizing process is possible. . In addition, the indication regarding a vacuum carburizing method exists in the following patent document etc., for example.

特開2006−161119号公報JP 2006-161119 A 特開2007−322036号公報JP 2007-322036 A 特開2007−224357号公報JP 2007-224357 A

しかし、真空浸炭法を行った場合、鉄鋼部材の表面部には炭素が過剰に浸透した部分(過剰浸炭部)が、鉄鋼部材の表面部の粒界に沿ってネットワーク状に形成される。この過剰浸炭部は炭化物からなり、このネットワーク状炭化物が鉄鋼部材の表面部を脆化させる。そこで真空浸炭法では、一旦浸炭処理をした後、別途、浸入したCをさらに内部へ拡散させる拡散工程を設けて、そのようなネットワーク状炭化物(過剰浸炭部)の解消を図っている。   However, when the vacuum carburizing method is performed, a portion (excess carburized portion) in which carbon permeates excessively is formed in the surface portion of the steel member in a network shape along the grain boundary of the surface portion of the steel member. The excessive carburized portion is made of carbide, and the network-like carbide causes the surface portion of the steel member to become brittle. Therefore, in the vacuum carburizing method, once the carburizing treatment is performed, a diffusion process for further diffusing the infiltrated C further into the interior is provided to eliminate such a network-like carbide (excess carburizing portion).

ところがこのために、浸炭工程自体が高々十数分程度で終了しても、その拡散工程に別途、数十分程度を要することになる。とすると結局、全体的に観れば、真空浸炭法を用いても、必ずしも処理時間が十分に短縮されているとはいえない。   However, for this reason, even if the carburizing process itself is completed in about ten minutes at the most, the diffusion process requires several tens of minutes separately. As a result, from the overall viewpoint, even if the vacuum carburizing method is used, it cannot be said that the processing time is necessarily shortened sufficiently.

本発明は、このような事情に鑑みて為されたものであり、ネットワーク状炭化物等の形成されない浸炭層を、鉄鋼部材の表面部に短時間で形成できる浸炭熱処理方法を提供することを目的とする。   This invention is made in view of such a situation, and it aims at providing the carburizing heat treatment method which can form the carburized layer in which a network-like carbide etc. are not formed in the surface part of a steel member in a short time. To do.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、FeとCの化合物である鉄炭化物を浸炭源に用いることで、過剰浸炭部(ネットワーク状炭化物など)を生じさせることなく、好ましい浸炭層を短時間で形成し得ることに成功した。そしてこの成果を発展させることで、本発明者は以降に述べる種々の発明を完成させるに至った。   As a result of extensive research and trial and error, the present inventor has produced an excessive carburized portion (such as a network-like carbide) by using iron carbide, which is a compound of Fe and C, as a carburizing source. And succeeded in forming a preferable carburized layer in a short time. And by developing this result, the present inventor has completed various inventions described below.

〈浸炭熱処理方法〉
(1)本発明の浸炭熱処理方法は、鉄鋼材の表面部から内部へCを浸透させて該鉄鋼材の内部よりも該表面部にC濃度の高い浸炭層を形成する鉄鋼材の浸炭熱処理方法であって、
FeとCの化合物である鉄炭化物よりなる浸炭源材を鉄鋼材の表面に接触させる接触工程と、該浸炭源材中の少なくともCが該鉄鋼材へ拡散する温度以上の浸炭温度まで該鉄鋼材を加熱する浸炭加熱工程と、該浸炭加熱工程後の鉄鋼材を冷却する冷却工程と、からなることを特徴とする。
<Carburizing heat treatment method>
(1) The carburizing heat treatment method of the present invention is a method for carburizing heat treatment of a steel material in which C is permeated from the surface portion of the steel material to the inside to form a carburized layer having a higher C concentration in the surface portion than in the steel material. Because
A contact step in which a carburizing source material made of iron carbide, which is a compound of Fe and C, is brought into contact with the surface of the steel material; and the steel material up to a carburizing temperature equal to or higher than a temperature at which at least C in the carburizing source material diffuses into the steel material. It comprises a carburizing heating step for heating the steel and a cooling step for cooling the steel material after the carburizing heating step.

(2)本発明の浸炭熱処理方法は、浸炭源として鉄炭化物を用いる点で画期的であり、従来のものとは全く異なる。この本発明の浸炭熱処理方法によれば、過剰浸炭部のない硬質かつ均質な浸炭層を、短時間で得ることが可能となる。しかも、単に鉄鋼材の表面部へのCの浸透時間が短いだけではなく、真空浸炭した場合等に必要となる拡散工程なども不要となり、浸炭熱処理全体を非常に短時間で終了させることが可能である。 (2) The carburizing heat treatment method of the present invention is epoch-making in that iron carbide is used as a carburizing source, and is completely different from the conventional one. According to the carburizing heat treatment method of the present invention, a hard and homogeneous carburized layer having no excessive carburized portion can be obtained in a short time. Moreover, not only is the C penetration time into the surface of the steel material short, but also the diffusion process required when vacuum carburizing, etc. is unnecessary, and the entire carburizing heat treatment can be completed in a very short time. It is.

本発明の浸炭熱処理方法により、好ましい浸炭層が短時間で形成可能となったメカニズムは必ずしも定かではないが、現状、次のように考えられる。
先ず、従来の真空浸炭法の場合、鉄鋼材の表面に付着形成されたGrが浸炭源となる。ところが、Grは通常の被処理材(鉄鋼材)の高温相であるオーステナイト相(γ)と直接平衡できず、表面ではγ相とセメンタイト(θ)との三相平衡を保つと考えられる。従って、真空浸炭した場合、オーステナイト相中にセメンタイトが必ず生成し、鉄鋼材の表面部の平衡C濃度は4%以上の高濃度になる。この結果、前述したような過剰浸炭部が形成されることとなる。
Although the mechanism by which a preferable carburized layer can be formed in a short time by the carburizing heat treatment method of the present invention is not necessarily clear, the present state is considered as follows.
First, in the case of the conventional vacuum carburizing method, Gr adhering to the surface of the steel material becomes a carburizing source. However, it is considered that Gr cannot directly equilibrate with the austenite phase (γ), which is a high-temperature phase of a normal material (steel material), and maintains a three-phase equilibrium between the γ phase and cementite (θ) on the surface. Therefore, when vacuum carburizing is performed, cementite is inevitably generated in the austenite phase, and the equilibrium C concentration of the surface portion of the steel material becomes a high concentration of 4% or more. As a result, an excessive carburized portion as described above is formed.

これに対して本発明の浸炭熱処理方法によれば、浸炭源にγ相と直接平衡する鉄炭化物を用いているため、高温下にある鉄鋼材は、その表面部に接触している鉄炭化物とγ相単独で平衡状態となる。このため、鉄鋼材の表面部におけるC濃度は、鉄炭化物の平衡固溶限(固溶限界濃度)である1〜2%程度に保たれ、オーステナイト相内部にセメンタイトが生成することはない。   On the other hand, according to the carburizing heat treatment method of the present invention, since iron carbide that directly equilibrates with the γ phase is used as the carburizing source, the steel material under high temperature is in contact with the iron carbide in contact with the surface portion. The γ phase alone is in an equilibrium state. For this reason, the C concentration in the surface portion of the steel material is maintained at about 1 to 2%, which is the equilibrium solid solubility limit (solid solution limit concentration) of iron carbide, and cementite is not generated inside the austenite phase.

こうして本発明の浸炭熱処理方法によれば、鉄炭化物から鉄鋼材の表面部へCが迅速に浸透されつつも、その鉄鋼材の表面部に過剰浸炭部等が形成されることもない。この結果、拡散工程を必要とせず、浸炭熱処理全体を非常に短時間で完了させることが可能となった。   Thus, according to the carburizing heat treatment method of the present invention, C is rapidly infiltrated from the iron carbide into the surface portion of the steel material, but no excessive carburized portion or the like is formed on the surface portion of the steel material. As a result, the entire carburizing heat treatment can be completed in a very short time without requiring a diffusion step.

(3)ところで、本発明で用いる浸炭源である鉄炭化物の代表例は、M3C(M:金属元素)で表されるセメンタイトである。もっとも、Fe−C系の2元系セメンタイトは、準安定相であり、高温下ではFe(γ相)とGrに分解し得る。このため、Fe3Cをそのまま用いると、例えば、浸炭温度を高くすることができず、迅速な処理が困難となる。そこで、迅速な浸炭熱処理を容易に行えるようにするために、高温域でもより安定な鉄炭化物を浸炭源として用いることが好適である。この点に関して本発明者は、既に、CrやMoなどの特有の元素を含有させることで、鉄炭化物は高温下でも安定となること、すなわち、容易にはγ相とGrに分解しないことを新たに見出している。 (3) By the way, a representative example of iron carbide which is a carburizing source used in the present invention is cementite represented by M 3 C (M: metal element). However, Fe-C binary cementite is a metastable phase and can be decomposed into Fe (γ phase) and Gr at high temperatures. For this reason, if Fe3C is used as it is, for example, the carburizing temperature cannot be increased, and rapid processing becomes difficult. Therefore, in order to facilitate quick carburizing heat treatment, it is preferable to use iron carbide that is more stable even in a high temperature region as a carburizing source. In this regard, the present inventor has already stated that iron carbide can be stabilized even at high temperatures by containing a specific element such as Cr or Mo, that is, it is not easily decomposed into a γ phase and Gr. Is heading.

従って、本発明の浸炭熱処理方法に係る浸炭源材である鉄炭化物は、少なくとも鉄鋼材の浸炭温度まで、その分解を抑制して安定化させる安定化元素を含むと好適である。   Therefore, it is preferable that the iron carbide as the carburizing source material according to the carburizing heat treatment method of the present invention contains a stabilizing element that suppresses and stabilizes at least the carburizing temperature of the steel material.

〈浸炭源材〉
上述したように、本発明は浸炭源に鉄炭化物を用いる点で画期的であり、従来の浸炭熱処理方法とは全く異なっている。そこで本発明は次のような浸炭源材としても把握できる。
<Carburizing source>
As described above, the present invention is epoch-making in that iron carbide is used as a carburizing source, and is completely different from conventional carburizing heat treatment methods. Therefore, the present invention can be grasped as the following carburizing source material.

すなわち本発明は、鉄鋼材の表面部から内部へCを浸透させて該鉄鋼材の内部よりも該表面部にC濃度の高い浸炭層を形成する鉄鋼材の浸炭熱処理に用いられる該Cの供給源となる浸炭源材であって、該浸炭源材は、FeとCの化合物である鉄炭化物からなることを特徴とする浸炭源材であってもよい。   That is, the present invention provides the supply of C used for carburizing heat treatment of a steel material in which C penetrates from the surface portion of the steel material to the inside to form a carburized layer having a higher C concentration in the surface portion than the inside of the steel material. It may be a carburizing source material which is a source, and the carburizing source material is made of iron carbide which is a compound of Fe and C.

〈その他〉
(1)本明細書でいう「鉄鋼材」は、鉄鋼材料自体(素材)でも、最終製品に近い部材でもよい。通常、浸炭熱処理は製造の最終段階でなされることが多いが、浸炭熱処理後に表面に接触した鉄炭化物やスケール除去、ショット処理さらには機械加工等がなされてもよい。また、鉄鋼材の形態は問わない。
<Others>
(1) The “steel material” in this specification may be a steel material itself (raw material) or a member close to the final product. Usually, the carburizing heat treatment is often performed at the final stage of production, but after the carburizing heat treatment, iron carbide contacting the surface, scale removal, shot processing, and machining may be performed. Moreover, the form of the steel material does not matter.

なお、一般的に鉄鋼は、C含有量が0.02〜2.1質量%(以下単に「%」という。)程度のものをいうが、本発明の鉄鋼材は浸炭熱処理の被処理材(基材)となるものであればよい。つまり、鉄鋼材は、Feを主成分とするものであればよく、その中のC量は問わない。例えば、浸炭熱処理前の鉄鋼材中のC量が0%でもよいし、逆に、見かけのC量が2.1%を超える鋳鉄等であってもよい。   In general, steel refers to steel having a C content of about 0.02 to 2.1% by mass (hereinafter simply referred to as “%”), but the steel material of the present invention is a material to be subjected to carburizing heat treatment ( Any substrate can be used. That is, the steel material only needs to have Fe as a main component, and the amount of C therein is not limited. For example, the C amount in the steel material before the carburizing heat treatment may be 0%, and conversely, cast iron or the like whose apparent C amount exceeds 2.1% may be used.

(2)特に断らない限り、本明細書でいう「x〜y」は、下限xおよび上限yを含む。また、本明細書に記載した下限および上限は任意に組合わせて「a〜b」のような範囲を構成し得る。 (2) Unless otherwise specified, “x to y” in this specification includes the lower limit x and the upper limit y. Further, the lower limit and the upper limit described in the present specification can be arbitrarily combined to constitute a range such as “ab”.

発明の実施形態を挙げて本発明をより詳しく説明する。なお、以下の実施形態を含め、本明細書で説明する内容は、本発明に係る鉄鋼材の浸炭熱処理方法のみならず、それに用いられる浸炭源材にも適用され得る。また、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なることを断っておく。   The present invention will be described in more detail with reference to embodiments of the invention. In addition, the content demonstrated by this specification including the following embodiment is applicable not only to the carburizing heat treatment method of the steel materials which concerns on this invention but the carburizing source material used for it. Also, it should be noted that which embodiment is the best depends on the target, required performance, and the like.

ところで、上述した本発明の構成に加えて、次に列挙する構成中から任意に選択した一つまたは二つ以上がさらに付加され得る。この際、発明のカテゴリーは問題ではない。例えば、浸炭源材に関する構成であれば、浸炭熱処理方法にも関連することはいうまでもない。さらに、「方法」に関する浸炭熱処理方法の発明も、プロダクトバイプロセスとして理解すれば、「物」(浸炭熱処理された鉄鋼部材)に関する発明ともなり得る。   By the way, in addition to the configuration of the present invention described above, one or two or more arbitrarily selected from the configurations listed below may be further added. At this time, the category of the invention is not a problem. For example, if it is the structure regarding a carburizing source material, it cannot be overemphasized that it is related also to the carburizing heat treatment method. Further, the invention of the carburizing heat treatment method related to “method” can be an invention related to “thing” (steel member subjected to carburizing heat treatment) if understood as a product-by-process.

(1)鉄炭化物
鉄炭化物は、基本的にFeとCの化合物である。典型は前述したようにM3C型のセメンタイトである。この鉄炭化物はFeとCのみからなる必要はない。鉄炭化物は、高温環境下でも、そのM3C型のセメンタイト構造が維持されるものであると好ましい。特に、鉄鋼材が液化し始める温度(共晶温度)未満の範囲で、安定であると好ましい。このように安定な鉄炭化物を用いれば、従来の浸炭温度(800〜900℃)よりも高温で浸炭熱処理を行うことができ、過剰浸炭部等のない好ましい浸炭層を迅速に形成することが可能となる。
(1) Iron carbide Iron carbide is basically a compound of Fe and C. A typical example is M 3 C type cementite as described above. This iron carbide does not have to be composed only of Fe and C. It is preferable that the iron carbide maintains its M 3 C type cementite structure even under a high temperature environment. In particular, it is preferable that the steel material is stable in a range below the temperature at which the steel material starts to liquefy (eutectic temperature). By using such stable iron carbide, it is possible to perform carburizing heat treatment at a temperature higher than the conventional carburizing temperature (800 to 900 ° C.), and it is possible to quickly form a preferable carburized layer having no excess carburized portion or the like. It becomes.

具体的には、鉄炭化物に特定の元素を含有させることで、鉄炭化物は高温域でも安定となる。このような安定化元素として、Cr、Mo、W、V、Nbを用いることができる。鉄炭化物は、それら安定化元素のうちの一種のみを含有するものでもよいし、二種以上を含有するものでもよい。安定化元素が過少では効果がなく、安定化元素が過多では、その元素特有の構造をもつ炭化物へ変化してしまうからであり、またコスト高となってしまう。   Specifically, iron carbide becomes stable even in a high temperature region by containing a specific element in iron carbide. As such a stabilizing element, Cr, Mo, W, V, and Nb can be used. The iron carbide may contain only one of these stabilizing elements, or may contain two or more. If there are too few stabilizing elements, there will be no effect, and if there are too many stabilizing elements, it will change to the carbide | carbonized_material which has the structure peculiar to the element, and will also become high cost.

このような観点から安定化元素の鉄炭化物中の含有量が定まる。もっとも、その好ましい範囲は、元素の種類によって異なる。例えば、鉄炭化物全体を100質量%(適宜単に「%」という。)としたときに、Crは0.6〜12%であると好ましい。この上下限は、その数値範囲内で任意に選択され得るが、特に、0.8%、1%、3%、5%、8%、10%、11%から任意に選択した数値を上下限にすると好ましい。   From such a viewpoint, the content of the stabilizing element in the iron carbide is determined. However, the preferable range varies depending on the type of element. For example, when the total amount of iron carbide is 100 mass% (simply referred to as “%” as appropriate), Cr is preferably 0.6 to 12%. The upper and lower limits can be arbitrarily selected within the numerical range, and in particular, numerical values arbitrarily selected from 0.8%, 1%, 3%, 5%, 8%, 10%, and 11% It is preferable.

同様に、Moなら0.6〜9%であると好ましい。この上下限は、その数値範囲内で任意に選択され得るが、特に、0.8%、1%、3%、5%、8%から任意に選択した数値を上下限にすると好ましい。   Similarly, Mo is preferably 0.6 to 9%. The upper and lower limits can be arbitrarily selected within the numerical range, but it is particularly preferable that the upper and lower limits are numerical values arbitrarily selected from 0.8%, 1%, 3%, 5% and 8%.

(2)鉄鋼材
鉄鋼材は、Feを主成分とするものであれば、その組成は問わない。もっとも鉄鋼材は、浸炭熱処理の被処理材であるから、通常は低炭素鋼であり、焼き入れ性を高める合金元素を比較的多く含む。具体的には、機械構造用合金鋼としてJISに規格されているSCr材、SCM材、SNCM材など、一般的に肌焼き鋼といわれるものが代表的である。ちなみにこのような鋼材の組成は、鋼材全体を100質量%とした場合、C:0.1〜0.4%、Cr:0.9〜1.2%、Mo:0.15〜0.3%、Si:0.15〜1.5%、Mn:0.5〜2.7%である。
(2) Steel material The composition of the steel material is not limited as long as it is composed mainly of Fe. However, since the steel material is a material to be carburized and heat treated, it is usually a low-carbon steel and contains a relatively large amount of alloying elements that enhance the hardenability. Specifically, what is generally referred to as case-hardened steel, such as SCr material, SCM material, SNCM material, etc., which are standardized by JIS as alloy steel for machine structure, is typical. By the way, the composition of such steel materials is as follows: C: 0.1 to 0.4%, Cr: 0.9 to 1.2%, Mo: 0.15 to 0.3, when the entire steel material is 100% by mass. %, Si: 0.15-1.5%, Mn: 0.5-2.7%.

本発明の浸炭熱処理を行うと、表面部のC濃度が高くなるのは当然として、表面部におけるC以外の元素濃度も、その内部よりも高くなり得る。浸炭源材に含まれていたC以外の元素(例えば、安定化元素)が多少なりとも鉄鋼材側へ拡散し得るからである。この結果、浸炭熱処理後の鉄鋼材の表面部の化学組成を調査すれば、本発明の浸炭熱処理方法を実施したか否かを判別できる場合もある。例えば、鉄炭化物中に安定化元素であるCrが含まれ、かつ、被処理材である鉄鋼材中にも焼入れ性を高めるCrが含まれる場合、浸炭熱処理後のCr濃度が内部と表面部とで異なることがあり得る。但し、浸炭温度においてCr等の拡散係数はCの拡散係数よりもかなり小さく(約104分の1程度)、また、本発明の浸炭熱処理方法の場合、浸炭時間が相当短い。このため、鉄鋼材の内部と表面部との間にC以外の元素に関して極端な濃度差が生じることはなく、鉄鋼材の元々の特性を崩すような極端な濃度差も生じない。 When the carburizing heat treatment of the present invention is performed, it is natural that the concentration of C in the surface portion increases, and the concentration of elements other than C in the surface portion can also be higher than in the inside thereof. This is because elements (for example, stabilizing elements) other than C contained in the carburizing source material can diffuse to the steel material side to some extent. As a result, if the chemical composition of the surface portion of the steel material after the carburizing heat treatment is investigated, it may be determined whether or not the carburizing heat treatment method of the present invention has been implemented. For example, when Cr, which is a stabilizing element, is contained in iron carbide and Cr, which enhances hardenability, is also contained in the steel material, which is a material to be treated, Can be different. However, the diffusion coefficient of Cr or the like in the carburizing temperature (about one to about 10 quarters) considerably smaller than the diffusion coefficient and C, also in the case of carburizing heat treatment method of the present invention, considerable short carburizing time. For this reason, there is no extreme concentration difference between elements inside the steel material and the surface portion with respect to elements other than C, and there is no extreme concentration difference that destroys the original characteristics of the steel material.

(3)接触工程および浸炭源材
接触工程は、浸炭源材を鉄鋼材の表面に接触させる工程である。浸炭熱処理により形成される浸炭層は1mm前後と、僅かである。このため、浸炭源材自体も薄くて足る。
(3) Contacting step and carburizing source material The contacting step is a step of bringing the carburizing source material into contact with the surface of the steel material. The carburized layer formed by the carburizing heat treatment is only about 1 mm. For this reason, the carburizing source material itself may be thin.

これを踏まえて、浸炭源材の形態に応じた適切な接触工程を行えばよい。例えば、前記浸炭源材が鉄炭化物の粉末(鉄炭化物粉末)ならば、前記接触工程はこの鉄炭化物粉末を鉄鋼材の表面に付着させる付着工程とすればよい。   Based on this, an appropriate contact process according to the form of the carburizing source material may be performed. For example, if the carburizing source material is an iron carbide powder (iron carbide powder), the contacting step may be an adhesion step for attaching the iron carbide powder to the surface of the steel material.

また、この鉄炭化物粉末を溶媒に解いたスラリーを用いれば、そのスラリーを鉄鋼材の表面に塗布する塗布工程として容易に接触工程を行うことができる。この塗布工程は、刷毛塗り工程、スプレー工程、浸漬(ディップ)工程等のいずれでもよい。この際、スラリーを調製する際の溶媒は水の他、アルコール等の揮発性溶媒でもよい。その塗布回数は、鉄鋼材表面に均一な鉄炭化物粉末の層が形成されるなら、1回でも複数回でもよい。
なお、付着工程または塗布工程を行うに際して、鉄炭化物粉末の粒径は150μm以下さらには45μm以下であると、浸炭熱処理を迅速化する上で好ましい。
Moreover, if the slurry which melt | dissolved this iron carbide powder in the solvent is used, a contact process can be easily performed as an application | coating process which apply | coats the slurry to the surface of steel materials. This application process may be any of a brush application process, a spray process, a dipping process, and the like. At this time, the solvent for preparing the slurry may be water or a volatile solvent such as alcohol. The number of times of application may be one or more times as long as a uniform iron carbide powder layer is formed on the surface of the steel material.
When performing the adhesion process or the coating process, the particle size of the iron carbide powder is preferably 150 μm or less, more preferably 45 μm or less, in order to speed up the carburizing heat treatment.

もっとも、鉄炭化物粉末をそのまま用いると、浸炭熱処理の完了前に剥離、脱落等することも考えられる。そこで、鉄炭化物をテープ状に成形した浸炭源箔を浸炭源材として用いると、効率的で確実に接触工程を行える。この場合、接触工程は、例えば、浸炭源箔を鉄鋼材の表面に貼付する貼付工程となる。浸炭源箔自体には、通常、粘着性がないから、粘着性を付与するか、浸炭源箔を鉄鋼材の表面へ機械的に押圧等するとよい。   Of course, if the iron carbide powder is used as it is, it may be peeled off or dropped off before completion of the carburizing heat treatment. Therefore, when a carburizing source foil formed of iron carbide in a tape shape is used as a carburizing source material, an efficient and reliable contact process can be performed. In this case, a contact process turns into a sticking process which sticks a carburizing source foil on the surface of steel materials, for example. Since the carburizing source foil itself is usually not tacky, it is preferable to impart tackiness or mechanically press the carburizing source foil against the surface of the steel material.

浸炭源材は溶製でも焼成(焼結)材でもよい。もっとも、鉄粉末とGr粉末と鉄合金粉末とを混合した混合粉末を加熱して鉄炭化物を生成し、浸炭源材を製造すると、所望形状の浸炭源材を得やすい。   The carburizing source material may be melted or fired (sintered) material. However, when a mixed powder obtained by mixing iron powder, Gr powder, and iron alloy powder is heated to produce iron carbide to produce a carburized source material, it is easy to obtain a carburized source material having a desired shape.

(4)浸炭加熱工程
浸炭加熱工程は、浸炭源材を表面に接触させた鉄鋼材を、浸炭源材中の少なくともCが鉄鋼材へ拡散する温度以上の浸炭温度まで加熱する工程である。
本発明の場合、この浸炭加熱工程を行う雰囲気は問わないが、鉄鋼材の酸化や鉄炭化物の分解等を抑止するために、不活性ガス雰囲気で行うとよい。
(4) Carburizing heating step The carburizing heating step is a step of heating the steel material having the carburizing source material in contact with the surface to a carburizing temperature equal to or higher than the temperature at which at least C in the carburizing source material diffuses into the steel material.
In the case of the present invention, the atmosphere in which the carburizing heating step is performed is not limited. However, in order to suppress oxidation of the steel material, decomposition of the iron carbide, and the like, it is preferable to perform in an inert gas atmosphere.

浸炭温度は、鉄鋼材がオーステナイト相に変態する温度(A1変態点)以上であって、鉄鋼材の共晶温度以下であればよい。もっとも、浸炭熱処理の迅速化を図る観点から、浸炭温度は、900℃以上、950℃以上、1000℃以上、1050℃以上、1100℃以上であると好ましい。一方、省エネルギー化等の観点から、鉄鋼材や鉄炭化物の安定度にも依るが、浸炭温度は1150℃以下、1100℃以下、1050℃以下とすると好ましい。なお、これらの浸炭温度の上下限は任意に組合せ可能である。   The carburizing temperature may be equal to or higher than the temperature at which the steel material transforms into the austenite phase (A1 transformation point) and equal to or lower than the eutectic temperature of the steel material. However, from the viewpoint of speeding up the carburizing heat treatment, the carburizing temperature is preferably 900 ° C. or higher, 950 ° C. or higher, 1000 ° C. or higher, 1050 ° C. or higher, and 1100 ° C. or higher. On the other hand, from the viewpoint of energy saving and the like, the carburizing temperature is preferably 1150 ° C. or lower, 1100 ° C. or lower, and 1050 ° C. or lower, although it depends on the stability of the steel material or iron carbide. The upper and lower limits of these carburizing temperatures can be arbitrarily combined.

ちなみに、本発明の方法を用いて浸炭温度:1100℃で浸炭熱処理を行った場合、4分で0.4mm、12分で0.9mm程度の深さまでCを拡散させることができた。   Incidentally, when carburizing heat treatment was performed at a carburizing temperature of 1100 ° C. using the method of the present invention, C could be diffused to a depth of about 0.4 mm in 4 minutes and about 0.9 mm in 12 minutes.

(5)冷却工程
冷却工程は、浸炭加熱工程で加熱した鉄鋼材を冷却する工程である。この冷却は、炉冷等の徐冷であってもよいが、通常は、焼入れのための急冷である。急冷の程度は、鉄鋼材の表面部の金属組織が少なくとも一部がマルテンサイトに変態する限り、水冷でも湯冷でも油冷でもよい。また、冷却工程後に、別途、焼戻し等の熱処理を施して、鉄鋼材の機械的特性を調整してもよい。
(5) Cooling process A cooling process is a process of cooling the steel materials heated at the carburizing heating process. This cooling may be slow cooling such as furnace cooling, but is usually rapid cooling for quenching. The degree of rapid cooling may be water cooling, hot water cooling, or oil cooling as long as the metal structure of the surface portion of the steel material is at least partially transformed into martensite. In addition, after the cooling step, heat treatment such as tempering may be separately performed to adjust the mechanical properties of the steel material.

(6)本発明の浸炭熱処理方法が施される鉄鋼材(鉄鋼部材)の一例を挙げると、各種プーリー、変速機のシンクロハブ、エンジンのコンロッド、ハブスリーブ、スプロケット、各種歯車(リングギヤ、パーキングギヤ、ピニオンギヤ等)などがある。 (6) Examples of steel materials (steel members) subjected to the carburizing heat treatment method of the present invention include various pulleys, transmission synchro hubs, engine connecting rods, hub sleeves, sprockets, various gears (ring gears, parking gears). , Pinion gear, etc.).

実施例を挙げて本発明をより具体的に説明する。
〈浸炭源材の製造〉
(1)浸炭源材を製造するための原料粉末として、カーボニル鉄粉(福田金属製、平均粒径5μm)と、グラファイト粉末(Gr粉末)、SUS430(JIS)の微粉末(神戸製鋼製、−45μm)を用意した。なお、SUS430微粉末はCr添加用である。これら各種粉末は、全体組成(原子%)が次のようになるように配合した。
Fe:70.98%、C:25.00%、Cr:4.01%
これを質量%に換算すると次のようになる。
Fe:88.62%、C:6.714%、Cr:4.66%
この組成は、Fe−C2元系セメンタイト(Fe3C)中のFe全体を100質量%としたときの、その約5質量%分をFeからCrへ置換したものである。
The present invention will be described more specifically with reference to examples.
<Manufacture of carburizing source>
(1) As raw material powder for producing a carburizing source material, carbonyl iron powder (Fukuda Metals, average particle size 5 μm), graphite powder (Gr powder), SUS430 (JIS) fine powder (Kobe Steel,- 45 μm) was prepared. The SUS430 fine powder is for addition of Cr. These various powders were blended so that the total composition (atomic%) was as follows.
Fe: 70.98%, C: 25.00%, Cr: 4.01%
This is converted into mass% as follows.
Fe: 88.62%, C: 6.714%, Cr: 4.66%
This composition is obtained by substituting about 5% by mass of Fe into Cr when the total amount of Fe in Fe—C binary system cementite (Fe 3 C) is 100% by mass.

このFe3Cに替わる(Fe5%Cr)3Cと、純Feとの間の平衡状図を、TCFE3(サーモカルク社製)データベースを用いて算出した結果を図1に示す。この計算状態図から、(Fe5%Cr)3Cからなる鉄炭化物(Cr添加セメンタイト)は、FeのA1変態温度から共晶温度まで、オーステナイト相と安定に共存し得ることが分る。   FIG. 1 shows the result of calculating the equilibrium diagram between (Fe5% Cr) 3C instead of Fe3C and pure Fe using the TCFE3 (Thermocalc Co., Ltd.) database. From this calculated phase diagram, it can be seen that iron carbide (Cr-added cementite) composed of (Fe5% Cr) 3C can stably coexist with the austenite phase from the A1 transformation temperature to the eutectic temperature of Fe.

(2)上記の各種粉末を配合した配合粉末をボールミルに入れて、室温下のArガス雰囲気中で約10時間混合した。このとき使用したφ8mmの鋼球と配合粉末との質量比は、10:1とした。 (2) The powder blended with the above various powders was placed in a ball mill and mixed in an Ar gas atmosphere at room temperature for about 10 hours. The mass ratio of the φ8 mm steel balls used at this time and the blended powder was 10: 1.

こうして得られた混合粉末へ水系バインダ(ユケン工業社製、DB20)を適量加え、混合粉末をドクターブレード法により厚さ約0.75mmテープ状に成形した。この成形体をArガス雰囲気炉で1100℃x30分間加熱して、Cr添加セメンタイトからなる浸炭源箔(以下、「Cr−θ箔」という。)を得た。
なお、東洋カーボン社製の厚さ0.2mmのGrシートを比較用の浸炭源材として用意した。
An appropriate amount of an aqueous binder (manufactured by Yuken Kogyo Co., Ltd., DB20) was added to the mixed powder thus obtained, and the mixed powder was formed into a tape shape having a thickness of about 0.75 mm by the doctor blade method. This molded body was heated in an Ar gas atmosphere furnace at 1100 ° C. for 30 minutes to obtain a carburized source foil made of Cr-added cementite (hereinafter referred to as “Cr-θ foil”).
A 0.2 mm thick Gr sheet manufactured by Toyo Carbon Co., Ltd. was prepared as a carburizing source for comparison.

〈浸炭熱処理〉
(1)浸炭熱処理の被処理材として、肌焼鋼(JIS:SCM420H)からなるφ12mmの円柱状の試験片(鉄鋼材)を用意した。雰囲気中熱間加工試験装置を用いて、試験片の外表面に前述載せた浸炭源箔へ一定荷重(49MPa)を印加しつつ、Cr−θ箔を挟持した(接触工程)。
<Carburizing heat treatment>
(1) A φ12 mm cylindrical test piece (steel material) made of case-hardened steel (JIS: SCM420H) was prepared as a material to be subjected to carburizing heat treatment. A Cr-θ foil was sandwiched while applying a constant load (49 MPa) to the carburizing source foil placed on the outer surface of the test piece using an in-atmosphere hot working test apparatus (contact process).

この状態の試験片を高周波誘導加熱した(浸炭加熱工程)。このときの加熱温度(浸炭温度)は950℃または1100℃とし、加熱時間は4分間または12分間とした。
この高周波誘導加熱直後の試験片をArガスで急冷した(冷却工程)。この冷却時間は3分間であった。
初期の昇温速度を20℃/sとしたから、この浸炭熱処理に要した時間は合計で約8分間または約16分間であった。
(2)上記浸炭熱処理で用いたCr−θ箔を、比較用のGrシートに替えて、同様の工程で比較用の試験片を製造した。
The test piece in this state was heated by high frequency induction (carburization heating process). The heating temperature (carburizing temperature) at this time was 950 ° C. or 1100 ° C., and the heating time was 4 minutes or 12 minutes.
The test piece immediately after the high frequency induction heating was quenched with Ar gas (cooling step). This cooling time was 3 minutes.
Since the initial temperature increase rate was 20 ° C./s, the time required for this carburizing heat treatment was about 8 minutes or about 16 minutes in total.
(2) The Cr-θ foil used in the carburizing heat treatment was replaced with a Gr sheet for comparison, and a test specimen for comparison was manufactured in the same process.

〈測定〉
(1)先ず、上記のCr−θ箔自体をX線解析した。このX線回折結果(XRD)を図2Aに示す。また、その浸炭源箔を走査型電子顕微鏡(SEM)で観察した顕微鏡写真を図2Bに示す。
<Measurement>
(1) First, the above Cr-θ foil itself was subjected to X-ray analysis. The X-ray diffraction result (XRD) is shown in FIG. 2A. Moreover, the microscope picture which observed the carburizing source foil with the scanning electron microscope (SEM) is shown to FIG. 2B.

(2)Cr−θ箔を用いて浸炭熱処理(1100℃x4分間)した試験片の表層断面の金属組織を図3Aおよび図面3Bに、Grシートを用いて浸炭熱処理(1100℃x4分間)した試験片の表層断面の金属組織を図4A〜図4Cにそれぞれ示した。なお、図3Bおよび図4Cは、浸炭のなされていない内部組織がベイナイトであり、いずれも同等の冷却がなされたことを確認したものである。 (2) A test of carburizing heat treatment (1100 ° C. × 4 minutes) using a Gr sheet in FIG. 3A and FIG. 3B for the metallographic structure of the surface layer of the test piece subjected to carburizing heat treatment (1100 ° C. × 4 minutes) using Cr-θ foil The metal structures of the surface layer cross-sections of the pieces are shown in FIGS. 4A to 4C, respectively. In FIGS. 3B and 4C, the internal structure that has not been carburized is bainite, and both confirmed that the same cooling was performed.

ちなみに、各金属組織は、光学顕微鏡を用いて観察したものである。そして図3A、図3B、図4Aおよび図4Bの顕微鏡写真は、レペラー試薬で腐食させた試験片断面を観察したものであり、図4Cの顕微鏡写真は、ピクリン酸−水酸化ナトリム系試薬で炭化物を優先的に腐食させた試験片断面を観察したものである。   Incidentally, each metal structure was observed using an optical microscope. The micrographs of FIGS. 3A, 3B, 4A, and 4B are obtained by observing a cross section of a test piece that was corroded with a repeller reagent. The micrograph of FIG. 4C is a picric acid-sodium hydroxide-based reagent and a carbide. The cross-section of the test piece that preferentially corroded was observed.

(3)Cr−θ箔を用いて浸炭熱処理した各種試験片とGrシートを用いて浸炭熱処理した各種試験片について、試験片の浸炭表面からの深さ(浸炭深さ)方向に、順次、ビッカース硬さ(荷重50g)を測定した。こうして得られた各種試験片の硬さ分布(ビッカース硬さと浸炭深さの相関)を図5および図6にそれぞれ示した。 (3) For various test pieces that were carburized and heat treated using Cr-θ foil and various test pieces that were carburized and heat treated using a Gr sheet, the Vickers was sequentially applied in the direction of the depth of the test piece from the carburized surface (carburized depth). Hardness (load 50 g) was measured. The hardness distribution (correlation between Vickers hardness and carburization depth) of the various test pieces thus obtained is shown in FIGS. 5 and 6, respectively.

〈評価〉
(1)先ず図1の状態図から、上記のCr−θ箔は1160℃ぐらいまで安定で、しかも被処理材のγ相と熱力学的に平衡することがわかる。また、図2AのX線回折図からわかるように、加熱前の成形体では、原料粉末のα−FeとGrのみが検出されたのに対して、加熱後の成形体は、ほぼセメンタイト((Fe5%Cr)3C)単相であることが確認された。但し、この場合でも、α−FeとGrがわずかながら残存しており、その割合は全体の95%程度と推定される。
<Evaluation>
(1) First, it can be seen from the state diagram of FIG. 1 that the Cr-θ foil is stable up to about 1160 ° C. and thermodynamically balanced with the γ phase of the material to be treated. Further, as can be seen from the X-ray diffraction diagram of FIG. 2A, only the α-Fe and Gr of the raw material powder were detected in the green body before heating, whereas the green body after heating was almost cementite (( Fe5% Cr) 3C) single phase was confirmed. However, even in this case, α-Fe and Gr remain slightly, and the ratio is estimated to be about 95% of the whole.

また、図2Bに示した顕微鏡写真から、浸炭源箔が多孔質状となっていることがわかった。気孔は、原料粉末からセメンタイトが合成される際に伴う発熱反応により、生じたものと思われる。   Moreover, it turned out that the carburizing source foil is porous from the micrograph shown in FIG. 2B. It is considered that the pores were generated by an exothermic reaction accompanied with the synthesis of cementite from the raw material powder.

(2)図3Aおよび図3Bからわかるように、Cr−θ箔を用いて浸炭熱処理した試験片の表層部分には、残存したCr−θ箔層の直下から、極めて微細なラス状マルテンサイトが形成されている。そして、それよりも深くなるにつれて、ベイナイトと思われる黒色相を含んだ混合組織が形成されている。これら以外の金属組織として現状明らかではないが、残留オーステナイト相の存在も考えられる。 (2) As can be seen from FIGS. 3A and 3B, extremely fine lath martensite is formed in the surface layer portion of the test piece subjected to the carburizing heat treatment using the Cr-θ foil from directly under the remaining Cr-θ foil layer. Is formed. And as it becomes deeper than that, a mixed structure containing a black phase that seems to be bainite is formed. Although it is not clear as a metal structure other than these, the presence of a retained austenite phase is also conceivable.

一方、図4Aおよび図4Bからわかるように、Grシートを用いて浸炭熱処理した試験片の表層部分には、残存したGrシート層の直下に、先ず、高炭素領域の金属組織が存在している。この高炭素領域の金属組織は、特有の針状マルテンサイトと残留オーステナイト相からなる。しかも、図4Cに示した顕微鏡写真から分かるように、オーステナイト相の粒界(γ粒界)に沿ってネットワーク状の炭化物が析出していることも分かった。これよりもさらに深い部分の金属組織は、上記のCr−θ箔を用いて浸炭熱処理した試験片の金属組織と類似していた。   On the other hand, as can be seen from FIGS. 4A and 4B, in the surface layer portion of the test piece subjected to the carburizing heat treatment using the Gr sheet, first, a metal structure of a high carbon region is present immediately below the remaining Gr sheet layer. . This high carbon region metallographic structure consists of specific acicular martensite and retained austenite phases. Moreover, as can be seen from the photomicrograph shown in FIG. 4C, it was also found that network-like carbides were precipitated along the grain boundaries (γ grain boundaries) of the austenite phase. The metal structure of a deeper part than this was similar to the metal structure of the test piece carburized and heat treated using the Cr-θ foil.

(3)図5からわかるように、Cr−θ箔を用いて浸炭熱処理した試験片の場合、浸炭温度が高い程、また、浸炭時間が長い程、内部での硬さが大きなものとなった。浸炭温度や浸炭時間が異なるいずれの場合も、全体的な硬さ分布は、内部に向かって硬さが単調に減少する傾向であった。しかも、最表層部分のビッカース硬さは、いずれの場合も、850〜1000Hv程度で安定していた。 (3) As can be seen from FIG. 5, in the case of the carburized heat treatment using Cr-θ foil, the higher the carburizing temperature and the longer the carburizing time, the greater the internal hardness. . In all cases where the carburizing temperature and carburizing time were different, the overall hardness distribution tended to monotonously decrease toward the inside. Moreover, the Vickers hardness of the outermost layer portion was stable at about 850 to 1000 Hv in all cases.

このように、浸炭温度または浸炭時間を適宜変更した場合でも、安定した硬さをもつ浸炭層が形成されることが確認された。逆にいえば、所望する厚さの浸炭層は、浸炭温度または浸炭時間を変更することで容易に得られ、本発明に係る浸炭熱処理方法は制御性に優れることもわかった。しかもこの場合、試験片の表面部近傍には、炭化物がほとんど見られず、炭化水素系ガスによる真空浸炭をした場合に必要となる拡散工程なども不要であり、短時間内に浸炭熱処理を完了させることができる。   Thus, it was confirmed that a carburized layer having stable hardness was formed even when the carburizing temperature or carburizing time was appropriately changed. Conversely, a carburized layer having a desired thickness can be easily obtained by changing the carburizing temperature or carburizing time, and the carburizing heat treatment method according to the present invention is also excellent in controllability. In addition, in this case, almost no carbide is seen in the vicinity of the surface of the test piece, and the diffusion process required when vacuum carburizing with hydrocarbon gas is unnecessary, and the carburizing heat treatment is completed within a short time. Can be made.

一方図6からわかるように、Grシートを用いて浸炭熱処理した試験片の場合、浸炭時間の長短にかかわらず、表層部分の硬さ分布が不安定であった。また、いずれの場合も、硬さが内部に向かって一旦増加した後に急減する傾向を示した。   On the other hand, as can be seen from FIG. 6, in the case of the carburized heat-treated test piece using the Gr sheet, the hardness distribution of the surface layer portion was unstable regardless of the length of the carburizing time. In either case, the hardness tended to decrease rapidly after increasing once toward the inside.

Grシートでの浸炭では、表層の硬さがHv700〜900と大きく変動し、やや内部で最高硬さとなり、その後、急激に低下している。X線マイクロアナライザ(EPMA)の分析によると、4分間、12分間での最高硬さの位置はいずれもC濃度が0.8〜0.9%で一致していた。従って、表面のより高濃度のC濃度となった浸炭領域は、硬さの上昇には結びついていない(過剰浸炭)。この理由として、硬さの変動する範囲は図4(a)の針状マルテンサイト組織に対応しており、ここに残留γ相が多いためと推定される。ちなみに、Cr−θ箔を用いて浸炭熱処理をした試験片の場合は、C濃度が1%を越える表層部分でも、硬さの低下は僅かであった。   In carburizing with a Gr sheet, the hardness of the surface layer fluctuates greatly from Hv 700 to 900, reaches a maximum hardness somewhat inside, and then rapidly decreases. According to the analysis by an X-ray microanalyzer (EPMA), the positions of the highest hardness in 4 minutes and 12 minutes were consistent at C concentration of 0.8 to 0.9%. Therefore, the carburized region having a higher C concentration on the surface does not lead to an increase in hardness (excess carburization). This is presumably because the range in which the hardness varies corresponds to the acicular martensite structure of FIG. 4 (a), and there are many residual γ phases. Incidentally, in the case of a test piece subjected to a carburizing heat treatment using a Cr-θ foil, a decrease in hardness was slight even in a surface layer portion where the C concentration exceeded 1%.

(4)以上の結果を基に、本発明に係る一実施例であるCr−θ箔を用いて浸炭熱処理した場合、Grシートを用いて浸炭熱処理した場合、炭化水素系ガス(メタンなど)を用いて真空浸炭熱処理した場合および一般的なRXガスを用いて浸炭熱処理した場合のそれぞれについて、炭素拡散深さ、粒界炭化物の有無を調べた結果を表1にまとめた。なお、浸炭深さについては、適宜、シミュレーション値を示した。 (4) Based on the above results, when carburizing heat treatment is performed using the Cr-θ foil according to one embodiment of the present invention, when carburizing heat treatment is performed using a Gr sheet, hydrocarbon-based gas (such as methane) is used. Table 1 summarizes the results of examining the carbon diffusion depth and the presence or absence of grain boundary carbides when vacuum carburized and heat-treated using a general RX gas. In addition, about the carburizing depth, the simulation value was shown suitably.

この表1からもわかるように、Cr−θ箔を用いて浸炭熱処理した場合、他の方法で浸炭した場合と異なり、粒界炭化物(ネットワーク状炭化物)は観られなかった。また、浸炭深さも従来の浸炭方法と同等以上であった。   As can be seen from Table 1, when carburizing heat treatment was performed using Cr-θ foil, grain boundary carbides (network-like carbides) were not observed unlike carburizing by other methods. Moreover, the carburization depth was equal to or greater than that of the conventional carburizing method.

Fe−(Fe5%Cr)3C系状態図である。It is a Fe- (Fe5% Cr) 3C type | system | group phase diagram. 本実施例で用いた浸炭源材であるCr−θ箔のX線回折図(XRD)である。It is an X-ray diffraction pattern (XRD) of Cr-theta foil which is a carburizing source material used in this example. そのCr−θ箔を観察したSEM写真である。It is the SEM photograph which observed the Cr-theta foil. Cr−θ箔を用いて浸炭熱処理した試験片の表層断面の金属組織写真である。It is a metal structure photograph of the surface layer cross section of the test piece heat-carburized using Cr-theta foil. Cr−θ箔を用いて浸炭熱処理した試験片の内部の金属組織写真である。It is a metal structure photograph inside the test piece which carburized and heat-treated using Cr-theta foil. Grシートを用いて浸炭熱処理した試験片の表層断面の金属組織写真である。It is a metal structure photograph of the surface layer cross section of the test piece heat-carburized using a Gr sheet. Grシートを用いて浸炭熱処理した試験片の内部の金属組織写真である。It is a metal structure photograph inside the test piece which carburized and heat-treated using the Gr sheet. Grシートを用いて浸炭熱処理した試験片の表層断面の金属組織写真である。It is a metal structure photograph of the surface layer cross section of the test piece heat-carburized using a Gr sheet. Cr−θ箔を用いて浸炭熱処理した試験片の表層断面の硬さ分布図である。It is a hardness distribution figure of the surface layer cross section of the test piece heat-carburized using Cr-theta foil. Grシートを用いて浸炭熱処理した試験片の表層断面の硬さ分布図である。It is a hardness distribution figure of the surface layer cross section of the test piece heat-carburized using a Gr sheet.

Claims (9)

鉄鋼材の表面部から内部へ炭素(C)を浸透させて該鉄鋼材の内部よりも該表面部にC濃度の高い浸炭層を形成する鉄鋼材の浸炭熱処理方法であって、
鉄(Fe)とCの化合物である鉄炭化物よりなる浸炭源材を該鉄鋼材の表面に接触させる接触工程と、
該浸炭源材中の少なくともCが該鉄鋼材へ拡散する温度以上の浸炭温度まで該鉄鋼材を加熱する浸炭加熱工程と、
該浸炭加熱工程後の鉄鋼材を冷却する冷却工程と、
からなることを特徴とする鉄鋼材の浸炭熱処理方法。
A carburizing heat treatment method for a steel material in which carbon (C) is infiltrated from the surface portion of the steel material to the inside to form a carburized layer having a higher C concentration in the surface portion than the inside of the steel material,
A contacting step in which a carburizing source material made of iron carbide which is a compound of iron (Fe) and C is brought into contact with the surface of the steel material;
A carburizing heating step of heating the steel material to a carburizing temperature equal to or higher than a temperature at which C in the carburizing source material diffuses into the steel material;
A cooling step for cooling the steel material after the carburizing heating step;
A carburizing heat treatment method for a steel material, comprising:
前記浸炭源材は、少なくとも前記浸炭温度まで、前記鉄炭化物の分解を抑制して安定化させる安定化元素を含む請求項1に記載の鉄鋼材の浸炭熱処理方法。   The carburizing heat treatment method for a steel material according to claim 1, wherein the carburizing source material includes a stabilizing element that suppresses and stabilizes the decomposition of the iron carbide at least up to the carburizing temperature. 前記安定化元素はクロム(Cr)であり、該Crは前記鉄炭化物全体を100質量%(以下単に「%」という。)としたときに0.6〜12%である請求項2に記載の鉄鋼材の浸炭熱処理方法。   3. The stabilization element according to claim 2, wherein the stabilizing element is chromium (Cr), and the Cr is 0.6 to 12% when the entire iron carbide is 100 mass% (hereinafter simply referred to as “%”). Carburizing heat treatment method for steel. 前記鉄炭化物は、M3C型(M:金属元素)である請求項1〜3のいずれかに記載の鉄鋼材の浸炭熱処理方法。 The method for carburizing heat treatment of a steel material according to any one of claims 1 to 3 , wherein the iron carbide is M 3 C type (M: metal element). 前記浸炭源材は、前記鉄炭化物の粉末からなる鉄炭化物粉末であり、
前記接触工程は、該鉄炭化物粉末を前記鉄鋼材の表面に付着させる付着工程である請求項1〜4のいずれかに記載の鉄鋼材の浸炭熱処理方法。
The carburizing source material is an iron carbide powder made of the iron carbide powder,
The said contact process is an adhesion process which makes this iron carbide powder adhere to the surface of the said steel material, The carburizing heat treatment method of the steel material in any one of Claims 1-4.
前記浸炭源材は、前記鉄炭化物をテープ状に成形した浸炭源箔であり、
前記接触工程は、該浸炭源箔を前記鉄鋼材の表面に貼付する貼付工程である請求項1〜4のいずれかに記載の鉄鋼材の浸炭熱処理方法。
The carburizing source material is a carburizing source foil obtained by forming the iron carbide into a tape shape,
The said contact process is a sticking process which affixes this carburizing source foil on the surface of the said steel material, The carburizing heat treatment method of the steel material in any one of Claims 1-4.
鉄鋼材の表面部から内部へCを浸透させて該鉄鋼材の内部よりも該表面部にC濃度の高い浸炭層を形成する鉄鋼材の浸炭熱処理に用いられる該Cの供給源となる浸炭源材であって、
該浸炭源材は、FeとCの化合物である鉄炭化物からなることを特徴とする浸炭源材。
A carburizing source serving as a supply source of C used for carburizing heat treatment of a steel material in which C is permeated from the surface portion of the steel material to the inside to form a carburized layer having a C concentration higher than that inside the steel material. Material,
The carburizing source material is composed of iron carbide which is a compound of Fe and C.
前記鉄炭化物は、鉄粉末とGr粉末と鉄合金粉末とを混合した混合粉末を加熱して得られる請求項7に記載の浸炭源材。   The carburizing source material according to claim 7, wherein the iron carbide is obtained by heating a mixed powder obtained by mixing iron powder, Gr powder, and iron alloy powder. 粉末状またはテープ状である請求項7または8に記載の浸炭源材。   The carburizing source material according to claim 7 or 8, which is in the form of powder or tape.
JP2008159173A 2008-06-18 2008-06-18 Carburizing heat treatment method and carburizing source material Expired - Fee Related JP4821810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008159173A JP4821810B2 (en) 2008-06-18 2008-06-18 Carburizing heat treatment method and carburizing source material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008159173A JP4821810B2 (en) 2008-06-18 2008-06-18 Carburizing heat treatment method and carburizing source material

Publications (2)

Publication Number Publication Date
JP2010001508A JP2010001508A (en) 2010-01-07
JP4821810B2 true JP4821810B2 (en) 2011-11-24

Family

ID=41583458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008159173A Expired - Fee Related JP4821810B2 (en) 2008-06-18 2008-06-18 Carburizing heat treatment method and carburizing source material

Country Status (1)

Country Link
JP (1) JP4821810B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436840B (en) * 2013-09-06 2016-01-20 安徽工业大学 A kind of benefit carbon method in steel heat processing
JP2015060773A (en) * 2013-09-20 2015-03-30 三菱電機株式会社 Contact material for vacuum valve, method of producing the same, and vacuum valve
JP6943026B2 (en) * 2017-06-08 2021-09-29 日本精工株式会社 Carburizing method for rolling bearings and manufacturing method for rolling bearings
CN109097723A (en) * 2018-07-17 2018-12-28 安徽致精机电科技有限公司 A kind of pack carburizing method of gear

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735618A (en) * 1980-08-08 1982-02-26 Nippon Steel Corp Method for decarburization prevention and carburizing in si-containing steel
JPS58174567A (en) * 1982-04-02 1983-10-13 Toyota Central Res & Dev Lab Inc Method for coating metal material with carbide
JPS61572A (en) * 1984-06-11 1986-01-06 Honda Motor Co Ltd Cementing method of steel
JPH0941125A (en) * 1995-07-28 1997-02-10 Hitachi Seiki Co Ltd Method for hardening metallic surface
JPH11302828A (en) * 1998-04-21 1999-11-02 Mitsubishi Heavy Ind Ltd Diffusion coating material and diffusion coating method
JP4858071B2 (en) * 2006-10-19 2012-01-18 トヨタ自動車株式会社 Steel surface treatment method and surface-treated steel material

Also Published As

Publication number Publication date
JP2010001508A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
US9260775B2 (en) Low alloy steel carburization and surface microalloying process
JP5671526B2 (en) High strength low alloy sintered steel
EP1602744A1 (en) Carbo-nitrided case hardened martensitic stainless steels
JP2003073799A (en) Surface treatment method for titanium-based material
JPH0826446B2 (en) Rolling bearing
US20230211413A1 (en) Iron-based sintered alloy material and production method therefor
JP4185653B2 (en) Iron-graphite composite powder and sintered body thereof
JP4821810B2 (en) Carburizing heat treatment method and carburizing source material
JP3792341B2 (en) Soft nitriding steel with excellent cold forgeability and pitting resistance
JP4789141B2 (en) Manufacturing method of iron parts
JP5642386B2 (en) High carbon surface densified sintered steel product and its production method
JP2006241480A (en) Rolling support device, method for manufacturing rolling member of rolling support device, and heat treatment process for steel
US10619229B2 (en) Manufacturing method of wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
US10213830B2 (en) Production method of sintered alloy, sintered-alloy compact, and sintered alloy
JP6111121B2 (en) Gears with excellent seizure resistance
JP7397029B2 (en) Carburizing method for steel parts and method for manufacturing steel parts
Kremel et al. Low-pressure carburizing of sintered alloy steels with varying porosity
JP2004107709A (en) Rolling member and manufacturing method thereof
JP2002275526A (en) Method for producing steel material
TW200402473A (en) Iron alloy part and method of producing same
AT513429B1 (en) Method for producing a sintered component module
JP2010222649A (en) Production method of carbon steel material and carbon steel material
JP7015181B2 (en) Sliding member
US20150196956A1 (en) Sintered and carburized porous stainless steel part and method thereof
WO2007015514A1 (en) LAYERED Fe-BASED ALLOY AND PROCESS FOR PRODUCTION THEREOF

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees