WO2012124586A1 - Quadrature demodulator - Google Patents

Quadrature demodulator Download PDF

Info

Publication number
WO2012124586A1
WO2012124586A1 PCT/JP2012/055924 JP2012055924W WO2012124586A1 WO 2012124586 A1 WO2012124586 A1 WO 2012124586A1 JP 2012055924 W JP2012055924 W JP 2012055924W WO 2012124586 A1 WO2012124586 A1 WO 2012124586A1
Authority
WO
WIPO (PCT)
Prior art keywords
quadrature
signal
component
error
local oscillation
Prior art date
Application number
PCT/JP2012/055924
Other languages
French (fr)
Japanese (ja)
Inventor
禎央 松嶋
福地 稔栄
高橋 慶
Original Assignee
古河電気工業株式会社
古河As株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河As株式会社 filed Critical 古河電気工業株式会社
Priority to EP12758261.7A priority Critical patent/EP2688262A4/en
Priority to JP2013504683A priority patent/JP5950903B2/en
Priority to CN201280012410.7A priority patent/CN103416036B/en
Publication of WO2012124586A1 publication Critical patent/WO2012124586A1/en
Priority to US14/026,801 priority patent/US20140037026A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/007Demodulation of angle-, frequency- or phase- modulated oscillations by converting the oscillations into two quadrature related signals
    • H03D3/009Compensating quadrature phase or amplitude imbalances
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • H04B15/02Reducing interference from electric apparatus by means located at or near the interfering apparatus
    • H04B15/04Reducing interference from electric apparatus by means located at or near the interfering apparatus the interference being caused by substantially sinusoidal oscillations, e.g. in a receiver or in a tape-recorder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • H04L27/3863Compensation for quadrature error in the received signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/358Receivers using I/Q processing

Definitions

  • the present invention relates to a quadrature demodulator used in a radio communication device or a radar device, and more particularly to a quadrature demodulator that detects and corrects an amplitude error and an orthogonality error.
  • the in-phase component (I component) and the quadrature component (Q component) output from the quadrature demodulator may be affected by variations in characteristics, ambient temperature, power supply voltage characteristics, and the like, resulting in amplitude errors and quadrature errors. is there. If there is such an error, the amplitude of the received signal will not be stable if radar signal processing is performed using the I component and Q component signals output from the quadrature demodulator (the IQ signal together). The maximum detection distance may be shortened. Further, in a radar apparatus that performs relative speed detection using Doppler transition, a signal having a fake relative speed appears due to an amplitude error and an orthogonality error, and thus there is a possibility that a warning is erroneously issued.
  • Patent Document 1 discloses an amplitude error compensator and an orthogonality error compensator.
  • an amplitude error compensation device uses a power difference between an in-phase component and a quadrature component of a complex signal after amplitude correction with respect to an in-phase component and a quadrature component of a complex signal obtained by quadrature detection.
  • a rotation detector that detects the rotation of the signal point of the complex signal after amplitude correction.
  • the amplitude error compensation device described in Patent Document 1 cannot correct the amplitude error and the orthogonality error in a wireless communication device based on, for example, pulse modulation that does not modulate the phase. Further, in the case of a radar device based on pulse modulation, the frequency offset of the received signal and the rotation of the signal point of the complex signal are not unique, and the amplitude error compensator described in Patent Document 1 also has an amplitude error and orthogonality error. It cannot be corrected.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an orthogonal demodulator capable of appropriately correcting amplitude error and orthogonality error even for a pulse-modulated signal. .
  • a first aspect of the quadrature demodulator includes a local oscillator having a local oscillator that oscillates a local oscillation signal having a predetermined frequency, and the local oscillation signal output from the local oscillation unit. And a predetermined high-frequency signal to detect the in-phase component and the quadrature component of the high-frequency signal, and input the in-phase component and the quadrature component from the quadrature detection unit to input predetermined information from the high-frequency signal.
  • Quadrature detection error detection means for calculating a degree error
  • quadrature detection error compensation means for compensating using the amplitude error and the orthogonality error calculated by the quadrature detection error detection means.
  • phase adjustment means adjusts so that a difference between the first phase change and the second phase change is 90 degrees.
  • Another aspect of the quadrature demodulator according to the present invention includes a local oscillation unit having a local oscillator that oscillates a local oscillation signal having a predetermined frequency, and the local oscillation signal output from the local oscillation unit and a predetermined high-frequency signal.
  • the first and second quadrature detection units for detecting the in-phase component and the quadrature component of the high-frequency signal, and the in-phase component and the quadrature component are input from the first and second quadrature detection units.
  • the high frequency signal used to calculate the amplitude error and the orthogonality error by the quadrature detection error detection means is obtained by inputting the local oscillation signal from the local oscillation unit. It is a leak signal leaked from the transmission unit that generates a predetermined transmission signal and emits it into the air from the transmission antenna to the quadrature detection unit.
  • the high frequency signal used to calculate the amplitude error and the orthogonality error by the quadrature detection error detection means is obtained by inputting the local oscillation signal from the local oscillation unit. It is a reception signal obtained by emitting a generated predetermined transmission signal from a transmission antenna to the air and then receiving a reflected wave reflected by a predetermined target with a reception antenna.
  • the first aspect of the wireless communication apparatus of the present invention is characterized by having any one of the quadrature demodulation apparatuses of the above aspect.
  • a first aspect of the radar apparatus according to the present invention is characterized by having any one of the quadrature demodulation apparatuses of the above aspect.
  • an orthogonal demodulator that can appropriately correct an amplitude error and an orthogonality error even for a pulse-modulated signal.
  • FIG. 1 is a block diagram illustrating a configuration of a radar apparatus 1 including an orthogonal demodulation device 100 according to the present embodiment.
  • a quadrature demodulating apparatus 100 includes a local oscillator 110 including a local oscillator 111 and a phase adjusting unit 112, a quadrature detection including a phase shifter 121, a first mixer 122, and a second mixer 123.
  • a signal processing unit 130 including a quadrature detection error detecting unit 131 and a quadrature detection error compensating unit 132.
  • the radar apparatus 1 further includes a transmission unit 10, a transmission antenna 15, a reception unit 20, and a reception antenna 25 in addition to the orthogonal demodulation device 100 of the present embodiment.
  • the transmission unit 10 receives a local oscillation signal (LO signal) of a predetermined frequency oscillated by the local oscillator 111, amplifies the signal by the amplifier 11, and radiates it from the transmission antenna 15 to the space.
  • the transmission signal radiated from the transmission antenna 15 is reflected by the target and received by the reception antenna 25.
  • the received signal received by the receiving antenna 25 is amplified by the amplifiers 21 and 22 and then input to the quadrature detection unit 120 to be quadrature demodulated.
  • the quadrature detection unit 120 inputs the LO signal output from the local oscillation unit 110 together with the received signal.
  • the LO signal input from the local oscillating unit 110 is input to the phase shifter 121, where a signal not added with a phase difference and a signal added with a phase difference of 90 degrees are output to the first mixer 122 and the second mixer 123, respectively.
  • the In the first mixer 122 and the second mixer 123 the received signal and the LO signal input from the phase shifter 121 are multiplied to detect the in-phase component (I component) and the quadrature component (Q component) of the received signal, respectively. Is done.
  • the detected I and Q components are output to the signal processing unit 130, where position information such as the distance to the target is detected.
  • the quadrature demodulator 100 detects an amplitude error and a quadrature error between the I component and the Q component output from the quadrature detector 120 to the signal processor 130, and detects the detected amplitude error and orthogonality. An error is used to compensate for the I and Q components of the received signal.
  • the local oscillating unit 110 is provided with the phase adjusting unit 112
  • the signal processing unit 130 is provided with the quadrature detection error detecting unit 131.
  • the phase adjustment unit 112 can change the phase of the LO signal output from the local oscillator 111 and output it to the quadrature detection unit 120.
  • the signal processing unit 130 is provided with a quadrature detection error compensation means 132.
  • a predetermined RF signal is input to the quadrature detection unit 120, while two LO signals whose phases are changed using the phase adjustment unit 112 are input to the quadrature detection unit 120. input.
  • the quadrature detection unit 120 detects the I component and the Q component of the RF signal using each of the two LO signals having different phases, and outputs the I component and the Q component to the quadrature detection error detection unit 131.
  • the quadrature detection error detection means 131 calculates an amplitude error and a quadrature error using the two sets of I component and Q component input from the quadrature detection unit 120.
  • the received signal is input to the quadrature detection unit 120, while the LO signal whose phase is not changed by the phase adjustment unit 112 is input to the quadrature detection unit 120.
  • the quadrature detection unit 120 multiplies the received signal by the LO signal to detect the I component and Q component of the received signal, and outputs this to the quadrature detection error compensation means 132.
  • the quadrature detection error compensation unit 132 inputs amplitude errors and quadrature errors detected in advance from the quadrature detection error detection unit 131 and compensates for errors in the I and Q components of the received signal.
  • phase adjustment unit 112 changes the respective phases so that the two LO signals output to the quadrature detection unit 120 have a phase difference of 90 degrees.
  • RF An RF signal (referred to as RF) used to detect an amplitude error and an orthogonality error is expressed by the following formula (1), and an LO signal whose phase is not changed by the phase adjusting unit 112 is expressed by the following formula (2), It shall be represented by (3).
  • Expression (2) represents a signal (noted as LO_I) to which a phase difference is not added by the phase shifter 121
  • Expression (3) is a signal (LO_Q and Signal with a phase difference of 90 degrees added by the phase shifter 121). Notation).
  • the quadrature detection unit 120 receives the RF signal represented by the expression (1) and the LO signal represented by the expressions (2) and (3), the I component and the Q component of the output RF signal (respectively IF_I , IF_Q) are expressed as the following equations (4) and (5), respectively.
  • equations (4) and (5) are obtained by selecting the terms ( ⁇ 0 t ⁇ t) and ( ⁇ 0 t + ⁇ t) obtained by down-converting the RF signal.
  • the quadrature detection unit 120 to which this LO signal is input outputs the I component and the Q component represented by the following equations (8) and (9).
  • equation (13) is obtained from equation (9), and equation (14) is obtained by dividing equation (4) by equation (8).
  • Equation (15) the orthogonality error ⁇ can be calculated using Equation (15) below.
  • the quadrature detection error compensation means 132 uses the amplitude error B / C calculated by the above equation (12) and the orthogonality error ⁇ calculated by the equation (15) to receive the received signal received by the receiving antenna 25.
  • the amplitude error and the orthogonality error can be compensated for the I component and Q component obtained by quadrature detection. That is, when the RF signal represented by Equation (1) is a received signal, the I component and Q component of the received signal are the amplitude error B / given by Equation (12) in Equations (4) and (5), respectively.
  • C and the orthogonality error ⁇ given by Equation (15) the amplitude error and the orthogonality error are compensated.
  • the quadrature detection error compensation unit 132 that compensates for the amplitude error and the quadrature error with respect to the received signal is provided in the signal processing unit 130. It is also possible to configure using
  • FIG. 1 A first example of the RF signal is shown in FIG.
  • the LO signal output from the local oscillator 111 leaks from the transmission antenna 15 via the transmission unit 10 and is received by the reception antenna 25 and input to the quadrature detection unit 120. This is a leak signal.
  • the leakage signal from the local oscillator 111 is used as the RF signal, the angular frequency ⁇ of the RF signal is equal to the angular frequency ⁇ 0 of the LO signal oscillated by the local oscillator 111.
  • the method for obtaining the amplitude error B / C and the orthogonality error ⁇ using the leakage signal from the local oscillator 111 can be applied not only to the radar apparatus but also to a wireless communication device.
  • the RF signal 52 shown in the figure is a reception signal that is received by the reception antenna 25 after the transmission signal generated based on the LO signal input from the local oscillator 111 in the transmission unit 10 is reflected by the target.
  • the angular frequency ⁇ of the RF signal is equal to the angular frequency ⁇ 0 of the LO signal oscillated by the local oscillator 111 or changes from the angular frequency ⁇ 0 by the amount of frequency fluctuation due to Doppler shift.
  • the method of obtaining the amplitude error B / C and the orthogonality error ⁇ using the received signal can be applied to the radar apparatus.
  • FIG. 4 is a block diagram illustrating a configuration of the radar apparatus 2 including the quadrature demodulation apparatus 200 according to the present embodiment.
  • the quadrature demodulating apparatus 200 according to the present embodiment further includes a first coupler 213 that branches the LO signal to the local oscillating unit 210, and the second signal before the received signal of the receiving unit 20 is input to the quadrature detecting unit 120.
  • a coupler 224 is further provided. The first coupler 213 and the second coupler 224 are connected by a predetermined signal line 214.
  • the signal path for branching the LO signal output from the local oscillator 111 by the first coupler 213 and transmitting the LO signal to the second coupler 224 via the signal line 214. Can be formed.
  • the LO signal 53 transmitted to the second coupler 224 can be input to the quadrature detector 120 and used as an RF signal for calculating the amplitude error B / C and the quadrature error ⁇ .
  • the angular frequency ⁇ of the RF signal 53 is equal to the angular frequency ⁇ 0 of the LO signal oscillated by the local oscillator 111.
  • the method of obtaining the amplitude error B / C and the orthogonality error ⁇ using the LO signal branched by the local oscillation unit 210 can be applied not only to the radar apparatus but also to a wireless communication device.
  • FIG. 5 is a block diagram illustrating a configuration of the radar apparatus 2 including the quadrature demodulation apparatus 300 according to the present embodiment.
  • the quadrature demodulator 300 of this embodiment includes two quadrature detection units, a first quadrature detection unit 320a and a second quadrature detection unit 320b, as quadrature detection units.
  • the local oscillator 310 is provided with signal distribution means 314 to distribute the LO signal output from the local oscillator 111 and to each phase shifter 121 of the first quadrature detector 320a and the second quadrature detector 320b. It is configured to input.
  • the signal distribution unit 314 adds a 90-degree phase difference between the LO signal output to the first quadrature detection unit 320a and the LO signal output to the second quadrature detection unit 320b, and outputs the result.
  • the received signal is input to the quadrature detection unit 320a, while the LO signal whose phase is not changed by the signal distribution unit 314 is input to the quadrature detection unit 320a.
  • the quadrature detection unit 320 a multiplies the received signal by the LO signal to detect the I component and Q component of the received signal, and outputs this to the quadrature detection error compensation means 132.
  • the quadrature detection error compensation unit 132 inputs amplitude errors and quadrature errors detected in advance from the quadrature detection error detection unit 131 and compensates for errors in the I and Q components of the received signal.
  • the quadrature demodulator of the present invention it is possible to appropriately correct the amplitude error and the orthogonality error for the pulse-modulated signal.
  • the amplitude of the received signal can be stabilized, and thereby the desired maximum detection distance performance can be ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Provided is a quadrature demodulator capable of appropriately correcting amplitude errors and quadrature errors even for pulse modulated signals. In order to correct amplitude errors and quadrature errors, a quadrature demodulator (100) is provided with: a phase adjusting means (112) in a local oscillator (110); and a quadrature detection error detecting means (131) and a quadrature detection error correcting means (132) in a signal processor (130). A quadrature detection unit (120) uses two LO signals having phases changed by the phase adjusting means (112) to output two sets of an I component and Q component of an RF signal, and the two sets of the I component and Q component are used by the quadrature detection error detecting means (131) to calculate an amplitude error and quadrature error. The quadrature detection error correcting means (132) uses the amplitude error and quadrature error calculated by the quadrature detection error detecting means (131) to correct a reception signal.

Description

直交復調装置Quadrature demodulator
 本発明は、無線通信機やレーダ装置で用いられる直交復調装置に関し、特に振幅誤差及び直交度誤差を検出して補正する直交復調装置に関する。 The present invention relates to a quadrature demodulator used in a radio communication device or a radar device, and more particularly to a quadrature demodulator that detects and corrects an amplitude error and an orthogonality error.
 レーダ装置は、電波を送信し、目標物によって反射された電波の受信信号を処理して、距離、角度といった目標物までの位置情報を得るものである。受信感度の向上などを目的として、同期検波方式を採用したレーダ装置が知られている。特に、ダイレクトコンバージョン方式の同期検波の場合には、位相条件によってターゲットの検出漏れが生じるのを防止したり、ドップラ遷移を利用して目標物の相対速度を検出することを目的として、直交復調装置を用いた検波方式を採用することがある。 The radar device transmits a radio wave, processes a reception signal of the radio wave reflected by the target, and obtains position information up to the target such as a distance and an angle. A radar apparatus that employs a synchronous detection system for the purpose of improving reception sensitivity is known. In particular, in the case of direct conversion type synchronous detection, a quadrature demodulator is used to prevent target detection omissions due to phase conditions or to detect the relative speed of a target using Doppler transitions. A detection method using may be employed.
 ところで、直交復調装置から出力される同相成分(I成分)及び直交成分(Q成分)は、特性バラツキ、周囲温度、電源電圧特性などの影響を受けて振幅誤差や直交度誤差が発生することがある。このような誤差があるとき、直交復調装置から出力されたI成分、Q成分の信号(両者を合わせてIQ信号という)をそのまま用いてレーダ信号処理を行うと、受信信号の振幅が安定せず最大探知距離が短縮されてしまうおそれがある。また、ドップラ遷移を利用した相対速度検出を行うレーダ装置では、振幅誤差、直交度誤差に起因してにせの相対速度を持つ信号が出現するため、誤って警報を発するおそれがある。 By the way, the in-phase component (I component) and the quadrature component (Q component) output from the quadrature demodulator may be affected by variations in characteristics, ambient temperature, power supply voltage characteristics, and the like, resulting in amplitude errors and quadrature errors. is there. If there is such an error, the amplitude of the received signal will not be stable if radar signal processing is performed using the I component and Q component signals output from the quadrature demodulator (the IQ signal together). The maximum detection distance may be shortened. Further, in a radar apparatus that performs relative speed detection using Doppler transition, a signal having a fake relative speed appears due to an amplitude error and an orthogonality error, and thus there is a possibility that a warning is erroneously issued.
 一方、ディジタル無線通信においても、ディジタル変調方式で変調された信号を復調するために、直交復調装置を用いて直交検波を行い、その結果を複素信号(IQ信号)として得ることが広く行われている。ディジタル無線通信に用いられる直交復調装置に振幅誤差、直交度誤差が発生すると、ビット誤り率が増加するなどの問題があった。 On the other hand, in digital wireless communication, in order to demodulate a signal modulated by a digital modulation method, quadrature detection is performed using a quadrature demodulator, and the result is obtained as a complex signal (IQ signal). Yes. When an amplitude error and an orthogonality error occur in an orthogonal demodulator used for digital wireless communication, there is a problem that a bit error rate increases.
 このような直交復調装置の振幅誤差、直交度誤差を補正する技術として、特許文献1に振幅誤差補償装置及び直交度誤差補償装置が開示されている。特許文献1では、例えば振幅誤差補償装置は、直交検波して得られた複素信号の同相成分と直交成分とに対して、振幅補正後の複素信号の同相成分と直交成分との間の電力差を求める電力差分算出部と、振幅補正後の複素信号の信号点の回転を検出する回転検出部とを備えている。 As a technique for correcting the amplitude error and the orthogonality error of such a quadrature demodulator, Patent Document 1 discloses an amplitude error compensator and an orthogonality error compensator. In Patent Document 1, for example, an amplitude error compensation device uses a power difference between an in-phase component and a quadrature component of a complex signal after amplitude correction with respect to an in-phase component and a quadrature component of a complex signal obtained by quadrature detection. And a rotation detector that detects the rotation of the signal point of the complex signal after amplitude correction.
特許第4495210号公報Japanese Patent No. 4495210
 しかしながら、特許文献1に記載の振幅誤差補償装置では、位相に変調を加えない例えばパルス変調に基く無線通信機では、振幅誤差、直交度誤差を補正することができない。また、パルス変調に基くレーダ装置の場合には、受信信号の周波数オフセット、複素信号の信号点の回転が一意ではなく、やはり特許文献1に記載の振幅誤差補償装置では振幅誤差、直交度誤差を補正することができない。 However, the amplitude error compensation device described in Patent Document 1 cannot correct the amplitude error and the orthogonality error in a wireless communication device based on, for example, pulse modulation that does not modulate the phase. Further, in the case of a radar device based on pulse modulation, the frequency offset of the received signal and the rotation of the signal point of the complex signal are not unique, and the amplitude error compensator described in Patent Document 1 also has an amplitude error and orthogonality error. It cannot be corrected.
 本発明は、上記課題に鑑みてなされたものであり、パルス変調された信号に対しても振幅誤差及び直交度誤差の補正を適切に行うことができる直交復調装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an orthogonal demodulator capable of appropriately correcting amplitude error and orthogonality error even for a pulse-modulated signal. .
 上記課題を解決するため、本発明の直交復調装置の第1の態様は、所定周波数の局部発振信号を発振する局部発振器を有する局部発振部と、前記局部発振部から出力される前記局部発振信号と所定の高周波信号とを入力して該高周波信号の同相成分及び直交成分を検波する直交検波部と、前記直交検波部から前記同相成分及び前記直交成分を入力して前記高周波信号から所定の情報を検出するための信号処理を行う信号処理部と、を備える直交復調装置であって、前記局部発振器で発振された局部発振信号の位相を所定の位相変化分だけずらすように調整する位相調整手段と、前記位相調整手段によって第1の位相変化分だけ調整された第1の局部発振信号を用いて前記直交検波部で検波された前記高周波信号の第1の同相成分及び第1の直交成分と、前記位相調整手段によって第2の位相変化分だけ調整された第2の局部発振信号を用いて前記直交検波部で検波された前記高周波信号の第2の同相成分及び第2の直交成分とを入力し、前記第1の同相成分及び第1の直交成分と前記第2の同相成分及び第2の直交成分とから前記高周波信号の同相成分と直交成分との間の振幅誤差及び直交度誤差を算出する直交検波誤差検出手段と、前記直交検波誤差検出手段で算出した前記振幅誤差及び直交度誤差を用いて補償する直交検波誤差補償手段と、をさらに備えることを特徴とする。 In order to solve the above problems, a first aspect of the quadrature demodulator according to the present invention includes a local oscillator having a local oscillator that oscillates a local oscillation signal having a predetermined frequency, and the local oscillation signal output from the local oscillation unit. And a predetermined high-frequency signal to detect the in-phase component and the quadrature component of the high-frequency signal, and input the in-phase component and the quadrature component from the quadrature detection unit to input predetermined information from the high-frequency signal. A signal processing unit for performing signal processing for detecting a signal, and a phase adjustment unit that adjusts the phase of the local oscillation signal oscillated by the local oscillator so as to shift by a predetermined phase change And the first in-phase component of the high-frequency signal detected by the quadrature detection unit using the first local oscillation signal adjusted by the first phase change by the phase adjustment unit and the first And a second in-phase component and a second quadrature component of the high-frequency signal detected by the quadrature detection unit using the second local oscillation signal adjusted by the second phase change by the phase adjustment unit. Component, and an amplitude error and quadrature between the in-phase component and the quadrature component of the high-frequency signal from the first in-phase component, the first quadrature component, the second in-phase component, and the second quadrature component. It further comprises quadrature detection error detection means for calculating a degree error, and quadrature detection error compensation means for compensating using the amplitude error and the orthogonality error calculated by the quadrature detection error detection means.
 本発明の直交復調装置の他の態様は、前記位相調整手段は、前記第1の位相変化分が0度となるように調整することを特徴とする。 Another aspect of the quadrature demodulation apparatus of the present invention is characterized in that the phase adjusting means adjusts the first phase change amount to be 0 degree.
 本発明の直交復調装置の他の態様は、前記位相調整手段は、前記第1の位相変化分と前記第2の位相変化分との差が90度となるように調整することを特徴とする。 Another aspect of the quadrature demodulator of the present invention is characterized in that the phase adjustment means adjusts so that a difference between the first phase change and the second phase change is 90 degrees. .
 本発明の直交復調装置の他の態様は、所定周波数の局部発振信号を発振する局部発振器を有する局部発振部と、前記局部発振部から出力される前記局部発振信号と所定の高周波信号とを入力して該高周波信号の同相成分及び直交成分を検波する第1及び第2の直交検波部と、前記第1及び第2の直交検波部から前記同相成分及び前記直交成分を入力して前記高周波信号から所定の情報を検出するための信号処理を行う信号処理部と、を備える直交復調装置であって、前記局部発振器で発振された局部発振信号を分配し、所定の位相差を与える信号分配手段と、前記信号分配手段によって分配された第1の局部発振信号を用いて前記第1の直交検波部で検波された前記高周波信号の第1の同相成分及び第1の直交成分と、前記信号分配手段によって分配された第2の局部発振信号を用いて前記第2の直交検波部で検波された前記高周波信号の第2の同相成分及び第2の直交成分とを入力し、前記第1の同相成分及び第1の直交成分と前記第2の同相成分及び第2の直交成分とから前記高周波信号の同相成分と直交成分との間の振幅誤差及び直交度誤差を算出する直交検波誤差検出手段と、前記直交検波誤差検出手段で算出した前記振幅誤差及び直交度誤差を用いて補償する直交検波誤差補償手段と、をさらに備えることを特徴とする。 Another aspect of the quadrature demodulator according to the present invention includes a local oscillation unit having a local oscillator that oscillates a local oscillation signal having a predetermined frequency, and the local oscillation signal output from the local oscillation unit and a predetermined high-frequency signal. The first and second quadrature detection units for detecting the in-phase component and the quadrature component of the high-frequency signal, and the in-phase component and the quadrature component are input from the first and second quadrature detection units. A signal processing unit for performing signal processing for detecting predetermined information from the signal, and a signal distribution unit that distributes a local oscillation signal oscillated by the local oscillator and gives a predetermined phase difference A first in-phase component and a first quadrature component of the high-frequency signal detected by the first quadrature detection unit using the first local oscillation signal distributed by the signal distribution unit, and the signal distribution To the means And inputting the second in-phase component and the second quadrature component of the high-frequency signal detected by the second quadrature detection unit using the second local oscillation signal distributed in this way, and the first in-phase component Quadrature detection error detection means for calculating an amplitude error and a quadrature error between the in-phase component and the quadrature component of the high-frequency signal from the component, the first quadrature component, the second in-phase component, and the second quadrature component; And orthogonal detection error compensation means for compensating using the amplitude error and orthogonality error calculated by the orthogonal detection error detection means.
 本発明の直交復調装置の他の態様は、前記信号分配手段は、前記第1の局部発振信号と前記第2の局部発振信号との間に90度の位相差を与えることを特徴とする。 Another aspect of the quadrature demodulator of the present invention is characterized in that the signal distribution means gives a phase difference of 90 degrees between the first local oscillation signal and the second local oscillation signal.
 本発明の直交復調装置の他の態様は、前記直交検波誤差検出手段で前記振幅誤差及び直交度誤差を算出するのに用いる前記高周波信号は、前記局部発振部から前記局部発振信号を入力して所定の送信信号を生成しこれを送信アンテナから空中に放出する送信部から前記直交検波部に漏出した漏れ信号であることを特徴とする。 In another aspect of the quadrature demodulator of the present invention, the high frequency signal used to calculate the amplitude error and the orthogonality error by the quadrature detection error detection means is obtained by inputting the local oscillation signal from the local oscillation unit. It is a leak signal leaked from the transmission unit that generates a predetermined transmission signal and emits it into the air from the transmission antenna to the quadrature detection unit.
 本発明の直交復調装置の他の態様は、前記直交検波誤差検出手段で前記振幅誤差及び直交度誤差を算出するのに用いる前記高周波信号は、前記局部発振部から前記局部発振信号を入力して生成された所定の送信信号を送信アンテナから空中に放出した後所定の目標物で反射された反射波を受信アンテナで受信した受信信号であることを特徴とする。 In another aspect of the quadrature demodulator of the present invention, the high frequency signal used to calculate the amplitude error and the orthogonality error by the quadrature detection error detection means is obtained by inputting the local oscillation signal from the local oscillation unit. It is a reception signal obtained by emitting a generated predetermined transmission signal from a transmission antenna to the air and then receiving a reflected wave reflected by a predetermined target with a reception antenna.
 本発明の直交復調装置の他の態様は、前記局部発振部から前記直交検波部の前記高周波信号の入力側に前記局部発振信号を伝送するための信号経路をさらに備え、前記直交検波誤差検出手段で前記振幅誤差及び直交度誤差を算出するのに用いる前記高周波信号は、前記信号経路を経由して前記直交検波部に入力される前記局部発振信号であることを特徴とする。 Another aspect of the quadrature demodulation apparatus of the present invention further includes a signal path for transmitting the local oscillation signal from the local oscillation unit to the high-frequency signal input side of the quadrature detection unit, and the quadrature detection error detection unit The high frequency signal used for calculating the amplitude error and the orthogonality error is the local oscillation signal input to the quadrature detection unit via the signal path.
 本発明の無線通信装置の第1の態様は、上記態様のいずれか1つの直交復調装置を有することを特徴とする。 The first aspect of the wireless communication apparatus of the present invention is characterized by having any one of the quadrature demodulation apparatuses of the above aspect.
 本発明のレーダ装置の第1の態様は、上記態様のいずれか1つの直交復調装置を有することを特徴とする。 A first aspect of the radar apparatus according to the present invention is characterized by having any one of the quadrature demodulation apparatuses of the above aspect.
 本発明によれば、パルス変調された信号に対しても振幅誤差及び直交度誤差の補正を適切に行うことができる直交復調装置を提供することが可能である。 According to the present invention, it is possible to provide an orthogonal demodulator that can appropriately correct an amplitude error and an orthogonality error even for a pulse-modulated signal.
本発明の第1実施形態に係る直交復調装置を備えたレーダ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radar apparatus provided with the orthogonal demodulation apparatus which concerns on 1st Embodiment of this invention. 第1実施形態の直交復調装置で振幅誤差及び直交度誤差を算出するのに用いるRF信号の一例を示すブロック図である。It is a block diagram which shows an example of RF signal used for calculating an amplitude error and an orthogonality error with the orthogonal demodulation apparatus of 1st Embodiment. 第1実施形態の直交復調装置で振幅誤差及び直交度誤差を算出するのに用いるRF信号の別の例を示すブロック図である。It is a block diagram which shows another example of RF signal used for calculating an amplitude error and orthogonality error with the orthogonal demodulation apparatus of 1st Embodiment. 本発明の第2実施形態に係る直交復調装置を備えたレーダ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radar apparatus provided with the orthogonal demodulation apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る直交復調装置を備えたレーダ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radar apparatus provided with the orthogonal demodulation apparatus which concerns on 3rd Embodiment of this invention.
 本発明の好ましい実施の形態における直交復調装置について、図面を参照して詳細に説明する。同一機能を有する各構成部については、図示及び説明簡略化のため、同一符号を付して示す。 A quadrature demodulator according to a preferred embodiment of the present invention will be described in detail with reference to the drawings. Each component having the same function is denoted by the same reference numeral for simplification of illustration and description.
(第1実施形態)
 本発明の第1の実施の形態に係る直交復調装置を、図1を用いて以下に説明する。図1は、本実施形態の直交復調装置100を備えたレーダ装置1の構成を示すブロック図である。図1において、本実施形態の直交復調装置100は、局部発振器111及び位相調整手段112を具備する局部発振部110と、移相器121、第1ミキサ122及び第2ミキサ123を具備する直交検波部120と、直交検波誤差検出手段131及び直交検波誤差補償手段132を具備する信号処理部130とを備えている。
(First embodiment)
An orthogonal demodulator according to a first embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a block diagram illustrating a configuration of a radar apparatus 1 including an orthogonal demodulation device 100 according to the present embodiment. In FIG. 1, a quadrature demodulating apparatus 100 according to the present embodiment includes a local oscillator 110 including a local oscillator 111 and a phase adjusting unit 112, a quadrature detection including a phase shifter 121, a first mixer 122, and a second mixer 123. And a signal processing unit 130 including a quadrature detection error detecting unit 131 and a quadrature detection error compensating unit 132.
 またレーダ装置1は、本実施形態の直交復調装置100に、さらに送信部10、送信アンテナ15、受信部20、及び受信アンテナ25を備えている。送信部10は、局部発振器111で発振された所定周波数の局部発振信号(LO信号)を入力し、これを増幅器11で増幅した後送信アンテナ15から空間に放射する。送信アンテナ15から放射された送信信号は、目標物で反射されて受信アンテナ25で受信される。受信アンテナ25で受信された受信信号は、増幅器21、22で増幅された後、直交検波部120に入力されて直交復調される。 The radar apparatus 1 further includes a transmission unit 10, a transmission antenna 15, a reception unit 20, and a reception antenna 25 in addition to the orthogonal demodulation device 100 of the present embodiment. The transmission unit 10 receives a local oscillation signal (LO signal) of a predetermined frequency oscillated by the local oscillator 111, amplifies the signal by the amplifier 11, and radiates it from the transmission antenna 15 to the space. The transmission signal radiated from the transmission antenna 15 is reflected by the target and received by the reception antenna 25. The received signal received by the receiving antenna 25 is amplified by the amplifiers 21 and 22 and then input to the quadrature detection unit 120 to be quadrature demodulated.
 直交検波部120は、受信信号とともに、局部発振部110から出力されるLO信号を入力する。局部発振部110から入力したLO信号は移相器121に入力され、ここで位相差を付加しない信号と90度の位相差を付加した信号がそれぞれ第1ミキサ122及び第2ミキサ123に出力される。第1ミキサ122及び第2ミキサ123では、受信信号と移相器121から入力したLO信号とが乗算されることで、それぞれ受信信号の同相成分(I成分)及び直交成分(Q成分)が検波される。検波されたI成分及びQ成分は信号処理部130に出力され、ここで目標物までの距離等の位置情報が検出される。 The quadrature detection unit 120 inputs the LO signal output from the local oscillation unit 110 together with the received signal. The LO signal input from the local oscillating unit 110 is input to the phase shifter 121, where a signal not added with a phase difference and a signal added with a phase difference of 90 degrees are output to the first mixer 122 and the second mixer 123, respectively. The In the first mixer 122 and the second mixer 123, the received signal and the LO signal input from the phase shifter 121 are multiplied to detect the in-phase component (I component) and the quadrature component (Q component) of the received signal, respectively. Is done. The detected I and Q components are output to the signal processing unit 130, where position information such as the distance to the target is detected.
 本実施形態の直交復調装置100は、直交検波部120から信号処理部130に出力されるI成分とQ成分との間の振幅誤差及び直交度誤差を検出し、検出された振幅誤差及び直交度誤差を用いて受信信号のI成分及びQ成分を補償するように構成されている。振幅誤差及び直交度誤差を検出するために、局部発振部110に位相調整手段112を設け、信号処理部130に直交検波誤差検出手段131を設けている。位相調整手段112は、局部発振器111から出力されるLO信号の位相を変化させて直交検波部120に出力することができる。また、受信信号のI成分及びQ成分を補償するために、信号処理部130に直交検波誤差補償手段132を設けている。 The quadrature demodulator 100 according to the present embodiment detects an amplitude error and a quadrature error between the I component and the Q component output from the quadrature detector 120 to the signal processor 130, and detects the detected amplitude error and orthogonality. An error is used to compensate for the I and Q components of the received signal. In order to detect the amplitude error and the orthogonality error, the local oscillating unit 110 is provided with the phase adjusting unit 112, and the signal processing unit 130 is provided with the quadrature detection error detecting unit 131. The phase adjustment unit 112 can change the phase of the LO signal output from the local oscillator 111 and output it to the quadrature detection unit 120. Further, in order to compensate for the I component and Q component of the received signal, the signal processing unit 130 is provided with a quadrature detection error compensation means 132.
 まず、振幅誤差及び直交度誤差を検出するときは、所定のRF信号を直交検波部120に入力する一方、位相調整手段112を用いて位相を変化させた2つのLO信号を直交検波部120に入力する。直交検波部120は、位相の異なる2つのLO信号のそれぞれを用いてRF信号のI成分及びQ成分を検波し、それぞれのI成分及びQ成分を直交検波誤差検出手段131に出力する。直交検波誤差検出手段131は、直交検波部120から入力した2組のI成分及びQ成分を用いて振幅誤差及び直交度誤差を算出する。 First, when detecting an amplitude error and a quadrature error, a predetermined RF signal is input to the quadrature detection unit 120, while two LO signals whose phases are changed using the phase adjustment unit 112 are input to the quadrature detection unit 120. input. The quadrature detection unit 120 detects the I component and the Q component of the RF signal using each of the two LO signals having different phases, and outputs the I component and the Q component to the quadrature detection error detection unit 131. The quadrature detection error detection means 131 calculates an amplitude error and a quadrature error using the two sets of I component and Q component input from the quadrature detection unit 120.
 一方、受信信号に対して振幅誤差及び直交度誤差を補償するときは、受信信号を直交検波部120に入力する一方、位相調整手段112で位相を変化させないLO信号を直交検波部120に入力する。直交検波部120では、受信信号とLO信号とを乗算して受信信号のI成分及びQ成分を検波し、これを直交検波誤差補償手段132に出力する。直交検波誤差補償手段132では、事前に検出されている振幅誤差及び直交度誤差を直交検波誤差検出手段131から入力して受信信号のI成分及びQ成分の誤差を補償する。 On the other hand, when the amplitude error and the orthogonality error are compensated for the received signal, the received signal is input to the quadrature detection unit 120, while the LO signal whose phase is not changed by the phase adjustment unit 112 is input to the quadrature detection unit 120. . The quadrature detection unit 120 multiplies the received signal by the LO signal to detect the I component and Q component of the received signal, and outputs this to the quadrature detection error compensation means 132. The quadrature detection error compensation unit 132 inputs amplitude errors and quadrature errors detected in advance from the quadrature detection error detection unit 131 and compensates for errors in the I and Q components of the received signal.
 次に、直交検波誤差検出手段131において振幅誤差及び直交度誤差を検出する方法を以下に説明する。ここでは、位相調整手段112により位相を変化させないLO信号と、位相を90度変化させたLO信号とを直交検波部120に出力する場合について説明する。位相調整手段112は、直交検波部120に出力する2つのLO信号が90度の位相差を有するようにそれぞれの位相を変化させるものとする。 Next, a method for detecting the amplitude error and the orthogonality error in the orthogonal detection error detecting means 131 will be described below. Here, a case where the LO signal whose phase is not changed by the phase adjusting unit 112 and the LO signal whose phase is changed by 90 degrees is output to the quadrature detection unit 120 will be described. The phase adjustment unit 112 changes the respective phases so that the two LO signals output to the quadrature detection unit 120 have a phase difference of 90 degrees.
 振幅誤差及び直交度誤差を検出するのに用いるRF信号(RFと表記するものとする)を下記の式(1)で表し、位相調整手段112で位相を変化させないLO信号を式(2)、(3)で表すものとする。ここで、式(2)は移相器121で位相差を付加しない信号(LO_Iと表記する)を表し、式(3)は移相器121で90度の位相差を付加した信号(LO_Qと表記する)を表す。
Figure JPOXMLDOC01-appb-I000001
An RF signal (referred to as RF) used to detect an amplitude error and an orthogonality error is expressed by the following formula (1), and an LO signal whose phase is not changed by the phase adjusting unit 112 is expressed by the following formula (2), It shall be represented by (3). Here, Expression (2) represents a signal (noted as LO_I) to which a phase difference is not added by the phase shifter 121, and Expression (3) is a signal (LO_Q and Signal with a phase difference of 90 degrees added by the phase shifter 121). Notation).
Figure JPOXMLDOC01-appb-I000001
 式(1)~(3)において、ω、ωはそれぞれRF信号及びLO信号の角周波数を表し、振幅A,B,Cは各信号の信号経路における通過特性も含めた振幅を表す。これより、振幅誤差はB/Cで表される。また、位相差αは直交度誤差を表すものである。以下では、振幅誤差B/C及び直交度誤差αを算出する方法について説明する。 In the equations (1) to (3), ω and ω 0 represent the angular frequencies of the RF signal and the LO signal, respectively, and the amplitudes A, B, and C represent the amplitudes including the pass characteristics in the signal path of each signal. Thus, the amplitude error is represented by B / C. The phase difference α represents an orthogonality error. Hereinafter, a method for calculating the amplitude error B / C and the orthogonality error α will be described.
 直交検波部120が、式(1)で表されるRF信号と式(2)、(3)で表されるLO信号を入力したとき、出力するRF信号のI成分及びQ成分(それぞれをIF_I、IF_Qと表記する)はそれぞれ下記の式(4)、(5)のように表される。
Figure JPOXMLDOC01-appb-I000002
When the quadrature detection unit 120 receives the RF signal represented by the expression (1) and the LO signal represented by the expressions (2) and (3), the I component and the Q component of the output RF signal (respectively IF_I , IF_Q) are expressed as the following equations (4) and (5), respectively.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
ここで、式(4)、(5)はRF信号をダウンコンバートした(ωt-ωt)及び(ωt+α-ωt)の項を選択したものである。
Figure JPOXMLDOC01-appb-I000003
Here, equations (4) and (5) are obtained by selecting the terms (ω 0 t−ωt) and (ω 0 t + α−ωt) obtained by down-converting the RF signal.
 また、位相調整手段112により位相を90度変化させたLO信号を直交検波部120に入力したときは、下記の式(6)、(7)のように表される2つの信号が移相器121から出力される。
Figure JPOXMLDOC01-appb-I000004
When the LO signal whose phase is changed by 90 degrees by the phase adjusting means 112 is input to the quadrature detection unit 120, the two signals represented by the following equations (6) and (7) are phase shifters. 121 is output.
Figure JPOXMLDOC01-appb-I000004
 このLO信号を入力した直交検波部120は、下記の式(8)、(9)で表されるI成分及びQ成分を出力する。
Figure JPOXMLDOC01-appb-I000005
The quadrature detection unit 120 to which this LO signal is input outputs the I component and the Q component represented by the following equations (8) and (9).
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
ここで、式(8)、(9)では、RF信号をダウンコンバートした(ωt-ωt)及び(ωt+α-ωt)の項を選択している。
Figure JPOXMLDOC01-appb-I000006
Here, in equations (8) and (9), the terms (ω 0 t−ωt) and (ω 0 t + α−ωt) obtained by down-converting the RF signal are selected.
 式(4)、(8)、及び式(5)、(9)より、それぞれ下記の式(10)、(11)が算出される。
Figure JPOXMLDOC01-appb-I000007
 これより、振幅誤差B/Cは下記の式(12)を用いて算出することができる。
Figure JPOXMLDOC01-appb-I000008
From the equations (4), (8), and the equations (5), (9), the following equations (10), (11) are calculated, respectively.
Figure JPOXMLDOC01-appb-I000007
Thus, the amplitude error B / C can be calculated using the following equation (12).
Figure JPOXMLDOC01-appb-I000008
 一方、式(9)より下記の式(13)が求まり、式(4)を式(8)で除することにより式(14)が求まる。
Figure JPOXMLDOC01-appb-I000009
On the other hand, the following equation (13) is obtained from equation (9), and equation (14) is obtained by dividing equation (4) by equation (8).
Figure JPOXMLDOC01-appb-I000009
 式(13)に式(11)及び式(14)を代入することで、直交度誤差αは下記の式(15)を用いて算出することができる。
Figure JPOXMLDOC01-appb-I000010
By substituting Equation (11) and Equation (14) into Equation (13), the orthogonality error α can be calculated using Equation (15) below.
Figure JPOXMLDOC01-appb-I000010
 直交検波誤差補償手段132では、上記の式(12)で算出される振幅誤差B/C、及び式(15)で算出される直交度誤差αを用いることで、受信アンテナ25で受信した受信信号を直交検波して得られるI成分及びQ成分に対して振幅誤差及び直交度誤差を補償することができる。すなわち、式(1)で表されるRF信号を受信信号としたとき、受信信号のI成分及びQ成分は、それぞれ式(4)、(5)に式(12)で与えられる振幅誤差B/C、及び式(15)で与えられる直交度誤差αを代入することで、振幅誤差及び直交度誤差が補償される。 The quadrature detection error compensation means 132 uses the amplitude error B / C calculated by the above equation (12) and the orthogonality error α calculated by the equation (15) to receive the received signal received by the receiving antenna 25. The amplitude error and the orthogonality error can be compensated for the I component and Q component obtained by quadrature detection. That is, when the RF signal represented by Equation (1) is a received signal, the I component and Q component of the received signal are the amplitude error B / given by Equation (12) in Equations (4) and (5), respectively. By substituting C and the orthogonality error α given by Equation (15), the amplitude error and the orthogonality error are compensated.
 なお上記では、受信信号に対する振幅誤差及び直交度誤差を補償する直交検波誤差補償手段132を信号処理部130に設けるものとして説明したが、これに限定されず、直交検波誤差補償手段132をアナログ回路を用いて構成することも可能である。 In the above description, the quadrature detection error compensation unit 132 that compensates for the amplitude error and the quadrature error with respect to the received signal is provided in the signal processing unit 130. It is also possible to configure using
 つぎに、振幅誤差B/C及び直交度誤差αを算出するのに用いるRF信号の一例について説明する。RF信号の第1の例を図2に示す。同図に示すRF信号51は、局部発振器111から出力されるLO信号が、送信部10を経由して送信アンテナ15から漏出し、これが受信アンテナ25で受信されて直交検波部120に入力される漏れ信号である。RF信号として局部発振器111からの漏れ信号を用いる場合、RF信号の角周波数ωは局部発振器111で発振されるLO信号の角周波数ωに等しくなる。局部発振器111からの漏れ信号を用いて振幅誤差B/C及び直交度誤差αを求める方法は、レーダ装置だけでなく無線通信機でも適用可能である。 Next, an example of an RF signal used to calculate the amplitude error B / C and the orthogonality error α will be described. A first example of the RF signal is shown in FIG. In the RF signal 51 shown in the figure, the LO signal output from the local oscillator 111 leaks from the transmission antenna 15 via the transmission unit 10 and is received by the reception antenna 25 and input to the quadrature detection unit 120. This is a leak signal. When the leakage signal from the local oscillator 111 is used as the RF signal, the angular frequency ω of the RF signal is equal to the angular frequency ω 0 of the LO signal oscillated by the local oscillator 111. The method for obtaining the amplitude error B / C and the orthogonality error α using the leakage signal from the local oscillator 111 can be applied not only to the radar apparatus but also to a wireless communication device.
 振幅誤差B/C及び直交度誤差αを算出するのに用いるRF信号の第2の例を図3に示す。同図に示すRF信号52は、送信部10において局部発振器111から入力したLO信号をもとに生成された送信信号が、目標物で反射されて受信アンテナ25で受信された受信信号である。RF信号として受信信号を用いる場合、RF信号の角周波数ωは、局部発振器111で発振されるLO信号の角周波数ωに等しいか、またはドップラシフトによる周波数変動分だけ角周波数ωから変化している。受信信号を用いて振幅誤差B/C及び直交度誤差αを求める方法は、レーダ装置に適用可能である。 A second example of the RF signal used to calculate the amplitude error B / C and the orthogonality error α is shown in FIG. The RF signal 52 shown in the figure is a reception signal that is received by the reception antenna 25 after the transmission signal generated based on the LO signal input from the local oscillator 111 in the transmission unit 10 is reflected by the target. When the received signal is used as the RF signal, the angular frequency ω of the RF signal is equal to the angular frequency ω 0 of the LO signal oscillated by the local oscillator 111 or changes from the angular frequency ω 0 by the amount of frequency fluctuation due to Doppler shift. ing. The method of obtaining the amplitude error B / C and the orthogonality error α using the received signal can be applied to the radar apparatus.
(第2実施形態)
 本発明の第2の実施の形態に係る直交復調装置を、図4を用いて以下に説明する。図4は、本実施形態の直交復調装置200を備えたレーダ装置2の構成を示すブロック図である。図4において、本実施形態の直交復調装置200は、局部発振部210にLO信号を分岐する第1カプラ213をさらに備え、受信部20の受信信号を直交検波部120に入力する手前に第2カプラ224をさらに備えている。第1カプラ213と第2カプラ224との間は、所定の信号線214で接続されている。
(Second Embodiment)
A quadrature demodulator according to a second embodiment of the present invention will be described below with reference to FIG. FIG. 4 is a block diagram illustrating a configuration of the radar apparatus 2 including the quadrature demodulation apparatus 200 according to the present embodiment. In FIG. 4, the quadrature demodulating apparatus 200 according to the present embodiment further includes a first coupler 213 that branches the LO signal to the local oscillating unit 210, and the second signal before the received signal of the receiving unit 20 is input to the quadrature detecting unit 120. A coupler 224 is further provided. The first coupler 213 and the second coupler 224 are connected by a predetermined signal line 214.
 上記のように構成された本実施形態のレーダ装置2では、局部発振器111から出力されたLO信号を第1カプラ213で分岐し、信号線214を経由して第2カプラ224に伝送する信号経路を形成することができる。第2カプラ224に伝送されたLO信号53は、直交検波部120に入力されて振幅誤差B/C及び直交度誤差αを算出するためのRF信号に用いることができる。このRF信号53の角周波数ωは、局部発振器111で発振されるLO信号の角周波数ωに等しい。局部発振部210で分岐したLO信号を用いて振幅誤差B/C及び直交度誤差αを求める方法は、レーダ装置だけでなく無線通信機でも適用可能である。 In the radar apparatus 2 of the present embodiment configured as described above, the signal path for branching the LO signal output from the local oscillator 111 by the first coupler 213 and transmitting the LO signal to the second coupler 224 via the signal line 214. Can be formed. The LO signal 53 transmitted to the second coupler 224 can be input to the quadrature detector 120 and used as an RF signal for calculating the amplitude error B / C and the quadrature error α. The angular frequency ω of the RF signal 53 is equal to the angular frequency ω 0 of the LO signal oscillated by the local oscillator 111. The method of obtaining the amplitude error B / C and the orthogonality error α using the LO signal branched by the local oscillation unit 210 can be applied not only to the radar apparatus but also to a wireless communication device.
(第3実施形態)
 本発明の第3の実施の形態に係る直交復調装置を、図5を用いて以下に説明する。図5は、本実施形態の直交復調装置300を備えたレーダ装置2の構成を示すブロック図である。図5において、本実施形態の直交復調装置300は、直交検波部として第1の直交検波部320aと第2の直交検波部320bの2つの直交検波部を備えている。また、局部発振部310に信号分配手段314を設け、局部発振器111から出力されたLO信号を分配して第1の直交検波部320a及び第2の直交検波部320bのそれぞれの移相器121に入力する構成としている。信号分配手段314では、第1の直交検波部320aに出力するLO信号と第2の直交検波部320bに出力するLO信号との間に90度の位相差を付加して出力する。
(Third embodiment)
An orthogonal demodulator according to a third embodiment of the present invention will be described below with reference to FIG. FIG. 5 is a block diagram illustrating a configuration of the radar apparatus 2 including the quadrature demodulation apparatus 300 according to the present embodiment. In FIG. 5, the quadrature demodulator 300 of this embodiment includes two quadrature detection units, a first quadrature detection unit 320a and a second quadrature detection unit 320b, as quadrature detection units. Further, the local oscillator 310 is provided with signal distribution means 314 to distribute the LO signal output from the local oscillator 111 and to each phase shifter 121 of the first quadrature detector 320a and the second quadrature detector 320b. It is configured to input. The signal distribution unit 314 adds a 90-degree phase difference between the LO signal output to the first quadrature detection unit 320a and the LO signal output to the second quadrature detection unit 320b, and outputs the result.
 さらに、振幅誤差及び直交度誤差の算出に用いる高周波信号を第1の直交検波部320a及び第2の直交検波部320bの両方に入力させる必要があることから、例えば増幅器22の出口側に信号分配手段315を設ける。このような構成とすることで、本実施形態の直交復調装置300では、上記式(4)、(5)のI成分、Q成分と、式(8)、(9)のI成分、Q成分を同時に求めることができる、といった利点がある。本実施形態では、受信信号に対して振幅誤差及び直交度誤差を補償するときは、受信信号を直交検波部320aに入力する一方、信号分配手段314で位相を変化させないLO信号を直交検波部320aに入力する。直交検波部320aでは、受信信号とLO信号とを乗算して受信信号のI成分及びQ成分を検波し、これを直交検波誤差補償手段132に出力する。直交検波誤差補償手段132では、事前に検出されている振幅誤差及び直交度誤差を直交検波誤差検出手段131から入力して受信信号のI成分及びQ成分の誤差を補償する。 Further, since it is necessary to input a high-frequency signal used for calculation of the amplitude error and the orthogonality error to both the first quadrature detection unit 320a and the second quadrature detection unit 320b, for example, signal distribution to the outlet side of the amplifier 22 Means 315 are provided. With such a configuration, in the orthogonal demodulator 300 according to the present embodiment, the I component and the Q component of the above formulas (4) and (5) and the I component and the Q component of the formulas (8) and (9). There is an advantage that can be obtained simultaneously. In this embodiment, when the amplitude error and the orthogonality error are compensated for the received signal, the received signal is input to the quadrature detection unit 320a, while the LO signal whose phase is not changed by the signal distribution unit 314 is input to the quadrature detection unit 320a. To enter. The quadrature detection unit 320 a multiplies the received signal by the LO signal to detect the I component and Q component of the received signal, and outputs this to the quadrature detection error compensation means 132. The quadrature detection error compensation unit 132 inputs amplitude errors and quadrature errors detected in advance from the quadrature detection error detection unit 131 and compensates for errors in the I and Q components of the received signal.
 以上の説明のように、本発明の直交復調装置によれば、パルス変調された信号に対しても振幅誤差及び直交度誤差の補正を適切に行うことが可能となる。本発明の直交復調装置を適用したパルスレーダでは、受信信号の振幅を安定化させることができ、これにより所望の最大探知距離性能を確保することができる。また、にせの相対速度信号の発生を抑制することで誤った警報の発出を回避することができる。 As described above, according to the quadrature demodulator of the present invention, it is possible to appropriately correct the amplitude error and the orthogonality error for the pulse-modulated signal. In the pulse radar to which the quadrature demodulator of the present invention is applied, the amplitude of the received signal can be stabilized, and thereby the desired maximum detection distance performance can be ensured. In addition, it is possible to avoid issuing a false alarm by suppressing the generation of a false relative speed signal.
 なお、本実施の形態における記述は、本発明に係る直交復調装置の一例を示すものであり、これに限定されるものではない。本実施の形態における直交復調装置の細部構成及び詳細な動作などに関しては、本発明の趣旨を逸脱しない範囲で適宜変更可能である。 Note that the description in the present embodiment shows an example of the orthogonal demodulation device according to the present invention, and the present invention is not limited to this. The detailed configuration and detailed operation of the quadrature demodulator in this embodiment can be changed as appropriate without departing from the spirit of the present invention.
1、2  レーダ装置
10   送信部
11、21、22  増幅器
15   送信アンテナ
20   受信部
25   受信アンテナ
51、52、53  RF信号
100,200、300  直交復調装置
110、210、310  局部発振部
111  局部発振器
112  位相調整手段
120  直交検波部
121  移相器
122  第1ミキサ
123  第2ミキサ
130  信号処理部
131  直交検波誤差検出手段
132  直交検波誤差補償手段
213  第1カプラ
214  信号線
224  第2カプラ
320a 第1の直交検波部
320b 第2の直交検波部
314  信号分配手段
315  信号分配手段
1, 2 Radar device 10 Transmitter 11, 21, 22 Amplifier 15 Transmitter antenna 20 Receiver 25 Receive antenna 51, 52, 53 RF signal 100, 200, 300 Orthogonal demodulator 110, 210, 310 Local oscillator 111 Local oscillator 112 Phase adjustment unit 120 Quadrature detection unit 121 Phase shifter 122 First mixer 123 Second mixer 130 Signal processing unit 131 Quadrature detection error detection unit 132 Quadrature detection error compensation unit 213 First coupler 214 Signal line 224 Second coupler 320a First Quadrature detection unit 320b Second quadrature detection unit 314 Signal distribution unit 315 Signal distribution unit

Claims (10)

  1.  所定周波数の局部発振信号を発振する局部発振器を有する局部発振部と、前記局部発振部から出力される前記局部発振信号と所定の高周波信号とを入力して該高周波信号の同相成分及び直交成分を検波する直交検波部と、前記直交検波部から前記同相成分及び前記直交成分を入力して前記高周波信号から所定の情報を検出するための信号処理を行う信号処理部と、を備える直交復調装置であって、
     前記局部発振器で発振された局部発振信号の位相を所定の位相変化分だけずらすように調整する位相調整手段と、
     前記位相調整手段によって第1の位相変化分だけ調整された第1の局部発振信号を用いて前記直交検波部で検波された前記高周波信号の第1の同相成分及び第1の直交成分と、前記位相調整手段によって第2の位相変化分だけ調整された第2の局部発振信号を用いて前記直交検波部で検波された前記高周波信号の第2の同相成分及び第2の直交成分とを入力し、前記第1の同相成分及び第1の直交成分と前記第2の同相成分及び第2の直交成分とから前記高周波信号の同相成分と直交成分との間の振幅誤差及び直交度誤差を算出する直交検波誤差検出手段と、
     前記直交検波誤差検出手段で算出した前記振幅誤差及び直交度誤差を用いて補償する直交検波誤差補償手段と、をさらに備える
    ことを特徴とする直交復調装置。
    A local oscillation unit having a local oscillator that oscillates a local oscillation signal of a predetermined frequency, and the local oscillation signal output from the local oscillation unit and a predetermined high-frequency signal are input, and an in-phase component and a quadrature component of the high-frequency signal are obtained. A quadrature demodulating apparatus comprising: a quadrature detection unit that detects; and a signal processing unit that inputs the in-phase component and the quadrature component from the quadrature detection unit and performs signal processing for detecting predetermined information from the high-frequency signal. There,
    Phase adjusting means for adjusting the phase of the local oscillation signal oscillated by the local oscillator to shift by a predetermined phase change;
    A first in-phase component and a first quadrature component of the high-frequency signal detected by the quadrature detection unit using the first local oscillation signal adjusted by the first phase change by the phase adjustment unit; The second in-phase component and the second quadrature component of the high-frequency signal detected by the quadrature detection unit using the second local oscillation signal adjusted by the second phase change by the phase adjustment unit are input. An amplitude error and a quadrature error between the in-phase component and the quadrature component of the high-frequency signal are calculated from the first in-phase component, the first quadrature component, the second in-phase component, and the second quadrature component. Orthogonal detection error detection means;
    A quadrature demodulation apparatus, further comprising: quadrature detection error compensation means that compensates using the amplitude error and the orthogonality error calculated by the quadrature detection error detection means.
  2.  前記位相調整手段は、前記第1の位相変化分が0度となるように調整する
    ことを特徴とする請求項1に記載の直交復調装置。
    The quadrature demodulating apparatus according to claim 1, wherein the phase adjusting unit adjusts the first phase change amount to be 0 degree.
  3.  前記位相調整手段は、前記第1の位相変化分と前記第2の位相変化分との差が90度となるように調整する
    ことを特徴とする請求項1または2に記載の直交復調装置。
    3. The quadrature demodulating apparatus according to claim 1, wherein the phase adjustment unit adjusts so that a difference between the first phase change and the second phase change is 90 degrees.
  4.  所定周波数の局部発振信号を発振する局部発振器を有する局部発振部と、前記局部発振部から出力される前記局部発振信号と所定の高周波信号とを入力して該高周波信号の同相成分及び直交成分を検波する第1及び第2の直交検波部と、前記第1及び第2の直交検波部から前記同相成分及び前記直交成分を入力して前記高周波信号から所定の情報を検出するための信号処理を行う信号処理部と、を備える直交復調装置であって、
     前記局部発振器で発振された局部発振信号を分配し、所定の位相差を与える信号分配手段と、
     前記信号分配手段によって分配された第1の局部発振信号を用いて前記第1の直交検波部で検波された前記高周波信号の第1の同相成分及び第1の直交成分と、前記信号分配手段によって分配された第2の局部発振信号を用いて前記第2の直交検波部で検波された前記高周波信号の第2の同相成分及び第2の直交成分とを入力し、前記第1の同相成分及び第1の直交成分と前記第2の同相成分及び第2の直交成分とから前記高周波信号の同相成分と直交成分との間の振幅誤差及び直交度誤差を算出する直交検波誤差検出手段と、
     前記直交検波誤差検出手段で算出した前記振幅誤差及び直交度誤差を用いて補償する直交検波誤差補償手段と、をさらに備える
    ことを特徴とする直交復調装置。
    A local oscillation unit having a local oscillator that oscillates a local oscillation signal of a predetermined frequency, and the local oscillation signal output from the local oscillation unit and a predetermined high-frequency signal are input, and an in-phase component and a quadrature component of the high-frequency signal are obtained. Signal processing for detecting predetermined information from the high-frequency signal by inputting the in-phase component and the quadrature component from the first and second quadrature detection units and the first and second quadrature detection units to detect; A quadrature demodulation device comprising: a signal processing unit that performs:
    A signal distributing means for distributing a local oscillation signal oscillated by the local oscillator and giving a predetermined phase difference;
    The first in-phase component and the first quadrature component of the high-frequency signal detected by the first quadrature detection unit using the first local oscillation signal distributed by the signal distribution unit, and the signal distribution unit The second in-phase component and the second quadrature component of the high-frequency signal detected by the second quadrature detection unit using the distributed second local oscillation signal are input, and the first in-phase component and Quadrature detection error detection means for calculating an amplitude error and a quadrature error between the in-phase component and the quadrature component of the high-frequency signal from the first quadrature component, the second in-phase component, and the second quadrature component;
    A quadrature demodulation apparatus, further comprising: quadrature detection error compensation means that compensates using the amplitude error and the orthogonality error calculated by the quadrature detection error detection means.
  5.  前記信号分配手段は、前記第1の局部発振信号と前記第2の局部発振信号との間に90度の位相差を与える
    ことを特徴とする請求項4に記載の直交復調装置。
    5. The quadrature demodulator according to claim 4, wherein the signal distribution unit gives a phase difference of 90 degrees between the first local oscillation signal and the second local oscillation signal.
  6.  前記直交検波誤差検出手段で前記振幅誤差及び直交度誤差を算出するのに用いる前記高周波信号は、前記局部発振部から前記局部発振信号を入力して所定の送信信号を生成しこれを送信アンテナから空中に放出する送信部から前記直交検波部に漏出した漏れ信号である
    ことを特徴とする請求項1乃至5のいずれか1項に記載の直交復調装置。
    The high-frequency signal used to calculate the amplitude error and the orthogonality error by the quadrature detection error detection means generates a predetermined transmission signal by inputting the local oscillation signal from the local oscillation unit, and generates a predetermined transmission signal from the transmission antenna. 6. The quadrature demodulator according to claim 1, wherein the quadrature demodulator is a leak signal leaked from the transmitter to be released into the air to the quadrature detector.
  7.  前記直交検波誤差検出手段で前記振幅誤差及び直交度誤差を算出するのに用いる前記高周波信号は、前記局部発振部から前記局部発振信号を入力して生成された所定の送信信号を送信アンテナから空中に放出した後所定の目標物で反射された反射波を受信アンテナで受信した受信信号である
    ことを特徴とする請求項1乃至5のいずれか1項に記載の直交復調装置。
    The high-frequency signal used to calculate the amplitude error and the orthogonality error by the quadrature detection error detection means is a predetermined transmission signal generated by inputting the local oscillation signal from the local oscillation unit, and is transmitted from the transmission antenna to the air. 6. The quadrature demodulator according to claim 1, wherein the quadrature demodulator is a reception signal obtained by receiving a reflected wave reflected by a predetermined target after being emitted to a reception antenna.
  8.  前記局部発振部から前記直交検波部の前記高周波信号の入力側に前記局部発振信号を伝送するための信号経路をさらに備え、
     前記直交検波誤差検出手段で前記振幅誤差及び直交度誤差を算出するのに用いる前記高周波信号は、前記信号経路を経由して前記直交検波部に入力される前記局部発振信号である
    ことを特徴とする請求項1乃至5のいずれか1項に記載の直交復調装置。
    A signal path for transmitting the local oscillation signal from the local oscillation unit to the input side of the high-frequency signal of the quadrature detection unit;
    The high-frequency signal used for calculating the amplitude error and the orthogonality error by the quadrature detection error detection means is the local oscillation signal input to the quadrature detection unit via the signal path. An orthogonal demodulator according to any one of claims 1 to 5.
  9.  請求項1乃至8のいずれか1項に記載の直交復調装置を有する無線通信装置。 A wireless communication device having the orthogonal demodulation device according to any one of claims 1 to 8.
  10.  請求項1乃至8のいずれか1項に記載の直交復調装置を有するレーダ装置。 A radar apparatus comprising the quadrature demodulator according to any one of claims 1 to 8.
PCT/JP2012/055924 2011-03-14 2012-03-08 Quadrature demodulator WO2012124586A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12758261.7A EP2688262A4 (en) 2011-03-14 2012-03-08 Quadrature demodulator
JP2013504683A JP5950903B2 (en) 2011-03-14 2012-03-08 Quadrature demodulator
CN201280012410.7A CN103416036B (en) 2011-03-14 2012-03-08 Quadrature demodulator
US14/026,801 US20140037026A1 (en) 2011-03-14 2013-09-13 Quadrature demodulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-055253 2011-03-14
JP2011055253 2011-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/026,801 Continuation US20140037026A1 (en) 2011-03-14 2013-09-13 Quadrature demodulator

Publications (1)

Publication Number Publication Date
WO2012124586A1 true WO2012124586A1 (en) 2012-09-20

Family

ID=46830659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055924 WO2012124586A1 (en) 2011-03-14 2012-03-08 Quadrature demodulator

Country Status (5)

Country Link
US (1) US20140037026A1 (en)
EP (1) EP2688262A4 (en)
JP (1) JP5950903B2 (en)
CN (1) CN103416036B (en)
WO (1) WO2012124586A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185945A (en) * 2012-03-07 2013-09-19 Furukawa Electric Co Ltd:The Radar device and adjustment method of radar device
JP2013192048A (en) * 2012-03-14 2013-09-26 Oki Electric Ind Co Ltd Amplitude correction device, radio communication device, and amplitude correction method
JP2014228359A (en) * 2013-05-21 2014-12-08 トヨタ自動車株式会社 Object displacement detection apparatus and object displacement detection method
JP2015190952A (en) * 2014-03-28 2015-11-02 トヨタ自動車株式会社 Object displacement detection signal processor
JP2019158690A (en) * 2018-03-14 2019-09-19 古河電気工業株式会社 Radar device, and radar device adjustment method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106660856A (en) * 2014-07-18 2017-05-10 旭硝子株式会社 Glass for anti-glare processing and anti-glare glass using same
US10845477B2 (en) 2017-05-10 2020-11-24 Google Llc Power management using a low-power radar
US10782390B2 (en) 2017-05-31 2020-09-22 Google Llc Full-duplex operation for radar sensing using wireless communication chipset
US10795009B2 (en) 2017-05-31 2020-10-06 Google Llc Digital beamforming for radar sensing using wireless communication chipset
US10754005B2 (en) * 2017-05-31 2020-08-25 Google Llc Radar modulation for radar sensing using a wireless communication chipset
CN111492260B (en) * 2017-12-28 2023-11-07 古河电气工业株式会社 Radar device and object detection method of radar device
BR112021019115A2 (en) 2019-05-20 2021-11-30 Google Llc Mobile device based radar system to provide a multi-mode interface and method for the same
CN113632046A (en) 2019-06-17 2021-11-09 谷歌有限责任公司 Mobile device-based radar system for applying different power modes to a multimodal interface

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112384A (en) * 2002-09-19 2004-04-08 Nippon Telegr & Teleph Corp <Ntt> Quadrature demodulation error compensation method and circuit
JP2008008900A (en) * 2006-06-02 2008-01-17 Matsushita Electric Ind Co Ltd Radar equipment
JP4495210B2 (en) 2005-06-09 2010-06-30 パナソニック株式会社 Amplitude error compensator and orthogonality error compensator

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111202A (en) * 1991-03-28 1992-05-05 Itt Corporation Extended dynamic range quadrature detector with parallel channel arrangement
JPH09145756A (en) * 1995-11-21 1997-06-06 Advantest Corp Method for correcting amplitude error of cross detector and cross detector
JPH09186729A (en) * 1996-01-08 1997-07-15 Hitachi Denshi Ltd Amplitude error control method for quadrature modulator and quadrature demodulator
GB2348345B (en) * 1999-01-25 2004-04-14 Nec Corp Demodulator and demodulation method for demodulating quadrature modulation signals
JP4360739B2 (en) * 1999-05-24 2009-11-11 株式会社アドバンテスト Quadrature demodulation apparatus, method, and recording medium
JP2003110640A (en) * 2001-09-28 2003-04-11 Japan Radio Co Ltd Quadrature detection circuit
JP2005197968A (en) * 2004-01-06 2005-07-21 Fujitsu Ltd Signal processing circuit, orthogonal demodulator, and error estimation method thereof
JP4492264B2 (en) * 2004-09-13 2010-06-30 株式会社日立製作所 Quadrature detector and quadrature demodulator and sampling quadrature demodulator using the same
WO2006030481A1 (en) * 2004-09-13 2006-03-23 Mitsubishi Denki Kabushiki Kaisha Distortion compensating apparatus
JP2006303718A (en) * 2005-04-18 2006-11-02 Matsushita Electric Ind Co Ltd Receiving apparatus and demodulation method
JP4821379B2 (en) * 2006-03-09 2011-11-24 オムロン株式会社 Demodulator, distance measuring device, and data receiving device
CN101309100B (en) * 2007-05-18 2013-04-24 富士通株式会社 I/Q phase and gain compensating apparatus and method of orthogonal receiver
US8160191B2 (en) * 2008-12-01 2012-04-17 Rockstar Bidco Lp Correction of quadrature errors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112384A (en) * 2002-09-19 2004-04-08 Nippon Telegr & Teleph Corp <Ntt> Quadrature demodulation error compensation method and circuit
JP4495210B2 (en) 2005-06-09 2010-06-30 パナソニック株式会社 Amplitude error compensator and orthogonality error compensator
JP2008008900A (en) * 2006-06-02 2008-01-17 Matsushita Electric Ind Co Ltd Radar equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2688262A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185945A (en) * 2012-03-07 2013-09-19 Furukawa Electric Co Ltd:The Radar device and adjustment method of radar device
JP2013192048A (en) * 2012-03-14 2013-09-26 Oki Electric Ind Co Ltd Amplitude correction device, radio communication device, and amplitude correction method
JP2014228359A (en) * 2013-05-21 2014-12-08 トヨタ自動車株式会社 Object displacement detection apparatus and object displacement detection method
JP2015190952A (en) * 2014-03-28 2015-11-02 トヨタ自動車株式会社 Object displacement detection signal processor
JP2019158690A (en) * 2018-03-14 2019-09-19 古河電気工業株式会社 Radar device, and radar device adjustment method

Also Published As

Publication number Publication date
CN103416036B (en) 2016-09-28
CN103416036A (en) 2013-11-27
EP2688262A1 (en) 2014-01-22
US20140037026A1 (en) 2014-02-06
EP2688262A4 (en) 2014-08-20
JP5950903B2 (en) 2016-07-13
JPWO2012124586A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5950903B2 (en) Quadrature demodulator
KR100710125B1 (en) Transceiver circuit and compensation method for compensating IP mismatch and carrier leakage
JP6650599B2 (en) Phased array transmission device and carrier leak correction method
US10444326B2 (en) FMCW radar
KR100865538B1 (en) IV mismatch measuring device
JP4573062B2 (en) Phase noise correction apparatus and method
US8736481B2 (en) Carrier frequency offset compensation in beamforming systems
US11112486B2 (en) Radar apparatus
JP2017158086A (en) Active phased array transmitter, active phased array receiver and active phased-array transmitter-receiver
KR100847801B1 (en) IV mismatch measuring device and method
JP2009206556A (en) Transmitter
KR20150040472A (en) Apparatus and method for offsetting the transmit leakage signal of rfid readers using injection locked oscillator(ilo)
JP4102375B2 (en) Wireless transmission device and wireless reception device
JP5109492B2 (en) Radar equipment
JP6928509B2 (en) Power measuring device
KR101535570B1 (en) Apparatus for calibration of phase and amplitude of antenna, and array antenna
JP2010056626A (en) Method for calculating lagging phase and amplitude of leakage wave
JP2016208091A (en) Iq error compensation circuit and transmitter receiver
JP6300198B2 (en) Carrier leak correction device and carrier leak correction method
JP4846481B2 (en) Radar equipment
JP2015126493A (en) Fm receiver, fm reception method
JP3897353B2 (en) Radar equipment
JP2007158842A (en) Communication system and communication station
US10461801B2 (en) Using harmonics for fulfilling multiple jobs simultaneously
JP2011109520A (en) Receiving machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758261

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504683

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012758261

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE