KR100824719B1 - Bio-degradable food-packing materials consisting of starch-contained nonwoven-nanofabrics and preparation methods therefor - Google Patents
Bio-degradable food-packing materials consisting of starch-contained nonwoven-nanofabrics and preparation methods therefor Download PDFInfo
- Publication number
- KR100824719B1 KR100824719B1 KR1020060084562A KR20060084562A KR100824719B1 KR 100824719 B1 KR100824719 B1 KR 100824719B1 KR 1020060084562 A KR1020060084562 A KR 1020060084562A KR 20060084562 A KR20060084562 A KR 20060084562A KR 100824719 B1 KR100824719 B1 KR 100824719B1
- Authority
- KR
- South Korea
- Prior art keywords
- starch
- biodegradable
- nonwoven fabric
- pva
- nanofiber nonwoven
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/728—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/70—Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
- A61K9/7007—Drug-containing films, membranes or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D85/00—Containers, packaging elements or packages, specially adapted for particular articles or materials
- B65D85/70—Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0015—Electro-spinning characterised by the initial state of the material
- D01D5/003—Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4282—Addition polymers
- D04H1/4309—Polyvinyl alcohol
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43838—Ultrafine fibres, e.g. microfibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/541—Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
- D04H1/5418—Mixed fibres, e.g. at least two chemically different fibres or fibre blends
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/12—Physical properties biodegradable
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/06—Packings, gaskets, seals
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/10—Packaging, e.g. bags
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2509/00—Medical; Hygiene
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Mechanical Engineering (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Artificial Filaments (AREA)
- Nonwoven Fabrics (AREA)
Abstract
본 발명은 생체 적합성 및 생분해 특징을 가지는 나노섬유 부직포 및 이들의 제조방법에 관한 것이다. The present invention relates to nanofiber nonwovens having biocompatibility and biodegradation characteristics and methods for their preparation.
본 발명의 나노섬유 부직포는 전분과 폴리비닐알콜을 순수한 물에 용해시킨 후 직경 1㎛ 미만으로 방사하여 제조한 것으로서, 전분과 폴리비닐 알콜의 함량을 조절하거나, 가교 등의 가공을 통하여 부직포의 생체분해 속도 및 강도, 섬유의 직경을 조절할 수 있으며, 나노 다공성을 가지므로 인체 호흡성을 가지면서도 외부 오염물질은 차단하는 특성을 가지므로, 음식물 포장재료, 위생재료 등 다양한 분야에 응용할 수 있다.The nanofiber nonwoven fabric of the present invention is prepared by dissolving starch and polyvinyl alcohol in pure water and spinning to less than 1 μm in diameter. Degradation rate and strength, the diameter of the fiber can be adjusted, and because it has nano-porosity, it has a characteristic of blocking external pollutants while having human breathability, it can be applied to various fields such as food packaging materials, sanitary materials.
전기방사, 생체친화성 나노섬유, 생분해성 나노섬유Electrospinning, biocompatible nanofibers, biodegradable nanofibers
Description
도 1은 본 발명의 실시예에 따라 제조된 가용전분/PVA 함유 나노섬유의 주사전자현미경 사진으로서, 1 is a scanning electron micrograph of soluble starch / PVA-containing nanofibers prepared according to an embodiment of the present invention,
(a)는 전분/PVA=70/30 wt.%의 사진, (a) is a photograph of starch / PVA = 70/30 wt.%,
(b)는 전분/PVA=50/50 wt.%인 사진, (b) is a starch / PVA = 50/50 wt.% photo,
(c)는 전분/PVA=30/70 wt.%의 사진.(c) is photograph of starch / PVA = 30/70 wt.%.
도 2는 본 발명의 실시예에 따라 제조된 가용전분/PVA 생분해성 나노섬유 부직포의 섬유직경분포를 나타낸 그래프. Figure 2 is a graph showing the fiber diameter distribution of soluble starch / PVA biodegradable nanofiber nonwoven fabric prepared according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따라 제조된 가용전분/PVA 생분해성 나노섬유 부직포의 열중량(TGA) 변화를 나타낸 그래프.Figure 3 is a graph showing the thermogravimetric (TGA) change of soluble starch / PVA biodegradable nanofiber nonwoven fabric prepared according to an embodiment of the present invention.
삭제delete
삭제delete
삭제delete
삭제delete
삭제delete
삭제delete
삭제delete
삭제delete
삭제delete
도 4은 본 발명의 실시예에 따라 보론에 의해 가교된 전분/PVA의 생분해성 나노섬유의 주사전자 현미경 사진으로서, 4 is a scanning electron micrograph of biodegradable nanofibers of starch / PVA crosslinked by boron according to an embodiment of the present invention,
(a) 5% 보론산(H3BO3)를 첨가한 것(a) 5% boronic acid (H 3 BO 3 ) added
(b) 7%의 보론산을 첨가하여 가교처리된 것.(b) crosslinked by addition of 7% boronic acid.
도 5은 본 발명의 실시예에 따라 보론에 의해 가교된 전분/PVA의 생분해성 나노섬유의 열중량변화를 나타낸 그래프.5 is a graph showing the thermogravimetric change of biodegradable nanofibers of starch / PVA crosslinked by boron according to an embodiment of the present invention.
본 발명은 전분과 폴리비닐알콜에 약물을 혼합하여 전기방사하여 제조되는 직경 1㎛ 미만의 초극세 나노섬유로 구성된 생분해성 및 생체적합성 부직포 및 그 조성물에 관한 것이다. The present invention relates to a biodegradable and biocompatible nonwoven fabric composed of ultra-fine nanofibers of less than 1 μm in diameter prepared by electrospinning a drug with starch and polyvinyl alcohol, and a composition thereof.
[생분해성 고분자에 대하여][Biodegradable Polymer]
일반적으로 생분해성 고분자는 미생물에 의하여 고분자 내에 도입된 사슬이 절단되어 무기물화 되는 고분자를 지칭하는 것으로서, 생분해 과정에 환경, 산소, 온도, 습도, pH, 염, 영양물, 고분자 자체의 성질 등의 인자에 의하여 그 분해 속도나 분해형태가 달라지게 된다. 생분해성 고분자를 세분하면, 수분 및 미생물에 의하여 분해되는 생분해성과 빛에 의해 분해되는 광분해성으로 크게 분류할 수 있으며, 이 외에도 고분자 기재(matrix) 자체가 분해되는 기재 분해형과 분해를 촉진하는 전분이나 금속화합물 등의 첨가제에 의해 분해되는 첨가형으로 분류될 수 있다. 첨가형의 경우 가격이 상대적으로 저렴하고, 바로 응용할 수 있다는 장점이 있으나, 분해속도가 느린 단점이 있다. 또한, 생분해성 고분자는 그 원료에 따라, 천연 고분자와 합성 고분자로 구분될 수 있다. 생분해성 합성 고분자 원료로서 실용화되어 있는 재료 중에는 α-히드록시산를 구성단위로 하는 폴리히드록시알카노에이트(polyhydroxyalkanoate; PHA)가 가장 잘 알려져 있고, 생분해성 천연 고분자 원료로는 전분, 키토산 등이 잘 알려져 있다.In general, a biodegradable polymer refers to a polymer in which the chain introduced into the polymer by the microorganism is cut and inorganicized, and factors such as environment, oxygen, temperature, humidity, pH, salt, nutrients, and properties of the polymer itself during the biodegradation process. The rate of decomposition or form of decomposition will vary. Subdividing biodegradable polymers can be broadly classified into biodegradability decomposed by water and microorganisms and photodegradability decomposed by light. In addition, starch decomposes and decomposes substrates in which the polymer matrix itself is decomposed. It can be classified into the addition type that is decomposed by additives such as metal compounds. In the case of the additive type, the price is relatively inexpensive and there is an advantage in that it can be directly applied, but it has a disadvantage of slow decomposition rate. In addition, the biodegradable polymer may be classified into a natural polymer and a synthetic polymer according to the raw material. Among the materials practically used as a biodegradable synthetic polymer raw material, polyhydroxyalkanoate (PHA) containing α-hydroxy acid as a structural unit is best known, and starch, chitosan, etc. are well known as biodegradable natural polymer raw materials. Known.
생분해성 고분자의 대표적인 사용분야는 환경제품으로, 각종 생분해성 고분자를 이용한 포장재료 등이 환경오염의 방지라는 측면에서 광범위하게 활용되고 있다. 인체의 조직 내에서 분해되는 생체 분해성 내지는 생체 적합성 고분자는 식품, 의약용 특수포장재, 수술용 봉합사, 약물전달재료 및 의약품 등 부가가치가 높은 재료로서 이용될 수 있어 관심을 모으고 있다. 그러나, 이러한 물품에 사용되기 위한 고분자는 체내에서 아무런 해독도 없이 분해 흡수되고, 체내에 잔류 축적되지 않아야할 것이 요구된다는 점에서, 일반 환경제품과 비교하여 그 요구물성에 특수 성이 있다. Typical fields of use of biodegradable polymers are environmental products, and packaging materials using various biodegradable polymers are widely used in terms of preventing environmental pollution. Biodegradable or biocompatible polymers that decompose in the tissues of the human body are attracting attention because they can be used as high value-added materials such as food, pharmaceutical special packaging materials, surgical sutures, drug delivery materials and pharmaceuticals. However, polymers for use in such articles have specific properties in comparison with general environmental products in that they are required to be decomposed and absorbed without any detoxification in the body and not to be accumulated in the body.
생분해성 고분자, 특히 생분해성 섬유에 대한 구체적인 기술동향으로는, 옥수수나 감자로부터 얻어지는 폴리유산(PLA)과 재생 셀룰로오스인 텐셀(Tencel), 우유함입 레이온, 키토산을 혼입한 섬유 등이 잘 알려져 있다. 이 중, 일본 가네보(Kanebo) 사의 레이크론(Lacron)의 경우 옥수수를 주원료로 용융방사방법에 의해 제조되는 폴리유산계 섬유로 융점과 영률이 우수하고, 4급 정도의 염색견뢰도를 나타내는 것으로 알려져 있다.Specific technical trends for biodegradable polymers, in particular biodegradable fibers, are well known polylactic acid (PLA) obtained from corn and potatoes, tencels (Tencel), regenerated cellulose, milk-incorporated rayon, and fibers incorporating chitosan. Among them, Lakron of Kanebo, Japan, is a polylactic acid fiber manufactured by melt spinning method using corn as a main raw material, and is known to have excellent melting point and Young's modulus and color fastness to about 4 grades. .
한편, 생분해성 천연 고분자로서 가장 주목받는 원료는 전분이다. 식물에서 영양물의 저장물질인 전분(starch)은 α-D-glucose가 축합하여 생긴 다당류의 일종으로서, D-glucose가 분기없이, α-1,4 glicoside의 결합을 통해 가지가 없는 형태의 쇄상으로 중합된 나선형의 아밀로오스와, 분자내 1000개 이상의 글루코스로 구성된 가지가 있는 형태의 전분인 아밀로펙틴으로 분류할 수 있다.On the other hand, starch is the raw material most attention as a biodegradable natural polymer. Starch, a storage material of nutrients in plants, is a polysaccharide formed by condensation of α-D-glucose, which is a branch-free chain through the combination of α-1,4 glicoside without the branching of D-glucose. Amylopectin, a starch in the form of polymerized helical amylose and a branched form consisting of more than 1000 glucose in the molecule.
전분은 식물의 종류에 따라 그 모양과 크기가 다르나 모두 거대분자이고, 주로 옥수수, 고구마, 감자, 밀, 살 등으로부터 생산되어 가공식품에서 직물용 호료, 제지공업, 제약공업 등 산업전반에 걸쳐 광범위하게 사용되고 있다. 사람이 섭취하는 탄수화물의 반 이상이 전분으로 알려져 있으며, 주로 췌장이나 타액샘에서 분비되는 α-아밀라아제로 빠르게 가수분해 되는 성질이 있다.Starch is different in shape and size depending on the type of plant, but all are macromolecules, and are mainly produced from corn, sweet potato, potato, wheat, and flesh, and are widely used in processed foods, textiles, paper industry, pharmaceutical industry, etc. Is being used. More than half of the carbohydrates ingested by humans are known as starches, and they are rapidly hydrolyzed by α-amylase, which is mainly secreted by the pancreas or salivary glands.
생분해성 고분자 원료로서 전분이 부각되는 이유는 우수한 생분해성과, 가격이 타 원료에 비하여 저렴하고, 자원이 풍부하며 공급이 용이하다는 점 때문이다. 전분은 고갈 위기에 처해 있는 석유 자원에 비해 지구상에서 녹색 식물이 존재하는 한 무한하게 공급될 수 있는 무독성의 천연 원료라는 점에서 큰 장점이 있다. 전분은 물에 녹지 않고, 침전하는 성질이 있으나, 이를 고압으로 찌거나 묽은 산으로 처리하여 약간의 가수분해가 일어나도록 한 가용 녹말(soluble starch)이 제조 판매되고 있다. Starch is emerging as a biodegradable polymer raw material because of its excellent biodegradability, cheaper price than other raw materials, abundant resources and easy supply. Starch has a big advantage in that it is a non-toxic natural raw material that can be supplied indefinitely as long as there is a green plant on the earth, compared to petroleum resources which are in danger of being depleted. Starch is insoluble in water and has a property of precipitation, but soluble starch is produced and sold by steaming at high pressure or treating with dilute acid to cause some hydrolysis.
전분을 이용한 생분해성 재료의 개발은 특히 포장용지로서 전분을 원료로 한 생분해성 플라스틱이 현재 가장 많이 실용화되고 있으며, 전분이 가지는 가수분해 속도를 조절하기 위해 전분 자체를 에스테르화, 산화, 에테르화, 가교 등의 방법을 통해 개질하는 연구가 활발히 진행되고 있고, 특히 이러한 전분과 각종 생분해성 고분자를 블렌딩하여 필름(film)상으로 만들어 특성을 규명하는 연구가 진행되고 있다. The development of biodegradable materials using starch is especially the most practical use of biodegradable plastics based on starch as a packaging paper.In order to control the hydrolysis rate of starch, starch itself is esterified, oxidized, etherified, Researches are being actively carried out through crosslinking and the like, and in particular, researches on blending starch and various biodegradable polymers to form a film and characterizing them have been conducted.
한편, 기존의 섬유성형성 천연고분자 및 합성고분자를 이용한 생분해성 섬유화 방법으로는 용융방사와 용액방사가 대표적으로, 이들 방법은 방사구금의 노즐을 통해 고분자 용융물을 압출, 인장, 세화시켜 최종적으로 섬유를 권취하는 방법이다. 그러나, 이와 같은 방법은 기계적인 힘에 의하여 섬유가 제조되므로, 섬유 직경을 10㎛미만으로 줄이는데는 한계가 있고, 이를 부직포나 펠트 상으로 만들기 위해서는 니들펀칭이나 스펀레이스와 같은 부가적인 공정이 필요하며, 또한 직조나 제직 등의 공정이 필수적이다. 또한, 섬유직경이 10㎛ - 20㎛ 정도로 전기방사에 의해 제조된 섬유와 비교하여 약 100- 1000배 이상 굵기 때문에 인체 사용시 바이러스나 기타 오염물질의 침투에 의한 2차 감염 등의 우려가 있다.Meanwhile, conventional biodegradable fiberization methods using fibrous forming natural polymers and synthetic polymers typically include melt spinning and solution spinning, and these methods extrude, stretch, and finely polymerize a melt through a spinneret nozzle. It is a way to wind up. However, this method has a limitation in reducing the fiber diameter to less than 10 μm because the fiber is manufactured by mechanical force, and additional processes such as needle punching or spunlace are required to make it into a nonwoven fabric or felt. In addition, processes such as weaving and weaving are essential. In addition, since the fiber diameter is about 100-1000 times thicker than the fiber produced by electrospinning at about 10 μm to 20 μm, there is a fear of secondary infection due to penetration of viruses or other contaminants when using the human body.
이와 달리, 고분자 용융물에 정전기적인 인력을 가하여 섬유 직경을 1 μm 미만의 나노섬유를 얻을 수 있는 획기적인 방법으로 전기방사(electrospinning) 방법이 알려져 있다. 전기방사방법은 방사환경, 인가전압, 고분자 용융물의 점도, 전기전도도, 표면장력 등 다양한 변수에 의해 섬유의 직경을 조절하여 나노섬유를 제조할 수 있는 방법으로, 지금까지 섬유화할 수 없는 새로운 소재들을 복합화하거나, 분산화, 기능화 하여 나노섬유를 제조할 수 있으므로, 다양한 산업분야에서 활발히 연구가 진행되고 있다. 그러나, 전기방사에 의하여 제조된 나노섬유의 경우, 대부분 유기용매를 사용하여 고분자를 용해하여 제조되므로 유기용매가 나노섬유 표면과 내부에 잔존하고 있어, 이를 생체적합성 나노섬유 부직포로 사용하는 데에는 상당한 문제점이 있다.In contrast, an electrospinning method is known as a breakthrough method in which nanofibers having a fiber diameter of less than 1 μm can be obtained by applying an electrostatic attraction to the polymer melt. Electrospinning method is a method that can produce nanofibers by controlling the diameter of fiber by various variables such as spinning environment, applied voltage, viscosity of polymer melt, electric conductivity, surface tension, and so on. Since nanofibers can be prepared by complexing, dispersing, and functionalizing, research is being actively conducted in various industrial fields. However, in the case of nanofibers produced by electrospinning, most of them are prepared by dissolving a polymer using an organic solvent, and thus an organic solvent remains on the inside and inside of the nanofiber, which is a significant problem in using it as a biocompatible nanofiber nonwoven fabric. There is this.
천연원료를 이용한 섬유의 개발예를 살펴보면, 예를 들어, 대한민국 등록특허 제10-0107854호의 경우, 천연 폴리에스테르인 폴리파이드록시 부틸산(PHB)을 이용한 생분해성 섬유 및 그 제조방법에 대하여 기술하고 있으나, 이 방법의 경우, 용융방사 및 냉연신 방법을 사용하여 제조된 섬유의 직경이 수 데니어에서 수백 데니어의 굵기(수㎛ - 수십 ㎛)를 가지며, 부직포화할 경우 2차 가공 등의 추가적 공정이 필요하여, 분해속도가 늦고, 전체적인 제조공정이 복잡하다.Looking at the development example of the fiber using a natural raw material, for example, the Republic of Korea Patent No. 10-0107854, describes a biodegradable fiber and a method for producing the same using a natural polyester polypyroxy butyl acid (PHB) However, in this method, the diameter of the fiber produced using the melt spinning and cold stretching method has a thickness of several denier to hundreds of denier (several micrometers to several tens of micrometers), and when non-woven fabrics, an additional process such as secondary processing is required. If necessary, the decomposition rate is slow, and the overall manufacturing process is complicated.
또한, 대한민국 공개특허, 1992-0020742의 경우도 용융방사 방법을 통하여 전분섬유를 제조하고 있어 섬유의 직경이 크고, 분해제, 용융방사를 위한 첨가제 등의 2차 혼합물을 사용해야하는 단점과 그로 인한 생체적합성에 문제가 될 수 있으며, 트윈 압출기(twin extruder) 등의 고가의 장비가 필요하다는 단점이 있다. In addition, the Republic of Korea Patent Publication, 1992-0020742 is also produced starch fiber through the melt spinning method, the diameter of the fiber is large, the disadvantage of the use of secondary mixtures such as disintegrators, additives for melt spinning, and the resulting biological There may be a problem in suitability, there is a disadvantage that expensive equipment such as a twin extruder (twin extruder) is required.
이에 본 발명은, 상기한 바와 같은 종래에 주로 용융방사 방법에 의하여 제조되던 생분해성 고분자 섬유의 직경을 나노미터 수준으로 하고, 특히 전분과 같은 저렴하고 생분해성 또는 생체적합성 특성이 우수한 재료를 이용하여 나노섬유 부직포를 제공하는 것을 목적으로 한다. Accordingly, the present invention, the diameter of the biodegradable polymer fibers, which are conventionally produced by the melt spinning method as described above to the nanometer level, in particular using a low-cost and biodegradable or biocompatible properties such as starch It is an object to provide a nanofiber nonwoven fabric.
본 발명은 또한, 용매를 순수한 물만을 사용함으로써, 생체친화성을 높이고, 강도, 섬유 직경의 조절이 가능할 뿐 아니라, 생체 친화성, 생체분해성 나노섬유 부직포를 제공하는 것을 목적으로 한다.The present invention also aims to provide biocompatible, biodegradable nanofiber nonwoven fabrics by using only pure water as a solvent to enhance biocompatibility, to control strength and fiber diameter, and to provide biocompatibility and biodegradable nonwoven fabrics.
본 발명은 또한 전분을 개질화하거나, 전분과 폴리비닐알콜의 함량을 조절하여 나노섬유 부직포의 생분해 속도와 강도를 조절하고, 발수제 처리 및 열접착 등의 방법에 의하여 양호한 기계적 강도와 유연성을 가지면서 내수성이 우수한 위생재료, 식품 포장재료 등 각종 생분해성 부직포를 제공하는 것을 목적으로 한다. The present invention also modifies the starch, or adjusts the content of starch and polyvinyl alcohol to control the biodegradation rate and strength of the nanofiber nonwoven fabric, while having a good mechanical strength and flexibility by a method such as water repellent treatment and heat bonding An object of the present invention is to provide various biodegradable nonwoven fabrics such as hygienic materials and food packaging materials having excellent water resistance.
상기 목적을 달성하기 위하여, 본 발명은 전분 및 폴리머를 물에 용해한 방사용액을 전기방사하는 것을 특징으로 하는 전분함유 생분해성 나노섬유 부직포의 제조방법을 제공한다. In order to achieve the above object, the present invention provides a method for producing a starch-containing biodegradable nanofiber nonwoven fabric, characterized in that the electrospinning the spinning solution dissolved starch and polymer in water.
본 발명의 제조방법에 있어서, 상기 폴리머는 폴리비닐알콜일 수 있으나, 이에 한정되는 것은 아니다. In the production method of the present invention, the polymer may be polyvinyl alcohol, but is not limited thereto.
본 발명의 전분원료로는 감자, 옥수수, 고구마, 밀, 쌀 및 기타 식물로부터 생산되는 것 어느 것을 사용할 수 있으며, 전처리를 통하여 가용전분화한 것을 사 용하는 것이 바람직하다.As the starch raw material of the present invention, any one produced from potato, corn, sweet potato, wheat, rice and other plants can be used, and it is preferable to use soluble starch through pretreatment.
본 발명에 있어서, 방사방법은 전기방사에 의하는 것이 나노사이즈의 섬유를 제조하는데 적합하다. 상기한 전분과 폴리머를 물에 용해시켜 방사용액을 제조한 후, 여기에 고전압(예를 들어, -60kV)을 인가하여 부직포를 얻는다. 전기방사방법은 특별히 제한되는 것은 없고, 최종 생산물의 용도에 따라 적절한 장치 또는 방사환경을 선택할 수 있다. In the present invention, the spinning method is suitable for producing nano-sized fibers by electrospinning. The starch and the polymer are dissolved in water to prepare a spinning solution, and then a high voltage (for example, -60 kV) is applied thereto to obtain a nonwoven fabric. The electrospinning method is not particularly limited, and an appropriate apparatus or radiation environment can be selected according to the use of the final product.
본 발명은 또한, 상기 방사용액에 개질첨가제를 첨가하여 전분을 개질하는 단계를 더욱 포함하는 생분해성 나노섬유 부직포의 제조방법을 제공한다.The present invention also provides a method for producing a biodegradable nanofiber nonwoven fabric further comprising the step of modifying the starch by adding a modifier to the spinning solution.
전분의 개질은 예를 들어, 개질첨가제로 보론산을 이용함으로써, 폴리머와 가용전분간의 가교를 형성시킴으로써, 거대분자화하는 방식 등으로 실시할 수 있다. 그러나 상기 개질 역시 특별히 이에 한정되는 것은 아니고, 최종 생산물의 용도에 따라 적절히 다양한 개질첨가제를 사용할 수 있다.The modification of starch can be performed by the method of macromolecules etc., for example, by using boronic acid as a modifier and forming bridge | crosslinking between a polymer and a soluble starch. However, the modification is not particularly limited thereto, and various modification additives may be used as appropriate depending on the purpose of the final product.
삭제delete
삭제delete
삭제delete
본 발명은 상기 제조방법에 의하여 제조된 전분함유 생분해성 나노섬유 부직포를 더욱 제공한다.The present invention further provides a starch-containing biodegradable nanofiber nonwoven fabric prepared by the above method.
본 발명은 상기 제조방법에 의해 제조되고, 위생재료 또는 식품포장재료로 사용되는 것을 특징으로 하는 전분함유 생분해성 나노섬유 부직포를 더욱 제공한다. The present invention further provides a starch-containing biodegradable nanofiber nonwoven fabric prepared by the above manufacturing method and used as a hygiene material or a food packaging material.
이하, 본 발명에 따른 전분함유 생분해성 나노섬유 부직포에 대하여 실시예들을 첨부된 도면을 참조하여 구체적으로 설명하기로 한다.Hereinafter, embodiments of the starch-containing biodegradable nanofiber nonwoven fabric according to the present invention will be described in detail with reference to the accompanying drawings.
삭제delete
삭제delete
본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.This embodiment is intended to illustrate the present invention in more detail, and the scope of the present invention is not limited to these examples.
[실시예]EXAMPLE
실시예Example 1 : 전분/ 1 starch / PVAPVA 나노섬유 부직포의 제조 Preparation of Nanofiber Nonwovens
가용전분과 폴리비닐알콜(PVA, Mw=1500)을 각각 10/90, 20/80, 30/70, 50/50. 70/30, 80/20, 90/10의 중량비로 혼합하고, 물에 대해 전분의 농도가 20 중량%, PVA의 농도가 10중량%가 되도록 하여, 전체 방사용액의 농도는 20 중량%가 되 도록 조절하였다. Soluble starch and polyvinyl alcohol (PVA, Mw = 1500) were respectively 10/90, 20/80, 30/70, 50/50. Mix at a weight ratio of 70/30, 80/20, 90/10, and make the concentration of
이렇게 제조된 방사용액을 방사구에 연결하고, 방사노즐에 50 kV의 전압을 인가하고, 방사구와 집전체와의 거리를 20 cm로 유지한 상태에서, 홀당 0.5 cc/g로 토출시켜 전기방사를 실시했다.The spinning solution prepared in this way was connected to the spinneret, a voltage of 50 kV was applied to the spinneret, and discharged at 0.5 cc / g per hole while maintaining the distance between the spinneret and the current collector at 20 cm. Carried out.
이 때 얻어진 섬유의 전자현미경 사진과 섬유의 직경을 도 1과 2에 나타냈다.The electron micrograph of the fiber obtained at this time, and the diameter of a fiber are shown in FIGS.
도 1의 사진에서와 같이 전분/PVA의 함량이 70/30 중량비인 도1(a)의 경우, 제조된 전분/PVA 나노섬유에 비드상과 섬유직경이 불균일한 것이 관찰되었으나, PVA의 함량이 50 및 70 중량%로 증가할수록 비드상이 관찰되지 않고, 균일한 섬유를 얻을 수 있었고, 도 2에서와 같이 PVA와 전분의 함량에 따라 PVA/전분의 함량이 30/70의 경우, 평균 섬유직경은 약 300nm 정도에서 PVA/전분의 함량이 50/50인 경우, 평균 섬유직경은 250nm로, PVA와 전분의 함량이 70/30인 경우 평균 섬유직경은 약 200nm로 PVA의 함량이 증가할수록 섬유직경은 점진적으로 감소함을 알 수 있었다. 즉, 방사성이 우수한 PVA의 함량이 증가함에 따라 제조된 나노섬유에 결함의 감소와 섬유직경이 감소함을 확인 할 수 있었다. In the case of FIG. 1 (a) where the starch / PVA content is 70/30 weight ratio as shown in the photograph of FIG. 1, it was observed that the bead phase and the fiber diameter were nonuniform in the prepared starch / PVA nanofibers. As it increased to 50 and 70% by weight, no bead phase was observed, and uniform fibers were obtained. As shown in FIG. 2, when the PVA / starch content was 30/70 according to the content of PVA and starch, the average fiber diameter was When the PVA / starch content is about 50/50 at about 300 nm, the average fiber diameter is about 250 nm, and when the PVA and starch content is about 70/30, the average fiber diameter is about 200 nm. It was found to decrease gradually. That is, as the content of PVA with excellent radioactivity increases, the decrease in defects and the fiber diameter decrease in the manufactured nanofibers.
도 3에서는 전분/PVA 나노섬유 부직포의 질소가스 분위기하에서 열중량(TGA) 그래프를 나타냈다. 그림에서와 같이, 400℃ 미만의 온도범위에서는 PVA의 함량이 증가할 수 록 중량변화가 작게 나타났고, 400℃ 이상의 온도범위에서는 거대분자인 전분에 함유된 탄소원자의 잔류에 의해 중량감소가 상대적으로 낮게 나타나고 있음을 알 수 있다. 즉, 400℃ 미만의 온도범위에서는 전분에 함유된 수분의 증발에 의 해 전분함량이 증가할 수록 중량감소가 크게 나타나고, 이것은 PVA와 전분을 블랜드함에 따라 분해속도를 조절할 수 있음을 의미한다. 3 shows a thermogravimetric (TGA) graph of a starch / PVA nanofiber nonwoven fabric under a nitrogen gas atmosphere. As shown in the figure, the change in weight was small as the PVA content was increased in the temperature range below 400 ℃, and in the temperature range above 400 ℃, the weight loss was relatively decreased due to the carbon atoms contained in the starch, which is a macromolecule. It can be seen that it appears low. That is, in the temperature range of less than 400 ℃ as the starch content increases due to the evaporation of the moisture contained in the starch, the weight decreases significantly, which means that the decomposition rate can be controlled by blending the PVA and starch.
실시예 2 : 본 발명에 의한 나노섬유 부직포의 개량(3차원화)Example 2 Improvement of Nanofiber Nonwoven Fabrics According to the Present Invention
삭제delete
삭제delete
삭제delete
삭제delete
삭제delete
삭제delete
가용전분과 PVA를 각각 50/50중량%로 혼합하고, 가용전분/PVA 대비 보론산(H3BO3)을 각각 5%, 7% 첨가, 물에 용해한 후 24시간 교반, 가교 처리하여 방사용액을 제조하였다. 상기 가교처리된 방사용액을 실시예 1의 방법과 동일하게 전기방사를 실시하여 보론산 함유 가용전분/PVA 나노섬유 부직포를 얻었다. 이때 얻어진 시료의 주사 전자현미경 사진을 도 7에 나타냈다. 도 7에서와 같이 보론산의 함량이 5%에서 7%로 증가할 경우, 섬유경도 평균 350 에서 450 nm으로 증가하였으며, 섬유의 직경은 실시예 1의 도1(b)에 비교하여 평균 약 100㎚ 정도 증가함을 알 수 있다. 이러한 결과는 보론산에 의한 PVA분자와 가용전분간의 분자가 가교에 의해 거대 분자화되어 나타난 현상으로 생각된다. 보론산 첨가에 의해 가교화된 나노섬유 부직포의 열중량 분석결과를 도 5에 나타냈다. 도 5에서와 같이 보론산 첨가에 의해 400℃ 온도 미만의 범위에서 가용전분/PVA=50/50(도 2)에 비교하여 열적성질이 증가함을 알 수 있다. 이것은 보론산에 의해 PVA와 가용전분의 분자간 가교를 형성하여 이루어진 결과로 생각된다. Soluble starch and PVA were mixed at 50/50 wt%, respectively, and 5% and 7% of boronic acid (H 3 BO 3 ) compared to soluble starch / PVA, respectively, dissolved in water, stirred for 24 hours and crosslinked to spin spinning solution. Was prepared. The crosslinked spinning solution was electrospun in the same manner as in Example 1 to obtain boronic acid-containing soluble starch / PVA nanofiber nonwoven fabric. The scanning electron micrograph of the sample obtained at this time is shown in FIG. As shown in FIG. 7, when the content of boronic acid increased from 5% to 7%, the average fiber hardness increased from 350 to 450 nm, and the diameter of the fiber averaged about 100 as compared to FIG. It can be seen that the increase of about nm. This result is considered to be a phenomenon in which the molecules of PVA and boron starch by boronic acid are macromolecules by crosslinking. The thermogravimetric analysis of the nanofiber nonwoven crosslinked by the addition of boronic acid is shown in FIG. 5. As shown in FIG. 5, it can be seen that thermal properties are increased by adding boronic acid as compared to soluble starch / PVA = 50/50 (FIG. 2) in the range below 400 ° C. temperature. This is considered to be the result of forming intermolecular bridge | crosslinking of PVA and soluble starch by boronic acid.
실시예 3 : 본 발명에 의한 나노섬유 부직포의 생분해 속도의 조절실험Example 3 Control of Biodegradation Rate of Nanofiber Nonwoven Fabrics According to the Present Invention
상기 실시예 1 및 2의 방법에 의해 제조된 생분해성 내지는 생체친화성 나노섬유를 상온 및 60℃의 온도에서 캘린더링하여 융착 및 열융착 하였으며, 상기 열융착된 나노섬유 부직포를 다시 유기용제를 함유하지 않은 친환경 수분산 불소화합물계 발수제를 사용하여 나노섬유 대비 3중량%로 처리하고, 이를 150℃의 온도에서 200초간 건조하여 발수가공을 하였다. 이렇게 얻어진 생분해성 나노섬유 부직포를 PVA/가용전분을 50/50 중량%로 제조된 필름과 비교하여 유연성, 인장강력, 내수압을 비교측정하여 그 결과를 표 2에 나타냈다. 전기방사된 시료 및 열융착된 시료 모두 유연성이 우수하였으며, 인장강도가 상대적으로 낮았던 시료의 경우 열융착에 의해 인장강도가 상대적으로 상승되었으며, 발수처리에 의해 내수압이 증가된 것을 확인할 수 있었다. 이와 같은 결과는 생분해 속도를 원료(전분 및 PVA)의 혼합비율과 발수처리 및 열융착에 의해 조절 가능함을 시사하고 있는 것으로 사료된다.The biodegradable or biocompatible nanofibers prepared by the methods of Examples 1 and 2 were calendered and heat-sealed by calendering at room temperature and 60 ° C., and the heat-sealed nanofiber nonwoven fabric again contained an organic solvent. It was treated with 3% by weight compared to nanofibers using an environmentally friendly, water-dispersible fluorine-based water repellent, which was dried for 200 seconds at a temperature of 150 ° C. for water repellent processing. The biodegradable nanofiber nonwoven fabric thus obtained was compared with a film made of 50/50 wt% of PVA / soluble starch, and the flexibility, tensile strength, and water pressure were measured. The results are shown in Table 2. Both the electrospun sample and the thermally fused sample were excellent in flexibility, and in the case of the samples having relatively low tensile strength, the tensile strength was relatively increased by thermal fusion, and the water pressure was increased by the water repellent treatment. These results suggest that the biodegradation rate can be controlled by mixing ratio of raw materials (starch and PVA), water repellent treatment and heat fusion.
* 유연성 측정 : JIS L1096-6 의 19.1A(45°칸틸레버 법)에 준하여 측정을 실시하였으며, 시료의 크기는 2 X 15 cm의 나노섬유 부직포의 종방향 및 횡방향으로 5번 측정하여 종방향 및 횡방향의 평균값을 산출하고, 100-150 mm의 범위에 있는 것을 합격(O), 그 이외의 것을 불합격(x)으로 하였다.* Flexibility measurement: The measurement was conducted according to JIS L1096-6's 19.1A (45 ° cantilever method). And the average value of the horizontal direction was computed, and the thing of the range of 100-150 mm was made pass (O), and the thing of other than that was rejected (x).
* 인장강력측정 : JIS L1906-4에 준하여 시료크기 5 X 30 cm로 하고, 인장속도 10cm/m의 조건에서 3번씩 측정하고, 각각의 평균값을 가지고 방사시 섬유의 와인딩 방향을 섬유의 종방향으로 하고, 90°회전한 방향을 횡방향으로 하여 100 g/㎡ 당의 강력으로 산출하여 종횡 모두 30 N/5cm 이상의 것을 합격(O), 그 외의 것을 불합격(x)으로 하였다.* Tensile strength measurement: According to JIS L1906-4, the sample size was 5 X 30 cm, measured three times under the condition of 10 cm / m of tensile speed, and the winding direction of the fiber was spun in the longitudinal direction of the fiber during spinning with each average value. And it calculated with the strength per 100 g / m <2> by making the direction which rotated 90 degrees transversely, and made the pass (O) and the others (x) the thing of 30 N / 5cm or more in both sides horizontally.
* 내수압 측정은 JIS L109206의 1 내수도 시험 A 번에 준하여 시료크기 15 X 15 cm 로 하여 3번 측정하여 부직포의 내수성으로 하였다. * The water pressure measurement was performed three times with a sample size of 15 X 15 cm in accordance with No. 1 water resistance test A of JIS L109206 to make the water resistance of the nonwoven fabric.
상기 기술한 바와 같이, 본 발명에 따른 나노섬유 부직포는 생체적합성 특성을 가지고 있으며, 전분과 폴리머의 함량을 조절하여 부직포의 생체분해 속도 및 강도, 섬유의 직경 등을 조절할 수 있으며, 나노 사이즈의 다공성을 인체 호흡성을 가지면서도 외부 오염물질은 차단하는 특성을 가진다. 또한, 용매로서, 순수한 물만을 사용함으로써 제조비용이 저렴하고 생체친화성을 높은 장점이 있다. As described above, the nanofiber nonwoven fabric according to the present invention has biocompatibility characteristics, and by controlling the starch and polymer content, biodegradation rate and strength of the nonwoven fabric, fiber diameter, etc. The human body has respiratory properties while blocking external pollutants. In addition, by using only pure water as a solvent, there is an advantage of low manufacturing cost and high biocompatibility.
또한, 보론산 등을 이용하여 원료의 개질 및 열융착/발수처리를 함으로써, 양호한 기계적 강도와 유연성을 가지면서, 내수성이 우수하고, 위생재료에 적합한 생분해성 나노섬유 부직포를 방사와 동시에 3차원 부직포 상태로 제조할 수 있는 장점이 있다. In addition, by modifying the raw material and heat-sealing / water-repellent treatment using boronic acid, etc., it has a good mechanical strength and flexibility, has excellent water resistance, and spins the biodegradable nanofiber nonwoven fabric suitable for sanitary materials as well as three-dimensional nonwoven fabric. There is an advantage that can be manufactured in a state.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060084562A KR100824719B1 (en) | 2006-09-04 | 2006-09-04 | Bio-degradable food-packing materials consisting of starch-contained nonwoven-nanofabrics and preparation methods therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060084562A KR100824719B1 (en) | 2006-09-04 | 2006-09-04 | Bio-degradable food-packing materials consisting of starch-contained nonwoven-nanofabrics and preparation methods therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080021306A KR20080021306A (en) | 2008-03-07 |
KR100824719B1 true KR100824719B1 (en) | 2008-04-24 |
Family
ID=39395833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060084562A KR100824719B1 (en) | 2006-09-04 | 2006-09-04 | Bio-degradable food-packing materials consisting of starch-contained nonwoven-nanofabrics and preparation methods therefor |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100824719B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101045001B1 (en) * | 2008-09-30 | 2011-06-29 | 한국과학기술원 | Fabrication Method of Porous Carbon Fibers Reinforced with Carbon Nanotubes Using Starch and Use for Electrochemical Electrode |
EP4198179A1 (en) | 2021-11-30 | 2023-06-21 | Akademia Gorniczo-Hutnicza im. Stanislawa Staszica w Krakowie | A method of producing a shrinkable starch membrane and use of the shrinkable starch membrane in medicine as a dressing |
EP4198178A1 (en) | 2021-11-30 | 2023-06-21 | Akademia Gorniczo-Hutnicza im. Stanislawa Staszica w Krakowie | A method of producing a shrinkable starch membrane and use of the shrinkable starch membrane in the food industry as packaging |
KR20240124561A (en) | 2023-02-09 | 2024-08-19 | 국립부경대학교 산학협력단 | Manufacturing method of smart film for food packaging containing modified oat starch, betalain and cellulose nanofibril and smart film for food packaging manufactured using the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100970332B1 (en) * | 2008-05-20 | 2010-07-15 | 영남대학교 산학협력단 | Preparation method of blend film using recycled waste polyvinylalcohol and blend film obtained thereby |
CN106436021A (en) * | 2016-11-18 | 2017-02-22 | 天津捷盛东辉保鲜科技有限公司 | Edible food fresh keeping electrospinning fiber membrane |
CN108517582A (en) * | 2018-04-10 | 2018-09-11 | 天津工业大学 | A kind of degradable antibacterial nano fiber and preparation method thereof |
CN115491790A (en) * | 2022-08-05 | 2022-12-20 | 上海建亲物流有限公司 | A work clothes for carrying frozen material of medicine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04153309A (en) * | 1990-10-15 | 1992-05-26 | Nippon Synthetic Chem Ind Co Ltd:The | Water-soluble fiber |
KR20020082212A (en) * | 2000-01-28 | 2002-10-30 | 스미스클라인 비참 코포레이션 | Electrospun pharmaceutical compositions |
-
2006
- 2006-09-04 KR KR1020060084562A patent/KR100824719B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04153309A (en) * | 1990-10-15 | 1992-05-26 | Nippon Synthetic Chem Ind Co Ltd:The | Water-soluble fiber |
KR20020082212A (en) * | 2000-01-28 | 2002-10-30 | 스미스클라인 비참 코포레이션 | Electrospun pharmaceutical compositions |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101045001B1 (en) * | 2008-09-30 | 2011-06-29 | 한국과학기술원 | Fabrication Method of Porous Carbon Fibers Reinforced with Carbon Nanotubes Using Starch and Use for Electrochemical Electrode |
EP4198179A1 (en) | 2021-11-30 | 2023-06-21 | Akademia Gorniczo-Hutnicza im. Stanislawa Staszica w Krakowie | A method of producing a shrinkable starch membrane and use of the shrinkable starch membrane in medicine as a dressing |
EP4198178A1 (en) | 2021-11-30 | 2023-06-21 | Akademia Gorniczo-Hutnicza im. Stanislawa Staszica w Krakowie | A method of producing a shrinkable starch membrane and use of the shrinkable starch membrane in the food industry as packaging |
KR20240124561A (en) | 2023-02-09 | 2024-08-19 | 국립부경대학교 산학협력단 | Manufacturing method of smart film for food packaging containing modified oat starch, betalain and cellulose nanofibril and smart film for food packaging manufactured using the same |
Also Published As
Publication number | Publication date |
---|---|
KR20080021306A (en) | 2008-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mishra et al. | Electrospinning production of nanofibrous membranes | |
KR100824719B1 (en) | Bio-degradable food-packing materials consisting of starch-contained nonwoven-nanofabrics and preparation methods therefor | |
Salami et al. | Electrospun polycaprolactone/lignin-based nanocomposite as a novel tissue scaffold for biomedical applications | |
CN104818543B (en) | A kind of modified polylactic acid fiber haveing excellent performance | |
Roozbahani et al. | Effects of chitosan alkali pretreatment on the preparation of electrospun PCL/chitosan blend nanofibrous scaffolds for tissue engineering application | |
JP5470569B2 (en) | Silk composite nanofiber and method for producing the same | |
NL8202894A (en) | POLYESTER FILAMENT MATERIAL. | |
Zulkifli et al. | Nanostructured materials from hydroxyethyl cellulose for skin tissue engineering | |
Zhong et al. | Green electrospinning of chitin propionate to manufacture nanofiber mats | |
Felgueiras et al. | Biodegradable, spun nanocomposite polymeric fibrous dressings loaded with bioactive biomolecules for an effective wound healing: A review | |
CN105442187A (en) | Preparation method of polylactic acid/ polycaprolactone melt-blown nonwoven materials | |
Abdellatif et al. | Utilization of sustainable biopolymers in textile processing | |
JP4821202B2 (en) | Method for producing biodegradable spunbond nonwoven fabric | |
Chen et al. | Preparation and antibacterial properties of chitosan/polyvinyl alcohol nanofibrous mats using different organic acids as solvents | |
Deeraj et al. | Electrospun biopolymer-based hybrid composites | |
El-Sherbiny et al. | Eco-friendly electrospun polymeric nanofibers-based nanocomposites for wound healing and tissue engineering | |
Mirmusavi et al. | Characterization of silk/poly 3-hydroxybutyrate-chitosan-multi-walled carbon nanotube micro-nano scaffold: a new hybrid scaffold for tissue engineering applications | |
Zhao et al. | Enhanced thermal and antibacterial properties of stereo-complexed polylactide fibers doped with nano-silver | |
Vera Garcia et al. | PVA Blends and Nanocomposites, Properties and Applications: A Review | |
Ciechańska et al. | An introduction to cellulosic fibres | |
Farooq et al. | From farm to function: Exploring new possibilities with jute nanocellulose applications | |
Zolfagharlou Kouhi et al. | Proceeding toward the development of poly (ɛ-caprolactone)/cellulose microfibrils electrospun biocomposites using a novel ternary solvent system | |
John | Electrospinning of Biofibers and their Applications | |
Biranje et al. | Applications of nanocellulose and its derivatives in developing sustainable textiles | |
Melo-Lopez et al. | Synthetic Fibers from Renewable Sources |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130416 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140401 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160404 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20170314 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20190319 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20200312 Year of fee payment: 13 |