JP4821379B2 - Demodulator, distance measuring device, and data receiving device - Google Patents

Demodulator, distance measuring device, and data receiving device Download PDF

Info

Publication number
JP4821379B2
JP4821379B2 JP2006064684A JP2006064684A JP4821379B2 JP 4821379 B2 JP4821379 B2 JP 4821379B2 JP 2006064684 A JP2006064684 A JP 2006064684A JP 2006064684 A JP2006064684 A JP 2006064684A JP 4821379 B2 JP4821379 B2 JP 4821379B2
Authority
JP
Japan
Prior art keywords
signal
phase
demodulated
received
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006064684A
Other languages
Japanese (ja)
Other versions
JP2007243724A (en
Inventor
英行 小原
武宏 河合
敦司 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2006064684A priority Critical patent/JP4821379B2/en
Publication of JP2007243724A publication Critical patent/JP2007243724A/en
Application granted granted Critical
Publication of JP4821379B2 publication Critical patent/JP4821379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

この発明は、例えばI信号とQ信号とによる復調により信号の位相を取得するような復調装置、距離測定装置、およびデータ受信装置に関する。 The present invention, for example, demodulation apparatus to obtain the phase of the signal by demodulation by the I and Q signals, the distance measuring device, and a data receiving apparatus.

従来、電波や光などの電磁波を同相成分であるI信号と直交成分であるQ信号とにより復調し、復調後の振幅から位相を求める技術が提供されている。このように位相を求めることで、位相差を利用した距離測定や、位相の多値デジタル変換を利用したデータ通信等を行うことができる。   2. Description of the Related Art Conventionally, there has been provided a technique for demodulating electromagnetic waves such as radio waves and light using an I signal that is an in-phase component and a Q signal that is a quadrature component and obtaining a phase from the amplitude after demodulation. By obtaining the phase in this way, distance measurement using the phase difference, data communication using multi-value digital conversion of the phase, and the like can be performed.

ここで、復調にI信号とQ信号とを利用する場合、I信号とQ信号との利得差が生じてしまう。このため、上記利得差に対して何らかの手当てをしないと正確な位相が求められないという問題がある。正確な位相が求められなければ、例えば距離測定で測定誤差が大きくなり、またデータ通信で一度に通信できるデータ量が少なくなる。このため、I信号とQ信号との利得差をなくすことが好ましかった。 Here, when the I signal and the Q signal are used for demodulation, a gain difference occurs between the I signal and the Q signal. For this reason, there is a problem that an accurate phase cannot be obtained unless some measure is taken for the gain difference. To be determined is correct phase, for example, the distance measurement error in measurement becomes large, the amount of data that can communicate at a time in the data communication is reduced. For this reason, it was preferable to eliminate the gain difference between the I signal and the Q signal.

一方、I信号とQ信号との利得差による誤差を補正できるものとして、実データを座標毎にグループ化し、それぞれで楕円方程式の振幅と中心座標のパラメータを推定し、このパラメータに基づいて誤差の補正を自動的に行う移動通信端末機が提案されている(特許文献1参照)。   On the other hand, assuming that the error due to the gain difference between the I signal and the Q signal can be corrected, the actual data is grouped for each coordinate, and the parameters of the amplitude and central coordinate of the elliptic equation are estimated for each, and based on this parameter, the error A mobile communication terminal that automatically performs correction has been proposed (see Patent Document 1).

しかし、このような方法では、アルゴリズムが複雑になり、また温度変化や経時変化に対してパラメータの推定精度が低下する問題がある。   However, in such a method, there is a problem that the algorithm becomes complicated and the parameter estimation accuracy decreases with respect to temperature changes and changes with time.

特開平7−327059号公報Japanese Patent Laid-Open No. 7-327059

この発明は、上述の問題に鑑み、I信号とQ信号との利得差による精度低下を防止できる復調装置、距離測定装置、およびデータ受信装置を提供することを目的とする。 This invention has been made in view of the above problems, it shall be the object of providing demodulation device capable of preventing a reduction in accuracy due to the gain difference between the I and Q signals, the distance measuring device, and a data receiving apparatus.

この発明は、受信した受信信号を同相成分であるI信号と直交成分であるQ信号とにより復調する復調装置であって、受信信号の位相を90度の位相にシフトする位相シフト手段と、前記受信信号90度シフトされた位相の受信信号をそれぞれ復調して第1復調信号と第2復調信号とを取得する復調手段と、前記第1復調信号と前記第2復調信号とを合成して合成信号を取得する合成手段とを備え、前記合成手段を、前記第1復調信号の位相と前記第2復調信号の位相とを加算して2で除算する構成にすることができる。 The present invention is a demodulator that demodulates a received signal received with an I signal that is an in-phase component and a Q signal that is a quadrature component, the phase shift means for shifting the phase of the received signal to a phase of 90 degrees, the first demodulated signal received signal and 90-degree shifted phase of the received signal and a respective demodulates and demodulating means for acquiring a second demodulated signal, the first demodulated signal and a second demodulated signal by combining a synthesizing means for obtaining a synthesized signal Te, the combining means, can be configured to divide by 2 by adding the phase of said second demodulated signal of the first demodulation signal.

またこの発明は、受信した受信信号を同相成分であるI信号と直交成分であるQ信号とにより復調する復調装置であって、受信信号の位相を90度の位相にシフトする位相シフト手段と、前記受信信号90度シフトされた位相の受信信号をそれぞれ復調して第1復調信号と第2復調信号とを取得する復調手段と、前記第1復調信号と前記第2復調信号とを合成して合成信号を取得する合成手段とを備え、前記合成手段を、前記第1復調信号におけるI成分をQ成分で除算した第1演算信号と、第2復調信号におけるI成分をQ成分で除算した第2演算信号とを用いて、前記第1演算信号を前記第2演算信号で除算し−1を乗算して得た値の平方根を求める構成にすることができる。 Further, the present invention is a demodulator that demodulates a received signal received by an I signal that is an in-phase component and a Q signal that is a quadrature component, the phase shift means for shifting the phase of the received signal to a phase of 90 degrees, synthesis and demodulation means for obtaining a first demodulated signal and the second demodulated signal by demodulating the received signal and the 90 ° shifted phase of the received signal and, respectively, the first demodulated signal and a second demodulated signal Synthesizing means for obtaining a synthesized signal, wherein the synthesizing means divides the I component in the first demodulated signal by the Q component and the I component in the second demodulated signal by the Q component. It is possible to obtain a square root of a value obtained by dividing the first calculation signal by the second calculation signal and multiplying by -1 using the second calculation signal.

またこの発明は、前記復調装置と、応答要求信号を送信する信号送信手段と、該応答要求信号に応答した非接触ICタグの応答信号を受信してこの受信信号による前記合成信号の位相に基づいて前記非接触ICタグまでの距離を位相差により推定する距離推定手段とを備えた距離測定装置とすることができる。 Further, the present invention receives the response signal of the non-contact IC tag in response to the demodulator, the signal transmission means for transmitting the response request signal, and the response request signal, and based on the phase of the composite signal by the received signal Thus, the distance measuring device can be provided with a distance estimating means for estimating the distance to the non-contact IC tag from the phase difference.

またこの発明は、前記復調装置と、前記位相シフト手段でシフトした位相の角度の半分だけ前記合成信号の位相を0度の位相側へシフトして復元信号とする復元手段と、該復元信号を多値デジタル復調してデータ化するデータ化手段とを備えたデータ受信装置とすることができる。 The present invention also provides the demodulating device, restoring means for shifting the phase of the synthesized signal to the phase of 0 degree by half the phase angle shifted by the phase shifting means, and using the restored signal as a restored signal. it is Ru can be a data receiving apparatus and a data reduction unit for data reduction and multi-level digital demodulation.

この発明により、I信号とQ信号との利得差による精度低下を防止できる復調装置、距離測定装置、およびデータ受信装置を提供できる。 This invention, demodulation device capable of preventing a reduction in accuracy due to the gain difference between the I and Q signals, the distance measuring device, and can provide a data receiving apparatus.

この発明の一実施形態を以下図面と共に説明する。
図1は、距離測定装置1のブロック図を示す。
距離測定装置1は、PLL部3、発振器4、変調部5、電力増幅部6、送信アンテナ7、コントローラ部9、復調ユニット10、受信アンテナ11、距離推定部12、および増幅器13,14で構成されている。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a block diagram of the distance measuring device 1.
The distance measuring device 1 includes a PLL unit 3, an oscillator 4, a modulation unit 5, a power amplification unit 6, a transmission antenna 7, a controller unit 9, a demodulation unit 10, a reception antenna 11, a distance estimation unit 12, and amplifiers 13 and 14. Has been.

復調ユニット10は、1つのICチップとしてユニット化されており、位相シフト部21、位相切替部22、BPF(Band−Pass Filter)23、および直交復調器24,25で構成されている。そして、位相シフト部21の前段に基準信号入力端子10aが設けられ、位相切替部22の前段に受信信号入力端子10bが設けられ、直交復調器24の後段にI信号出力端子10dが設けられ、直交復調器25の後段にQ信号出力端子10eが設けられている。また、位相切替部22の前段には、切り替え制御用の制御信号を入力させる制御信号入力端子10cが設けられている。   The demodulation unit 10 is unitized as one IC chip, and includes a phase shift unit 21, a phase switching unit 22, a BPF (Band-Pass Filter) 23, and quadrature demodulators 24 and 25. A reference signal input terminal 10a is provided before the phase shift unit 21, a reception signal input terminal 10b is provided before the phase switching unit 22, and an I signal output terminal 10d is provided after the quadrature demodulator 24. A Q signal output terminal 10 e is provided at the subsequent stage of the quadrature demodulator 25. In addition, a control signal input terminal 10 c for inputting a control signal for switching control is provided in the previous stage of the phase switching unit 22.

各構成について説明すると、コントローラ部9が通信制御も含めた各種制御を実行し、PLL部3は発振する周波数の切り替えを行い、この切り替えられた周波数の基準信号を発振器4が変調部5、位相シフト部21、および直交復調器24,25に入力する。   Explaining each configuration, the controller unit 9 executes various controls including communication control, the PLL unit 3 switches the oscillating frequency, and the oscillator 4 uses the reference signal of the switched frequency as the modulator 5 and the phase. The data is input to the shift unit 21 and the quadrature demodulators 24 and 25.

変調部5は、コントローラ部9から送信データを受け取り、この送信データを基準信号で変調して送信信号を作成し、この送信信号を電力増幅部6に入力する。
電力増幅部6は、受け取った送信信号を増幅して送信アンテナ7に送り、この送信アンテナ7が送信信号を送信する。
The modulation unit 5 receives transmission data from the controller unit 9, modulates the transmission data with a reference signal to create a transmission signal, and inputs the transmission signal to the power amplification unit 6.
The power amplifying unit 6 amplifies the received transmission signal and sends it to the transmission antenna 7, which transmits the transmission signal.

受信アンテナ11は、距離測定の対象物である非接触ICタグが前記送信信号に応答した応答信号を受信信号として受信し、位相切替部22に受信信号を入力する。
位相切替部22は、距離推定部12の制御に従って、受信信号にディレイをかけて位相を90°遅らす処理を行う。従って、前記受信信号をBPF23に入力するに際して、そのままの位相である0°の位相で入力し、また、受信信号にディレイをかけて位相を90°遅らせた90°の位相で入力する。
The receiving antenna 11 receives, as a received signal, a response signal that the non-contact IC tag that is an object of distance measurement responds to the transmission signal, and inputs the received signal to the phase switching unit 22.
The phase switching unit 22 performs a process of delaying the phase by 90 ° by delaying the received signal according to the control of the distance estimating unit 12. Therefore, when the received signal is input to the BPF 23, it is input with the phase of 0 ° as it is, and is input with a phase of 90 ° which is delayed by 90 ° by delaying the received signal.

BPF23は、入力された0°や90°の位相の受信信号から不要帯域のノイズ成分を除去し、直交復調器24,25に入力する。   The BPF 23 removes unnecessary band noise components from the input received signals having a phase of 0 ° or 90 °, and inputs them to the quadrature demodulators 24 and 25.

直交復調器24は、発振器4から受け取った基準信号と、BPF23から受け取った受信信号とのI成分(同相成分:Inphase component)の位相差を周波数変換して増幅器13に入力する。   The quadrature demodulator 24 frequency-converts the phase difference of the I component (in-phase component) between the reference signal received from the oscillator 4 and the received signal received from the BPF 23 and inputs the phase difference to the amplifier 13.

直交復調器25は、位相シフト部21を介して発振器4から受け取った90°位相シフトされた基準信号と、BPF23から受け取った受信信号とのQ成分(直交成分:Quadrature component)の位相差を周波数変換して増幅器14に入力する。   The quadrature demodulator 25 calculates the phase difference between the Q component (quadrature component) of the 90-degree phase-shifted reference signal received from the oscillator 4 via the phase shift unit 21 and the received signal received from the BPF 23 as a frequency. The signal is converted and input to the amplifier 14.

位相シフト部21は、発振器4から受けとった基準信号の位相を常に90°シフトして直交復調器25に入力する。   The phase shift unit 21 always shifts the phase of the reference signal received from the oscillator 4 by 90 ° and inputs the phase to the quadrature demodulator 25.

増幅器13,14は、低域通過フィルタ(LPF:Low−Pass Filter)や高域通過フィルタ(HPF: High−Pass Filter)等のフィルタで構成されており、直交復調器24,25からそれぞれ入力されたI信号およびQ信号を増幅して距離推定部12に入力する。   The amplifiers 13 and 14 are composed of filters such as a low-pass filter (LPF) and a high-pass filter (HPF), and are input from the quadrature demodulators 24 and 25, respectively. The I signal and the Q signal are amplified and input to the distance estimation unit 12.

距離推定部12は、受信したI信号とQ信号から位相を算出して比較し、距離を推定する。この距離の推定に際して、利得差αを低減する第1の方法として、0°の受信信号と、位相切替部22でシフトされた90°の受信信号とを加算して2で除算した平均信号を作成することでノイズを除去する処理も実行する。
なお、上記第1の方法の代わりに、利得差αを消去する第2の方法として、0°の受信信号におけるI成分をQ成分で除算した第1演算信号と、位相切替部22でシフトされた90°の受信信号におけるI成分をQ成分で除算した第2演算信号とを用いて、前記第1演算信号を前記第2演算信号で除算し−1を乗算して得た値の平方根を求めることでノイズを除去する処理を実行する構成にしてもよい。
The distance estimation unit 12 calculates and compares phases from the received I signal and Q signal, and estimates the distance. In estimating the distance, as a first method for reducing the gain difference α, an average signal obtained by adding a 0 ° received signal and a 90 ° received signal shifted by the phase switching unit 22 and dividing the sum by 2 is obtained. The process of removing noise is also executed by creating.
Instead of the first method, as a second method for eliminating the gain difference α, the first switching signal obtained by dividing the I component in the 0 ° received signal by the Q component and the phase switching unit 22 are used. The square root of the value obtained by dividing the first calculation signal by the second calculation signal and multiplying by -1 using the second calculation signal obtained by dividing the I component in the 90 ° received signal by the Q component. It may be configured to execute processing for removing noise by obtaining.

図2は、受信信号の位相と90°位相シフトした信号の位相と平均位相との関係を示す説明図であり、図3は、Q信号が大きい場合に平均位相を取ることでI信号とQ信号との利得差による影響を防止することを説明する説明図である。   FIG. 2 is an explanatory diagram showing the relationship between the phase of the received signal, the phase of the signal shifted by 90 °, and the average phase. FIG. 3 shows the relationship between the I signal and the Q by taking the average phase when the Q signal is large. It is explanatory drawing explaining preventing the influence by the gain difference with a signal.

図2に示すように、受信アンテナ11(図1参照)で受信した位相0°の受信信号の初期位相A1が第1象限E1に位置していたとすると、位相切替部22(図1参照)によって受信信号の位相を90°シフトしたシフト信号のシフト位相B1は第2象限E2に位置する。初期位相A1とシフト位相B1とを加算して2で除算することにより平均を取った平均位相C1は、初期位相A1とシフト位相B1の中間に位置する。   As shown in FIG. 2, assuming that the initial phase A1 of the received signal having a phase of 0 ° received by the receiving antenna 11 (see FIG. 1) is located in the first quadrant E1, the phase switching unit 22 (see FIG. 1) The shift phase B1 of the shift signal obtained by shifting the phase of the reception signal by 90 ° is located in the second quadrant E2. The average phase C1 obtained by averaging the initial phase A1 and the shift phase B1 and dividing by 2 is located between the initial phase A1 and the shift phase B1.

図3に示すように、例えばQ信号がI信号より大きい場合を考えると、本来であれば初期位相A1となるべきものがI信号とQ信号との利得差によって+側に変化して初期位相A2となる。一方、初期位相A2の位相を90°シフトしたシフト位相B2は、初期位相A2とは逆の象限である第2象限E2に位置しているため、本来のシフト位相B1より−側に変化している。そうすると、初期位相A2とシフト位相B2とを加算して2で除算した平均位相C2は、+側の変化と−側の変化が相殺されて本来の平均位相C1とほぼ同一となり、I信号とQ信号の利得差による影響を回避できる。 As shown in FIG. 3, for example , when considering the case where the Q signal is larger than the I signal, what is supposed to be the initial phase A1 changes to the + side due to the gain difference between the I signal and the Q signal. The initial phase A2. On the other hand, the shift phase B2 obtained by shifting the phase of the initial phase A2 by 90 ° is located in the second quadrant E2, which is the quadrant opposite to the initial phase A2, and therefore changes to the minus side from the original shift phase B1. Yes. Then, the average phase C2 obtained by adding the initial phase A2 and the shift phase B2 and dividing by 2 is almost the same as the original average phase C1 because the change on the + side and the change on the − side are canceled, and the I signal and Q It is possible to avoid the influence due to the signal gain difference.

このように平均位相C2が平均位相C1とほぼ同一となってI信号とQ信号の利得差をキャンセルできることについて説明する。
まず、利得差αの影響を低減できる第1の方法について、以下に数式1から5を用いて説明する。
In this way, the fact that the average phase C2 is substantially the same as the average phase C1 and the gain difference between the I signal and the Q signal can be canceled will be described.
First, a first method capable of reducing the influence of the gain difference α will be described below using Equations 1 to 5.

前記初期位相A1の位相をφ0deg、前記初期位相A2の位相をφ’0deg、前記シフト位相B1の位相をφ90deg、前記シフト位相B2の位相をφ’90degとすると、次に示す数式1〜4で求められる。 The initial phase of the phase A1 phi 0 deg, the initial phase phases phi of A2 '0 deg, the phase shift the phase B1 phi 90deg, phases phi of the shift phase B2' When 90deg, following equation 1 4 is required.

Figure 0004821379
Figure 0004821379

Figure 0004821379
Figure 0004821379

Figure 0004821379
Figure 0004821379

Figure 0004821379
そうすると、平均位相C2の位相φAVEは、次に示す数式5で求められる。
Figure 0004821379
Then, the phase φ AVE of the average phase C2 is obtained by the following formula 5.

Figure 0004821379
Figure 0004821379

次に、I信号とQ信号の利得差であるαの影響を消去できる第2の方法を、以下に数式6から11を用いて説明する。
まず、Q/IをI信号系統とQ信号系統に利得差がない場合のIとQの比の真値とすると、この比であるRは、次の数式6に示すように定義できる。
Next, a second method capable of eliminating the influence of α, which is the gain difference between the I signal and the Q signal, will be described below using Equations 6 to 11.
First, assuming that Q / I is a true value of the ratio of I and Q when there is no gain difference between the I signal system and the Q signal system, R which is this ratio can be defined as shown in Equation 6 below.

Figure 0004821379
I信号系統の利得に対するQ信号系統の利得の割合をα(未知数)とし、位相切替部22において受信信号に対する位相シフト量が0°である場合のQ信号とI信号の振幅比の観測値をR0degとすると、次の数式7が得られる。
Figure 0004821379
The ratio of the gain of the Q signal system to the gain of the I signal system is α (unknown number), and the observed value of the amplitude ratio between the Q signal and the I signal when the phase shift amount for the received signal is 0 ° in the phase switching unit 22 When R 0 deg is established, the following Expression 7 is obtained.

Figure 0004821379
また、位相切替部22において受信信号に対する位相シフト量が90°である場合のQ信号とI信号の振幅比の観測値をR90degとすると、次の数式8が得られる。
Figure 0004821379
Further, when the observed value of the amplitude ratio of the Q signal and I signal when the phase shift amount with respect to the received signal in the phase switching unit 22 is 90 ° and R 90deg, Equation 8 is obtained.

Figure 0004821379
これらの数式に基づいて、R0deg,R90degからRを得る式にαを含まない式が次のように求められる。
まず、上述の数式7と数式8の両辺をそれぞれ割り算すると、次の数式9が得られる。
Figure 0004821379
Based on these equations, an equation that does not include α in the equation for obtaining R from R 0deg and R 90deg is obtained as follows.
First, by dividing the both sides of the above formulas 7 and 8, the following formula 9 is obtained.

Figure 0004821379
したがって、真の値であるRは、次の数式10で求められる。
Figure 0004821379
Therefore, R, which is a true value, is obtained by the following formula 10.

Figure 0004821379
そうすると、真の位相であるθは次の数式11で求められる。
Figure 0004821379
Then, θ which is a true phase is obtained by the following formula 11.

Figure 0004821379
この方式でθを求めることで、I信号系統の利得に対するQ信号系統の利得の割合の影響を受けず、位相が高精度に求められることになる。従って、距離測定装置1によってθをもとに算出される距離の精度が向上する。また、θに関する誤差が無くなるので、多値位相変調方式のデータ受信装置に応用した場合に、多値位相変調方式における信号点配置を位相平面上で高密度にすることができ、データ通信速度を向上させることができる。
Figure 0004821379
By obtaining θ by this method, the phase can be obtained with high accuracy without being affected by the ratio of the gain of the Q signal system to the gain of the I signal system. Therefore, the accuracy of the distance calculated based on θ by the distance measuring device 1 is improved. In addition, since there is no error related to θ, when applied to a multi-level phase modulation type data receiver, the signal point arrangement in the multi-level phase modulation mode can be increased on the phase plane, and the data communication speed can be increased. Can be improved.

図4は距離測定装置1の距離測定動作のフローチャートを示し、図5は非接触ICタグ30までの距離を測定する際の信号の流れを示すイメージ図であり、図6は信号を復調する際のイメージ図を示す。   FIG. 4 shows a flowchart of the distance measuring operation of the distance measuring device 1, FIG. 5 is an image diagram showing a signal flow when measuring the distance to the non-contact IC tag 30, and FIG. 6 is a diagram when demodulating the signal. An image diagram is shown.

距離測定装置1のコントローラ部9は、リーダライタ(R/W)として機能する距離測定装置1から非接触ICタグ30に対して応答を要求するR/W要求信号33(図5参照)を出力する(ステップS1)。このとき、R/W要求信号33の周波数fを第1周波数f1(図6参照)に固定して送信する。   The controller unit 9 of the distance measuring device 1 outputs an R / W request signal 33 (see FIG. 5) for requesting a response to the non-contact IC tag 30 from the distance measuring device 1 functioning as a reader / writer (R / W). (Step S1). At this time, the frequency f of the R / W request signal 33 is fixed to the first frequency f1 (see FIG. 6) and transmitted.

コントローラ部9は、第1周波数f1にて非接触ICタグ30にCW(コンティニュアスウェイブ)を送信する(ステップS2)。このCWは、信号の載ってない連続したサイン波である。このとき、このCWを受けた非接触ICタグ30は、第1周波数f1でタグ応答信号35を送信する。   The controller unit 9 transmits CW (continuous wave) to the non-contact IC tag 30 at the first frequency f1 (step S2). This CW is a continuous sine wave with no signal. At this time, the non-contact IC tag 30 receiving this CW transmits a tag response signal 35 at the first frequency f1.

距離測定装置1は、第1周波数f1での非接触ICタグ30の応答信号を受信アンテナ11で受信する(ステップS3)。そして、この第1周波数f1での受信信号を第1周波数f1での基準信号41(図5参照)により復調し、データを取り込む(ステップS4)。   The distance measuring device 1 receives the response signal of the non-contact IC tag 30 at the first frequency f1 by the receiving antenna 11 (step S3). Then, the received signal at the first frequency f1 is demodulated by the reference signal 41 (see FIG. 5) at the first frequency f1, and data is taken in (step S4).

距離測定装置1は、距離推定部12の制御によって位相切替部22を0°から90°に切り替え、切り替え後の第1周波数f1’(図6参照)の受信信号を復調し、データを取り込む(ステップS5)。このとき、非接触ICタグ30が第1周波数f1で信号送信を行うワンフレームの処理内で、距離測定装置1の位相切替部22が位相の切り替えを行う。つまり、非接触ICタグ30から見て1つの信号を送信している間に、距離測定装置1は0°の位相でのデータ取り込みと90°の位相でのデータ取り込みの2通りのデータ取り込みを行う。   The distance measuring device 1 switches the phase switching unit 22 from 0 ° to 90 ° under the control of the distance estimating unit 12, demodulates the received signal of the first frequency f1 ′ (see FIG. 6) after switching, and captures data ( Step S5). At this time, the phase switching unit 22 of the distance measuring device 1 switches the phase within the one-frame process in which the non-contact IC tag 30 transmits a signal at the first frequency f1. In other words, while transmitting one signal as viewed from the non-contact IC tag 30, the distance measuring device 1 performs two types of data capture, that is, data capture at a phase of 0 ° and data capture at a phase of 90 °. Do.

距離測定装置1は、予め定められた一定時間が経過するまで待機し(ステップS6:NO)、一定時間が経過すると(ステップS6:YES)、全周波数について終了したか確認する(ステップS7)。   The distance measuring apparatus 1 stands by until a predetermined time elapses (step S6: NO). When the predetermined time elapses (step S6: YES), the distance measuring device 1 confirms whether all frequencies have been completed (step S7).

全周波数(本実施の形態では第1周波数f1から第3周波数f3までの3つの周波数)について終了してなかった場合(ステップS7:NO)、周波数fを次の周波数(例えば第2周波数f2)に切り替え、ステップS1に処理を戻す。 (In this embodiment, three frequency from the first frequency f1 to the third frequency f3) all frequencies when not completed for (step S7: NO), the frequency f next frequency (e.g., second frequency Switch to f2) and return to step S1.

全周波数について終了していた場合(ステップS7:YES)、距離推定部12は、各周波数のI信号とQ信号のデータより位相を算出する(ステップS9)。このとき、各周波数fについて、0°の位相で取得した周波数fを復調したデータと、90°の位相で取得した周波数f’を復調したデータを加算して2で除算した平均位相のデータをそれぞれ算出する。   If the processing has been completed for all frequencies (step S7: YES), the distance estimation unit 12 calculates the phase from the data of the I signal and Q signal of each frequency (step S9). At this time, for each frequency f, the data obtained by demodulating the frequency f acquired at the phase of 0 ° and the data obtained by demodulating the frequency f ′ acquired at the phase of 90 ° are added and the average phase data divided by 2 is obtained. Calculate each.

そして、距離推定部12は、求めた平均位相から距離を計算し(ステップS10)、処理を終了する。   And the distance estimation part 12 calculates distance from the calculated | required average phase (step S10), and complete | finishes a process.

以上の構成および動作により、I信号とQ信号の利得差による影響を殆ど受けることのない距離測定を実現できる。従って、高精度の距離測定を実現することができる。   With the configuration and operation described above, distance measurement that is hardly affected by the gain difference between the I signal and the Q signal can be realized. Therefore, highly accurate distance measurement can be realized.

具体的には、従来であれば図7(A)に示すように上下3°程度の位相誤差が出ていたため、数十cm以上(最大80cm)程度の誤差が出ていたが、上述の距離測定装置1により、図7(B)に示すように上下0.04°程度の位相誤差となり、測定距離の誤差を数cm程度にまで激減させることができる。特に、従来最も誤差が大きかった±45°、±135°の位相で誤差を最小にすることができる。 Specifically, in the prior art , as shown in FIG. 7A, an error of about tens of centimeters or more (maximum of 80 cm) has occurred since a phase error of about 3 ° in the vertical direction has occurred. As shown in FIG. 7 (B), the distance measuring apparatus 1 produces a phase error of about 0.04 ° in the vertical direction, and the measurement distance error can be drastically reduced to about several centimeters. In particular, the error can be minimized at the phase of ± 45 ° and ± 135 °, which has the largest error in the past.

また、この距離測定装置1は、I信号とQ信号との利得差を事前に測定する必要がなく、綿密な事前調査等を行うことなく容易に使用することができる。   Further, the distance measuring device 1 does not need to measure the gain difference between the I signal and the Q signal in advance, and can be easily used without performing a detailed preliminary survey or the like.

また、90°位相をシフトすることでI信号とQ信号との利得差をその都度適切にキャンセルでき、温度変化や経時変化等による影響を受けることなく常時精度良く復調を行うことができ、常時精度良く距離測定を行える。   In addition, by shifting the phase by 90 °, the gain difference between the I signal and the Q signal can be canceled appropriately each time, and demodulation can be performed with high accuracy at all times without being affected by temperature changes or changes over time. Distance measurement can be performed with high accuracy.

なお、上述した距離測定装置1は、図8に示すように、位相切替部22を発振器4と位相シフト部21の間に備える構成にしてもよい。この場合でも、上述した実施例と同一の効果を得ることができる。   The distance measuring device 1 described above may be configured to include the phase switching unit 22 between the oscillator 4 and the phase shift unit 21 as shown in FIG. Even in this case, the same effect as the above-described embodiment can be obtained.

また、距離推定部12の代わりに、図9に示すようにデータ復号部29を備えて受信データ復号装置28を構成しても良い。この場合、データ復号部29では、0°の受信信号と、位相切替部22でシフトされた90°の受信信号とを加算して2で除算した平均信号を作成し、この平均信号をさらに45°I信号側へ戻すことでノイズを除去して信号を復元する処理も実行すると良い。そして、このノイズ除去を行った復元信号に対して多値位相変調方式の多値デジタル復調を実行しデータ化し、このデータを記憶部に一時記憶するとよい。これにより、I信号とQ信号との利得差による影響の少ない受信データ復号装置28を提供することができる。そして、上記利得差による影響が少ないことから、一信号に含まれるビット数の数を増やすことができ、かつビット数を増やしても精度良く復調することができる。従って、多量のデータを一括送信して通信速度を向上させることができる。   Further, instead of the distance estimation unit 12, a reception data decoding device 28 may be configured by including a data decoding unit 29 as shown in FIG. In this case, the data decoding unit 29 creates an average signal obtained by adding the 0 ° received signal and the 90 ° received signal shifted by the phase switching unit 22 and dividing the sum by 2, and further adding the average signal to the 45 °. It is also preferable to perform processing for removing the noise and restoring the signal by returning to the I signal side. Then, the multilevel digital modulation of the multilevel phase modulation method is executed on the restored signal from which the noise has been removed to convert it into data, and this data may be temporarily stored in the storage unit. As a result, it is possible to provide the reception data decoding device 28 that is less affected by the gain difference between the I signal and the Q signal. Since the influence of the gain difference is small, the number of bits included in one signal can be increased, and even if the number of bits is increased, demodulation can be performed with high accuracy. Therefore, a large amount of data can be transmitted at once to improve the communication speed.

また、図8および図9に仮想線で示すように、距離推定部12や受信データ復号装置28の後段に表示部27を備えても良い。この場合、利得差αをもとに距離測定装置1や受信データ復号装置28の回路内部に発生したゲインのアンバランスを自己診断することができ、この自己診断の結果を表示部27に表示することができる。   Further, as indicated by a virtual line in FIGS. 8 and 9, a display unit 27 may be provided in the subsequent stage of the distance estimation unit 12 or the reception data decoding device 28. In this case, it is possible to self-diagnose the gain imbalance generated in the circuits of the distance measuring device 1 and the received data decoding device 28 based on the gain difference α, and the result of the self-diagnosis is displayed on the display unit 27. be able to.

詳述すると、上述した数式7と数式8の両辺をそれぞれ掛け算して得られる方程式を解くと、未知数であるαが次のように求められる。   More specifically, by solving the equations obtained by multiplying both sides of Equation 7 and Equation 8 described above, the unknown α is obtained as follows.

Figure 0004821379
このαの値を、本方式を用いた距離測定装置1または受信データ復号装置28が検出できるので、これらの装置が内部回路に発生したゲインのアンバランスを自己診断することが可能となる。
Figure 0004821379
Since the distance measurement device 1 or the received data decoding device 28 using this method can detect the value of α, it becomes possible for these devices to self-diagnose the gain imbalance generated in the internal circuit.

また、距離測定装置1は、0°と90°の受信信号の平均を取った平均信号のレベルが小さい場合に、図10に示すように距離推定部12で平均信号Kの位相をシフト信号Lとなるよう45°シフトする構成にしてもよい。ここで、平均信号のレベルが小さい場合とは、整数を「n」とすると平均信号の位相が「±nπ/2」の範囲に入る場合とすることができる。これにより、I信号およびQ信号のレベルが大きくなり、量子化誤差やS/N比低下の影響を受けることでの位相精度の低下を改善することができる。特に、I信号とQ信号との利得差αが1である場合に高い効果を得ることができる。   Further, when the average signal level obtained by averaging the received signals at 0 ° and 90 ° is small, the distance measuring device 1 shifts the phase of the average signal K by the distance estimating unit 12 as shown in FIG. You may make it the structure shifted 45 degrees so that it may become. Here, the case where the level of the average signal is small can be a case where the phase of the average signal falls within the range of “± nπ / 2” when the integer is “n”. As a result, the levels of the I signal and the Q signal are increased, and the deterioration of the phase accuracy due to the influence of the quantization error and the S / N ratio decrease can be improved. In particular, a high effect can be obtained when the gain difference α between the I signal and the Q signal is 1.

また、非接触ICタグ30が送信するワンフレームの信号で、位相が0°と90°の受信信号を取得したが、これにこだわらず、例えば非接触ICタグ30が第1周波数f1の信号を二回送信し、距離測定装置1が、一回目は0°の位相で処理し、二回目は位相を90°シフトして処理する構成にしてもよい。   In addition, a one-frame signal transmitted by the non-contact IC tag 30 and received signals having a phase of 0 ° and 90 ° are obtained. However, for example, the non-contact IC tag 30 transmits a signal of the first frequency f1. Transmission may be performed twice, and the distance measurement apparatus 1 may be configured to perform processing with a phase of 0 ° for the first time and shift the phase by 90 ° for the second time.

また、BPF23は、位相切替部22の後段に設けたが、位相切替部22の前段に設けても良い。   Further, although the BPF 23 is provided in the subsequent stage of the phase switching unit 22, it may be provided in the previous stage of the phase switching unit 22.

この発明の構成と、上述の実施形態との対応において、
この発明の復調装置は、実施形態の距離測定装置1および受信データ復号装置28に対応し、
以下同様に、
信号送信手段は、送信アンテナ7に対応し、
合成手段および距離推定手段は、距離推定部12に対応し、
位相シフト手段および位相切替手段は、位相切替部22に対応し、
復調手段は、直交復調器24,25に対応し、
データ受信装置は、受信データ復号装置28に対応し、
復元手段およびデータ化手段は、データ復号部29に対応し、
応答要求信号は、R/W要求信号33に対応し、
受信信号は、タグ応答信号35に対応し、
第1位相は、0°の位相に対応し、
第2位相は、90°の位相に対応し、
第1復調信号は、第1周波数f1を復調して得たデータに対応し、
第2復調信号は、第1周波数f1’を復調して得たデータに対応し、
合成信号は、平均位相のデータに対応するも、
この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
In correspondence between the configuration of the present invention and the above-described embodiment,
The demodulating device of the present invention corresponds to the distance measuring device 1 and the received data decoding device 28 of the embodiment,
Similarly,
The signal transmission means corresponds to the transmission antenna 7,
The combining unit and the distance estimating unit correspond to the distance estimating unit 12,
The phase shift unit and the phase switching unit correspond to the phase switching unit 22,
The demodulating means corresponds to the quadrature demodulator 24, 25,
The data receiving device corresponds to the received data decoding device 28,
The restoring means and the data converting means correspond to the data decoding unit 29,
The response request signal corresponds to the R / W request signal 33,
The received signal corresponds to the tag response signal 35 ,
The first phase corresponds to a phase of 0 °,
The second phase corresponds to a 90 ° phase,
The first demodulated signal corresponds to the data obtained by demodulating the first frequency f1,
The second demodulated signal corresponds to the data obtained by demodulating the first frequency f1 ′ ,
The composite signal corresponds to the average phase data,
The present invention is not limited only to the configuration of the above-described embodiment, and many embodiments can be obtained.

距離測定装置のブロック図。The block diagram of a distance measuring device. 位相の関係を示す説明図。Explanatory drawing which shows the relationship of a phase. 平均位相の効果を説明する説明図。Explanatory drawing explaining the effect of an average phase. 距離測定装置の距離測定動作を示すフローチャート。The flowchart which shows the distance measurement operation | movement of a distance measuring device. 距離を測定する際の信号の流れを示すイメージ図。The image figure which shows the flow of the signal at the time of measuring distance. 信号をI信号とQ信号とにより復調する際のイメージ図。The image figure at the time of demodulating a signal with I signal and Q signal. 位相誤差の説明図。Explanatory drawing of a phase error. 他の構成の距離測定装置のブロック図。The block diagram of the distance measurement apparatus of another structure. 受信データ復号装置のブロック図。The block diagram of a received data decoding apparatus. 他の実施例の説明図。Explanatory drawing of another Example.

1…距離測定装置
7…送信アンテナ
10…復調ユニット
10a…基準信号入力端子
10b…受信信号入力端子
10d…I信号出力端子
10e…Q信号出力端子
12…距離推定部
22…位相切替部
24,25…直交復調器
28…受信データ復号装置
29…データ復号部
30…非接触ICタグ
33…R/W要求信号
35…タグ応答信号
DESCRIPTION OF SYMBOLS 1 ... Distance measuring device 7 ... Transmitting antenna 10 ... Demodulation unit 10a ... Reference signal input terminal 10b ... Reception signal input terminal 10d ... I signal output terminal 10e ... Q signal output terminal 12 ... Distance estimation part 22 ... Phase switching part 24, 25 ... Quadrature demodulator 28 ... Received data decoder 29 ... Data decoder 30 ... Non-contact IC tag 33 ... R / W request signal 35 ... Tag response signal

Claims (4)

受信した受信信号を同相成分であるI信号と直交成分であるQ信号とにより復調する復調装置であって、
受信信号の位相を90度の位相にシフトする位相シフト手段と、
前記受信信号90度シフトされた位相の受信信号をそれぞれ復調して第1復調信号と第2復調信号とを取得する復調手段と、
前記第1復調信号と前記第2復調信号とを合成して合成信号を取得する合成手段とを備え、
前記合成手段を、前記第1復調信号の位相と前記第2復調信号の位相とを加算して2で除算する構成にした
復調装置。
A demodulator that demodulates a received signal using an I signal that is an in-phase component and a Q signal that is a quadrature component,
Phase shift means for shifting the phase of the received signal to a phase of 90 degrees;
Demodulating means for acquiring a first demodulated signal and the second demodulated signal by demodulating the received signal and the 90 ° shifted phase of the received signal and, respectively,
Combining means for combining the first demodulated signal and the second demodulated signal to obtain a combined signal;
It said combining means, demodulating apparatus which configured to divide by 2 by adding the phase of said second demodulated signal of the first demodulation signal.
受信した受信信号を同相成分であるI信号と直交成分であるQ信号とにより復調する復調装置であって、
受信信号の位相を90度の位相にシフトする位相シフト手段と、
前記受信信号90度シフトされた位相の受信信号をそれぞれ復調して第1復調信号と第2復調信号とを取得する復調手段と、
前記第1復調信号と前記第2復調信号とを合成して合成信号を取得する合成手段とを備え、
前記合成手段を、前記第1復調信号におけるI成分をQ成分で除算した第1演算信号と、第2復調信号におけるI成分をQ成分で除算した第2演算信号とを用いて、前記第1演算信号を前記第2演算信号で除算し−1を乗算して得た値の平方根を求める構成にした
復調装置。
A demodulator that demodulates a received signal using an I signal that is an in-phase component and a Q signal that is a quadrature component,
Phase shift means for shifting the phase of the received signal to a phase of 90 degrees;
Demodulating means for acquiring a first demodulated signal and the second demodulated signal by demodulating the received signal and the 90 ° shifted phase of the received signal and, respectively,
Combining means for combining the first demodulated signal and the second demodulated signal to obtain a combined signal;
The combining means uses the first arithmetic signal obtained by dividing the I component in the first demodulated signal by the Q component and the second arithmetic signal obtained by dividing the I component in the second demodulated signal by the Q component. A demodulator configured to obtain a square root of a value obtained by dividing an arithmetic signal by the second arithmetic signal and multiplying by -1.
請求項1または2の何れか1つに記載の復調装置と、
応答要求信号を送信する信号送信手段と、
該応答要求信号に応答した非接触ICタグの応答信号を受信してこの受信信号による前記合成信号の位相に基づいて前記非接触ICタグまでの距離を推定する距離推定手段とを備えた
距離測定装置。
A demodulation device according to any one of claims 1 and 2,
A signal transmission means for transmitting a response request signal;
Distance measurement means comprising: a distance estimation means for receiving a response signal of the non-contact IC tag in response to the response request signal and estimating the distance to the non-contact IC tag based on the phase of the synthesized signal by the received signal apparatus.
請求項1または2の何れか1つに記載の復調装置と、
前記位相シフト手段でシフトした位相の角度の半分だけ前記合成信号の位相を0度の位相側へシフトして復元信号とする復元手段と、
該復元信号を多値デジタル復調してデータ化するデータ化手段とを備えた
データ受信装置。
A demodulation device according to any one of claims 1 and 2,
Restoration means for shifting the phase of the composite signal to the phase side of 0 degree by half the angle of the phase shifted by the phase shift means to obtain a restoration signal;
A data receiving apparatus comprising: data converting means for converting the restored signal into multi-value digital demodulated data.
JP2006064684A 2006-03-09 2006-03-09 Demodulator, distance measuring device, and data receiving device Active JP4821379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006064684A JP4821379B2 (en) 2006-03-09 2006-03-09 Demodulator, distance measuring device, and data receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006064684A JP4821379B2 (en) 2006-03-09 2006-03-09 Demodulator, distance measuring device, and data receiving device

Publications (2)

Publication Number Publication Date
JP2007243724A JP2007243724A (en) 2007-09-20
JP4821379B2 true JP4821379B2 (en) 2011-11-24

Family

ID=38588781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006064684A Active JP4821379B2 (en) 2006-03-09 2006-03-09 Demodulator, distance measuring device, and data receiving device

Country Status (1)

Country Link
JP (1) JP4821379B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124586A1 (en) * 2011-03-14 2012-09-20 古河電気工業株式会社 Quadrature demodulator
JP6116807B2 (en) * 2012-03-07 2017-04-19 古河電気工業株式会社 Radar device and method for adjusting radar device
JP2015222847A (en) * 2014-05-22 2015-12-10 富士通株式会社 Voice processing device, voice processing method and voice processing program
US10641866B2 (en) 2016-08-05 2020-05-05 Texas Instruments Incorporated Failure detection in a radar system
JP6466533B2 (en) * 2017-08-10 2019-02-06 京セラ株式会社 Sample sensor and sample sensing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2166324A (en) * 1984-10-25 1986-04-30 Stc Plc A multi-mode radio transceiver
JPH03187550A (en) * 1989-12-15 1991-08-15 Matsushita Electric Works Ltd Two-phase psk demodulation circuit
JP3100860B2 (en) * 1995-03-10 2000-10-23 株式会社ヨコオ Communication device
JPH09145756A (en) * 1995-11-21 1997-06-06 Advantest Corp Method for correcting amplitude error of cross detector and cross detector
JP2003110640A (en) * 2001-09-28 2003-04-11 Japan Radio Co Ltd Orthogonal detection circuit
JP2004274288A (en) * 2003-03-07 2004-09-30 Hitachi Kokusai Electric Inc Quadrature modulator

Also Published As

Publication number Publication date
JP2007243724A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP4381945B2 (en) Receiver, receiving method, and portable wireless terminal
JP4648948B2 (en) Wireless receiver
JP6663115B2 (en) FMCW radar
JP5361927B2 (en) Wireless receiver
JP4821379B2 (en) Demodulator, distance measuring device, and data receiving device
JP4901679B2 (en) Wireless transmission / reception device and wireless transmission method
KR20050027226A (en) Method and apparatus to compensate imbalance of demodulator
JP2009206556A (en) Transmitter
JP6985612B2 (en) Radar device
JP2001339452A (en) Orthogonal modulating device and orthogonal modulation error detecting method
US7346100B2 (en) Estimating gain and phase imbalance in upconverting transmitters
JPWO2009075144A1 (en) Wireless communication apparatus and DC offset adjustment method
JP2005252631A (en) Error compensator for orthogonal modulator and orthogonal demodulator
TWI593258B (en) Maximum likelihood sequence detection in the phase domain
JP4557863B2 (en) Digital modulation signal generator
JP4312705B2 (en) Quadrature demodulation error compensation method and quadrature demodulation error compensation circuit
JP6408291B2 (en) IQ mismatch correction method and transmitter / receiver
CN108353066A (en) Joint non-coherent demodulation based on nonlinear filtering and offset correction of carrier frequency
US20070230624A1 (en) Demodulation method and apparatus
JP2004274288A (en) Quadrature modulator
WO2019193641A1 (en) Wireless communication device
JPH0964930A (en) Demodulation method and demodulator
JP4275657B2 (en) SSB signal receiver
US10419136B2 (en) Communication device and orthogonal error measurement method for communication device
JP2782146B2 (en) PSK modulation signal evaluation device and IQ origin offset detection device for PSK modulation signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R150 Certificate of patent or registration of utility model

Ref document number: 4821379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3