JP4821202B2 - Method for producing biodegradable spunbond nonwoven fabric - Google Patents

Method for producing biodegradable spunbond nonwoven fabric Download PDF

Info

Publication number
JP4821202B2
JP4821202B2 JP2005209616A JP2005209616A JP4821202B2 JP 4821202 B2 JP4821202 B2 JP 4821202B2 JP 2005209616 A JP2005209616 A JP 2005209616A JP 2005209616 A JP2005209616 A JP 2005209616A JP 4821202 B2 JP4821202 B2 JP 4821202B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
biodegradable
aliphatic polyester
spunbonded nonwoven
polyester resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005209616A
Other languages
Japanese (ja)
Other versions
JP2007023444A (en
Inventor
亮一 羽根
伸幸 高野
誠 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005209616A priority Critical patent/JP4821202B2/en
Publication of JP2007023444A publication Critical patent/JP2007023444A/en
Application granted granted Critical
Publication of JP4821202B2 publication Critical patent/JP4821202B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐加水分解性に優れ、かつ色調が良好な脂肪族ポリエステル系生分解性不織布に関するものであって、不織布を製造する際に刺激臭等の発生もなく製造環境が良好であり、土木資材をはじめとする各用途に好適に用いることができる生分解性不織布に関するものである。   The present invention relates to an aliphatic polyester biodegradable nonwoven fabric excellent in hydrolysis resistance and having a good color tone, and has a favorable production environment without the generation of irritating odors when producing the nonwoven fabric, The present invention relates to a biodegradable nonwoven fabric that can be suitably used for various uses including civil engineering materials.

近年、環境意識の高まりから種々の生分解性樹脂からなる不織布が提案されている。生分解性不織布は、自然環境下で、日光、紫外線、熱、水、酵素、微生物等の作用により化学的に分解され、さらには形態的に崩壊するため、焼却処理の必要がなく、埋め立て処理や屋外への放置により処分が可能である。仮に焼却処理をした場合でも、生分解性樹脂は従来の不織布に使用されているポリエステルやポリプロピレン、ナイロン等の樹脂に比べ、一般的に燃焼熱量が低いため、焼却時に焼却炉を傷めないというメリットがある。   In recent years, non-woven fabrics made of various biodegradable resins have been proposed due to increasing environmental awareness. Biodegradable nonwoven fabric is chemically decomposed by the action of sunlight, ultraviolet rays, heat, water, enzymes, microorganisms, etc. in natural environments, and further disintegrates morphologically. It can be disposed of by leaving it outdoors. Even if incinerated, the biodegradable resin generally has a lower calorific value than polyester, polypropylene, nylon, and other resins used in conventional nonwoven fabrics, so it does not damage the incinerator during incineration. There is.

また、生分解性樹脂の中でも、二酸化炭素を大気中から取り込み成長する植物資源を原料とすることで、二酸化炭素の循環により地球温暖化を抑制できることが期待できるとともに、資源枯渇の問題も解決できる可能性があるため、植物資源を出発点とする樹脂、すなわちバイオマス利用の樹脂に注目が集まっている。   In addition, among biodegradable resins, plant resources that take in carbon dioxide from the atmosphere and grow can be used as raw materials, and it can be expected that global warming can be suppressed by the circulation of carbon dioxide, and the problem of resource depletion can be solved. Because of this possibility, attention has been focused on resins starting from plant resources, that is, resins using biomass.

しかしこれまでのバイオマス利用の生分解性樹脂は、力学特性や耐熱性が低いとともに、製造コストが高いといった課題があり、汎用プラスチックとして使われることはなかった。一方、近年では力学特性や耐熱性が比較的高く、製造コストの低い生分解性樹脂として、でんぷんの発酵で得られる乳酸を原料としたポリ乳酸樹脂が脚光を浴びている。   However, conventional biodegradable resins using biomass have not been used as general-purpose plastics because they have problems such as low mechanical properties and heat resistance and high production costs. On the other hand, in recent years, polylactic acid resin using lactic acid obtained by starch fermentation as a raw material has attracted attention as a biodegradable resin having relatively high mechanical properties and heat resistance and low production cost.

ポリ乳酸樹脂を用いたポリ乳酸不織布の開発は、生分解性を活かした土木資材や農業資材等が先行しているが、それに続く用途として生活資材用途、工業資材用途、車両資材用途、建築資材用途への応用も期待されている。   Development of polylactic acid nonwoven fabric using polylactic acid resin is preceded by civil engineering materials and agricultural materials that make use of biodegradability, followed by life materials, industrial materials, vehicle materials, and building materials. Application to applications is also expected.

しかしながら、ポリ乳酸繊維およびそれからなる不織布は使用環境下において加水分解が進むため、高い強度保持率が要求される用途においては、製品寿命が短いという問題があった。   However, polylactic acid fibers and non-woven fabrics composed thereof are subject to hydrolysis under the environment of use, so that there is a problem that the product life is short in applications where high strength retention is required.

この問題を改善するため、ポリ乳酸系芯鞘複合繊維からなり、該芯成分のポリ乳酸系樹脂より20℃以上融点の低いポリ乳酸系樹脂を鞘成分とすることにより不織布の機械的特性を向上させ、ウエザーメータを用いた耐候性試験において300時間照射後の強力保持率が50%以上であることを特徴とするポリ乳酸系長繊維不織布からなる生分解性農業用被覆資材が知られている(特許文献1参照)。しかしながら、該生分解性農業用被覆資材は、ポリ乳酸繊維の強度低下の過程で大きな要因となる加水分解について何ら対策が施されていないため、使用中に雨露の影響を受け加水分解反応が起こり、繊維、ひいては不織布の強度低下が進行するという欠点があった。   In order to improve this problem, the mechanical properties of the non-woven fabric are improved by using a polylactic acid-based sheath fiber made of a polylactic acid-based sheath-core composite fiber and having a melting point of 20 ° C. or more lower than that of the core component polylactic acid-based resin. In addition, a biodegradable coating material for agricultural use made of a polylactic acid-based long-fiber nonwoven fabric is known in which the strength retention after irradiation for 300 hours is 50% or more in a weather resistance test using a weather meter (See Patent Document 1). However, since the biodegradable coating material for agriculture does not take any measures against hydrolysis, which is a major factor in the process of reducing the strength of polylactic acid fiber, hydrolysis reaction occurs under the influence of rain dew during use. Further, there has been a drawback that the strength of the fiber, and thus the nonwoven fabric, is reduced.

そこで、加水分解に対しては、モノカルボジイミド化合物を添加して耐加水分解性を向上させたポリ乳酸繊維が提案されている(特許文献2参照)。しかしながら、モノカルボジイミド化合物は高価であるとともに、ブリードアウトにより高濃度マスター化が困難であるという問題があった。   Thus, a polylactic acid fiber that has been improved in hydrolysis resistance by adding a monocarbodiimide compound has been proposed (see Patent Document 2). However, the monocarbodiimide compound is expensive and has a problem that it is difficult to make a high concentration master by bleed out.

一方、比較的安価なカルボジイミド化合物として、ポリカルボジイミド化合物を添加して耐加水分解性を向上させた生分解性プラスチック組成物も知られている(特許文献3参照)。しかしながら、ポリカルボジイミド化合物はポリ乳酸への分散性が低いとともに、ゲル化が発生しやすく、耐加水分解性向上に不十分なばかりか、繊維や不織布に適用する際の紡糸性が不安定となり工業的な繊維、不織布の生産には適用しがたいものであった。   On the other hand, as a relatively inexpensive carbodiimide compound, a biodegradable plastic composition having a hydrolysis resistance improved by adding a polycarbodiimide compound is also known (see Patent Document 3). However, polycarbodiimide compounds have low dispersibility in polylactic acid, are prone to gelation, are not sufficient for improving hydrolysis resistance, and have unstable spinnability when applied to fibers and nonwoven fabrics. It was difficult to apply to the production of traditional fibers and nonwoven fabrics.

さらに、カルボジイミド化合物に加えベンゾトリアール系化合物やトリアジン系化合物などの紫外線吸収剤を合わせて添加した生分解性プラスチック組成物が知られている(特許文献4参照)。しかしながら、紫外線吸収剤を加えることで耐候性は向上するものの、やはり繊維や不織布に適用する際の紡糸安定性が不安定となり、また溶融紡糸の際にカルボジイミド化合物に由来した刺激性の分解ガスが発生し作業環境が悪化するなど、工業的な繊維、不織布の生産には適用しがたく、さらにカルボジイミド化合物を添加することにより繊維、不織布の色調が悪化するという問題もあった。   Furthermore, a biodegradable plastic composition is known in which an ultraviolet absorber such as a benzotrial compound or a triazine compound is added in addition to a carbodiimide compound (see Patent Document 4). However, although the weather resistance is improved by adding an ultraviolet absorber, the spinning stability is still unstable when applied to fibers and nonwoven fabrics, and an irritating decomposition gas derived from the carbodiimide compound is generated during melt spinning. It is difficult to apply to the production of industrial fibers and non-woven fabrics, such as the generation of working environment and deterioration of the working environment, and the addition of a carbodiimide compound further deteriorates the color tone of the fibers and non-woven fabrics.

さらに、分子中に2以上のカルボジイミド基を有し、その末端がカルボン酸で封止されている特定のポリカルボジイミド化合物が混合されてなるポリ乳酸繊維が知られている(特許文献5参照)。しかしながら、特定のポリカルボジイミド化合物が混合されてなるポリ乳酸繊維であっても、溶融紡糸の際に発生する刺激性の分解ガスを抑制し、かつ繊維の色調も良好に保つことは難しく、繊維や不織布の生産に好適に用いることができるものではなかった。
特開2000−333542号公報 特開2001−261797号公報 特開平11−80522号公報 特開2004−155993号公報 特開2004−332166号公報
Furthermore, a polylactic acid fiber is known in which a specific polycarbodiimide compound having two or more carbodiimide groups in the molecule and whose ends are sealed with carboxylic acid is mixed (see Patent Document 5). However, even in the case of polylactic acid fibers in which a specific polycarbodiimide compound is mixed, it is difficult to suppress irritating decomposition gas generated during melt spinning and to maintain good color tone of the fibers. It could not be used suitably for the production of nonwoven fabrics.
JP 2000-333542 A JP 2001-261797 A Japanese Patent Laid-Open No. 11-80522 JP 2004-155993 A JP 2004-332166 A

本発明は、耐加水分解性に優れ、かつ色調が良好な脂肪族ポリエステル系生分解性不織布に関するものであって、不織布を製造する際に刺激臭等の発生もなく製造環境が良好であり、土木資材をはじめとする各用途に好適に用いることができる生分解性不織布を提供することを目的とする。   The present invention relates to an aliphatic polyester biodegradable nonwoven fabric excellent in hydrolysis resistance and having a good color tone, and has a favorable production environment without the generation of irritating odors when producing the nonwoven fabric, It aims at providing the biodegradable nonwoven fabric which can be used suitably for each use including civil engineering materials.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、
(1)脂肪族ポリエステル樹脂の分子量が下記の範囲である、分子鎖末端にカルボキシル基を有する脂肪族ポリエステル樹脂であって、一般式[化1]で表される、少なくとも1種の化合物を含有し、該化合物によって該カルボキシル基の一部または全部が封鎖された脂肪族ポリエステル樹脂からなる繊維を含有する生分解性スパンボンド不織布の製造方法であって、紡糸速度4100〜4300m/分で紡糸することを特徴とする生分解性スパンボンド不織布の製造方法

Figure 0004821202
(ここで、R〜Rのうち、少なくとも1つはグリシジルエーテル若しくはグリシジルエステルであり、残りは水素、炭素原子数1〜10のアルキル基、水酸基、アリル基等の官能基)
Mw :8万〜50万
Mw/Mn:1.4〜4.0
ここで、Mwは重量平均分子量、Mnは数平均分子量である。
The present invention employs the following means in order to solve such problems. That is,
(1) An aliphatic polyester resin having a carboxyl group at the molecular chain terminal, the molecular weight of the aliphatic polyester resin being in the following range, containing at least one compound represented by the general formula [Chemical Formula 1] And a method for producing a biodegradable spunbond nonwoven fabric containing fibers made of an aliphatic polyester resin in which part or all of the carboxyl groups are blocked by the compound, and spinning at a spinning speed of 4100 to 4300 m / min. A method for producing a biodegradable spunbond nonwoven fabric characterized by the above .
Figure 0004821202
(Here, at least one of R 1 to R 3 is a glycidyl ether or a glycidyl ester, and the rest are functional groups such as hydrogen, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, and an allyl group).
Mw: 80,000 to 500,000
Mw / Mn: 1.4 to 4.0
Here, Mw is a weight average molecular weight, and Mn is a number average molecular weight.

(2)脂肪族ポリエステル樹脂の分子量が下記の範囲である、芯成分及び鞘成分のいずれもが分子鎖末端にカルボキシル基を有する脂肪族ポリエステル樹脂からなる芯鞘複合繊維を含有する生分解性スパンボンド不織布であって、該芯鞘複合繊維の鞘成分樹脂のみが、一般式[化1]で表される、少なくとも1種の化合物を含有し、該化合物によって該カルボキシル基の一部または全部が封鎖された脂肪族ポリエステル樹脂であって、かつ該芯鞘複合繊維の鞘成分比率が5〜70vol%である生分解性スパンボンド不織布の製造方法であって、紡糸速度4100〜4300m/分で紡糸することを特徴とする生分解性スパンボンド不織布の製造方法

Figure 0004821202
(ここで、R 〜R のうち、少なくとも1つはグリシジルエーテル若しくはグリシジルエステルであり、残りは水素、炭素原子数1〜10のアルキル基、水酸基、アリル基等の官能基)
Mw :8万〜50万
Mw/Mn:1.4〜4.0
ここで、Mwは重量平均分子量、Mnは数平均分子量である。
(2) A biodegradable span containing a core-sheath composite fiber comprising an aliphatic polyester resin in which the molecular weight of the aliphatic polyester resin is in the following range, and both the core component and the sheath component have a carboxyl group at the molecular chain end. It is a bond nonwoven fabric, and only the sheath component resin of the core-sheath composite fiber contains at least one compound represented by the general formula [Chemical Formula 1], and a part or all of the carboxyl groups are contained by the compound. A method for producing a biodegradable spunbonded nonwoven fabric , which is a sealed aliphatic polyester resin and the sheath-sheath component ratio of the core-sheath composite fiber is 5 to 70 vol%, and is spun at a spinning speed of 4100 to 4300 m / min. A method for producing a biodegradable spunbonded nonwoven fabric characterized by comprising:
Figure 0004821202
(Here , at least one of R 1 to R 3 is a glycidyl ether or a glycidyl ester, and the rest are functional groups such as hydrogen, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, and an allyl group).
Mw: 80,000 to 500,000
Mw / Mn: 1.4 to 4.0
Here, Mw is a weight average molecular weight, and Mn is a number average molecular weight.

(3)末端カルボキシル基濃度が0〜20当量/tonである前記(1)または(2)に記載の生分解性スパンボンド不織布の製造方法
(4)[化1]の化合物の含有量が脂肪族ポリエステル樹脂全量に対し0.02〜10wt%である前記(1)〜(3)のいずれかに記載の生分解性スパンボンド不織布の製造方法
(5)脂肪族ポリエステル樹脂がポリ乳酸樹脂である前記(1)〜(4)のいずれかに記載の生分解性スパンボンド不織布の製造方法
)前記(1)〜()のいずれかに記載の製造方法によって得られる生分解性スパンボンド不織布からなる土木資材。
)前記(1)〜()のいずれかに記載の製造方法によって得られる生分解性スパンボンド不織布からなる農業資材。
)前記(1)〜()のいずれかに記載の製造方法によって得られる生分解性スパンボンド不織布からなる生活資材。
)前記(1)〜()のいずれかに記載の製造方法によって得られる生分解性スパンボンド不織布からなる工業資材。
10)前記(1)〜()のいずれかに記載の製造方法によって得られる生分解性スパンボンド不織布からなる車輌資材。
11)前記(1)〜()のいずれかに記載の製造方法によって得られる生分解性スパンボンド不織布からなる建築資材。
(3) The manufacturing method of the biodegradable spunbond nonwoven fabric as described in said (1) or (2) whose terminal carboxyl group density | concentration is 0-20 equivalent / ton.
(4) The production of the biodegradable spunbonded nonwoven fabric according to any one of (1) to (3), wherein the content of the compound of [Chemical Formula 1] is 0.02 to 10 wt% with respect to the total amount of the aliphatic polyester resin. Way .
(5) The method for producing a biodegradable spunbonded nonwoven fabric according to any one of (1) to (4), wherein the aliphatic polyester resin is a polylactic acid resin.
( 6 ) A civil engineering material comprising a biodegradable spunbonded nonwoven fabric obtained by the production method according to any one of (1) to ( 5 ).
( 7 ) An agricultural material comprising a biodegradable spunbonded nonwoven fabric obtained by the production method according to any one of (1) to ( 5 ).
( 8 ) A living material comprising a biodegradable spunbonded nonwoven fabric obtained by the production method according to any one of (1) to ( 5 ).
( 9 ) An industrial material comprising a biodegradable spunbonded nonwoven fabric obtained by the production method according to any one of (1) to ( 5 ).
( 10 ) A vehicle material comprising a biodegradable spunbond nonwoven fabric obtained by the production method according to any one of (1) to ( 5 ).
( 11 ) A building material comprising a biodegradable spunbonded nonwoven fabric obtained by the production method according to any one of (1) to ( 5 ).

Mw :8万〜50万
Mw/Mn:1.4〜4.0
ここで、Mwは重量平均分子量、Mnは数平均分子量である。
(7)前記(1)〜(6)のいずれかに記載の生分解性不織布からなる土木資材。
(8)前記(1)〜(6)のいずれかに記載の生分解性不織布からなる農業資材。
(9)前記(1)〜(6)のいずれかに記載の生分解性不織布からなる生活資材。
(10)前記(1)〜(6)のいずれかに記載の生分解性不織布からなる工業資材。
(11)前記(1)〜(6)のいずれかに記載の生分解性不織布からなる車輌資材。
(12)前記(1)〜(6)のいずれかに記載の生分解性不織布からなる建築資材。
Mw: 80,000 to 500,000 Mw / Mn: 1.4 to 4.0
Here, Mw is a weight average molecular weight, and Mn is a number average molecular weight.
(7) A civil engineering material comprising the biodegradable nonwoven fabric according to any one of (1) to (6).
(8) An agricultural material comprising the biodegradable nonwoven fabric according to any one of (1) to (6).
(9) A living material comprising the biodegradable nonwoven fabric according to any one of (1) to (6).
(10) An industrial material comprising the biodegradable nonwoven fabric according to any one of (1) to (6).
(11) A vehicle material comprising the biodegradable nonwoven fabric according to any one of (1) to (6).
(12) A building material comprising the biodegradable nonwoven fabric according to any one of (1) to (6).

本発明によれば、製造する際に刺激臭等の発生もなく製造環境が良好であり、耐加水分解性に優れ、かつ色調が良好な生分解性不織布が得られる。本発明の生分解性不織布は、土木資材をはじめとする各用途に好適に用いることができる。   According to the present invention, a biodegradable nonwoven fabric having no irritating odor or the like during production, a good production environment, excellent hydrolysis resistance and good color tone can be obtained. The biodegradable nonwoven fabric of the present invention can be suitably used for various uses including civil engineering materials.

本発明の生分解性不織布は、分子鎖末端のカルボキシル基を一般式[化1]で表される化合物によってその一部または全部を末端封鎖した脂肪族ポリエステル樹脂からなる繊維を用いた生分解性不織布である。   The biodegradable nonwoven fabric of the present invention is biodegradable using fibers made of an aliphatic polyester resin in which a carboxyl group at the end of a molecular chain is partially or entirely blocked with a compound represented by the general formula [Chemical Formula 1]. It is a nonwoven fabric.

本発明の生分解性不織布は、用途に適していればその不織布種は限定されるものではなく、その製法についても、スパンボンド法、メルトブロー法、フラッシュ紡糸法、ニードルパンチ法、水流交絡法、エアレイド法、サーマルボンド法、レジンボンド法、湿式法など、用途に適した製法を選択すれば、特に限定されるものではない。   As long as the biodegradable nonwoven fabric of the present invention is suitable for use, the type of the nonwoven fabric is not limited, and the production method is also a spunbond method, a melt blow method, a flash spinning method, a needle punch method, a hydroentanglement method, There is no particular limitation as long as a suitable production method such as an airlaid method, a thermal bond method, a resin bond method, or a wet method is selected.

長繊維不織布の場合は、例えば、溶融したポリマーをノズルから押し出し、これを高速吸引ガスにより吸引延伸した後、移動コンベア上に繊維を捕集してウェブとし、さらに連続的に熱接着、絡合等を施すことにより一体化してシートとなす、いわゆるスパンボンド法や、例えば、溶融したポリマーに加熱高速ガス流体を吹き当てることにより該溶融ポリマーを引き伸ばして極細繊維化し、捕集してシートとする、いわゆるメルトブロー法などにより製造することができる。   In the case of long-fiber non-woven fabric, for example, after extruding the molten polymer from the nozzle and drawing it with a high-speed suction gas, the fibers are collected on a moving conveyor to form a web, which is further continuously bonded and entangled. So-called spunbond method, for example, by spraying a heated high-speed gas fluid on the molten polymer to stretch the molten polymer into ultrafine fibers, and collect it into a sheet It can be produced by the so-called melt blow method.

短繊維不織布の場合は、例えば以下の工程を組み合わせて製造することができる。溶融したポリマーをノズルから押し出し、これをローラーで引き取り、延伸することにより繊維を製造する工程、クリンパーにより捲縮をかけ、カッターによりカットすることで短繊維を製造する工程、得られた短繊維を堆積させウエブとし、さらに熱接着や絡合等を施すことにより一体化してシートを製造する工程、または、短繊維を水中で分散させた後に水と分離し漉き上げ、搾水、乾燥させウエブとし、さらに熱接着により一体化してシートを製造する工程などである。   In the case of a short fiber nonwoven fabric, it can be manufactured by combining the following steps, for example. Extruding the molten polymer from the nozzle, drawing it with a roller and drawing it, producing a fiber by crimping, crimping with a crimper, producing a short fiber by cutting with a cutter, the obtained short fiber A process for producing a sheet by stacking and forming a sheet by applying heat bonding or entanglement, or dispersing short fibers in water and then separating them from water, scooping, squeezing and drying to form a web Further, it is a process of manufacturing a sheet by integrating by thermal bonding.

本発明の生分解性不織布において、生分解性不織布を構成する繊維の原料として使用する脂肪族ポリエステル樹脂としては何ら限定されるものではないが、ポリ乳酸樹脂、ポリブチレンサクシネート樹脂、ポリカプロラクトン樹脂、ポリエチレンサクシネート樹脂、ポリグリコール酸樹脂、ポリヒドロキシブチレート系樹脂などが好適に用いられ、中でも力学特性や耐熱性が比較的高く、製造コストの低い点でポリ乳酸樹脂が特に好ましく用いられる。また、これらの樹脂を複数種類複合して用いてもよい。樹脂の複合の方法としては、溶融した複数種類の樹脂を混合する方法や、2種類の樹脂を芯鞘型、サイドバイサイド型、海島型、多葉型などの複合繊維の形態にする方法が好ましい方法である。また、さらに前記生分解性樹脂に結晶核剤や艶消し剤、顔料、防カビ剤、抗菌剤、難燃剤、滑剤等を本発明の効果を損なわない範囲で添加してもよい。該滑剤としては、例えば、脂肪族ビスアミドおよび/またはアルキル置換型の脂肪族モノアミドが好ましく用いられ、添加量は0.1〜5.0wt%の範囲であることが好ましい。   In the biodegradable nonwoven fabric of the present invention, the aliphatic polyester resin used as a raw material for the fibers constituting the biodegradable nonwoven fabric is not limited in any way, but polylactic acid resin, polybutylene succinate resin, polycaprolactone resin Polyethylene succinate resin, polyglycolic acid resin, polyhydroxybutyrate resin and the like are preferably used, and among them, polylactic acid resin is particularly preferably used because of its relatively high mechanical properties and heat resistance and low production cost. A plurality of these resins may be used in combination. As a method for compounding the resin, a method in which a plurality of types of melted resins are mixed, and a method in which two types of resins are formed into a composite fiber form such as a core-sheath type, a side-by-side type, a sea-island type, or a multileaf type is preferable It is. Further, a crystal nucleating agent, a matting agent, a pigment, an antifungal agent, an antibacterial agent, a flame retardant, a lubricant and the like may be added to the biodegradable resin as long as the effects of the present invention are not impaired. As the lubricant, for example, aliphatic bisamides and / or alkyl-substituted aliphatic monoamides are preferably used, and the addition amount is preferably in the range of 0.1 to 5.0 wt%.

ポリ乳酸樹脂としては、ポリ(D−乳酸)と、ポリ(L−乳酸)と、D−乳酸とL−乳酸の共重合体、あるいはこれらのブレンド体が好ましいものである。   As the polylactic acid resin, poly (D-lactic acid), poly (L-lactic acid), a copolymer of D-lactic acid and L-lactic acid, or a blend thereof is preferable.

本発明の生分解性不織布においては、製造する際に刺激臭等の発生もなく製造環境が良好であり、耐加水分解性に優れ、かつ色調が良好な生分解性不織布を得るため、耐加水分解安定剤として、[化1]で表されるイソシアヌル酸を基本骨格とするグリシジル変性化合物を添加し、該化合物により生分解性不織布を構成する繊維の原料となる脂肪族ポリエステル樹脂の末端カルボキシル基の一部または全部が封鎖されていることが重要である。   In the biodegradable nonwoven fabric of the present invention, when producing the biodegradable nonwoven fabric with no generation of irritating odors, good production environment, excellent hydrolysis resistance and good color tone, As a decomposition stabilizer, a glycidyl-modified compound having an isocyanuric acid represented by [Chemical Formula 1] as a basic skeleton is added, and the terminal carboxyl group of an aliphatic polyester resin serving as a raw material for fibers constituting a biodegradable nonwoven fabric using the compound It is important that some or all of these are blocked.

Figure 0004821202
Figure 0004821202

(ここで、R〜Rのうち、少なくとも1つはグリシジルエーテル若しくはグリシジルエステルであり、残りは水素、炭素原子数1〜10のアルキル基、水酸基、アリル基等の官能基)
本発明の生分解性不織布において耐加水分解安定剤として用いられるイソシアヌル酸を基本骨格とするグリシジル変性化合物としては、上記[化1]で表される化合物であれば特に限定されるものではないが、上記[化1]のRのうち、いずれか一つがグリシジル基、残る二つがアリル基であるジアリルモノグリシジルイソシアヌレート(以下、DAMGICと略記)や、上記[化1]のRのうち、いずれか二つがグリシジル基、残る一つがアリル基であるモノアリルジグリシジルイソシアヌレート(以下、MADGICと略記)や、上記[化1]のRの全てがグリシジル基であるトリス(2,3−エポキシプロピル)イソシアヌレート(以下、TEPICと略記)などが好ましく用いられる。耐加水分解安定剤として用いられる、[化1]で表されるイソシアヌル酸を基本骨格とするグリシジル変性化合物は、1種の単独使用であっても複数種の混合物であってもよい。
(Here, at least one of R 1 to R 3 is a glycidyl ether or a glycidyl ester, and the rest are functional groups such as hydrogen, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, and an allyl group).
The glycidyl-modified compound having isocyanuric acid as a basic skeleton used as a hydrolysis-resistant stabilizer in the biodegradable nonwoven fabric of the present invention is not particularly limited as long as it is a compound represented by the above [Chemical Formula 1]. Among the above-mentioned [Chemical Formula 1] R 1 to 3 , diallyl monoglycidyl isocyanurate (hereinafter abbreviated as DAMGIC) in which any one is a glycidyl group and the remaining two are allyl groups, or R 1 of the above [Chemical Formula 1]. 1 to 3 , monoallyl diglycidyl isocyanurate (hereinafter abbreviated as MADGIC) in which any two are glycidyl groups and the remaining one is an allyl group, or all of R 1 to 3 in the above [Chemical Formula 1] are glycidyl groups. Some tris (2,3-epoxypropyl) isocyanurate (hereinafter abbreviated as TEPIC) is preferably used. The glycidyl-modified compound having an isocyanuric acid represented by [Chemical Formula 1] used as a hydrolysis-resistant stabilizer and having a basic skeleton may be a single type or a mixture of a plurality of types.

本発明の生分解性不織布において、上記[化1]で表されるイソシアヌル酸を基本骨格とするグリシジル変性化合物の含有量は、生分解性不織布を構成する繊維の原料となる脂肪族ポリエステル樹脂全量に対して0.02〜10wt%であることが好ましく、0.05〜8wt%であることがより好ましく、0.1〜6wt%であることがさらに好ましい。該化合物の含有量が0.02wt%未満であると、目的とする耐加水分解性を得ることができなくなるため好ましくない。一方、該化合物の含有量が10wt%を超えると、脂肪族ポリエステル樹脂のカルボキシル基末端の封鎖に寄与しない過剰な該化合物またはその混合物が存在することとなり、生分解性不織布の生産安定性を低下させ、またコストアップにつながるなど、好ましくない。   In the biodegradable nonwoven fabric of the present invention, the content of the glycidyl-modified compound having isocyanuric acid represented by the above [Chemical Formula 1] as the basic skeleton is the total amount of the aliphatic polyester resin that is a raw material for the fibers constituting the biodegradable nonwoven fabric. Is preferably 0.02 to 10 wt%, more preferably 0.05 to 8 wt%, and still more preferably 0.1 to 6 wt%. If the content of the compound is less than 0.02 wt%, the desired hydrolysis resistance cannot be obtained, which is not preferable. On the other hand, when the content of the compound exceeds 10 wt%, an excess of the compound or a mixture thereof that does not contribute to the blocking of the carboxyl group end of the aliphatic polyester resin is present, thereby reducing the production stability of the biodegradable nonwoven fabric. It is not preferable because it leads to cost increase.

本発明の生分解性不織布において、上記[化1]で表されるイソシアヌル酸を基本骨格とするグリシジル変性化合物により末端カルボキシル基を封鎖する方法としては、脂肪族ポリエステルの溶融状態で該化合物を末端封鎖剤として適量反応させることで得ることができるが、脂肪族ポリエステルの高重合度化、残存低分子量物の抑制などの観点から、ポリマーの重合反応終了後に該化合物を添加、反応させることが好ましい。該化合物と脂肪族ポリエステルとの混合、反応としては、例えば、重縮合反応終了直後の溶融状態の脂肪族ポリエステルに該化合物を添加し攪拌・反応させる方法、脂肪族ポリエステルのチップに該化合物を添加、混合した後に反応缶あるいはエクストルーダなどで混練、反応させる方法(以下溶融混練という)、エクストルーダで脂肪族ポリエステルに液状の該化合物を連続的に添加し、混練、反応させる方法、該化合物を高濃度含有させた脂肪族ポリエステルのマスターチップと脂肪族ポリエステルのホモチップとを混合したブレンドチップをエクストルーダなどで混練、反応させる方法などにより行うことができる。   In the biodegradable nonwoven fabric of the present invention, as a method of blocking the terminal carboxyl group with the glycidyl-modified compound having the isocyanuric acid represented by the above [Chemical Formula 1] as a basic skeleton, the compound is terminated in the molten state of the aliphatic polyester. Although it can be obtained by reacting in an appropriate amount as a blocking agent, it is preferable to add and react the compound after completion of the polymerization reaction of the polymer from the viewpoint of increasing the degree of polymerization of the aliphatic polyester and suppressing the residual low molecular weight. . The mixing and reaction of the compound and the aliphatic polyester include, for example, a method of adding the compound to the molten aliphatic polyester immediately after the completion of the polycondensation reaction, stirring and reacting, and adding the compound to the aliphatic polyester chip. , A method of kneading and reacting in a reaction can or an extruder after mixing (hereinafter referred to as melt kneading), a method of continuously adding the liquid compound to an aliphatic polyester with an extruder, kneading and reacting, a high concentration of the compound It can be carried out by a method of kneading and reacting a blend chip obtained by mixing an aliphatic polyester master chip and an aliphatic polyester homochip with an extruder or the like.

本発明の生分解性不織布において、耐加水分解性に優れた生分解性不織布を得るため、上記[化1]で表されるイソシアヌル酸を基本骨格とするグリシジル変性化合物により、生分解性不織布を構成する繊維の原料となる脂肪族ポリエステル樹脂の末端カルボキシル基の一部または全部が封鎖されていることが重要であり、その繊維形態は特に限定されるものではない。繊度も通常、不織布に用いられている範囲で使用することができる。   In the biodegradable nonwoven fabric of the present invention, in order to obtain a biodegradable nonwoven fabric excellent in hydrolysis resistance, the biodegradable nonwoven fabric is formed with a glycidyl-modified compound having isocyanuric acid as a basic skeleton represented by the above [Chemical Formula 1]. It is important that part or all of the terminal carboxyl groups of the aliphatic polyester resin that is the raw material of the constituent fiber is blocked, and the fiber form is not particularly limited. The fineness can also be used in the range usually used for nonwoven fabrics.

但し、使用される用途に応じて耐加水分解性を調節できることが好ましいが、耐加水分解性の調節は、[化1]で表されるイソシアヌル酸を基本骨格とするグリシジル変性化合物の含有量の調節による他、繊維形態によってもコントロールすることができる。例えば、生分解性不織布を芯成分及び鞘成分のいずれもが分子鎖末端にカルボキシル基を有する脂肪族ポリエステル樹脂からなる芯鞘型複合繊維で構成し、該芯鞘型複合繊維の鞘成分樹脂のみが一般式[化1]で表される、少なくとも1種の化合物を含有し、該化合物によってその末端カルボキシル基の一部または全部が封鎖されてなる脂肪族ポリエステル樹脂であれば、該鞘成分比率を調節することにより、生分解性不織布の耐加水分解性を調節することが可能となり好ましい。なお、この芯鞘型複合繊維は芯成分が多数ある、いわゆる海島型複合繊維であってもよいし、芯成分樹脂と鞘成分樹脂が異なる生分解性樹脂であってもかまわない。   However, it is preferable that the hydrolysis resistance can be adjusted according to the intended use. However, the hydrolysis resistance can be adjusted by adjusting the content of the glycidyl-modified compound having isocyanuric acid as a basic skeleton represented by [Chemical Formula 1]. In addition to adjustment, it can also be controlled by fiber form. For example, a biodegradable non-woven fabric is composed of a core-sheath composite fiber made of an aliphatic polyester resin in which both the core component and the sheath component have a carboxyl group at the molecular chain terminal, and only the sheath component resin of the core-sheath composite fiber Is an aliphatic polyester resin containing at least one compound represented by the general formula [Chemical Formula 1], wherein a part or all of the terminal carboxyl groups are blocked by the compound, the sheath component ratio It is possible to adjust the hydrolysis resistance of the biodegradable nonwoven fabric by adjusting. The core-sheath type composite fiber may be a so-called sea-island type composite fiber having many core components, or may be a biodegradable resin in which the core component resin and the sheath component resin are different.

本発明の生分解性不織布において、生分解性不織布の耐加水分解性調節のため芯鞘型複合繊維を適用する際は該鞘成分比率が5〜70vol%であることが好ましく、より好ましくは10〜60vol%である。該鞘成分比率が5vol%未満であると、生分解性不織布の製造時、あるいは使用時に耐加水分解安定剤が添加されていない芯成分樹脂が繊維表面に露出しやすく、その部分から加水分解の進行が促進され、生分解性不織布の加水分解性を調節できなくなるため好ましくない。一方、該鞘成分比率が70vol%を超えると、生分解性不織布の加水分解性の調節は実質的に不可能になるため、好ましくない。なお、本発明で用いられる芯鞘型複合繊維は、公知の芯鞘型複合繊維製造装置を使用して製造することができ、芯成分となる樹脂と鞘成分となる樹脂を別々のポリマー導入管から各々の濾過室で濾過した後、口金流入孔を介して口金細孔に分割流の状態で会合(合流)させることが可能な複合紡糸口金を使用することで得ることが出来る。   In the biodegradable nonwoven fabric of the present invention, when the core-sheath composite fiber is applied to adjust the hydrolysis resistance of the biodegradable nonwoven fabric, the sheath component ratio is preferably 5 to 70 vol%, more preferably 10 ~ 60 vol%. When the sheath component ratio is less than 5 vol%, the core component resin to which the hydrolysis-resistant stabilizer is not added is easily exposed on the fiber surface during the production or use of the biodegradable nonwoven fabric. Since the progress is promoted and the hydrolyzability of the biodegradable nonwoven fabric cannot be adjusted, it is not preferable. On the other hand, when the sheath component ratio exceeds 70 vol%, the hydrolyzability of the biodegradable nonwoven fabric is substantially impossible to adjust, which is not preferable. The core-sheath-type conjugate fiber used in the present invention can be produced using a known core-sheath-type conjugate fiber production apparatus, and the resin serving as the core component and the resin serving as the sheath component are separated into separate polymer introduction tubes. From the above, it can be obtained by using a composite spinneret that can be filtered (aggregated) in a split flow state after being filtered in the respective filtration chambers.

本発明の生分解性不織布を構成する繊維の原料となる脂肪族ポリエステル樹脂の末端カルボキシル基濃度は、0〜20当量/tonであることが好ましく、0〜15当量/tonであることがより好ましく、0〜10当量/tonであることがさらに好ましい。該末端カルボキシル基濃度が20当量/ton以下であれば、目的とする充分な耐加水分解性を得ることができる。なお、本発明でいう末端カルボキシル基濃度とは後述する測定方法で測定した値をいう。   The terminal carboxyl group concentration of the aliphatic polyester resin used as the raw material of the fiber constituting the biodegradable nonwoven fabric of the present invention is preferably 0 to 20 equivalent / ton, more preferably 0 to 15 equivalent / ton. 0 to 10 equivalent / ton is more preferable. If the terminal carboxyl group concentration is 20 equivalents / ton or less, the desired sufficient hydrolysis resistance can be obtained. In addition, the terminal carboxyl group concentration as used in the field of this invention means the value measured with the measuring method mentioned later.

本発明の生分解性不織布において、生分解性不織布を構成する繊維の原料となる脂肪族ポリエステル樹脂の分子量は、重量平均分子量Mwが8万〜50万、重量平均分子量を数平均分子量Mnで除した、一般に分子量分布を表すMw/Mnが1.4〜4.0の範囲にあることが好ましく、Mwが10万〜45万、Mw/Mnが1.6〜3.6の範囲にあることがより好ましく、Mwが12万〜40万、Mw/Mnが1.8〜3.2の範囲にあることがさらに好ましい。生分解性不織布を構成する繊維が前述した芯鞘型複合繊維である場合には、芯成分樹脂及び鞘成分樹脂のそれぞれが前記範囲となることが好ましいが、芯成分樹脂及び鞘成分樹脂が同種の脂肪族ポリエステル樹脂である場合には芯成分樹脂及び鞘成分樹脂をあわせた混合樹脂で前記範囲となればよい。重量平均分子量Mwが8万以上であれば、十分な繊維の強力が得られ好ましい。一方、重量平均分子量Mwが50万以下であれば、粘度が高くて口金から押し出したポリマーの曳糸性が乏しくなって高速延伸ができず、未延伸状態になり、十分な繊維強度を得ることができないということがなくなる。また、重量平均分子量を数平均分子量で除した、一般に分子量分布を表すMw/Mnが1.4以上であれば、生分解性不織布を製造する際、紡糸口金直下での繊維群の揺れ発生による糸切れが起こることが少なくなるため好ましい。一方、Mw/Mnが4.0以下であれば、生分解性不織布を製造する際、紡糸性が悪化して、糸切れの多発などが起こることがなくなるため好ましい。なお、本発明でいう重量平均分子量および重量平均分子量とは後述するゲルパーミエーションクロマトグラフ法で求めたポリスチレン換算値をいう。   In the biodegradable nonwoven fabric of the present invention, the molecular weight of the aliphatic polyester resin that is the raw material of the fibers constituting the biodegradable nonwoven fabric is the weight average molecular weight Mw of 80,000 to 500,000, and the weight average molecular weight is divided by the number average molecular weight Mn. In general, Mw / Mn representing molecular weight distribution is preferably in the range of 1.4 to 4.0, Mw is in the range of 100,000 to 450,000, and Mw / Mn is in the range of 1.6 to 3.6. It is more preferable that Mw is in the range of 120,000 to 400,000 and Mw / Mn is in the range of 1.8 to 3.2. When the fiber constituting the biodegradable nonwoven fabric is the above-described core-sheath type composite fiber, each of the core component resin and the sheath component resin is preferably in the above range, but the core component resin and the sheath component resin are the same. In the case of an aliphatic polyester resin, a mixed resin including a core component resin and a sheath component resin may be within the above range. A weight average molecular weight Mw of 80,000 or more is preferable because sufficient fiber strength can be obtained. On the other hand, if the weight average molecular weight Mw is 500,000 or less, the viscosity of the polymer extruded from the die becomes poor and the spinnability of the polymer cannot be high-speed drawn so that it becomes unstretched and sufficient fiber strength is obtained. It is no longer impossible. Further, when Mw / Mn, which generally represents the molecular weight distribution divided by the number average molecular weight, is 1.4 or more, when a biodegradable nonwoven fabric is produced, it is caused by the occurrence of fiber group vibrations just below the spinneret. This is preferable because thread breakage is less likely to occur. On the other hand, if Mw / Mn is 4.0 or less, it is preferable that when producing a biodegradable nonwoven fabric, the spinnability deteriorates and frequent occurrence of yarn breakage does not occur. In addition, the weight average molecular weight and weight average molecular weight as used in the field of this invention mean the polystyrene conversion value calculated | required by the gel permeation chromatography method mentioned later.

本発明の生分解性不織布において、不織布の目付、厚さ、強伸度、通気量などの特性値については土木資材、農業資材、生活資材、工業資材、車輌資材、建築資材などのそれぞれの用途に適した特性値であれば何ら限定されるものではないが、不織布の耐加水分解性の指標となる強伸度指数保持率は、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましい。強伸度指数とは、実施例で後述するように、不織布の引張強力と破断伸度を2分の1乗したものの積で表され、タフネスとも言う。   In the biodegradable nonwoven fabric of the present invention, for the characteristic values such as fabric weight, thickness, strength, and air flow of the nonwoven fabric, respective uses such as civil engineering materials, agricultural materials, living materials, industrial materials, vehicle materials, building materials, etc. Is not limited as long as it is a characteristic value suitable for the non-woven fabric. However, the strength elongation index holding ratio as an index of hydrolysis resistance of the nonwoven fabric is preferably 50% or more, and preferably 60% or more. Is more preferable, and 70% or more is more preferable. As will be described later in Examples, the strong elongation index is represented by a product of the tensile strength and breaking elongation of the nonwoven fabric multiplied by a half, and is also called toughness.

本発明における土木資材とは、土木用として用いられる資材であれば何ら限定されるものではないが、例えば防草シート、植樹ポット、根巻材、盛土補強材、法面保護材、護岸シート、軟弱地盤表層処理材、吸出し防止材、トンネル排水材などのことである。   The civil engineering material in the present invention is not limited as long as it is a material used for civil engineering, for example, a herbicidal sheet, tree planting pot, root winding material, embankment reinforcing material, slope protection material, revetment sheet, Soft ground surface treatment material, anti-suction material, tunnel drainage material, etc.

本発明における農業資材とは、農業・園芸用として用いられる資材であれば何ら限定されるものではないが、例えばべたがけシート、育苗ポット、育苗シート、防根シート、糖度アップシート、マルチシート、防虫シート、防虫袋、農業用テープ材、種蒔シート、種蒔テープなどのことである。   The agricultural material in the present invention is not limited at all as long as it is a material used for agriculture and horticulture, for example, a beak sheet, a seedling pot, a seedling sheet, a root-preventing sheet, an increased sugar content sheet, a multi-sheet, Insect repellent sheets, insect repellent bags, agricultural tape materials, seed vat sheets, seed vat tapes, etc.

本発明における生活資材とは、生活用品に用いられる資材であれば何ら限定されるものではないが、例えば手提げ袋、土産物袋、ラッピング材、スーツカバー、クリーニングカバー、簡易衣料、マスク、ワイパー、枕カバー、布団収納袋、電気製品包装材、食品包装材、ディーバッグ、水切り袋、などのことである。   The living material in the present invention is not limited at all as long as it is a material used for daily goods. For example, handbags, souvenir bags, wrapping materials, suit covers, cleaning covers, simple clothing, masks, wipers, pillow covers , Futon storage bags, electrical product packaging materials, food packaging materials, D-bags, draining bags, etc.

本発明における工業資材とは、工業用として用いられる資材であれば何ら限定されるものではないが、例えばフィルター、電線押え巻き材、工業用ワイパー、研磨布、電池セパレータなどのことである。   The industrial material in the present invention is not limited at all as long as it is a material used for industrial purposes, and includes, for example, a filter, an electric wire holding material, an industrial wiper, an abrasive cloth, a battery separator, and the like.

本発明における車輌資材とは、自動車、電車、航空機、船舶等の各種乗り物用として用いられる資材であれば何ら限定されるものではないが、例えば天井材、フロアマット、シート材、異音防止材、スペアタイヤカバー材、トランクルーム内装材、エアバッグラッピング材などのことである。   The vehicle material in the present invention is not limited at all as long as it is a material used for various vehicles such as automobiles, trains, aircrafts, ships, etc. For example, ceiling materials, floor mats, sheet materials, noise prevention materials Spare tire cover materials, trunk room interior materials, airbag wrapping materials, etc.

本発明における建築資材とは、建築用として用いられる資材であれば何ら限定されるものではないが、例えば透湿防水シート、屋根下葺材、ルーフィング材、塗膜防水材、遮音材、防音材、吸音材、断熱材、化粧板裏貼り材などのことである。   The building material in the present invention is not limited as long as it is a material used for construction, for example, a moisture permeable waterproof sheet, a roofing roofing material, a roofing material, a waterproof coating material, a sound insulating material, a soundproofing material, It is a sound-absorbing material, a heat insulating material, a decorative sheet backing material, and the like.

以下、実施例に基づき本発明をさらに具体的に説明するが、本発明がこれら実施例によって限定されるものではない。なお、下記実施例における各特性値は、次の方法で測定したものである。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited by these Examples. In addition, each characteristic value in the following Example is measured by the following method.

(1)Mw(重量平均分子量)およびMn(数平均分子量)
試料のクロロホルム溶液にテトラヒドロフランを混合し測定溶液とし、これをWaters社製ゲルパーミエーションクロマトグラフ(GPC)Waters2690を用いて、25℃で測定し、ポリスチレン換算でMwを求めた。測定は各試料につき3点行い、その平均値をそれぞれのMwとした。
(1) Mw (weight average molecular weight) and Mn (number average molecular weight)
Tetrahydrofuran was mixed with the chloroform solution of the sample to prepare a measurement solution, which was measured at 25 ° C. using a gel permeation chromatograph (GPC) Waters 2690 manufactured by Waters, and Mw was determined in terms of polystyrene. The measurement was performed at three points for each sample, and the average value was defined as each Mw.

(2)融点(℃)
パーキンエルマ社製示差走査型熱量計DSC−2型を用い、昇温速度20℃/分の条件で測定し、得られた融解吸熱曲線において極値を与える温度を小数点以下第1位まで読み取り、小数点以下第1位を四捨五入した値を融点とした。
(2) Melting point (° C)
Using a differential scanning calorimeter DSC-2 manufactured by Perkin Elma Co., Ltd., measuring at a temperature rising rate of 20 ° C./min, reading the temperature that gives the extreme value in the melting endothermic curve to the first decimal place, The value rounded to the first decimal place was taken as the melting point.

(3)単繊維繊度(dtex)
不織布からランダムに小片サンプル10個を採取し、走査型電子顕微鏡で500〜3000倍の写真を撮影し、各サンプルから10本ずつ、計100本の繊維直径を測定し、平均値から繊維径を算出、これをポリマーの密度で補正し、繊度を算出した。算出値の小数点以下第2位を四捨五入した。
(3) Single fiber fineness (dtex)
Ten small piece samples are taken at random from the nonwoven fabric, photographed at 500 to 3000 times with a scanning electron microscope, 10 from each sample, 100 fiber diameters are measured, and the fiber diameter is calculated from the average value. The fineness was calculated by correcting this with the density of the polymer. The second decimal place of the calculated value was rounded off.

(4)目付(g/m
JIS L 1906(2000年版)の5.2に基づいて、縦方向30cm×横方向30cmの試料を3点採取し、各試料の重量をそれぞれ測定し、得られた値の平均値を単位面積当たりに換算し、得られた値の小数点以下第1位を四捨五入したものを不織布の目付<A>とした。
(4) Weight per unit (g / m 2 )
Based on JIS L 1906 (2000 edition) 5.2, three samples of 30 cm in the vertical direction and 30 cm in the horizontal direction were taken, the weight of each sample was measured, and the average value of the obtained values per unit area The weight per unit area <A> of the nonwoven fabric was calculated by rounding off the first decimal place of the obtained value.

(5)強伸度指数保持率(%)
不織布の幅方向5cm×長さ方向30cm(縦方向)、および長さ方向5cm×幅方向30cm(横方向)の各サンプルを、温度60±5℃、相対湿度80±5%の恒温槽に14日間吊り下げた状態で放置した。
(5) Strong elongation index retention rate (%)
Each sample of width direction 5 cm × length direction 30 cm (longitudinal direction) and length direction 5 cm × width direction 30 cm (lateral direction) of the nonwoven fabric was placed in a constant temperature bath at a temperature of 60 ± 5 ° C. and a relative humidity of 80 ± 5%. It was left in the state suspended for days.

JIS L 1906(2000年版)の5.3.1に基づいて、上記恒温槽内に放置したサンプル、および恒温槽内放置前のサンプル(恒温槽内に放置するサンプルを採取する際に同時に採取する)について、つかみ間隔20cm、引張速度10cm/minの条件で、縦方向および横方向それぞれ5点の引張試験を実施し、得られた強伸度曲線から最大強力(N/5cm単位、小数点以下第2位を四捨五入)と破断時の伸度(%単位、小数点以下第2位を四捨五入)を読み取った。恒温槽内に放置したサンプルについては、縦方向5点の最大強力の平均値をTMD14、横方向5点の最大強力の平均値をTCD14、縦方向5点の破断伸度の平均値をEMD14、横方向5点の破断伸度の平均値をECD14とし、恒温槽内放置前のサンプルについては、縦方向5点の最大強力の平均値をTMD0、横方向5点の最大強力の平均値をTCD0、縦方向5点の破断伸度の平均値をEMD0、横方向5点の破断伸度の平均値をECD0とした。それぞれ5点の平均値は、小数点以下第2位を四捨五入した値を採用した。そしてこれらの測定値を用いて、次式により強伸度指数保持率を算出した。この場合も、小数点以下第2位を四捨五入した値を採用した。
強伸度指数保持率(%)=100×{(TMD14×√EMD14)+(TCD14×√ECD14)}/{(TMD0×√EMD0)+(TCD0×√ECD0)}
なお、測定に用いた試料はそれぞれ5cm×30cmのサイズで各槽内に投入する前にあらかじめ目付を測定し、上記(3)で測定した同じ試料の目付との差が±2%以内であるもののみを強伸度指数保持率の測定に用いた。
Based on JIS L 1906 (2000 edition) 5.3.1, samples left in the above-mentioned temperature-controlled bath and samples before being left in the temperature-controlled bath (collected simultaneously when collecting samples left in the temperature-controlled bath) ) Under the conditions of a grip interval of 20 cm and a tensile speed of 10 cm / min, the tensile test was carried out at 5 points in each of the machine direction and the transverse direction, and the maximum strength (N / 5 cm unit, decimal point) Second rounded) and elongation at break (% units, rounded to the second decimal place). The sample was left in a constant temperature bath, a maximum strength of the average value of the longitudinal five points to T MD14, the maximum strength of the average value of the lateral direction of 5 T CD14, an average elongation at break in the longitudinal direction 5 points E MD14 , the average value of breaking elongation at 5 points in the horizontal direction is E CD14, and for samples before being left in the thermostatic chamber, the average value of the maximum strength at 5 points in the vertical direction is T MD0 , and the maximum strength at 5 points in the horizontal direction the average value T CD0, the average of breaking elongation in the longitudinal direction 5 points E MD0, the average value of the elongation at break in the transverse direction 5 points was E CD0. The average value for each of the five points was rounded off to the second decimal place. Then, using these measured values, the strength elongation index retention was calculated by the following formula. Also in this case, the value rounded to the second decimal place was adopted.
Strength and elongation index retention (%) = 100 × {( T MD14 × √E MD14) + (T CD14 × √E CD14)} / {(T MD0 × √E MD0) + (T CD0 × √E CD0) }
Each sample used for the measurement had a size of 5 cm × 30 cm, and the basis weight was measured in advance before being put into each tank. The difference from the basis weight of the same sample measured in the above (3) was within ± 2%. Only the thing was used for the measurement of the strength index retention.

(6)カルボキシル基末端濃度(当量/ton)
精秤したサンプルをo−クレゾール(水分5%)に溶解し、この溶液にジクロロメタンを適量添加した後、0.02規定のKOHメタノール溶液にて滴定することにより求めた。このとき、乳酸の環状2量体であるラクチド等のオリゴマーが加水分解し、カルボキシル基末端を生じるため、ポリマーのカルボキシル基末端およびモノマー由来のカルボキシル基末端、オリゴマー由来のカルボキシル基末端の全てを合計したカルボキシル基末端濃度が求まる。
(6) Carboxyl group terminal concentration (equivalent / ton)
The precisely weighed sample was dissolved in o-cresol (5% moisture), and an appropriate amount of dichloromethane was added to this solution, followed by titration with a 0.02 N KOH methanol solution. At this time, an oligomer such as lactide, which is a cyclic dimer of lactic acid, is hydrolyzed to generate a carboxyl group terminal, so that all of the carboxyl group terminal of the polymer, the carboxyl group terminal derived from the monomer, and the carboxyl group terminal derived from the oligomer are combined. The carboxyl group terminal concentration obtained is obtained.

(7)脂肪族ポリエステルの色調
不織布を、下地の白色板が無視できる程度まで積層し、ミノルタ社製スペクトロフォトメーターCM−3700dを用いてL表色系のb値を測定した。このとき、光源としてはD65(色温度6504K)を用い、10°視野で測定を行い、b値が5以下のものを色調良好とした。
(7) Color of aliphatic polyester Non-woven fabric is laminated to such an extent that the white plate of the base can be ignored, and the b * value of L * a * b * color system is measured using a spectrophotometer CM-3700d manufactured by Minolta. did. At this time, D65 (color temperature 6504K) was used as a light source, measurement was performed in a 10 ° visual field, and a color tone having a b * value of 5 or less was considered good.

(実施例1)
末端カルボキシル基濃度が22.8当量/ton、融点が168℃であるポリ乳酸樹脂にTEPIC(日産化学工業株式会社製)を溶融混練により添加し、TEPIC含有量が5.0wt%のチップを作製した。作製したTEPIC5.0wt%チップと、末端カルボキシル基濃度が22.8当量/ton、融点が168℃であるポリ乳酸樹脂チップを、TEPIC5.0wt%チップの混合率が20%になるようにチップ混合装置により混合し、スパンボンド不織布の原料とした。得られた原料を230℃で溶融し、口金温度235℃で細孔より紡出した後、エジェクターにより紡糸速度4300m/分で紡糸し、移動するネットコンベアー上に捕集し得られたウェブを、凸部の面積が16%のエンボスロールとフラットロールで、温度145℃、線圧25kg/cmの条件で熱圧着し、単繊維繊度1.6dtex、目付30g/mのスパンボンド不織布を製造した。得られたスパンボンド不織布の末端カルボキシル基濃度は5.0当量/tonであり、Mwは210000、Mw/Mnは2.31であり、強伸度指数保持率は81.0%であった。
Example 1
TEPIC (manufactured by Nissan Chemical Industries, Ltd.) is added to a polylactic acid resin having a terminal carboxyl group concentration of 22.8 equivalent / ton and a melting point of 168 ° C. by melting and kneading to produce a chip having a TEPIC content of 5.0 wt%. did. The prepared TEPIC 5.0 wt% chip and a polylactic acid resin chip having a terminal carboxyl group concentration of 22.8 equivalent / ton and a melting point of 168 ° C. are mixed so that the mixing ratio of the TEPIC 5.0 wt% chip is 20%. It was mixed with an apparatus to obtain a raw material for the spunbonded nonwoven fabric. The obtained raw material was melted at 230 ° C., spun from the pores at a die temperature of 235 ° C., spun at a spinning speed of 4300 m / min by an ejector, and the web obtained by collecting on the moving net conveyor was A spunbonded non-woven fabric having a single fiber fineness of 1.6 dtex and a basis weight of 30 g / m 2 was manufactured by thermocompression bonding with an embossing roll and a flat roll having a convex area of 16% at a temperature of 145 ° C. and a linear pressure of 25 kg / cm 2 . . The resulting spunbonded nonwoven fabric had a terminal carboxyl group concentration of 5.0 equivalent / ton, Mw of 210000, Mw / Mn of 2.31, and a strong elongation index retention of 81.0%.

(実施例2)
末端カルボキシル基濃度が22.8当量/ton、融点が168℃であるポリ乳酸樹脂にDAMGIC(四国化成工業株式会社製)を溶融混練により添加し、DAMGIC含有量が5.0wt%のチップを作製した。作製したDAMGIC5.0wt%チップと、末端カルボキシル基濃度が22.8当量/ton、融点が168℃であるポリ乳酸樹脂チップを、DAMGIC5.0wt%チップの混合率が30%になるようにチップ混合装置により混合し、スパンボンド不織布の原料とした。得られた原料を230℃で溶融し、口金温度235℃で細孔より紡出した後、エジェクターにより紡糸速度4100m/分で紡糸し、移動するネットコンベアー上に捕集し得られたウェブを、凸部の面積が16%のエンボスロールとフラットロールで、温度145℃、線圧25kg/cmの条件で熱圧着し、単繊維繊度1.2dtex、目付50g/mのスパンボンド不織布を製造した。得られたスパンボンド不織布の末端カルボキシル基濃度は7.8当量/tonであり、Mwは162000、Mw/Mnは1.84であり、強伸度指数保持率は77.7%であった。
(Example 2)
DAMGIC (manufactured by Shikoku Kasei Kogyo Co., Ltd.) is added to a polylactic acid resin having a terminal carboxyl group concentration of 22.8 equivalent / ton and a melting point of 168 ° C. by melt kneading to produce a chip having a DAMGIC content of 5.0 wt%. did. The prepared DAMGIC 5.0 wt% chip and a polylactic acid resin chip having a terminal carboxyl group concentration of 22.8 equivalent / ton and a melting point of 168 ° C. are mixed so that the mixing ratio of the DAMGIC 5.0 wt% chip is 30%. It was mixed with an apparatus to obtain a raw material for the spunbonded nonwoven fabric. The obtained raw material was melted at 230 ° C., spun from the pores at a die temperature of 235 ° C., spun at a spinning speed of 4100 m / min by an ejector, and the web collected on the moving net conveyor was collected. A spunbonded non-woven fabric with a single fiber fineness of 1.2 dtex and a basis weight of 50 g / m 2 was manufactured by thermocompression bonding with an embossing roll and a flat roll having a convex area of 16% at a temperature of 145 ° C. and a linear pressure of 25 kg / cm 2 . . The resulting spunbonded nonwoven fabric had a terminal carboxyl group concentration of 7.8 equivalent / ton, Mw of 162000, Mw / Mn of 1.84, and a strong elongation index retention of 77.7%.

(実施例3)
末端カルボキシル基濃度が22.8当量/ton、融点が168℃であるポリ乳酸樹脂にTEPIC(日産化学工業株式会社製)を溶融混練により添加し、TEPIC含有量が5.0wt%のチップを作製した。作製したTEPIC5.0wt%チップと、末端カルボキシル基濃度が22.8当量/ton、融点が168℃であるポリ乳酸樹脂チップを、TEPIC5.0wt%チップの混合率が20%になるようにチップ混合装置により混合し、スパンボンド不織布の原料とした。得られた原料を鞘成分、末端カルボキシル基濃度が22.8当量/ton、融点が168℃であるポリ乳酸樹脂を芯成分の原料とし芯成分、鞘成分ともに230℃で溶融し、口金温度235℃で細孔より鞘成分比率20vol%の芯鞘複合繊維として紡出した後、エジェクターにより紡糸速度4300m/分で紡糸し、移動するネットコンベアー上に捕集し得られたウェブを、凸部の面積が16%のエンボスロールで、温度145℃、線圧25kg/cmの条件で熱圧着し、単繊維繊度1.6dtex、目付30g/mのスパンボンド不織布を製造した。得られたスパンボンド不織布の末端カルボキシル基濃度は19.1当量/tonであり、Mwは171000、Mw/Mnは1.90であり、強伸度指数保持率は66.0%であった。
(Example 3)
TEPIC (manufactured by Nissan Chemical Industries, Ltd.) is added to a polylactic acid resin having a terminal carboxyl group concentration of 22.8 equivalent / ton and a melting point of 168 ° C. by melting and kneading to produce a chip having a TEPIC content of 5.0 wt%. did. The prepared TEPIC 5.0 wt% chip and a polylactic acid resin chip having a terminal carboxyl group concentration of 22.8 equivalent / ton and a melting point of 168 ° C. are mixed so that the mixing ratio of the TEPIC 5.0 wt% chip is 20%. It was mixed with an apparatus to obtain a raw material for the spunbonded nonwoven fabric. The obtained raw material was a sheath component, a polylactic acid resin having a terminal carboxyl group concentration of 22.8 equivalent / ton and a melting point of 168 ° C., and the core component and the sheath component were melted at 230 ° C. After spinning as a core-sheath composite fiber with a sheath component ratio of 20 vol% from the pores at ℃, the web spun by an ejector at a spinning speed of 4300 m / min and collected on a moving net conveyor A spunbonded nonwoven fabric having a single fiber fineness of 1.6 dtex and a basis weight of 30 g / m 2 was manufactured by thermocompression bonding with an embossing roll having an area of 16% under conditions of a temperature of 145 ° C. and a linear pressure of 25 kg / cm. The resulting spunbonded nonwoven fabric had a terminal carboxyl group concentration of 19.1 equivalent / ton, Mw of 171000, Mw / Mn of 1.90, and a strong elongation index retention of 66.0%.

(実施例4)
末端カルボキシル基濃度が22.8当量/ton、融点が168℃であるポリ乳酸樹脂にMADGIC(四国化成工業株式会社製)を溶融混練により添加し、MADGIC含有量が5.0wt%のチップを作製した。作製したMADGIC5.0wt%チップと、末端カルボキシル基濃度が22.8当量/ton、融点が168℃であるポリ乳酸樹脂チップを、MADGIC5.0wt%チップの混合率が40%になるようにチップ混合装置により混合し、スパンボンド不織布の原料とした。得られた原料を鞘成分、末端カルボキシル基濃度が22.8当量/ton、融点が168℃であるポリ乳酸樹脂を芯成分の原料とし、芯成分、鞘成分ともに230℃で溶融し、口金温度235℃で細孔より鞘成分比率40vol%の芯鞘複合繊維として紡出した後、エジェクターにより紡糸速度4300m/分で紡糸し、移動するネットコンベアー上に捕集し得られたウェブを、凸部の面積が16%のエンボスロールで、温度145℃、線圧25kg/cmの条件で熱圧着し、単繊維繊度1.6dtex、目付100g/mのスパンボンド不織布を製造した。得られたスパンボンド不織布の末端カルボキシル基濃度は12.7当量/tonであり、Mwは165000、Mw/Mnは1.78であり、強伸度指数保持率は73.0%であった。
Example 4
MADGIC (manufactured by Shikoku Kasei Kogyo Co., Ltd.) is added to polylactic acid resin having a terminal carboxyl group concentration of 22.8 equivalent / ton and a melting point of 168 ° C. by melt-kneading to produce a chip with a MADGIC content of 5.0 wt%. did. The prepared MADGIC 5.0 wt% chip and a polylactic acid resin chip having a terminal carboxyl group concentration of 22.8 equivalent / ton and a melting point of 168 ° C. are mixed so that the mixing ratio of the MADGIC 5.0 wt% chip is 40%. It was mixed with an apparatus to obtain a raw material for the spunbonded nonwoven fabric. The obtained raw material is a sheath component, a polylactic acid resin having a terminal carboxyl group concentration of 22.8 equivalent / ton and a melting point of 168 ° C. is used as a core component raw material, and both the core component and the sheath component are melted at 230 ° C. After spinning as a core-sheath composite fiber with a sheath component ratio of 40 vol% from the pores at 235 ° C., the web spun by an ejector at a spinning speed of 4300 m / min and collected on a moving net conveyor A spunbonded nonwoven fabric having a single fiber fineness of 1.6 dtex and a basis weight of 100 g / m 2 was manufactured by thermocompression bonding with an embossing roll having a surface area of 16% and a temperature of 145 ° C. and a linear pressure of 25 kg / cm. The resulting spunbonded nonwoven fabric had a terminal carboxyl group concentration of 12.7 equivalent / ton, Mw of 165000, Mw / Mn of 1.78, and a strong elongation index retention of 73.0%.

Figure 0004821202
Figure 0004821202

得られた不織布の特性は、表1に示したとおりであるが、実施例1〜6の不織布はいずれも強度保持率が50.0%以上であり、耐加水分解性に優れていた。また、実施例1〜6の不織布は、製造する際に刺激臭等の発生もなく製造環境が良好であり、かつ色調も良好であった。   The properties of the obtained nonwoven fabric are as shown in Table 1, but all of the nonwoven fabrics of Examples 1 to 6 had a strength retention of 50.0% or more and were excellent in hydrolysis resistance. In addition, the nonwoven fabrics of Examples 1 to 6 were free from the generation of irritating odors when manufactured, had a favorable manufacturing environment, and had a good color tone.

(比較例1)
末端カルボキシル基濃度が22.8当量/ton、融点が168℃であるポリ乳酸樹脂を原料とし、230℃で溶融した後、口金温度235℃で細孔より紡出し、エジェクターにより紡糸速度4300m/分で紡糸し、移動するネットコンベアー上に捕集し得られたウェブを、凸部の面積が16%のエンボスロールとフラットロールで、温度145℃、線圧25kg/cmの条件で熱圧着し、単繊維繊度1.6dtex、目付30g/mのスパンボンド不織布を製造した。得られたスパンボンド不織布の末端カルボキシル基濃度は22.8当量/tonであり、Mwは150000、Mw/Mnは1.64であり、強伸度指数保持率は44.2%であった。
(Comparative Example 1)
A polylactic acid resin having a terminal carboxyl group concentration of 22.8 equivalents / ton and a melting point of 168 ° C. is used as a raw material, melted at 230 ° C., spun from the pores at a die temperature of 235 ° C., and a spinning speed of 4300 m / min by an ejector. The web obtained by spinning and collecting on the moving net conveyor was thermocompression bonded with an embossing roll and a flat roll having a convex area of 16% at a temperature of 145 ° C. and a linear pressure of 25 kg / cm, A spunbonded nonwoven fabric having a single fiber fineness of 1.6 dtex and a basis weight of 30 g / m 2 was produced. The resulting spunbonded nonwoven fabric had a terminal carboxyl group concentration of 22.8 equivalent / ton, Mw of 150,000, Mw / Mn of 1.64, and a strong elongation index retention of 44.2%.

(比較例2)
4,4’−ジシクロヘキシルメタンジイソシアネート400gに、末端封止剤としてシクロヘキシルアミン36gを加え、カルボジイミド化触媒として3−メチル−1−フェニル−2−フォスフォレン−1−オキシド2gを加えて窒素気流下190℃で12時間反応させ、重合度8のポリカルボジイミド化合物(以下ポリカルボジイミド化合物Aと記す)を得た。
(Comparative Example 2)
To 400 g of 4,4′-dicyclohexylmethane diisocyanate, 36 g of cyclohexylamine is added as an end-capping agent, and 2 g of 3-methyl-1-phenyl-2-phospholene-1-oxide is added as a carbodiimidization catalyst. For 12 hours to obtain a polycarbodiimide compound having a polymerization degree of 8 (hereinafter referred to as polycarbodiimide compound A).

末端カルボキシル基濃度が22.8当量/ton、融点が168℃であるポリ乳酸樹脂にポリカルボジイミド化合物Aを溶融混練により添加し、ポリカルボジイミド化合物A含有量が5.0wt%のチップを作製した。作製したポリカルボジイミド化合物A5.0wt%チップと、末端カルボキシル基濃度が22.8当量/ton、融点が168℃であるポリ乳酸樹脂チップを、ポリカルボジイミド化合物A5.0wt%チップの混合率が20%になるようにチップ混合装置により混合し、スパンボンド不織布の原料とした。得られた原料を230℃で溶融した後、口金温度235℃で細孔より紡出し、エジェクターにより紡糸速度4000m/分で紡糸し、移動するネットコンベアー上に捕集し得られたウェブを、凸部の面積が16%のエンボスロールとフラットロールで、温度145℃、線圧25kg/cmの条件で熱圧着し、単繊維繊度1.8dtex、目付50g/mのスパンボンド不織布を製造した。得られたスパンボンド不織布の末端カルボキシル基濃度は5.9当量/tonであり、Mwは165000、Mw/Mnは1.80であり、強伸度指数保持率は78.2%であった。 A polycarbodiimide compound A was added to a polylactic acid resin having a terminal carboxyl group concentration of 22.8 equivalent / ton and a melting point of 168 ° C. by melt kneading to produce a chip having a polycarbodiimide compound A content of 5.0 wt%. The produced polycarbodiimide compound A 5.0 wt% chip, the polylactic acid resin chip having a terminal carboxyl group concentration of 22.8 equivalent / ton and a melting point of 168 ° C., the mixing ratio of the polycarbodiimide compound A 5.0 wt% chip is 20%. The mixture was mixed with a chip mixer so that the raw material of the spunbond nonwoven fabric was obtained. The obtained raw material was melted at 230 ° C., spun from the pores at a base temperature of 235 ° C., spun at a spinning speed of 4000 m / min by an ejector, and the web collected on the moving net conveyor was A spunbonded nonwoven fabric having a single fiber fineness of 1.8 dtex and a basis weight of 50 g / m 2 was produced by thermocompression bonding with an embossing roll and a flat roll having a part area of 16% under the conditions of a temperature of 145 ° C. and a linear pressure of 25 kg / cm. The resulting spunbonded nonwoven fabric had a terminal carboxyl group concentration of 5.9 equivalents / ton, Mw of 165000, Mw / Mn of 1.80, and a strong elongation index retention of 78.2%.

(比較例3)
末端カルボキシル基濃度が22.8当量/ton、融点が168℃であるポリ乳酸樹脂に2,2′−m−フェニレンビス(2−オキサゾリン)(以下、PBOという)を溶融混練により添加し、PBO含有量が0.5wt%の原料チップを作製した。得られた原料を230℃で溶融した後、口金温度235℃で細孔より紡出し、エジェクターにより紡糸速度4000m/分で紡糸し、移動するネットコンベアー上に捕集し得られたウェブを、凸部の面積が16%のエンボスロールとフラットロールで、温度145℃、線圧25kg/cmの条件で熱圧着し、単繊維繊度1.8dtex、目付50g/mのスパンボンド不織布を製造した。得られたスパンボンド不織布の末端カルボキシル基濃度は21.2当量/tonであり、Mwは155000、Mw/Mnは1.66であり、強伸度指数保持率は46.2%であった。
(Comparative Example 3)
2,2'-m-phenylenebis (2-oxazoline) (hereinafter referred to as PBO) is added to a polylactic acid resin having a terminal carboxyl group concentration of 22.8 equivalent / ton and a melting point of 168 ° C. by melt-kneading. A raw material chip having a content of 0.5 wt% was produced. The obtained raw material was melted at 230 ° C., spun from the pores at a base temperature of 235 ° C., spun at a spinning speed of 4000 m / min by an ejector, and the web collected on the moving net conveyor was A spunbonded nonwoven fabric having a single fiber fineness of 1.8 dtex and a basis weight of 50 g / m 2 was produced by thermocompression bonding with an embossing roll and a flat roll having a part area of 16% under conditions of a temperature of 145 ° C. and a linear pressure of 25 kg / cm. The resulting spunbonded nonwoven fabric had a terminal carboxyl group concentration of 21.2 equivalent / ton, Mw of 155000, Mw / Mn of 1.66, and a strong elongation index retention of 46.2%.

得られた不織布の特性は、表1に示したとおりであるが、比較例1の不織布は強度指数保持率が50.0%未満であり、耐加水分解性に劣っていた。また、比較例2の不織布は、強伸度指数保持率は50.0%以上であったものの、製造時に刺激臭が発生したため実際の生産には適用しがたく、さらに不織布の色調も不良であった。また、比較例3の不織布は、末端カルボキシル基の封鎖効果が少なく、強度指数保持率が50.0%未満であり、耐加水分解性に劣っていた。   The properties of the obtained nonwoven fabric are as shown in Table 1, but the nonwoven fabric of Comparative Example 1 had a strength index retention of less than 50.0% and was inferior in hydrolysis resistance. In addition, although the nonwoven fabric of Comparative Example 2 had a strong elongation index retention of 50.0% or more, an irritating odor was generated during production, which was difficult to apply to actual production, and the color of the nonwoven fabric was poor. there were. Moreover, the nonwoven fabric of the comparative example 3 had little terminal carboxyl group blocking effect, the strength index retention rate was less than 50.0%, and was inferior to hydrolysis resistance.

本発明の生分解性不織布は、製造する際に刺激臭等の発生もなく製造環境が良好であり、耐加水分解性に優れ、かつ色調が良好な生分解性不織布が得られるため、防草シート、植樹ポットなどの土木資材や、べたがけシート、育苗ポットなどの農業資材や、手提げ袋、ラッピング材などの生活資材や、フィルター、電線押え巻き材などの工業資材や、天井材、フロアマットなどの車輌資材や、透湿防水シート、屋根下葺材などの建築資材に適用でき、有用である。
The biodegradable nonwoven fabric of the present invention has a favorable production environment without generation of irritating odors when produced, and a biodegradable nonwoven fabric having excellent hydrolysis resistance and good color tone is obtained. Civil engineering materials such as sheets and planting pots, agricultural materials such as bedding sheets and seedling pots, living materials such as handbags and wrapping materials, industrial materials such as filters and wire clamps, ceiling materials, floor mats, etc. It can be applied to building materials such as vehicle materials, moisture-permeable waterproof sheets, and roofing materials.

Claims (11)

脂肪族ポリエステル樹脂の分子量が下記の範囲である、分子鎖末端にカルボキシル基を有する脂肪族ポリエステル樹脂であって、一般式[化1]で表される、少なくとも1種の化合物を含有し、該化合物によって該カルボキシル基の一部または全部が封鎖された脂肪族ポリエステル樹脂からなる繊維を含有する生分解性スパンボンド不織布の製造方法であって、紡糸速度4100〜4300m/分で紡糸することを特徴とする生分解性スパンボンド不織布の製造方法
Figure 0004821202
(ここで、R〜Rのうち、少なくとも1つはグリシジルエーテル若しくはグリシジルエステルであり、残りは水素、炭素原子数1〜10のアルキル基、水酸基、アリル基等の官能基)
Mw :8万〜50万
Mw/Mn:1.4〜4.0
ここで、Mwは重量平均分子量、Mnは数平均分子量である。
An aliphatic polyester resin having a carboxyl group at the molecular chain end, the molecular weight of the aliphatic polyester resin being in the following range , comprising at least one compound represented by the general formula [Chemical Formula 1], A method for producing a biodegradable spunbonded nonwoven fabric comprising a fiber comprising an aliphatic polyester resin in which a part or all of the carboxyl groups are blocked with a compound, wherein spinning is performed at a spinning speed of 4100 to 4300 m / min. A method for producing a biodegradable spunbond nonwoven fabric .
Figure 0004821202
(Here, at least one of R 1 to R 3 is a glycidyl ether or a glycidyl ester, and the rest are functional groups such as hydrogen, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, and an allyl group).
Mw: 80,000 to 500,000
Mw / Mn: 1.4 to 4.0
Here, Mw is a weight average molecular weight, and Mn is a number average molecular weight.
脂肪族ポリエステル樹脂の分子量が下記の範囲である、芯成分及び鞘成分のいずれもが分子鎖末端にカルボキシル基を有する脂肪族ポリエステル樹脂からなる芯鞘複合繊維を含有する生分解性スパンボンド不織布であって、該芯鞘複合繊維の鞘成分樹脂のみが、一般式[化1]で表される、少なくとも1種の化合物を含有し、該化合物によって該カルボキシル基の一部または全部が封鎖された脂肪族ポリエステル樹脂であって、かつ該芯鞘複合繊維の鞘成分比率が5〜70vol%である生分解性スパンボンド不織布の製造方法であって、紡糸速度4100〜4300m/分で紡糸することを特徴とする生分解性スパンボンド不織布の製造方法
Figure 0004821202
(ここで、R 〜R のうち、少なくとも1つはグリシジルエーテル若しくはグリシジルエステルであり、残りは水素、炭素原子数1〜10のアルキル基、水酸基、アリル基等の官能基)
Mw :8万〜50万
Mw/Mn:1.4〜4.0
ここで、Mwは重量平均分子量、Mnは数平均分子量である。
A biodegradable spunbonded nonwoven fabric containing a core-sheath composite fiber comprising an aliphatic polyester resin in which both the core component and the sheath component have a carboxyl group at the molecular chain terminal, and the molecular weight of the aliphatic polyester resin is in the following range. And only the sheath component resin of the core-sheath composite fiber contains at least one compound represented by the general formula [Chemical Formula 1], and a part or all of the carboxyl groups are blocked by the compound. A method for producing a biodegradable spunbonded nonwoven fabric , which is an aliphatic polyester resin and the sheath-sheath component ratio of the core-sheath composite fiber is 5 to 70 vol% , comprising spinning at a spinning speed of 4100 to 4300 m / min. A method for producing a biodegradable spunbond nonwoven fabric .
Figure 0004821202
(Here , at least one of R 1 to R 3 is a glycidyl ether or a glycidyl ester, and the rest are functional groups such as hydrogen, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, and an allyl group).
Mw: 80,000 to 500,000
Mw / Mn: 1.4 to 4.0
Here, Mw is a weight average molecular weight, and Mn is a number average molecular weight.
末端カルボキシル基濃度が0〜20当量/tonである請求項1または2に記載の生分解性スパンボンド不織布の製造方法The method for producing a biodegradable spunbonded nonwoven fabric according to claim 1 or 2, wherein the terminal carboxyl group concentration is 0 to 20 equivalents / ton. [化1]の化合物の含有量が脂肪族ポリエステル樹脂全量に対し0.02〜10wt%である請求項1〜3のいずれかに記載の生分解性スパンボンド不織布の製造方法The method for producing a biodegradable spunbonded nonwoven fabric according to any one of claims 1 to 3, wherein the content of the compound of [Chemical Formula 1] is 0.02 to 10 wt% with respect to the total amount of the aliphatic polyester resin. 脂肪族ポリエステル樹脂がポリ乳酸樹脂である請求項1〜4のいずれかに記載の生分解性スパンボンド不織布の製造方法The method for producing a biodegradable spunbonded nonwoven fabric according to any one of claims 1 to 4, wherein the aliphatic polyester resin is a polylactic acid resin. 請求項1〜のいずれかに記載の製造方法によって得られる生分解性スパンボンド不織布からなる土木資材。 Civil engineering material which consists of a biodegradable spunbond nonwoven fabric obtained by the manufacturing method in any one of Claims 1-5 . 請求項1〜のいずれかに記載の製造方法によって得られる生分解性スパンボンド不織布からなる農業資材。 An agricultural material comprising a biodegradable spunbonded nonwoven fabric obtained by the production method according to any one of claims 1 to 5 . 請求項1〜のいずれかに記載の製造方法によって得られる生分解性スパンボンド不織布からなる生活資材。 The living material which consists of a biodegradable spunbonded nonwoven fabric obtained by the manufacturing method in any one of Claims 1-5 . 請求項1〜のいずれかに記載の製造方法によって得られる生分解性スパンボンド不織布からなる工業資材。 The industrial material which consists of a biodegradable spunbonded nonwoven fabric obtained by the manufacturing method in any one of Claims 1-5 . 請求項1〜のいずれかに記載の製造方法によって得られる生分解性スパンボンド不織布からなる車輌資材。 The vehicle material which consists of a biodegradable spunbonded nonwoven fabric obtained by the manufacturing method in any one of Claims 1-5 . 請求項1〜のいずれかに記載の製造方法によって得られる生分解性スパンボンド不織布からなる建築資材。 Building materials made of biodegradable spunbond nonwoven fabric obtained by the production method according to any one of claims 1-5.
JP2005209616A 2005-07-20 2005-07-20 Method for producing biodegradable spunbond nonwoven fabric Expired - Fee Related JP4821202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005209616A JP4821202B2 (en) 2005-07-20 2005-07-20 Method for producing biodegradable spunbond nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005209616A JP4821202B2 (en) 2005-07-20 2005-07-20 Method for producing biodegradable spunbond nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2007023444A JP2007023444A (en) 2007-02-01
JP4821202B2 true JP4821202B2 (en) 2011-11-24

Family

ID=37784588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005209616A Expired - Fee Related JP4821202B2 (en) 2005-07-20 2005-07-20 Method for producing biodegradable spunbond nonwoven fabric

Country Status (1)

Country Link
JP (1) JP4821202B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308817A (en) * 2006-05-17 2007-11-29 Toray Ind Inc Net
JP2009155764A (en) * 2007-12-27 2009-07-16 Toyobo Co Ltd Long fiber nonwoven fabric and process for producing the same
JP5361420B2 (en) * 2008-01-31 2013-12-04 ユニチカ株式会社 Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP2013124429A (en) * 2011-12-15 2013-06-24 Kureha Corp Polyglycolic acid resin fiber product
WO2015115633A1 (en) * 2014-01-28 2015-08-06 帝人株式会社 Fiber
WO2019237267A1 (en) * 2018-06-13 2019-12-19 浙江晶通塑胶有限公司 Degradable floor using pla resin and production process therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180328A (en) * 2000-12-13 2002-06-26 Kanebo Ltd Polylactic acid fiber
JP2004143633A (en) * 2002-10-25 2004-05-20 Toray Ind Inc Biodegradable nonwoven fabric, and medical and hygienic goods
JP4220283B2 (en) * 2003-03-25 2009-02-04 東レ・モノフィラメント株式会社 Core-sheath composite polyester monofilament and industrial fabric
JP4338557B2 (en) * 2003-05-27 2009-10-07 ユニチカ株式会社 Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP4792690B2 (en) * 2003-06-10 2011-10-12 東レ株式会社 Resin composition and molded article comprising the same
JP2005113278A (en) * 2003-10-03 2005-04-28 Toray Ind Inc Biodegradable nonwoven fabric and filter using the same
JP4487563B2 (en) * 2003-12-24 2010-06-23 東レ株式会社 Composite fiber

Also Published As

Publication number Publication date
JP2007023444A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
CA2440545C (en) Fibers comprising polyhydroxyalkanoate copolymer/polylactic acid polymer or copolymer blends
DE60224530T2 (en) FIBERS FROM STRENGTH AND BIOABCABLE POLYMERS
DE60221829T3 (en) MULTICOMPONENT FIBERS FROM STRENGTH AND BIODEGRADABLE POLYMERS
CN102803385B (en) Polyamide resin composition and method for producing polyamide resin composition
JP4821202B2 (en) Method for producing biodegradable spunbond nonwoven fabric
JP2011514450A (en) Heteromorphic structural fibers, textile sheets and their use
AU2002258508A1 (en) Fibers comprising polyhydroxyalkanoate copolymer/polylactic acid polymer or copolymer blends
JP2004332166A (en) Polylactic acid fiber
KR100824719B1 (en) Bio-degradable food-packing materials consisting of starch-contained nonwoven-nanofabrics and preparation methods therefor
JP4849820B2 (en) Water-absorbing nonwoven fabric
JP4807012B2 (en) Biodegradable nonwoven fabric with excellent hydrolysis resistance
JPH0748768A (en) Nonwoven fabric made of polyester
JP3150217B2 (en) Biodegradable short fiber non-woven fabric
JP2008007884A (en) Nonwoven fabric for agricultural use
JPH06200458A (en) Biodegradable short fiber non-woven fabric
JPH0921018A (en) Biodegradable fiber and nonwoven fabric using the same
JP2008017749A (en) Weed proofing sheet
JP2002173864A (en) Biodegradable filament nonwoven fabric
JP2008057057A (en) Polylactic acid-based fiber and polylactic acid-based non-woven fabric
JP3967965B2 (en) High elongation nylon fiber
JP4867444B2 (en) Long fiber nonwoven fabric and method for producing the same
JP4665640B2 (en) Leather-like sheet
JP4593003B2 (en) High elongation polyamide fiber
JP2008014098A (en) Filter for drain
CN117926505A (en) Degradable non-woven fabric and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees