WO2015115633A1 - Fiber - Google Patents

Fiber Download PDF

Info

Publication number
WO2015115633A1
WO2015115633A1 PCT/JP2015/052790 JP2015052790W WO2015115633A1 WO 2015115633 A1 WO2015115633 A1 WO 2015115633A1 JP 2015052790 W JP2015052790 W JP 2015052790W WO 2015115633 A1 WO2015115633 A1 WO 2015115633A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin
acid
fiber
resin composition
Prior art date
Application number
PCT/JP2015/052790
Other languages
French (fr)
Japanese (ja)
Inventor
小野 雄平
正宏 岩井
俊介 兼松
信一郎 庄司
竜司 野々川
山本 智義
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014194090A external-priority patent/JP2017078229A/en
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Publication of WO2015115633A1 publication Critical patent/WO2015115633A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent

Definitions

  • the present invention relates to a fiber having a resin having an autocatalytic action as a main component and having excellent shape retention and hydrolysis resistance in high-temperature hot water, and a production method with less process contamination.
  • Biodegradable polymers represented by aliphatic polyesters such as polylactic acid, polyglycolic acid, poly (3-hydroxybutyrate), and polycaprolactone are known as resins that are easily decomposed in a natural environment.
  • polylactic acid is a polymer material that is highly biosafe and environmentally friendly because it uses lactic acid obtained from plant-derived raw materials or derivatives thereof as raw materials. Therefore, the use as a general-purpose polymer is examined, and the use as a film, a fiber, an injection molded product, etc. is examined.
  • Patent Documents 1 to 3 Recently, paying attention to the easy decomposability of such a resin, its use in oil field drilling technology has been studied (Patent Documents 1 to 3). In this application, it is required to quickly decompose after holding the weight and shape of the resin for a certain period in hot water (see FIG. 1). However, aliphatic polyesters and the like are generally poor in hydrolysis resistance and can be used up to a medium temperature of about 120 ° C., but quickly decompose in high-temperature hot water (see FIG. 2). The problem is that the desired performance cannot be exhibited.
  • hydrolysis modifiers such as carbodiimide compounds are used, and the hydrolysis is suppressed by sealing the acidic groups generated by the initial stage and decomposition in the resin.
  • an acidic group such as a carboxyl group generated by hydrolysis of polyester serves as an autocatalyst and promotes hydrolysis. Therefore, by immediately sealing this with a carbodiimide compound or the like, it can be used in a humid heat environment of about 50 to 120 ° C. Improvement of hydrolysis resistance has been confirmed.
  • Patent Document 6 the carbodiimide compound itself leaks out during processing, and the process is contaminated.
  • An object of the present invention is to provide a fiber that decomposes after maintaining the weight and shape of a resin for a certain period of time in hot water at a temperature higher than 135 ° C. in a method with less process contamination.
  • the present inventors diligently studied a resin composition that rapidly decomposes after maintaining the weight and shape of the resin for a certain period in hot water at a temperature higher than 135 ° C. As a result, if the acid group concentration can be kept low using a resin with autocatalytic action, hydrolysis and the decrease in molecular weight during that time will be moderated, so the weight and shape will be maintained, and the acid group concentration will be kept low. It was found that the decomposition of the resin was promoted when it became impossible (see FIG. 3). As a result of further investigation, by using a carbodiimide compound having a water resistance at 120 ° C. of 95% or more and a reactivity with an acidic group at 190 ° C.
  • the temperature is higher than 135 ° C. It was found that the acidic group concentration can be efficiently kept low in hot water and the timing of resin decomposition can be controlled by the amount of addition.
  • the carbodiimide compound satisfying the above water resistance and reactivity with acidic groups is a compound having an isocyanate group in association with a reaction in which the agent itself leaks during processing, and the carbodiimide compound is bonded to the terminal of the polymer compound. There is a problem of being liberated.
  • the present inventors have reached the present invention by arranging a resin composition that does not substantially contain a hydrolysis regulator in the sheath of the core-sheath composite fiber.
  • the object of the present invention can be achieved by the following. 1.
  • a method for producing a core-sheath type composite fiber composed of a core part and a sheath part A resin composition (C component) containing a resin (A component) having an autocatalytic action and a hydrolysis regulator (B component) is disposed in the core part, and a resin having an autocatalytic action is provided in the sheath part.
  • a resin composition (D component) that is substantially free of hydrolysis modifier (B component) is arranged in (A ′ component), and the hydrolysis regulator (B component) in the resin composition (C component) is all
  • the manufacturing method of said 1 satisfy
  • R 1 to R 4 are each independently an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof
  • X and Y may each independently represent a hydrogen atom, an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or these (It is a combination and may contain a hetero atom. Each aromatic ring may be bonded by a substituent to form a cyclic structure.) 9.
  • hydrolysis regulator (component B) is bis (2,6-diisopropylphenyl) carbodiimide.
  • hydrolysis regulator (component B) is a carbodiimide compound comprising a repeating unit represented by the following formula (3).
  • R 5 to R 7 are each independently an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof, (It may contain atoms.) 11.
  • r distance from the center of the fiber cross-section on each of the microscopic IR measurement linear to the fiber surface
  • r a is on each having a microscopic IR measurement linear, fiber cross-section on 0 ⁇ r a ⁇ r
  • PIb IR peak intensity ratio obtained from carbodiimide group / carbonyl group at a certain point b existing between each point a and the fiber surface on each straight line obtained by microscopic IR measurement
  • a core-sheath type composite fiber composed of a core part and a sheath part (I)
  • the core is composed of a resin composition (C component) containing a resin (A component) having autocatalytic action and a hydrolysis regulator (B component), and the content of the hydrolysis regulator (B component) Is 1 to 40 parts by weight based on the total weight, (Ii)
  • the sheath part contains a hydrolysis regulator (B component) at a lower concentration than the C component in the resin (A ′ component) having autocatalytic action, or substantially contains the hydrolysis regulator (B component).
  • maintaining the weight and shape of resin for a fixed period in hot water higher than 135 degreeC can be provided with little process contamination.
  • a carbodiimide compound having a water resistance at 120 ° C. of 95% or more and a reactivity with an acidic group at 190 ° C. of 50% or more for the sealing of acidic groups it is possible to perform steady decomposition suppression,
  • the timing of resin decomposition in hot hot water can be controlled by the amount added.
  • the fiber of the present invention can be provided with less process contamination. Further, the fiber obtained by the production method of the present invention exhibits a desired performance in an oil field excavation technique and can be suitably used.
  • FIG. 1 is an image diagram that quickly decomposes after maintaining the weight and shape of a resin for a certain period when the resin is used in hot water at a temperature higher than 135 ° C., and shows the behavior achieved in the fiber of the present invention. is there.
  • FIG. 2 is an image diagram in which decomposition rapidly proceeds from the initial stage when a resin is used in hot water at a temperature higher than 135 ° C., and is a behavior in a general aliphatic polyester.
  • FIG. 3 shows the molecular weight (m) and the amount of acidic groups (m) necessary to achieve the behavior of the resin weight (w) change as shown in FIG. 1 when the resin is used in hot water at a temperature higher than 135 ° C.
  • FIG. 6 is an image diagram showing a change in g), which is a behavior achieved in the fiber of the present invention.
  • the resin (component A) having an autocatalytic action is a resin in which an acidic group generated by decomposition has an autocatalytic action.
  • the component A preferably contains a water-soluble monomer as a main component.
  • a monomer generated by decomposition may react with other components in this application and precipitate in water.
  • water solubility means that the solubility in water at 25 ° C. is 0.1 g / L or more.
  • the solubility of the water-soluble monomer in water is preferably 1 g / L or more, more preferably 3 g / L or more, from the viewpoint that the resin composition to be used does not remain in water after decomposition. More preferably, it is the above.
  • a main component is 90 mol% or more of a structural component. The proportion of the main component is preferably 95 to 100 mol%, more preferably 98 to 100 mol%.
  • the component A include at least one selected from the group consisting of polyester, polyamide, polyamideimide, polyimide, polyurethane, and polyesteramide. Preferably polyester is illustrated.
  • polyesters examples include a polymer or copolymer obtained by polycondensation of one or more selected from dicarboxylic acid or an ester-forming derivative thereof and diol or an ester-forming derivative thereof, hydroxycarboxylic acid or an ester-forming derivative thereof, or a lactone. Is exemplified. Preferred examples include polyesters made of hydroxycarboxylic acid or ester-forming derivatives thereof. More preferably, an aliphatic polyester composed of hydroxycarboxylic acid or an ester-forming derivative thereof is exemplified. Such a thermoplastic polyester may contain a cross-linked structure treated with a radical generation source such as an energy active ray or an oxidizing agent for moldability and the like.
  • a radical generation source such as an energy active ray or an oxidizing agent for moldability and the like.
  • Dicarboxylic acid or ester-forming derivatives include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4, Aromatic dicarboxylic acids such as 4′-diphenyl ether dicarboxylic acid, 5-tetrabutylphosphonium isophthalic acid and 5-sodium sulfoisophthalic acid can be mentioned.
  • aliphatic dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malonic acid, glutaric acid, and dimer acid
  • alicyclic dicarboxylic acids such as 1, 3- cyclohexane dicarboxylic acid and 1, 4- cyclohexane dicarboxylic acid
  • ester-forming derivatives are mentioned.
  • diol or ester-forming derivative thereof examples include aliphatic glycols having 2 to 20 carbon atoms, that is, ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5 -Pentanediol, 1,6-hexanediol, decamethylene glycol, cyclohexanedimethanol, cyclohexanediol, dimer diol and the like.
  • long-chain glycols having a molecular weight of 200 to 100,000 that is, polyethylene glycol, poly 1,3-propylene glycol, poly 1,2-propylene glycol, polytetramethylene glycol and the like can be mentioned.
  • aromatic dioxy compounds that is, 4,4′-dihydroxybiphenyl, hydroquinone, tert-butylhydroquinone, bisphenol A, bisphenol S, bisphenol F and the like can be mentioned.
  • ester-forming derivatives are mentioned.
  • hydroxycarboxylic acid examples include glycolic acid, lactic acid, hydroxypropioic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxybenzoic acid, p-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, and these Examples thereof include ester-forming derivatives.
  • lactone examples include caprolactone, valerolactone, propiolactone, undecalactone, and 1,5-oxepan-2-one.
  • Examples of the aliphatic polyester include a polymer mainly composed of an aliphatic hydroxycarboxylic acid, a polymer obtained by polycondensation of an aliphatic polyvalent carboxylic acid or an ester-forming derivative thereof and an aliphatic polyhydric alcohol as main components, and those polymers. Copolymers are exemplified.
  • Examples of the polymer having an aliphatic hydroxycarboxylic acid as a main constituent component include polycondensates such as glycolic acid, lactic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxyvaleric acid, and hydroxycaproic acid, and copolymers.
  • polyglycolic acid polylactic acid, poly-3-hydroxycarboxylic butyric acid, poly-4-polyhydroxybutyric acid, poly-3-hydroxyhexanoic acid or polycaprolactone, and copolymers thereof can be mentioned.
  • poly L-lactic acid poly D-lactic acid, stereocomplex polylactic acid, and racemic polylactic acid can be mentioned.
  • polymer which has aliphatic polyhydric carboxylic acid and aliphatic polyhydric alcohol as the main structural components is mentioned.
  • polyvalent carboxylic acids oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malonic acid, glutaric acid, dimer acid and other aliphatic dicarboxylic acids, 1,3-cyclohexanedicarboxylic acid, 1, Examples include alicyclic dicarboxylic acid units such as 4-cyclohexanedicarboxylic acid and ester derivatives thereof.
  • an aliphatic glycol having 2 to 20 carbon atoms that is, ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6 -Hexanediol, decamethylene glycol, cyclohexanedimethanol, cyclohexanediol, dimer diol and the like.
  • long chain glycols having a molecular weight of 200 to 100,000 that is, polyethylene glycol, poly 1,3-propylene glycol, poly 1,2-propylene glycol, and polytetramethylene glycol can be mentioned.
  • polyester can be produced by a known method (for example, a saturated polyester resin handbook (written by Kazuo Yuki, published by Nikkan Kogyo Shimbun, published December 22, 1989)). Furthermore, examples of the polyester include an unsaturated polyester resin obtained by copolymerizing an unsaturated polyvalent carboxylic acid or an ester-forming derivative thereof in addition to the polyester, and a polyester elastomer containing a low melting point polymer segment.
  • the unsaturated polycarboxylic acid examples include maleic anhydride, tetrahydromaleic anhydride, fumaric acid, endomethylenetetrahydromaleic anhydride and the like.
  • various monomers are added to the unsaturated polyester, and it is cured and molded by a curing treatment with an active energy beam such as thermal curing, radical curing, light, or electron beam.
  • the polyester may be a polyester elastomer obtained by copolymerizing a soft component.
  • the polyester elastomer is a block copolymer composed of a high melting point polyester segment and a low melting point polymer segment having a molecular weight of 400 to 6,000 as described in known literatures such as JP-A-11-92636.
  • the melting point is 150 ° C. or more, which can be suitably used.
  • the polyester is preferably a polyester comprising a hydroxycarboxylic acid or an ester-forming derivative thereof.
  • an aliphatic polyester composed of hydroxycarboxylic acid or an ester-forming derivative thereof is more preferable.
  • the aliphatic polyester is poly L-lactic acid, poly D-lactic acid, and stereocomplex polylactic acid.
  • polylactic acid consists of lactic acid units whose main chain is represented by the following formula (1).
  • “mainly” is preferably a ratio of 90 to 100 mol%, more preferably 95 to 100 mol%, and still more preferably 98 to 100 mol%.
  • the lactic acid unit represented by the formula (1) includes an L-lactic acid unit and a D-lactic acid unit, which are optical isomers.
  • the main chain of the polylactic acid is preferably mainly an L-lactic acid unit, a D-lactic acid unit or a combination thereof.
  • the polylactic acid is preferably poly-D-lactic acid whose main chain is mainly composed of D-lactic acid units, and poly-L-lactic acid whose main chain is mainly composed of L-lactic acid units.
  • the proportion of other units constituting the main chain is preferably in the range of 0 to 10 mol%, more preferably 0 to 5 mol%, and still more preferably 0 to 2 mol%.
  • Examples of other units constituting the main chain include units derived from dicarboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, lactones and the like.
  • Examples of the dicarboxylic acid include succinic acid, adipic acid, azelaic acid, sebacic acid, terephthalic acid, and isophthalic acid.
  • polyhydric alcohol examples include aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, octanediol, glycerin, sorbitan, neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, and polypropylene glycol. Or aromatic polyhydric alcohol etc., such as what added ethylene oxide to bisphenol, etc. are mentioned.
  • hydroxycarboxylic acid examples include glycolic acid and hydroxybutyric acid.
  • lactone examples include glycolide, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ - or ⁇ -butyrolactone, pivalolactone, ⁇ -valerolactone, and the like.
  • the weight average molecular weight of the polylactic acid is preferably 50,000 to 500,000, more preferably 80,000 to 350,000, and even more preferably 100,000 to 250,000 in order to achieve both hot water durability, mechanical properties and moldability of the fiber. It is a range.
  • the weight average molecular weight is a value measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
  • the resin having a self-catalytic action is polylactic acid (poly D-lactic acid or poly L-lactic acid) and is a homophase polylactic acid, it is 150 to 190 ° C. as measured by a differential scanning calorimeter (DSC). It preferably has a crystal melting peak (Tmh) between them and a heat of crystal melting ( ⁇ Hmsc) of 10 J / g or more. Heat resistance can be improved by satisfying the range of the crystal melting point and the crystal melting heat.
  • the resin (component A) having an autocatalytic action is polylactic acid
  • the optical purity of poly L-lactic acid or poly D-lactic acid constituting the polylactic acid is preferably 98% or more, more preferably 98.
  • the main chain of polylactic acid is preferably stereocomplex polylactic acid including a stereocomplex phase formed by poly L-lactic acid units and poly D-lactic acid units.
  • Stereocomplex polylactic acid preferably exhibits a crystal melting peak of 190 ° C.
  • the stereocomplex polylactic acid preferably has a stereocomplexation degree (S) defined by the following formula of 30 to 100%.
  • S [ ⁇ Hms / ( ⁇ Hmh + ⁇ Hms)] ⁇ 100 (However, ⁇ Hms represents the crystal melting enthalpy of stereocomplex phase polylactic acid, and ⁇ Hmh represents the melting enthalpy of polylactic acid homophase crystal.)
  • the crystallinity of stereocomplex polylactic acid, particularly the crystallinity by XRD measurement, is in the range of 3 to 60%, more preferably 5 to 60%, still more preferably 7 to 60%, and particularly preferably 10 to 60%. .
  • the crystal melting point of stereocomplex polylactic acid is preferably in the range of 190 to 250 ° C., more preferably 200 to 230 ° C.
  • the crystal melting enthalpy by DSC measurement of stereocomplex polylactic acid is preferably 20 J / g or more, more preferably 20 to 80 J / g, still more preferably 30 to 80 J / g.
  • the crystalline melting point of stereocomplex polylactic acid is less than 190 ° C., the heat resistance is deteriorated.
  • it exceeds 250 degreeC it will be necessary to shape
  • the resin composition of the present invention exhibits a crystal melting peak of 190 ° C. or higher as measured by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the isotactic number average chain length of polylactic acid (L i ) Is preferably 30 to 200, more preferably 35 to 150, still more preferably 40 to 120, and particularly preferably 45 to 100. When it is smaller than 30, the melting point of the stereocomplex crystal phase becomes low, and when it is larger than 200, it becomes difficult to form the stereocomplex crystal phase.
  • Isotactic number average chain length (L i ) Shows the peak of the quadruple structure of CH carbon of polylactic acid in Makromol. Chem.
  • i represents isotactic (LL, DD), and s represents syndiotactic (LD, DL) linkage.
  • the weight ratio of poly D-lactic acid to poly L-lactic acid is preferably 90/10 to 10/90. More preferably, it is in the range of 80/20 to 20/80, more preferably 30/70 to 70/30, particularly preferably 40/60 to 60/40, and theoretically preferably as close to 1/1 as possible. .
  • the weight average molecular weight of the stereocomplex polylactic acid is preferably in the range of 50,000 to 500,000, more preferably 80,000 to 350,000, and still more preferably 100,000 to 250,000.
  • the weight average molecular weight is a value measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
  • Poly L-lactic acid and poly D-lactic acid can be produced by a conventionally known method. For example, it can be produced by ring-opening polymerization of L-lactide or D-lactide in the presence of a metal-containing catalyst.
  • low molecular weight polylactic acid containing a metal-containing catalyst is crystallized as desired or without crystallization, under reduced pressure or from normal pressure, in the presence of an inert gas stream, or absent It can also be produced by solid phase polymerization. Furthermore, it can be produced by a direct polymerization method in which lactic acid is subjected to dehydration condensation in the presence or absence of an organic solvent.
  • the polymerization reaction can be carried out in a conventionally known reaction vessel. For example, in a ring-opening polymerization or direct polymerization method, a vertical reactor or a horizontal reactor equipped with a stirring blade for high viscosity, such as a helical ribbon blade, is used alone, or Can be used in parallel.
  • Alcohol may be used as a polymerization initiator. Such alcohol is preferably non-volatile without inhibiting the polymerization of polylactic acid, such as decanol, dodecanol, tetradecanol, hexadecanol, octadecanol, ethylene glycol, trimethylolpropane, pentaerythritol, etc. Can be suitably used. It can be said that the polylactic acid prepolymer used in the solid-phase polymerization method is preferably crystallized in advance from the viewpoint of preventing resin pellet fusion.
  • the prepolymer is in a solid state in a fixed vertical or horizontal reaction vessel, or in a reaction vessel (such as a rotary kiln) in which the vessel itself rotates, such as a tumbler or kiln, in the temperature range from the glass transition temperature of the prepolymer to less than the melting point.
  • Metal-containing catalysts include alkali metals, alkaline earth metals, rare earths, transition metals, fatty acid salts such as aluminum, germanium, tin, antimony, titanium, carbonates, sulfates, phosphates, oxides, hydroxides , Halides, alcoholates and the like.
  • fatty acid salts, carbonates, sulfates, phosphates, oxides, hydroxides containing at least one metal selected from tin, aluminum, zinc, calcium, titanium, germanium, manganese, magnesium and rare earth elements Products, halides, and alcoholates are preferred.
  • Tin compounds due to low catalytic activity and side reactions specifically stannous chloride, stannous bromide, stannous iodide, stannous sulfate, stannic oxide, tin myristate, tin octylate Tin-containing compounds such as tin stearate and tetraphenyltin are exemplified as preferred catalysts.
  • tin (II) compounds specifically, diethoxytin, dinonyloxytin, tin (II) myristate, tin (II) octylate, tin (II) stearate, tin (II) chloride and the like are suitable. Illustrated.
  • the amount of catalyst used is 0.42 x 10 per kg of lactide. -4 ⁇ 100 ⁇ 10 -4 (Mole) and further considering the reactivity, color tone and stability of the resulting polylactides, 1.68 ⁇ 10 -4 ⁇ 42.1 ⁇ 10 -4 (Mole), particularly preferably 2.53 ⁇ 10 -4 ⁇ 16.8 ⁇ 10 -4 (Mol) used.
  • the metal-containing catalyst used for the polymerization of polylactic acid is preferably deactivated with a conventionally known deactivator prior to using polylactic acid.
  • a deactivator include an organic ligand having a group of chelate ligands having an imino group and capable of coordinating with a polymerized metal catalyst.
  • dihydridooxoline (I) acid dihydridotetraoxodiphosphorus (II, II) acid
  • hydridotrioxoline (III) acid dihydridopentaoxodiphosphoric acid (III), hydridopentaoxodi (II, IV) Acid
  • dodecaoxohexaphosphoric acid (III) hydridooctaoxotriphosphoric acid (III, IV, IV) acid
  • octaoxotriphosphoric acid (IV, III, IV) acid hydridohexaoxodiphosphoric acid (III, V) acid
  • hexaoxodiacid examples thereof include low oxidation number phosphoric acids having an acid number of 5 or less, such as phosphorus (IV) acid, decaoxotetraphosphoric (IV) acid, hendecaoxotetraphosphoric (IV) acid, and eneoxoo
  • orthophosphoric acid of x / y 3.
  • polyphosphoric acid which is 2> x / y> 1, and is called diphosphoric acid, triphosphoric acid, tetraphosphoric acid, pentaphosphoric acid or the like based on the degree of condensation, and a mixture thereof are exemplified.
  • the metaphosphoric acid represented by x / y 1, especially trimetaphosphoric acid and tetrametaphosphoric acid are mentioned.
  • ultraphosphoric acid represented by 1> x / y> 0 and having a network structure in which a part of the phosphorus pentoxide structure is partially removed may be mentioned.
  • the acid salt of these acids is mentioned.
  • x / y> 1 polyphosphoric acid referred to as diphosphoric acid, triphosphoric acid, tetraphosphoric acid, pentaphosphoric acid and the like, and a mixture thereof are preferable from the degree of condensation.
  • metaphosphoric acid represented by x / y 1, particularly trimetaphosphoric acid and tetrametaphosphoric acid are preferable.
  • Ultraphosphoric acid represented by 1> x / y> 0 and having a network structure in which a part of the phosphorus pentoxide structure is left (these may be collectively referred to as a metaphosphoric acid compound) is preferable.
  • the acidic salt of these acids is preferable.
  • the metaphosphoric acid compound used in the present invention is a cyclic metaphosphoric acid in which about 3 to 200 phosphoric acid units are condensed, an ultra-regional metaphosphoric acid having a three-dimensional network structure, or an alkali metal salt or an alkaline earth metal salt thereof. Onium salts).
  • cyclic sodium metaphosphate, ultra-region sodium metaphosphate, phosphono-substituted lower aliphatic carboxylic acid derivative dihexylphosphonoethyl acetate hereinafter sometimes abbreviated as DHPA) and the like are preferably used.
  • the polylactic acid preferably has a lactide content of 5,000 ppm or less.
  • the lactide contained in the polylactic acid deteriorates the resin and deteriorates the color tone at the time of melt processing, and in some cases, it may be disabled as a product.
  • Poly L-lactic acid and / or poly D-lactic acid immediately after the melt ring-opening polymerization usually contains 1 to 5% by weight of lactide, but poly L-lactic acid and / or poly D-lactic acid is At any stage up to lactic acid molding, a conventionally known lactide weight loss method, that is, vacuum devolatilization with a single-screw or multi-screw extruder, or high vacuum treatment in a polymerization apparatus is carried out alone or in combination.
  • lactide can be reduced to a suitable range.
  • the polylactic acid component has a lactide content within such a range, thereby improving the stability of the resin during melt molding of the molded product of the present invention, and the advantage that the molded product can be efficiently manufactured, and the moisture resistant heat stability of the molded product. , Low gas can be improved.
  • the resin (component A) having an autocatalytic action is stereocomplex polylactic acid
  • the optical purity of poly L-lactic acid and poly D-lactic acid constituting polylactic acid is preferably 98% or more, more preferably It is 98.5% or more, more preferably 99% or more, and most preferably 99.5% or more.
  • Stereocomplex polylactic acid is prepared by bringing poly L-lactic acid and poly D-lactic acid into contact in a weight ratio of 10/90 to 90/10, preferably by melt contact, and more preferably melt kneading. Can be obtained.
  • the contact temperature is preferably in the range of 210 to 300 ° C., more preferably 220 to 290 ° C., and further preferably 225 to 280 ° C. from the viewpoints of stability of polylactic acid when melted, thermal decomposition, and improvement of stereocomplex crystallinity. It is.
  • the method of melt kneading is not particularly limited, but a conventionally known batch type or continuous type melt mixing apparatus is preferably used.
  • a melt-stirred tank for example, a melt-stirred tank, a single-screw or twin-screw extruder, a kneader, a non-shaft vertical stirring tank, “Vibolac (registered trademark)” manufactured by Sumitomo Heavy Industries, Ltd., N-SCR, manufactured by Mitsubishi Heavy Industries, Ltd. ( Glasses blades, lattice blades or Kenix type stirrers made by Hitachi, Ltd., or Sulzer type SMLX type static mixer equipped pipe type polymerization equipment can be used, but self-cleaning type in terms of productivity, quality of polylactic acid, especially color tone.
  • a non-axial vertical stirring tank, an N-SCR, a twin-screw extruder, or the like that is a polymerization apparatus is preferably used.
  • a method of blending a specific additive in order to stably and highly promote the formation of stereocomplex polylactic acid crystals is preferably applied without departing from the gist of the present invention.
  • the additive is not particularly limited as long as it has a transesterification catalytic ability.
  • organic acid metal salts are preferably used, and examples thereof include known phosphoric acid metal salts, carboxylic acid metal salts, and sulfonic acid metal salts.
  • the hydrolysis regulator (component B) is an agent that seals the terminal groups of the resin (component A) and acidic groups generated by the decomposition. That is, the agent has an effect of suppressing the autocatalytic action of the resin (component A) and delaying the hydrolysis.
  • the acidic group include at least one selected from the group consisting of a carboxyl group, a sulfonic acid group, a sulfinic acid group, a phosphonic acid group, and a phosphinic acid group.
  • a carboxyl group is particularly exemplified.
  • the B component preferably has a water resistance at 120 ° C. of 95% or more and a reactivity with acidic groups at 190 ° C. of 50% or more.
  • the water resistance at 120 ° C. means, for example, 1) 2 g of water is added to a system in which 1 g of B component is dissolved in 50 ml of dimethyl sulfoxide, and dissolved when stirred at 120 ° C. for 5 hours while refluxing.
  • dimethyl sulfoxide was mixed with the solvent in a range where at least a part of the component B was dissolved, and 50 ml of the mixed solvent was used.
  • the mixing ratio is usually selected from the range of (1: 2) to (2: 1), but is not particularly limited as long as the above conditions are satisfied.
  • the solvent used in 2) is usually soluble if selected from tetrahydrofuran, N, N-dimethylformamide, and ethyl acetate.
  • Water resistance (%) [Amount after 5 hours treatment / initial amount] ⁇ 100 (iv)
  • the water resistance may be expressed by an equivalent evaluation. When the water resistance of an unstable agent is evaluated, a part of the agent is denatured by hydrolysis, and the acidic group sealing ability is lowered. When such an agent is used in hot hot water, it is deactivated by water, so that the ability to seal the target acidic group is significantly reduced. From the above, the water resistance at 120 ° C. is more preferably 97% or more, further preferably 99% or more, and particularly preferably 99.9% or more.
  • the reaction with acidic groups can be carried out selectively and efficiently.
  • the reactivity with an acidic group at 190 ° C. means, for example, that a group that reacts with a carboxyl group of a hydrolysis modifier is 1. It is obtained by adding an amount of an agent equivalent to 5 times equivalent and melt-kneading for 1 minute at a resin temperature of 190 ° C. and a rotation speed of 30 rpm in a nitrogen atmosphere using a lab plast mill (manufactured by Toyo Seiki Seisakusho). With respect to the resin composition, the carboxyl group concentration was measured, and the value given by the following formula (v).
  • Reactivity (%) [(carboxyl group concentration of polylactic acid for evaluation ⁇ carboxyl group concentration of resin composition) / carboxyl group concentration of polylactic acid for evaluation] ⁇ 100 (v)
  • the evaluation polylactic acid preferably has a MW of 120,000 to 200,000 and a carboxyl group concentration of 10 to 30 equivalents / ton.
  • polylactic acid “NW3001D” (MW is 150,000, carboxyl group concentration is 22.1 equivalent / ton) manufactured by Nature Works can be preferably used.
  • the reactivity value can be obtained by measuring the carboxyl group concentration of the resin composition obtained by melt-kneading for 1 minute at a rotation speed of 30 rpm. In addition to this, the reactivity with an acidic group may be given by an equivalent evaluation. When the reactivity of a stable agent is evaluated, the carboxyl group concentration of the resin composition hardly changes even when kneaded under the above conditions.
  • the reactivity with acidic groups at 190 ° C. is more preferably 60% or more, further preferably 70% or more, and particularly preferably 80% or more.
  • the hydrolysis regulator (component B) has a water resistance at 120 ° C. of 95% or more and a reactivity with acidic groups at 190 ° C. of 50% or more.
  • a very stable agent has a high water resistance, but a low reactivity with acidic groups. In that case, the ability to seal the target acidic groups in hot hot water is almost manifested. do not do.
  • a very unstable agent has a high reactivity with an acidic group, but has a low water resistance. In that case, it is deactivated by water in high-temperature hot water. The ability to seal is significantly reduced.
  • the hydrolysis regulator having high water resistance and high reactivity with acidic groups is preferably used in the present invention.
  • the component B include addition reaction type compounds such as carbodiimide compounds, isocyanate compounds, epoxy compounds, oxazoline compounds, oxazine compounds, and aziridine compounds.
  • a carbodiimide compound is preferably exemplified.
  • the carbodiimide compound include those having the basic structures of the following general formulas (4) and (5). (Wherein R 8 , R 9 Are each independently an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof, and may contain a hetero atom.
  • R 8 And R 9 May be bonded to form a cyclic structure, or two or more cyclic structures may be formed by a spiro structure or the like) (Wherein R 10 Is an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof, and may contain a hetero atom. n is an integer of 2 to 1000. ) From the viewpoints of stability and ease of use, an aromatic carbodiimide compound is more preferable. For example, aromatic carbodiimide compounds such as the following formulas (2) and (3) are exemplified.
  • R 1 ⁇ R 4 are each independently an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof, and may contain a hetero atom.
  • X and Y are each independently a hydrogen atom, an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof. May be included.
  • Each aromatic ring may be bonded by a substituent to form a cyclic structure, or two or more cyclic structures may be formed by a spiro structure or the like) (Wherein R 5 ⁇ R 7 Are each independently an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof, and may contain a hetero atom.
  • n is an integer of 2 to 1000.
  • the core-sheath-type conjugate fiber of the present invention is formed from at least two types of resin compositions: a resin composition (C component) that forms a core part and a resin composition (D component) that forms a sheath part.
  • a core part consists of a resin composition (C component) containing resin (A component) which has an autocatalytic action, and a hydrolysis regulator (B component).
  • the resin composition (component C) retains its shape for a certain period in hot water at 135 ° C. or higher, and then the effect of sealing the acidic group of the hydrolysis modifier (component B) disappears.
  • the autocatalytic action promotes the decomposition of the resin, and accordingly, the concentration of acidic groups increases exponentially and further promotes the decomposition. It is suitable when the resin composition of the present invention is used in an oil field excavation technique or the like that the phenomenon occurs as soon as possible after maintaining the weight and shape of the resin for a certain period.
  • the decomposition product is dissolved in water. Therefore, it is necessary that the weight of the non-water-soluble content of the resin composition is less than 30% after 100 hours in hot water at an arbitrary temperature of 135 ° C. or higher.
  • the timing at which the decomposition rate changes abruptly can be controlled by the amount of hydrolysis modifier added.
  • the resin composition (C component) as a whole is 100 parts by weight
  • the resin (A component) is 60 to 99 parts by weight
  • the hydrolysis regulator (B component) is 1 part. Contains ⁇ 40 parts by weight.
  • the content of the hydrolysis regulator (component B) is less than 1 part by weight, the hydrolysis regulator may not spread over the entire fiber, and a sufficient acidic group sealing effect may not be exhibited.
  • the amount is more than 40 parts by weight, the moldability may be deteriorated, process contamination may occur.
  • the content of the hydrolysis regulator (component B) is preferably 1 to 40 parts by weight, more preferably 2 to 30 parts by weight, still more preferably 3 to 20 parts by weight, and most preferably 5 to 15 parts by weight. preferable.
  • a sheath part is a resin composition (D component) which does not contain a hydrolysis regulator (B component) substantially in resin (A 'component) which has an autocatalytic action.
  • the resin composition (component D) is disposed in the sheath part, and it is necessary to reduce leakage of the isocyanate compound generated in the core part and the hydrolysis regulator itself to the outside of the fiber. Moreover, it is preferable to use the same resin as the resin (A component) having an autocatalytic action used for the resin composition (C component) as the resin having an autocatalytic action (A ′ component).
  • the hydrolysis regulator (component B) in the resin composition (component C) is the fiber after the spinning step and heat in hot water. It is because it diffuses more uniformly in the inside.
  • the content of the hydrolysis adjusting agent (B component) of the resin composition (C component) of the core part is the hydrolysis adjusting agent (D component) of the resin composition (D component) of the sheath part ( More than the content of B component).
  • Content of the hydrolysis regulator (B component) of the resin composition (C component) of a core part and the resin composition (D component) of a sheath part can be analyzed by the following method.
  • the core-sheath type composite fiber is cut into a cross section perpendicular to the fiber length direction with a microtome equipped with a sharp blade, and the cross-sectional microscopic IR mapping measurement is performed, and the IR absorption peak area peculiar to the hydrolysis regulator (component B)
  • IR absorption peak areas peculiar to resins having autocatalytic action (component A and component A ′) are two-dimensionally mapped.
  • an attenuated total reflection (ATR) method using a crystallite is used, and a map having sufficiently high spatial resolution is created.
  • a fiber cross-sectional distribution of the content of the hydrolysis modifier (component B) is obtained from a map of the IR absorption peak area using a calibration curve prepared in advance.
  • the average value of the hydrolysis regulator (B component) content near the center of the fiber is taken as the content of the hydrolysis regulator (B component) of the resin composition (C component) in the core, and the hydrolysis adjustment of the fiber outer peripheral portion
  • the average value of the agent (B component) content is defined as the content of the hydrolysis regulator (B component) of the resin composition (D component) in the sheath.
  • a carbodiimide compound having a carbodiimide group and a cyclic structure in which the first nitrogen and the second nitrogen are bonded by a linking group as disclosed in WO2010 / 071213
  • the terminal group of the resin and the acidic group generated by decomposition can be sealed, but since the isocyanate compound is not liberated at that time, it may be contained in the resin composition (D component) of the sheath.
  • an epoxy compound, oxazoline, and the like may be contained in the sheath resin composition (component D) to seal the acidic group.
  • the composite fiber of the present invention has an acidic end group amount of 5 eq / ton or less.
  • the resin composition (C component) in the core contains a sufficiently large amount of the hydrolysis regulator (B component)
  • the amount of acidic end groups is kept at a sufficiently low concentration.
  • the resin composition (D component) of the sheath part is substantially free of the hydrolysis regulator (B component) or its content is small, the acidic end group is a hydrolysis regulator (B component). Remains without reacting.
  • the acidic end group amount of the composite fiber is preferably 5 eq / ton or less, more preferably 3 eq / ton or less, further preferably 2 eq / ton or less, and most preferably 1.5 eq / ton or less.
  • a state in which acidic end groups remain to some extent is preferable.
  • the acidic end group of the composite fiber is preferably 0.05 eq / ton or more, and more preferably 0.1 eq / ton or more.
  • the resin composition may contain known additives and fillers as long as the effects of the invention are not lost.
  • a stabilizer, a crystallization accelerator, a filler, a release agent, an antistatic agent, a plasticizer, an impact resistance improver, a terminal blocking agent, a compatibilizing agent, and the like can be given.
  • a component that accelerates the decomposition of the autocatalytic resin (component A) mainly composed of a water-soluble monomer, such as a phosphoric acid component or a resin composition
  • component A a component that accelerates the decomposition of the autocatalytic resin
  • component A mainly composed of a water-soluble monomer, such as a phosphoric acid component or a resin composition
  • phosphite-based additives that decompose in materials to produce phosphoric acid components, or by reducing or deactivating as much as possible.
  • the method of using together the component which deactivates or suppresses them together with a hydrolysis regulator (B component) etc. can be taken suitably.
  • the resin composition can contain a stabilizer.
  • a stabilizer what is used for the stabilizer of a normal thermoplastic resin can be used.
  • an antioxidant for example, an antioxidant, a light stabilizer, etc. can be mentioned. By blending these agents, a molded product having excellent mechanical properties, moldability, heat resistance and durability can be obtained.
  • the antioxidant include hindered phenol compounds, hindered amine compounds, phosphite compounds, thioether compounds, and the like.
  • hindered phenol compounds include n-octadecyl-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) -propionate, n-octadecyl-3- (3′-methyl-5 ′).
  • phosphite compound those in which at least one P—O bond is bonded to an aromatic group are preferable.
  • thioether compounds include dilauryl thiodipropionate, ditridecyl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, pentaerythritol-tetrakis (3-lauryl thiopropionate), Pentaerythritol-tetrakis (3-dodecylthiopropionate), pentaerythritol-tetrakis (3-octadecylthiopropionate), pentaerythritol tetrakis (3-myristylthiopropionate), pentaerythritol-tetrakis (3-stearylthio) Propionate) and the like.
  • the light stabilizer examples include benzophenone compounds, benzotriazole compounds, aromatic benzoate compounds, oxalic acid anilide compounds, cyanoacrylate compounds, hindered amine compounds, and the like.
  • benzophenone compounds include benzophenone, 2,4-dihydroxybenzophenone, 2,2′-dihydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2 ′.
  • benzotriazole compound examples include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (3,5-di-tert-butyl-2-hydroxyphenyl) benzotriazole, 2- (3,5- Di-tert-amyl-2-hydroxyphenyl) benzotriazole, 2- (3 ′, 5′-di-tert-butyl-4′-methyl-2′-hydroxyphenyl) benzotriazole, 2- (3,5- Di-tert-amyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (5-tert-butyl-2-hydroxyphenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis ( ⁇ , ⁇ -Dimethylbenzyl) phenyl] benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis ( ⁇ , ⁇ -dimethylben ) Phenyl] -2H- benzotriazole, 2- (4'-oc
  • aromatic benzoate compounds examples include alkylphenyl salicylates such as p-tert-butylphenyl salicylate and p-octylphenyl salicylate.
  • oxalic acid anilide compounds examples include 2-ethoxy-2′-ethyloxalic acid bisanilide, 2-ethoxy-5-tert-butyl-2′-ethyloxalic acid bisanilide, and 2-ethoxy-3′-. Examples include dodecyl oxalic acid bisanilide.
  • Examples of the cyanoacrylate compound include ethyl-2-cyano-3,3′-diphenyl acrylate and 2-ethylhexyl-cyano-3,3′-diphenyl acrylate.
  • Examples of hindered amine compounds include 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-2,2,6, 6-tetramethylpiperidine, 4- (phenylacetoxy) -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-methoxy-2,2, 6,6-tetramethylpiperidine, 4-octadecyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6,6-tetramethylpiperidine, 4-benzyloxy-2,2 , 6,6-tetramethylpiperidine, 4-
  • a stabilizer component may be used by 1 type and may be used in combination of 2 or more type.
  • a hindered phenol compound and / or a benzotriazole compound is preferable as the stabilizer component.
  • the content of the stabilizer is preferably 0.01 to 3 parts by weight, more preferably 0.03 to 2 parts by weight, per 100 parts by weight of the resin (component A) having an autocatalytic action.
  • the resin composition can contain an organic or inorganic crystallization accelerator. By containing the crystallization accelerator, a molded product having excellent mechanical properties, heat resistance, and moldability can be obtained.
  • the crystallization accelerator by applying the crystallization accelerator, moldability and crystallinity are improved, and a molded product that is sufficiently crystallized even in normal injection molding and excellent in heat resistance and moist heat resistance can be obtained. In addition, the manufacturing time for manufacturing the molded product can be greatly shortened, and the economic effect is great.
  • the crystallization accelerator those generally used as crystallization nucleating agents for crystalline resins can be used, and both inorganic crystallization nucleating agents and organic crystallization nucleating agents can be used.
  • inorganic crystallization nucleating agents talc, kaolin, silica, synthetic mica, clay, zeolite, graphite, carbon black, zinc oxide, magnesium oxide, titanium oxide, calcium carbonate, calcium sulfate, barium sulfate, calcium sulfide, boron nitride , Montmorillonite, neodymium oxide, aluminum oxide, phenylphosphonate metal salt and the like.
  • These inorganic crystallization nucleating agents are treated with various dispersing aids in order to enhance the dispersibility in the composition and its effect, and are highly dispersed in a primary particle size of about 0.01 to 0.5 ⁇ m. Are preferred.
  • Organic crystallization nucleating agents include calcium benzoate, sodium benzoate, lithium benzoate, potassium benzoate, magnesium benzoate, barium benzoate, calcium oxalate, disodium terephthalate, dilithium terephthalate, dipotassium terephthalate, Sodium laurate, potassium laurate, sodium myristate, potassium myristate, calcium myristate, barium myristate, sodium octacolate, calcium octacolate, sodium stearate, potassium stearate, lithium stearate, calcium stearate, magnesium stearate , Barium stearate, sodium montanate, calcium montanate, sodium toluate, sodium salicylate, potassium salicylate, salicy Organic carboxylic acid metal salts such as zinc acid, aluminum dibenzoate, ⁇ -naphthoic acid sodium, ⁇ -naphthoic acid potassium, sodium cyclohexanecarboxylic acid and the like
  • organic carboxylic acid amides such as stearic acid amide, ethylenebislauric acid amide, palmitic acid amide, hydroxystearic acid amide, erucic acid amide, trimesic acid tris (tert-butylamide), low density polyethylene, high density polyethylene, polyiso Propylene, polybutene, poly-4-methylpentene, poly-3-methylbutene-1, polyvinylcycloalkane, polyvinyltrialkylsilane, branched polylactic acid, sodium salt of ethylene-acrylic acid copolymer, sodium of styrene-maleic anhydride copolymer Examples thereof include salts (so-called ionomers), benzylidene sorbitol and derivatives thereof such as dibenzylidene sorbitol.
  • At least one selected from talc and organic carboxylic acid metal salts is preferably used.
  • Only one type of crystallization accelerator may be used in the present invention, or two or more types may be used in combination.
  • the content of the crystallization accelerator is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight per 100 parts by weight of the resin (component A) having an autocatalytic action.
  • the resin composition can contain an organic or inorganic filler. By containing the filler component, a molded product having excellent mechanical properties, heat resistance, and moldability can be obtained.
  • Organic fillers such as rice husks, wood chips, okara, waste paper ground materials, clothing ground materials, cotton fibers, hemp fibers, bamboo fibers, wood fibers, kenaf fibers, jute fibers, banana fibers, coconut fibers
  • Plant fibers such as pulp or cellulose fibers processed from these plant fibers and fibrous fibers such as animal fibers such as silk, wool, angora, cashmere and camel, synthetic fibers such as polyester fibers, nylon fibers and acrylic fibers , Paper powder, wood powder, cellulose powder, rice husk powder, fruit husk powder, chitin powder, chitosan powder, protein, starch and the like.
  • powdery materials such as paper powder, wood powder, bamboo powder, cellulose powder, kenaf powder, rice husk powder, fruit husk powder, chitin powder, chitosan powder, protein powder, and starch are preferred. Powder, bamboo powder, cellulose powder and kenaf powder are preferred. Paper powder and wood powder are more preferable. Paper dust is particularly preferable.
  • organic fillers may be those directly collected from natural products, but may also be those obtained by recycling waste materials such as waste paper, waste wood and old clothes.
  • the wood is preferably a softwood material such as pine, cedar, oak or fir, or a hardwood material such as beech, shii or eucalyptus.
  • Paper powder is an adhesive from the viewpoint of moldability, especially emulsion adhesives such as vinyl acetate resin emulsions and acrylic resin emulsions that are usually used when processing paper, polyvinyl alcohol adhesives, polyamide adhesives Those containing hot melt adhesives such as are preferably exemplified.
  • the content of the organic filler is not particularly limited, but from the viewpoint of moldability and heat resistance, it is preferably 0.1 to 20 parts by weight, preferably 100 to 20 parts by weight per 100 parts by weight of the resin (component A) having autocatalytic action.
  • the amount is more preferably 0.5 to 15 parts by weight, further preferably 10 to 150 parts by weight, and particularly preferably 1 to 10 parts by weight.
  • the resin composition may contain an inorganic filler.
  • an inorganic filler By containing the inorganic filler, a resin composition having excellent mechanical properties, heat resistance, and moldability can be obtained.
  • a fibrous, plate-like, or powder-like material used for reinforcing ordinary thermoplastic resins can be used.
  • layered silicates include smectite clay minerals such as montmorillonite, beidellite, nontronite, saponite, hectorite, and soconite, various clay minerals such as vermiculite, halosite, kanemite, and kenyanite, Li-type fluorine teniolite, Na And swellable mica such as Li-type fluorine teniolite, Li-type tetrasilicon fluorine mica and Na-type tetrasilicon fluorine mica. These may be natural or synthetic.
  • smectite clay minerals such as montmorillonite and hectorite
  • swellable synthetic mica such as Li type fluorine teniolite and Na type tetrasilicon fluorine mica
  • fibrous or plate-like inorganic fillers are preferable, and glass fiber, wollastonite, aluminum borate whisker, potassium titanate whisker, mica, and kaolin, a cation-exchanged layered silicate. Is preferred.
  • the aspect ratio of the fibrous filler is preferably 5 or more, more preferably 10 or more, and further preferably 20 or more.
  • Such a filler may be coated or converged with a thermoplastic resin such as an ethylene / vinyl acetate copolymer or a thermosetting resin such as an epoxy resin, or may be treated with a coupling agent such as aminosilane or epoxysilane. May be.
  • the content of the inorganic filler is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 15 parts by weight, and further preferably 10 to 150 parts by weight per 100 parts by weight of the resin (component A) having an autocatalytic action. Part by weight, particularly preferably 1 to 10 parts by weight.
  • the resin composition can contain a release agent.
  • the mold release agent those used for ordinary thermoplastic resins can be used.
  • release agents include fatty acids, fatty acid metal salts, oxy fatty acids, paraffins, low molecular weight polyolefins, fatty acid amides, alkylene bis fatty acid amides, aliphatic ketones, fatty acid partial saponified esters, fatty acid lower alcohol esters, fatty acid polyvalents.
  • examples include alcohol esters, fatty acid polyglycol esters, and modified silicones. By blending these, a polylactic acid molded product excellent in mechanical properties, moldability, and heat resistance can be obtained. Fatty acids having 6 to 40 carbon atoms are preferred.
  • oleic acid, stearic acid, lauric acid, hydroxystearic acid, behenic acid, arachidonic acid, linoleic acid, linolenic acid, ricinoleic acid, palmitic acid, montan examples thereof include acids and mixtures thereof.
  • the fatty acid metal salt is preferably an alkali metal salt or alkaline earth metal salt of a fatty acid having 6 to 40 carbon atoms, and specific examples include calcium stearate, sodium montanate, calcium montanate, and the like.
  • the oxy fatty acid include 1,2-oxystearic acid.
  • Paraffin having 18 or more carbon atoms is preferable, and examples thereof include liquid paraffin, natural paraffin, microcrystalline wax, petrolactam and the like.
  • the low molecular weight polyolefin for example, those having a molecular weight of 5,000 or less are preferable, and specific examples include polyethylene wax, maleic acid-modified polyethylene wax, oxidized type polyethylene wax, chlorinated polyethylene wax, and polypropylene wax.
  • Fatty acid amides having 6 or more carbon atoms are preferred, and specific examples include oleic acid amide, erucic acid amide, and behenic acid amide.
  • the alkylene bis fatty acid amide is preferably one having 6 or more carbon atoms, and specifically includes methylene bis stearic acid amide, ethylene bis stearic acid amide, N, N-bis (2-hydroxyethyl) stearic acid amide and the like.
  • the aliphatic ketone those having 6 or more carbon atoms are preferable, and examples thereof include higher aliphatic ketones.
  • the fatty acid partial saponified ester include a montanic acid partial saponified ester.
  • fatty acid lower alcohol ester examples include stearic acid ester, oleic acid ester, linoleic acid ester, linolenic acid ester, adipic acid ester, behenic acid ester, arachidonic acid ester, montanic acid ester, isostearic acid ester and the like.
  • fatty acid polyhydric alcohol esters examples include glycerol tristearate, glycerol distearate, glycerol monostearate, pentaerythritol tetrastearate, pentaerythritol tristearate, pentaerythritol distearate, pentaerythrul Examples include tall monostearate, pentaerythritol adipate stearate, sorbitan monobehenate and the like.
  • fatty acid polyglycol esters examples include polyethylene glycol fatty acid esters and polypropylene glycol fatty acid esters.
  • modified silicone examples include polyether-modified silicone, higher fatty acid alkoxy-modified silicone, higher fatty acid-containing silicone, higher fatty acid ester-modified silicone, methacryl-modified silicone, and fluorine-modified silicone.
  • fatty acid, fatty acid metal salt, oxy fatty acid, fatty acid ester, fatty acid partial saponified ester, paraffin, low molecular weight polyolefin, fatty acid amide, and alkylene bis fatty acid amide are preferred, and fatty acid partial saponified ester and alkylene bis fatty acid amide are more preferred.
  • montanic acid ester, montanic acid partially saponified ester, polyethylene wax, acid value polyethylene wax, sorbitan fatty acid ester, erucic acid amide, and ethylene bisstearic acid amide are preferable, and particularly, montanic acid partially saponified ester and ethylene bisstearic acid amide preferable.
  • a mold release agent may be used by 1 type and may be used in combination of 2 or more type.
  • the content of the release agent is preferably 0.01 to 3 parts by weight, and more preferably 0.03 to 2 parts by weight with respect to 100 parts by weight of the resin (component A) having an autocatalytic action.
  • the resin composition can contain an antistatic agent.
  • the antistatic agent examples include quaternary ammonium salt compounds such as ( ⁇ -lauramidopropionyl) trimethylammonium sulfate and sodium dodecylbenzenesulfonate, sulfonate compounds, and alkyl phosphate compounds.
  • the antistatic agent may be used alone or in combination of two or more.
  • the content of the antistatic agent is preferably 0.05 to 5 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the resin (component A) having an autocatalytic action.
  • the resin composition can contain a plasticizer.
  • the plasticizer generally known plasticizers can be used.
  • polyester plasticizers examples include polyester plasticizers, glycerin plasticizers, polycarboxylic acid ester plasticizers, phosphate ester plasticizers, polyalkylene glycol plasticizers, and epoxy plasticizers.
  • acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid and ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol
  • polyesters composed of diol components such as 1,4-butanediol, 1,6-hexanediol and diethylene glycol
  • polyesters composed of hydroxycarboxylic acid such as polycaprolactone.
  • polyesters may be end-capped with a monofunctional carboxylic acid or a monofunctional alcohol.
  • glycerol plasticizer examples include glycerol monostearate, glycerol distearate, glycerol monoacetomonolaurate, glycerol monoacetomonostearate, glycerol diacetomonooleate, and glycerol monoacetomonomontanate.
  • Polyvalent carboxylic acid plasticizers include dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diheptyl phthalate, dibenzyl phthalate, butyl benzyl phthalate, trimellitic acid tributyl, trimellitic acid trioctyl, Trimellitic acid esters such as trihexyl meritate, isodecyl adipate, adipic acid esters such as adipate-n-decyl-n-octyl, citrate esters such as tributyl acetylcitrate, and bis (2-ethylhexyl) azelate Examples include sebacic acid esters such as azelaic acid ester, dibutyl sebacate, and bis (2-ethylhexyl) sebacate.
  • phosphate ester plasticizer examples include tributyl phosphate, tris phosphate (2-ethylhexyl), trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, diphenyl-2-ethylhexyl phosphate, and the like.
  • Polyalkylene glycol plasticizers such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, poly (ethylene oxide-propylene oxide) block and / or random copolymers, ethylene oxide addition polymers of bisphenols, tetrahydrofuran addition polymers of bisphenols, etc.
  • end-capping compounds such as a terminal epoxy-modified compound, a terminal ester-modified compound, and a terminal ether-modified compound.
  • the epoxy plasticizer include an epoxy triglyceride composed of alkyl epoxy stearate and soybean oil, and an epoxy resin using bisphenol A and epichlorohydrin as raw materials.
  • specific examples of other plasticizers include benzoic acid esters of aliphatic polyols such as neopentyl glycol dibenzoate, diethylene glycol dibenzoate, triethylene glycol-bis (2-ethylbutyrate), and fatty acids such as stearamide.
  • Fatty acid esters such as amides and butyl oleate, oxy acid esters such as methyl acetylricinoleate and butyl acetylricinoleate, pentaerythritols, fatty acid esters of pentaerythritols, various sorbitols, polyacrylic acid esters, silicone oils, and paraffins Etc.
  • plasticizer polyester plasticizers, polyalkylene plasticizers, glycerin plasticizers, pentaerythritols, pentaerythritol fatty acid esters can be preferably used, and only one kind can be used. It is also possible to use two or more kinds in combination.
  • the content of the plasticizer is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 15 parts by weight, and still more preferably 0.1 to 100 parts by weight per 100 parts by weight of the resin (component A) having an autocatalytic action. 10 parts by weight.
  • each of the crystallization nucleating agent and the plasticizer may be used alone, or more preferably used in combination. Moreover, it is most preferable to use what has a plasticizer effect for the hydrolysis regulator essential for this application.
  • the resin composition can contain an impact resistance improver.
  • the impact resistance improver is one that can be used to improve the impact resistance of a thermoplastic resin, and is not particularly limited.
  • At least one selected from the following impact resistance improvers can be used.
  • Specific examples of impact modifiers include ethylene-propylene copolymers, ethylene-propylene-nonconjugated diene copolymers, ethylene-butene-1 copolymers, various acrylic rubbers, ethylene-acrylic acid copolymers and their Alkali metal salts (so-called ionomers), ethylene-glycidyl (meth) acrylate copolymers, ethylene-acrylate copolymers (for example, ethylene-ethyl acrylate copolymers, ethylene-butyl acrylate copolymers), modified ethylene -Propylene copolymer, diene rubber (eg polybutadiene, polyisoprene, polychloroprene), diene and vinyl copolymer (eg styrene-butadiene random copolymer, styrene-butadiene block copolymer,
  • various micro structures such as those having a cis structure, a trans structure, etc., a core layer and one or more shell layers covering the core layer, and adjacent layers are composed of heterogeneous polymers.
  • a so-called core-shell type multi-layered polymer can also be used.
  • the various (co) polymers mentioned in the above specific examples may be any of random copolymers, block copolymers, block copolymers and the like, and can be used as the impact resistance improver of the present invention.
  • the content of the impact modifier is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 15 parts by weight, and still more preferably 100 parts by weight of the resin (component A) having autocatalytic action.
  • ком ⁇ онент a compound that is compatible with any of the components constituting the core and the sheath, or the ends of both the components constituting the core and the component constituting the sheath.
  • a compound having a cross-linked structure by reacting with is preferably used, but is not limited thereto.
  • the former compatibilizing agent includes a surfactant copolymer having a component similar to the component constituting the core portion and the component constituting the sheath portion, a block copolymer, and the like.
  • the epoxy compound which has an epoxy group in both ends an oxazoline compound, an oxazine compound, those copolymers, a carbodiimide compound, those copolymers, etc. are mentioned.
  • a cross-linking agent add the cross-linking agent to either the component constituting the core or the sheath, or both components, and the cross-linking agent reacts with the end groups of each component present in the vicinity of the composite interface This improves the interfacial adhesion.
  • the resin composition may contain a thermosetting resin such as a phenol resin, a melamine resin, a thermosetting polyester resin, a silicone resin, or an epoxy resin within a range not departing from the spirit of the present invention.
  • the resin composition may contain a flame retardant such as bromine, phosphorus, silicone, and antimony compound as long as it does not contradict the gist of the present invention.
  • Sulfates such as chromate and barium sulfate, carbonates such as calcium carbonate, silicates such as ultramarine, phosphates such as manganese violet, carbon such as carbon black, metal colorants such as bronze powder and aluminum powder, etc. It may be included.
  • nitroso type such as naphthol green B, nitro type such as naphthol yellow S, azo type such as naphthol red and chromophthal yellow, phthalocyanine type such as phthalocyanine blue and fast sky blue, and condensed polycyclic coloring such as indanthrone blue
  • An additive such as a slidability improver such as a graphite or fluorine resin may be added.
  • the resin composition may contain a hydrolysis regulator (component B) and any known additive.
  • a hydrolysis regulator component B
  • any known additive when using stereocomplex polylactic acid as resin (A component) which has an autocatalytic action, after mixing poly L-lactic acid and poly D-lactic acid to form stereocomplex polylactic acid, it is a hydrolysis regulator.
  • B component and additives may be mixed, a hydrolysis adjusting agent (B component) and additives may be mixed when forming stereocomplex polylactic acid, or poly L-lactic acid during spinning.
  • poly D-lactic acid and a hydrolysis regulator (component B) and additives may be mixed.
  • a method of adding using a conventionally known kneading apparatus can be taken.
  • a kneading method in a solution state or a kneading method in a molten state is preferable from the viewpoint of uniform kneading properties.
  • the kneading apparatus is not particularly limited, and examples thereof include conventionally known vertical reaction vessels, mixing tanks, kneading tanks or uniaxial or multiaxial horizontal kneading apparatuses such as uniaxial or multiaxial ruders and kneaders.
  • the mixing time is not particularly specified, and depends on the mixing apparatus and the mixing temperature, but is selected from 0.1 minutes to 2 hours, preferably 0.2 minutes to 60 minutes, more preferably 0.2 minutes to 30 minutes. .
  • a solvent what is inactive with respect to resin (A component) and a hydrolysis regulator (B component) which have an autocatalytic action can be used.
  • a solvent that has affinity for both and at least partially dissolves both is preferable.
  • the solvent for example, hydrocarbon solvents, ketone solvents, ester solvents, ether solvents, halogen solvents, amide solvents and the like can be used.
  • hydrocarbon solvent examples include hexane, cyclohexane, benzene, toluene, xylene, heptane, decane and the like.
  • ketone solvents include acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, and isophorone.
  • ester solvents include ethyl acetate, methyl acetate, ethyl succinate, methyl carbonate, ethyl benzoate, and diethylene glycol diacetate.
  • ether solvent examples include diethyl ether, dibutyl ether, tetrahydrofuran, dioxane, diethylene glycol dimethyl ether, triethylene glycol diethyl ether, diphenyl ether and the like.
  • halogen solvent examples include dichloromethane, chloroform, tetrachloromethane, dichloroethane, 1,1 ′, 2,2′-tetrachloroethane, chlorobenzene, dichlorobenzene and the like.
  • amide solvent examples include formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like.
  • Hydrolysis modifier (B component) is brought into contact with a liquid in which hydrolysis modifier (B component) is dissolved, dispersed or melted, and a solid of resin (A component) having an autocatalytic action mainly composed of a water-soluble monomer.
  • a method of bringing a hydrolysis regulator (component B) dissolved in a solvent as described above into contact with a resin (component A) having an autocatalytic action mainly composed of a solid water-soluble monomer In the case of taking a method of infiltrating water, a method of bringing a hydrolysis regulator (component B) dissolved in a solvent as described above into contact with a resin (component A) having an autocatalytic action mainly composed of a solid water-soluble monomer.
  • a method of bringing a solid resin (A component) into contact with an emulsion liquid of a hydrolysis regulator (B component) can be used.
  • a method for contacting a method of immersing a resin (A component) having an autocatalytic action, a method of applying to a resin (A component) having an autocatalytic action, a method of spraying, and the like can be suitably employed.
  • the capping reaction of the acidic group of the water autocatalytic resin (component A) by the hydrolysis modifier (component B) is possible at a temperature of room temperature (25 ° C.) to 300 ° C., but from the viewpoint of reaction efficiency. Further promotion is achieved in the range of 50 to 280 ° C., more preferably 100 to 280 ° C. Resin having self-catalytic action (component A) is more likely to react at a melting temperature, but at a temperature lower than 300 ° C. in order to suppress volatilization and decomposition of the hydrolysis regulator (component B). It is preferable to react. Applying a solvent is also effective in reducing the melting temperature of the resin (component A) having autocatalytic action and increasing the stirring efficiency.
  • the reaction proceeds sufficiently rapidly without a catalyst
  • a catalyst that accelerates the reaction can also be used.
  • the catalyst generally used with a hydrolysis regulator (B component) is applicable. These can be used alone or in combination of two or more.
  • the addition amount of the catalyst is not particularly limited, but is preferably 0.001 to 1 part by weight, more preferably 0.01 to 0.1 part by weight, more preferably 100 parts by weight of the resin composition. Most preferred is 0.02 to 0.1 parts by weight.
  • two or more kinds of hydrolysis regulators (component B) may be used in combination. For example, hydrolysis for performing an initial acidic group blocking reaction of a resin (component A) having an autocatalytic action.
  • a regulator B component
  • a hydrolysis regulator B component
  • an auxiliary for the hydrolysis adjusting agent component B
  • any known agent can be used.
  • the content of the auxiliary agent is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 20 parts by weight, still more preferably 0.7 to 10 parts by weight per 100 parts by weight of the hydrolysis regulator (component B). It is.
  • ⁇ Method for producing core-sheath type composite fiber> The manufacturing method of the core-sheath-type conjugate fiber of the present invention discharges the resin composition (C component) melted from the nozzle forming the core part, and the resin composition (D component) melted from the nozzle forming the sheath part. Including a spinning process of discharging.
  • the resin composition (component C) contains an autocatalytic resin (component A) and a hydrolysis regulator (component B), and the content of the hydrolysis modifier (component B) is the total weight. 1 to 40 parts by weight based on the above.
  • the resin composition (component D) contains substantially no hydrolysis modifier (component B) in the resin (A ′ component) having an autocatalytic action.
  • the fiber of the present invention may be obtained by ordinary melt spinning and then post-processed.
  • the resin composition (C component) and the resin composition (D component) were melted by an extruder type or pressure melter type melt extruder, then weighed by a gear pump, filtered in a pack, and then provided to the base.
  • the resin having the autocatalytic action (component A), the hydrolysis adjusting agent (component B), and the additive may be kneaded in advance, or melted separately by dry blending or other addition methods.
  • You may supply to an extruder.
  • the hydrolysis regulator (component B) may be supplied in a solid or liquid state. Specific supply methods include known methods such as a table feeder, a disk feeder, a screw feeder, a tube pump, a diaphragm pump, a gear pump, and a plunger pump.
  • the shape of the base and the number of bases are not particularly limited.
  • the discharged yarn is immediately cooled and solidified, then converged, applied with oil, and wound.
  • the winding speed is not particularly limited, but is preferably in the range of 100 m / min to 10,000 m / min.
  • the composite fiber of the present invention contains a hydrolysis regulator (component B) only in the core during spinning, in the state of the fiber before use in hot water, compared to the fiber spun in a single layer.
  • the concentration difference of the hydrolysis adjusting agent (component B) is large between the core and the sheath.
  • the specific difference in concentration is preferably 0.1 to 20%, more preferably 0.2 to 15%, still more preferably 0.3 to 10%, and most preferably 0.4 between the fiber core and the sheath. ⁇ 5%.
  • the discharge ratio between the core and the sheath preferably satisfies the following formula (I). When the following formula is satisfied, the thickness of the sheath part at the time of discharge becomes sufficiently thick, so that the partial omission of the sheath part or the compound having an isocyanate group through the sheath part and the hydrolysis regulator (component B) itself are processed. Leakage to the outside of the fiber at the time can be further suppressed.
  • the spun undrawn yarn can be used as it is, but can also be used after being drawn.
  • a crystallization treatment by performing a heat treatment at a temperature below the melting point after spinning and before winding.
  • any method such as a hot roller, a contact heater, a non-contact hot plate, or a heat medium bath can be adopted.
  • the spinning step and the stretching step are not necessarily separated from each other, and a direct spinning stretching method in which stretching is performed without winding once after spinning may be employed.
  • the stretching may be one-stage stretching or multi-stage stretching of two or more stages.
  • the stretching ratio is preferably 3 times or more, and more preferably 4 times or more.
  • the viewpoint of producing a low-oriented fiber it is preferably less than 3 times, and more preferably less than 2 times.
  • appropriate conditions are selected in combination with other drawing conditions such as drawing temperature and drawing speed from the viewpoint of desired fiber strength, crystallization speed, degree of orientation, and the like.
  • a preheating method for stretching in addition to roll temperature rise, a flat or pin-like contact heater, non-contact hot plate, heating medium bath, and the like can be used, and a commonly used method may be used.
  • the stretching temperature is selected, for example, in the range of 40 to 130 ° C., preferably 50 to 120 ° C., particularly preferably 60 to 110 ° C. (Heat treatment) Following the stretching, it is preferable that a heat treatment is performed at a temperature lower than the melting point before winding.
  • any method such as a hot roller, a contact heater, a non-contact hot plate, or a heat medium bath can be adopted.
  • the heat treatment temperature for example, a range of 100 to 220 ° C., preferably 110 to 210 ° C., particularly preferably 120 to 200 ° C. is selected.
  • the melting point can be improved by increasing in steps near the melting point.
  • a relaxation treatment can be performed after the heat treatment.
  • the stretching treatment may be performed again, or the relaxation treatment may be performed a plurality of times. (Cut, crimped)
  • the core-sheath type composite fiber of the present invention may be a short fiber.
  • it can preheat before crimper using water vapor
  • FIG. Further, after stretching, by heat-setting at 170 ° C. to 220 ° C.
  • the core-sheath type composite fiber of the present invention is a resin having an autocatalytic action due to diffusion of the hydrolysis regulator (component B) in the fiber by spinning, drawing, heating during heat setting, and heating during use.
  • the desired decomposition behavior is exhibited by sealing the acidic end groups of the A component and the A ′ component).
  • heating refers to a process of heating the fiber, and includes a stretching process or a heat setting process.
  • Heating is carried out within a range in which the compound having an isocyanate group and the hydrolysis modifier (B component) itself produced by the reaction in which the hydrolysis modifier (B component) binds to the terminal of the polymer compound does not leak out of the fiber. It is preferable. Specifically, when processing in the atmosphere, it is performed in a range of 60 ° C. to 220 ° C., in the case of 60 ° C. to 120 ° C., within 30 seconds to 10 minutes, and in the case of 120 ° C. to 220 ° C., 1 second or more 1 It is preferable to carry out in a short time within minutes.
  • Heating can be preferably carried out in water in order to prevent the compound having an isocyanate group and the hydrolysis regulator (component B) from leaking out of the fiber.
  • water When carried out in water, it is preferably 1 hour to 72 hours at 40 ° C. to 60 ° C. and 30 seconds to 3 hours at 60 ° C. to 100 ° C. from the viewpoint of preventing excessive hydrolysis.
  • it In order to suppress leakage of the compound having an isocyanate group and the hydrolysis regulator (component B) to the outside of the fiber, it can be carried out in a fluid sufficiently containing the hydrolysis regulator, or in a pressurized gas or pressurized water.
  • the core-sheath type composite fiber of the present invention desirably satisfies any of the following A1 to A3.
  • A1 In hot water at an arbitrary temperature of 135 ° C. to 160 ° C., after 3 hours, acidic groups derived from the resin composition are 30 equivalents / ton or less and the weight of the non-water-soluble content of the resin composition is 50% or more and 24 hours. Later, the weight of the non-water content of the resin composition is 50% or less.
  • A2 In hot water at an arbitrary temperature of 160 ° C.
  • A3 In hot water at an arbitrary temperature of 180 ° C. to 220 ° C., the acidic group derived from the resin composition is 30 equivalents / ton or less after 1 hour, and the weight of the non-aqueous component of the resin composition is 50% or more and 24 hours. Later, the weight of the non-water content of the resin composition is 50% or less.
  • the range in which the core-sheath fiber of the present invention can be suitably used varies depending on the temperature.
  • the time earlier than the specified fixed period (1 hour, 2 hours, 3 hours) is that the acidic group derived from the resin composition is 30 equivalents / ton or less and the weight of the non-aqueous component is 50% or more. Preferably there is.
  • the weight of the non-aqueous component is more preferably 70% or more, further preferably 80% or more, and most preferably 90% or more.
  • the fixed period is 3 hours, during which the fiber weight and shape are maintained. Further, from the viewpoint of exerting desired performance in an oil field excavation technique or the like, in a hot water at an arbitrary temperature of 135 ° C. to 160 ° C., a resin composition after a certain period longer than 2 hours as defined in the present invention.
  • the acidic group derived from the product may be 30 equivalent / ton or less and the weight of the non-aqueous component may be 50% or more.
  • the fixed period is 2 hours, and the weight and shape of the fiber are maintained during that period.
  • a resin composition after a certain period longer than 2 hours as defined in the present invention in a hot water at an arbitrary temperature of 160 ° C. to 180 ° C., a resin composition after a certain period longer than 2 hours as defined in the present invention.
  • the acidic group derived from the product may be 30 equivalent / ton or less and the weight of the non-aqueous component may be 50% or more.
  • the fixed period is 1 hour, and during this time, the weight and shape of the fiber are retained.
  • the resin composition From the viewpoint of exerting desired performance in an oil field drilling technique or the like, it is derived from the resin composition after a certain period longer than 1 hour defined in the present invention in hot water at an arbitrary temperature of 180 ° C. to 220 ° C.
  • the acid group may be 30 equivalent / ton or less and the weight of the non-water-soluble content of the resin composition may be 50% or more.
  • A1 to A3 (1 hour, 2 hours, 3 hours)
  • the effect of blocking the acidic group of the component B disappears, and the decomposition of the resin is promoted by the autocatalytic action of the acidic group.
  • the group concentration increases exponentially. Further, as the decomposition proceeds, the resin becomes a water-soluble monomer and dissolves in water.
  • the weight of the non-water content of the resin composition is 50% or less after 24 hours.
  • the weight of the water-insoluble content of the resin composition after 18 hours is more preferably 50% or less
  • the content of the water-insoluble content of the resin composition after 12 hours is more preferably 50% or less
  • the weight of the non-water content of the resin composition is 50% or less after 6 hours.
  • the core-sheath type composite fiber of the present invention preferably has a water-insoluble content of 10% or less after 100 hours in hot water at an arbitrary temperature of 135 ° C. to 220 ° C.
  • the fiber of the present invention when used in an oil field excavation technique or the like, the fiber can work effectively by dissolving in water quickly after maintaining its weight and shape for a certain period of time. Therefore, it is preferable that the weight of the non-water-soluble content of the resin composition is 10% or less after 100 hours in hot water at an arbitrary temperature of 135 ° C. to 220 ° C.
  • the thickness of the sheath portion of the core-sheath type composite fiber of the present invention is preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 15 ⁇ m, still more preferably 0.3 to 10 ⁇ m, and most preferably 0.4 to 5 ⁇ m. .
  • the thickness is greater than 0.1 ⁇ m, leakage of the compound having an isocyanate group and the hydrolysis regulator (component B) itself during processing can be further suppressed.
  • the hydrolysis adjusting agent sufficiently diffuses to the fiber surface layer and exhibits good hydrolysis performance.
  • the ratio A: B 20: 80 to 95: 5 of the area A of the core and the area B of the sheath is preferable, more preferably 30:70 to 90:10, and still more preferably 40:60. ⁇ 80: 20, most preferably 50:50 to 70:30.
  • the area ratio of the sheath is 5% or more, leakage of the compound having an isocyanate group and the hydrolysis regulator (B component) itself during processing can be further suppressed.
  • the hydrolysis adjusting agent sufficiently diffuses to the fiber surface layer, and exhibits good hydrolysis performance.
  • the above-described thickness and area ratio of the sheath are appropriately adjusted depending on the desired hydrolysis behavior, heat treatment conditions and use conditions.
  • the cross-sectional shape of the composite fiber may be any of a round cross-section, a polygon cross-section, a multi-leaf cross-section, a hollow cross-section, and other known cross-sectional shapes. It may be. Furthermore, it may be a single-core type with a positive core (concentric) or a single-core type with an eccentricity (eccentricity).
  • the core-sheath structure may have a layer structure of three or more layers having an intermediate part between the core part and the sheath part.
  • at least the outermost sheath part is substantially a hydrolysis modifier (B It is important that no component is included.
  • the core-sheath type composite fiber of the present invention may be used alone or in combination with other types of fibers as long as the object is achieved.
  • mixed modes include mixed yarns with other fibers, composite false twisted yarns, mixed spun yarns, long and short composite yarns, fluid processed yarns, covering yarns, and twisted yarns. , Mixed cotton, and the like.
  • the mixing ratio is selected from the range of 1% by weight or more, more preferably 10% by weight or more, and further preferably 30% by weight or more in order to exhibit the characteristics of the resin composition.
  • other fibers used in combination include cellulose fibers such as cotton, hemp, rayon, and tencel, wool, silk, acetate, polyester, nylon, acrylic, vinylon, polyolefin, and polyurethane.
  • Weight average molecular weight (Mw) and number average molecular weight (Mn) The weight average molecular weight and number average molecular weight of the polymer were measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
  • GPC gel permeation chromatography
  • 10 ⁇ l of a sample of 1 mg / ml (chloroform containing 1% hexafluoroisopropanol) at a temperature of 40 ° C. and a flow rate of 1.0 ml / min was used with the following detector and column. Injected and measured.
  • Detector Differential refractometer (manufactured by Shimadzu Corporation) RID-6A. Column: Toso-Co., Ltd. TSKgelG3000HXL, TSKgelG4000HXL, TSKgelG5000HXL and TSKguardcolumnHXL-L connected in series, or Toso- Co., Ltd. TSKgelG2000HXL, TSKgelG3000HXL, TSKumHXL (2) DSC measurement of stereocomplex crystallinity [S (%)], crystal melting temperature, etc .: The sample was heated to 250 ° C.
  • the stereocomplex crystallinity is a value obtained by the following formula from the stereocomplex phase and homophase polylactic acid crystal melting enthalpy obtained by the above measurement.
  • Heavy dimethyl sulfoxide was used as the solvent, and the amount of the agent after 5 hours was determined from the amount of change in structure (integrated value).
  • the HPLC conditions were as follows, and the dosage was determined from the dosage area after 5 hours, with the dosage area at 0 hours being 100%.
  • Apparatus Ultra high performance liquid chromatography “Nexera (registered trademark)” manufactured by Shimadzu Corporation UV detector: Shimadzu SPD-20A 254 nm
  • Sample preparation A dimethyl sulfoxide solution was diluted 500-fold with DMF and used.
  • the area of the carbodiimide group for 0 hour and the area of the group that does not change Taking the quotient as 100, the amount of the agent was determined from the quotient of the area of the carbodiimide group after 5 hours and the area of the group not changing. Using the obtained amount of the agent after 5 hours, water resistance was determined from the above formula (iv).
  • the IR absorption peak area of the carbodiimide group of the carbodiimide compound (component B) and the IR absorption peak area of the carbonyl group of the resin having the autocatalytic action (component A) were determined under the following measurement conditions, which were taken as the respective IR peak intensities.
  • the fiber surface was such that the IR peak intensity of the carbonyl group on the two straight lines subjected to IR measurement was 3.5 or more.
  • Apparatus VERTEX HYPERION 3000 manufactured by BRUKER Measurement method: attenuated total reflection (ATR) method Wave number resolution: 8cm -1 Integration count: 128 times Effective element size: 0.5 ⁇ 0.5 ⁇ m / pixel IR absorption peak area integration area: carbodiimide group (2280-2040 cm -1 ) Ss: carbonyl group (1910-1530cm) -1 ) The value obtained by normalizing the peak area of the obtained carbodiimide group with the peak area of the carbonyl group was defined as the abundance of the carbodiimide compound.
  • the fiber center is an area in a square in which the distance from the center on the fiber cross section to one side is 20% of the radius of the circumscribed circle of the fiber cross section, and PIc has the highest measured value in the above area. Value.
  • the length of one side of the square is not a multiple of the effective element size, the square of the minimum area satisfying the region is set as the fiber center.
  • the center of gravity on the fiber cross-section is regarded as the center, the straight line through which the distance between the fiber surfaces is the longest, and the straight line that passes through the center of gravity and is orthogonal to this straight line
  • R a Adopt the shortest.
  • the formula ( ⁇ ) is expressed. It is preferable to satisfy. Furthermore, from the viewpoint of leakage of the hydrolysis regulator (component B) to the outside of the fiber and suppression of process contamination during processing, it is preferable to satisfy the formula ( ⁇ ) in the region inside the fiber surface. In consideration of sufficient diffusion of the hydrolysis regulator (component B) into the fiber, the region inside the fiber surface is preferably a region satisfying the formula ( ⁇ ).
  • Reactivity evaluation with acidic group of hydrolysis modifier Polylactic acid "NW3001D" (MW is 150,000, carboxyl group concentration is 22.1 equivalent / ton) used for evaluation polylactic acid, and the group that reacts with the carboxyl group of the hydrolysis regulator is 33.15 equivalent / Ton, and the resin obtained by melt-kneading for 1 minute at a resin temperature of 190 ° C. and a rotation speed of 30 rpm using a lab plast mill (manufactured by Toyo Seiki Seisakusho). The carboxyl group concentration of the composition was measured, and the reactivity with acidic groups was determined from the following formula (v).
  • Reactivity (%) [(carboxyl concentration of polylactic acid for evaluation ⁇ carboxyl of resin composition Group concentration) / carboxyl concentration of polylactic acid for evaluation] ⁇ 100 (v) (6) Evaluation of wet heat in high-temperature hot water: 300 mg of fiber and 12 ml of distilled water were charged in a sealed melting crucible (O-M Labotech, MR-28, internal volume 28 ml) preheated to 110 ° C., and sealed in advance at predetermined temperatures of 150 ° C., 170 ° C. and 190 ° C. The crucible was allowed to stand in the hot air dryer (KLO-45M, manufactured by Koyo Thermo System Co., Ltd.).
  • the time for the temperature inside the crucible to reach a predetermined test temperature is set as the test start time, and from this test start time for a certain period (3 hours at 150 ° C.).
  • the crucible was taken out from the hot air dryer when 2 hours were passed at 170 ° C. and 1 hour at 190 ° C.).
  • the crucible taken out from the hot air dryer was air-cooled for 20 minutes and then cooled to room temperature by water cooling for 10 minutes, and then the crucible was opened to collect the internal sample and water.
  • the internal sample and water were filtered using filter paper (JIS P3801: 1995, 5 types A standard), and the residue remaining on the filter paper was dried at 60 ° C.
  • Weight (%) [weight of residue after treatment / weight of initial fiber] ⁇ 100 (vi) A weight of 90% or more was judged as “ ⁇ ”, and a weight of less than 90% was judged as “x”. (7) Diffusion of hydrolysis regulator (component B) out of the fiber: If the odor due to the isocyanate compound in the spinning process is felt or the process contamination due to the diffusion of the hydrolysis modifier (component B) is observed visually, it is judged as “x” (failed), and both are recognized. If not, it was judged as “good” (passed).
  • the resin on the filter paper is dried at room temperature using a vacuum pump for 3 hours, a 100 mg sample is taken from the dried resin powder, and stirred and dissolved in 80 ° C. purified o-cresol under a nitrogen stream for 15 minutes. It was. Bromocresol blue was added to the solution as an indicator, and titrated with an ethanol solution of 0.05 N potassium hydroxide. Stir in purified o-cresol at 80 ° C under nitrogen flow for 15 minutes in advance, add bromocresol blue as an indicator, subtract the blank value titrated with an ethanol solution of 0.05 N potassium hydroxide, The titration value was.
  • Poly L-lactic acid resin (A1) To 100 parts by weight of L-lactide (manufactured by Musashino Chemical Laboratory, Inc., optical purity 100%), 0.005 part by weight of octylate and 0.1 part by weight of stearyl alcohol are added, and a stirring blade is added in a nitrogen atmosphere. In a reactor with a temperature of 180 ° C. for 2 hours, phosphoric acid equivalent to 1.2 times the amount of tin octylate was added, and then the remaining lactide was removed at 13.3 Pa to form chips. A lactic acid resin (A1) was obtained.
  • poly L-lactic acid resin (A1) had a weight average molecular weight of 180,000, a melting point (Tmhn) of 175 ° C., and a carboxyl group concentration of 13 equivalents / ton.
  • Poly D-lactic acid resin (A2) A poly D-lactic acid resin (A2) was prepared in the same manner as in Production Example 1 except that D-lactide (manufactured by Musashino Chemical Laboratory, Inc., optical purity 100%) was used instead of L-lactide in Production Example 1.
  • the obtained poly-D-lactic acid resin (A2) had a weight average molecular weight of 180,000, a melting point (Tmh) of 175 ° C., and a carboxyl group concentration of 14 equivalent / ton.
  • Stereocomplex polylactic acid (A3) 50 parts by weight of the polylactic acid resin (A1) and the poly-D-lactic acid resin (A2) obtained in Production Examples 1 and 2 were each dried at 110 ° C. for 5 hours, and the bent type 2 having a diameter of 30 mm ⁇ .
  • stereocomplex polylactic acid resin (A3) has a weight average molecular weight of 135,000, a melting point (Tms) of 221 ° C., a carboxyl group concentration of 16 equivalents / ton, and a stereocomplex crystallinity (S) of 51%. there were.
  • Stereocomplex polylactic acid (A4) 100 parts by weight of polylactic acid resin comprising 50 parts by weight of poly L-lactic acid resin (A1) and poly D-lactic acid resin (A2) obtained in Production Examples 1 and 2 and phosphoric acid-2,2′-methylenebis (4 , 6-Di-tert-butylphenyl) sodium (“ADK STAB (registered trademark)” NA-11: manufactured by ADEKA Corporation) 0.04 part by weight was mixed with a blender and dried at 110 ° C. for 5 hours.
  • ADK STAB registered trademark
  • NA-11 manufactured by ADEKA Corporation
  • ⁇ Hydrolysis regulator (component B)> The following additives were used as hydrolysis regulators (component B).
  • B2: “STABAXOL (registered trademark)” P (carbodiimide compound, manufactured by Rhein Chemie)
  • B4 “Celoxide (registered trademark)” 2021P (epoxy compound, manufactured by Daicel Corporation)
  • the water resistance of each component B and the reactivity with acidic groups are listed in the table below.
  • a sample having a water resistance of 95% or more and a reactivity with an acidic group of 50% or more was judged as ⁇ .
  • B1 and B4 were evaluated for water resistance using dimethyl sulfoxide, and B2 and B3 were evaluated for other water resistance.
  • [Example 1] 90 parts by weight of stereocomplex polylactic acid (A3) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of a hydrolysis regulator (B1) were kneaded with a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core.
  • A3 stereocomplex polylactic acid
  • B1 a hydrolysis regulator
  • stereocomplex polylactic acid (A3) that was dehumidified and dried at 50 ° C. was used.
  • Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid round cross section, concentric core-sheath structure).
  • Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately.
  • the obtained fibers were subjected to wet heat evaluation in high-temperature hot water at 170 ° C.
  • the evaluation results are shown in Table 2.
  • 90 parts by weight of stereocomplex polylactic acid (A4) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of hydrolysis regulator (B2) were kneaded by a twin screw extruder to obtain a resin composition.
  • This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core.
  • stereocomplex polylactic acid (A4) that was dehumidified and dried at 50 ° C. was used as the resin composition for the sheath.
  • Spinning was performed at 230 ° C.
  • Example 3 97 parts by weight of poly L-lactic acid (A1) that had been dehumidified and dried at 50 ° C. and 3 parts by weight of a hydrolysis regulator (B1) were kneaded in a twin-screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core.
  • poly D-lactic acid (A2) that was dehumidified and dried at 50 ° C. was used as the resin composition for the sheath.
  • Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid round cross section, concentric core-sheath structure).
  • Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately.
  • the obtained fibers were subjected to wet heat evaluation in high-temperature hot water at 150 ° C. The evaluation results are shown in Table 2. [Example 4] 88 parts by weight of stereocomplex polylactic acid (A4) that had been dehumidified and dried at 50 ° C.
  • hydrolysis modifier (B1) 12 parts by weight of hydrolysis modifier (B1) were kneaded with a twin screw extruder to obtain a resin composition.
  • This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core.
  • As the resin composition for the sheath portion polybutylene terephthalate (Wintech Polymer Co., Ltd. “Juranex” TRE-DM2) (PBT) which was dehumidified and dried at 50 ° C. was used.
  • Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid round cross section, concentric core-sheath structure).
  • Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately.
  • the obtained fibers were subjected to wet heat evaluation in high-temperature hot water at 170 ° C. The evaluation results are shown in Table 2.
  • Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately.
  • the obtained fibers were subjected to wet heat evaluation in high-temperature hot water at 170 ° C. The evaluation results are shown in Table 2.
  • hydrolysis regulator (B4) 10 parts by weight of hydrolysis regulator (B4) were kneaded with a twin screw extruder to obtain a resin composition.
  • This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core.
  • stereocomplex polylactic acid (A4) that was dehumidified and dried at 50 ° C. was used.
  • Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid round cross section, concentric core-sheath structure). Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio.
  • a hydrolysis regulator B1
  • a hydrolysis regulator B1
  • This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core.
  • stereocomplex polylactic acid (A3) that was dehumidified and dried at 50 ° C. was used.
  • Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid, concentric core-sheath structure with a round cross section). Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio.
  • hydrolysis regulator (B2) 10 parts by weight of hydrolysis regulator (B2) were kneaded by a twin screw extruder to obtain a resin composition.
  • This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core.
  • stereocomplex polylactic acid (A4) that was dehumidified and dried at 50 ° C. was used.
  • Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed for 4 seconds with a 196 ° C. roller.
  • a hydrolysis regulator B1
  • This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core.
  • poly D-lactic acid (A1) that was dehumidified and dried at 50 ° C. was used.
  • Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed for 6 seconds with a roller at 120 ° C.
  • DIPC (B1) 10 parts by weight were kneaded with a twin screw extruder to obtain a resin composition.
  • the resin composition which had been dehumidified and dried at 50 ° C. was spun at 230 ° C. using an extruder-type spinning device.
  • Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed with a roller at 203 ° C. for 3 seconds. The odor due to the isocyanate compound in the spinning process was significant, and process contamination due to the diffusion of DIPC (B1) was observed.
  • Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio.
  • heat setting was performed with a roller at 203 ° C. for 3 seconds.
  • the odor due to the isocyanate compound in the spinning process was significant, and process contamination due to the diffusion of DIPC (B1) was observed.
  • the average value of the formula ( ⁇ ) was 0.85, which was unacceptable.
  • wet heat evaluation in high-temperature hot water at 170 ° C. was performed. The evaluation results are shown in Table 3.
  • [Example 8] 90 parts by weight of stereocomplex polylactic acid (A3) that had been dehumidified and dried at 50 ° C.
  • a hydrolysis regulator B1
  • This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core.
  • stereocomplex polylactic acid (A3) that was dehumidified and dried at 50 ° C. was used.
  • Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed with a roller at 203 ° C. for 3 seconds.
  • a resin composition for the core As the resin composition for the sheath, stereocomplex polylactic acid (A4) that was dehumidified and dried at 50 ° C. was used. Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed for 4 seconds with a 196 ° C. roller.
  • A4 stereocomplex polylactic acid
  • This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core.
  • poly D-lactic acid (A2) that was dehumidified and dried at 50 ° C. was used.
  • Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure).
  • Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed for 6 seconds with a roller at 120 ° C.
  • a resin composition for the core As the resin composition for the sheath portion, polybutylene terephthalate (Wintech Polymer Co., Ltd. “Juranex” TRE-DM2) (PBT) which was dehumidified and dried at 50 ° C. was used. Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed with a roller at 180 ° C. for 4 seconds.
  • Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed with a roller at 203 ° C. for 3 seconds. The odor due to the isocyanate compound in the process at the time of spinning was remarkable, and process contamination due to the diffusion of the hydrolysis adjusting agent (component B) was observed. About the obtained fiber, the measurement of the amount of acidic terminal groups and the wet heat evaluation in the high temperature hot water at 170 degreeC were performed. The evaluation results are shown in Table 4.
  • Example 13 90 parts by weight of stereocomplex polylactic acid (A4) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of hydrolysis regulator (B3) were kneaded with a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath, stereocomplex polylactic acid (A4) that was dehumidified and dried at 50 ° C. was used. Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure).
  • Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed for 4 seconds with a 196 ° C. roller. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. About the obtained fiber, the measurement of the amount of acidic terminal groups and the wet heat evaluation in the high temperature hot water at 170 degreeC were performed. The evaluation results are shown in Table 4. [Example 14] 90 parts by weight of stereocomplex polylactic acid (A4) that had been dehumidified and dried at 50 ° C.
  • A4 stereocomplex polylactic acid
  • hydrolysis regulator (B4) 10 parts by weight of hydrolysis regulator (B4) were kneaded with a twin screw extruder to obtain a resin composition.
  • This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core.
  • stereocomplex polylactic acid (A4) that was dehumidified and dried at 50 ° C. was used.
  • Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed for 4 seconds with a 196 ° C. roller.
  • Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed for 4 seconds with a 196 ° C. roller. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. About the obtained fiber, the measurement of the amount of acidic terminal groups and the wet heat evaluation in the high temperature hot water at 170 degreeC were performed. The evaluation results are shown in Table 4.
  • Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Heat setting was not performed. Odor due to an isocyanate compound in the process at the time of spinning and process contamination due to the diffusion of the hydrolysis modifier (component B) were not observed. About the obtained fiber, the measurement of the amount of acidic terminal groups and the wet heat evaluation in the high temperature hot water at 170 degreeC were performed. The evaluation results are shown in Table 4. [Comparative Example 9] 60 parts by weight of stereocomplex polylactic acid (A3) that had been dehumidified and dried at 50 ° C. and 40 parts by weight of hydrolysis regulator (B1) were kneaded with a twin screw extruder to obtain a resin composition.
  • A3 stereocomplex polylactic acid
  • B1 hydrolysis regulator
  • This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core.
  • stereocomplex polylactic acid (A3) that was dehumidified and dried at 50 ° C. was used.
  • Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure).
  • Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed for 4 seconds with a 196 ° C. roller. Odor due to isocyanate compound in the spinning process and expansion of hydrolysis modifier (component B) by visual inspection No contamination of the process was observed. About the obtained fiber, the measurement of the amount of acidic terminal groups and the wet heat evaluation in the high temperature hot water at 170 degreeC were performed. The evaluation results are shown in Table 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Multicomponent Fibers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides, with little process pollution, a fiber which when put in high-temperature water, can retain the weight of a resin and the shape for a certain period and be thereafter degraded. A core-sheath type composite fiber composed of a core part and a sheath part, wherein: a resin composition (C) which comprises both a resin (A) that exhibits autocatalysis and a hydrolysis suppressor (B) is positioned in the core part; and a resin composition (D) which comprises a resin (A') that exhibits autocatalysis and which is substantially free from the hydrolysis suppressor (B) is positioned in the sheath part.

Description

繊維fiber
 本発明は、自触媒作用を有する樹脂を主成分とし、高温熱水中で優れた形状保持性と耐加水分解性を有する繊維および、その工程汚染の少ない製造方法に関する。 The present invention relates to a fiber having a resin having an autocatalytic action as a main component and having excellent shape retention and hydrolysis resistance in high-temperature hot water, and a production method with less process contamination.
 近年、地球環境保護の目的から、自然環境下で容易に分解される樹脂が注目され、世界中で研究されている。自然環境下で容易に分解される樹脂としては、ポリ乳酸、ポリグリコール酸、ポリ(3−ヒドロキシブチレート)、ポリカプロラクトンなどの脂肪族ポリエステルに代表される生分解性ポリマーが知られている。
 とりわけポリ乳酸は、植物由来の原料から得られる乳酸あるいはその誘導体を原料とするため生体安全性が高く、環境にやさしい高分子材料である。そのため汎用ポリマーとしての利用が検討され、フィルム、繊維、射出成形品などとしての利用が検討されている。
 最近になって、こうした樹脂の易分解性に着目し、オイルフィールドの掘削技術への活用が検討されている(特許文献1~3)。この用途では、熱水中で一定期間、樹脂の重量と形状を保持した後に素早く分解することが要求される(図1参照)。しかしながら、一般的に脂肪族ポリエステルなどはその耐加水分解性が劣るため、120℃程度の中温までは使用可能であるが、高温の熱水中ではすぐに分解してしまい(図2参照)、所望の性能を発揮できないことが問題となっている。
 一方、さらに長時間、高温の領域において樹脂の重量と形状を保持させるには芳香族ポリエステルなどの分解の遅い樹脂を用いることも可能であるが、分解の開始時間を制御する必要がある。
 高温については、ハリバートン社が2008年に発行したレポート「U.S.Shale Gas」に記載の127℃~193℃や、独立行政法人石油天然ガス・金属鉱物資源機構が刊行する「石油・天然ガスレビュー」2002・5に記載の149℃以上など様々な定義がなされており、一般に125℃~150℃よりも高い温度と考えられる。なお本発明では、135℃よりも高い温度を高温とする。
 一方、脂肪族ポリエステルなどの耐加水分解性を向上させるために、カルボジイミド化合物などの加水分解調整剤を用い、樹脂中の初期および分解によって生じる酸性基を封止することで加水分解を抑制することは既に提案されている(特許文献4、5)。
 例えば、ポリエステルの加水分解によって生じるカルボキシル基などの酸性基は自触媒となり加水分解を促進するため、これをカルボジイミド化合物などにより即座に封止することで、50~120℃程度の湿熱環境下での耐加水分解性の向上が確認されている。
 本発明者らは、過去の検討において、耐水性と酸性基との反応性に特徴を有する特定の加水分解防止剤を用いることにより、135℃以上の高温での熱水中においてカルボキシル基などの自触媒作用を有する末端基を封止できることを見出した。
 また、一方でカルボジイミド化合物が、高分子化合物の末端に結合する反応に伴いイソシアネート基を有する化合物が遊離し、イソシアネート化合物の独特の臭いを発生し、工程が汚染されることが問題となる。この問題に対して、イソシアネート化合物を遊離しない環状のカルボジイミド化合物があるが、これでは上述した135℃以上の高温で有効に機能するための耐水性と酸性基との反応性を両立することができない(特許文献6)。さらに、上記イソシアネート化合物と同様に、加工時にカルボジイミド化合物自体も漏出し、工程が汚染されることも問題となっている。
In recent years, for the purpose of protecting the global environment, resins that are easily decomposed in a natural environment have attracted attention and have been studied all over the world. Biodegradable polymers represented by aliphatic polyesters such as polylactic acid, polyglycolic acid, poly (3-hydroxybutyrate), and polycaprolactone are known as resins that are easily decomposed in a natural environment.
In particular, polylactic acid is a polymer material that is highly biosafe and environmentally friendly because it uses lactic acid obtained from plant-derived raw materials or derivatives thereof as raw materials. Therefore, the use as a general-purpose polymer is examined, and the use as a film, a fiber, an injection molded product, etc. is examined.
Recently, paying attention to the easy decomposability of such a resin, its use in oil field drilling technology has been studied (Patent Documents 1 to 3). In this application, it is required to quickly decompose after holding the weight and shape of the resin for a certain period in hot water (see FIG. 1). However, aliphatic polyesters and the like are generally poor in hydrolysis resistance and can be used up to a medium temperature of about 120 ° C., but quickly decompose in high-temperature hot water (see FIG. 2). The problem is that the desired performance cannot be exhibited.
On the other hand, in order to maintain the weight and shape of the resin in a high temperature region for a longer time, it is possible to use a resin having a slow decomposition such as an aromatic polyester, but it is necessary to control the start time of the decomposition.
Regarding the high temperature, 127 ° C to 193 ° C described in the report “US SHARE GAS” published by Halliburton in 2008, and “Petroleum / Natural” published by the Japan Oil, Gas and Metals National Corporation. Various definitions such as 149 ° C. or higher described in “Gas Review” 2002/5 are made, and it is generally considered that the temperature is higher than 125 ° C. to 150 ° C. In the present invention, a temperature higher than 135 ° C. is defined as a high temperature.
On the other hand, in order to improve hydrolysis resistance of aliphatic polyesters, etc., hydrolysis modifiers such as carbodiimide compounds are used, and the hydrolysis is suppressed by sealing the acidic groups generated by the initial stage and decomposition in the resin. Has already been proposed (Patent Documents 4 and 5).
For example, an acidic group such as a carboxyl group generated by hydrolysis of polyester serves as an autocatalyst and promotes hydrolysis. Therefore, by immediately sealing this with a carbodiimide compound or the like, it can be used in a humid heat environment of about 50 to 120 ° C. Improvement of hydrolysis resistance has been confirmed.
In the past studies, the present inventors used a specific hydrolysis inhibitor characterized by water resistance and reactivity with acidic groups, so that carboxyl groups and the like can be obtained in hot water at a high temperature of 135 ° C. or higher. It has been found that end groups having autocatalytic action can be sealed.
On the other hand, there is a problem that a compound having an isocyanate group is liberated with a reaction in which the carbodiimide compound is bonded to the terminal of the polymer compound, a unique odor of the isocyanate compound is generated, and the process is contaminated. In order to solve this problem, there is a cyclic carbodiimide compound that does not liberate an isocyanate compound. However, this cannot achieve both the water resistance and the reactivity with an acidic group for effectively functioning at a high temperature of 135 ° C. or higher. (Patent Document 6). Further, like the isocyanate compound, the carbodiimide compound itself leaks out during processing, and the process is contaminated.
特開2009−114448号公報JP 2009-114448 A 米国特許第7267170号明細書US Pat. No. 7,267,170 米国特許第7228904号明細書US Pat. No. 7,228,904 特開2012−012560号公報JP 2012-012560 A 特開2009−173582号公報JP 2009-173582 A WO2010/071213号パンフレットWO2010 / 071213 pamphlet
 本発明の目的は、135℃よりも高温の熱水中で一定期間、樹脂の重量と形状を保持した後に分解する繊維を工程汚染の少ない方法にて提供することである。 An object of the present invention is to provide a fiber that decomposes after maintaining the weight and shape of a resin for a certain period of time in hot water at a temperature higher than 135 ° C. in a method with less process contamination.
 本発明者らは、135℃よりも高温の熱水中で一定期間、樹脂の重量と形状を保持した後に素早く分解する樹脂組成物について鋭意検討した。
 その結果、自触媒作用を有する樹脂を用い、酸性基濃度を低く維持できた場合、その間の加水分解が抑制され分子量の減少が緩やかとなるため重量と形状が保持し、酸性基濃度を低く維持できなくなった時点で樹脂の分解が促進されることを見出した(図3参照)。
 さらに検討を進めた結果、120℃における耐水性が95%以上かつ190℃における酸性基との反応性が50%以上であるカルボジイミド化合物を酸性基の封止に用いることで、135℃よりも高温の熱水中で効率的に酸性基濃度を低く維持し、その添加量によって樹脂の分解のタイミングをコントロールできることを見出した。
 しかしながら、上記の耐水性および酸性基との反応性を満たすカルボジイミド化合物は、加工時に剤自体が漏出してしまう、さらにカルボジイミド化合物が高分子化合物の末端に結合する反応に伴いイソシアネート基を有する化合物が遊離してしまうという問題がある。
 そこで、本発明者らは鋭意検討の結果、芯鞘型複合繊維の鞘部に加水分解調整剤を実質的に含有していない樹脂組成物を配することにより本発明に至った。繊維の表面に加水分解調整剤を実質的に含有していない層を配すことにより、紡糸工程においてカルボジイミド化合物および、イソシアネート基を有する化合物による工程汚染を低減し、紡糸後の加熱工程および熱水中の熱によりカルボジイミド化合物が繊維表面まで拡散することにより、高温熱水中において所望の加水分解性を得られることを見出した。
 すなわち、本発明の目的は、以下により達成することが可能である。
1. 芯部と鞘部とから構成される芯鞘型複合繊維の製造方法であって、
芯部には、自触媒作用を有する樹脂(A成分)と加水分解調整剤(B成分)とを含有する樹脂組成物(C成分)を配し、鞘部には、自触媒作用を有する樹脂(A’成分)に加水分解調整剤(B成分)を実質的に含まない樹脂組成物(D成分)を配し、樹脂組成物(C成分)中の加水分解調整剤(B成分)は全重量を基準として1~40重量部であることを特徴とする、芯鞘型複合繊維の製造方法。
2. 下記式(I)を満たす上記1に記載の製造方法。
Figure JPOXMLDOC01-appb-I000008
(但し、式中、Qc:芯部の吐出量、Qs:鞘部の吐出量、D:吐出口の口径)
3. 自触媒作用を有する樹脂(A成分)がポリエステルである上記1または2記載の製造方法。
4. 自触媒作用を有する樹脂(A成分)は主鎖が主として水溶性モノマー単位からなる上記1~3のいずれかに記載の製造方法。
5. 自触媒作用を有する樹脂(A成分)は、主鎖が主として下記式(1)で表される乳酸単位からなる上記4に記載の製造方法。
Figure JPOXMLDOC01-appb-I000009
6. 自触媒作用を有する樹脂(A成分)は、ポリL−乳酸とポリD−乳酸とにより形成されたステレオコンプレックス相を含む上記5に記載の製造方法。
7. 加水分解調整剤(B成分)がカルボジイミド基を有する上記1~6のいずれかに記載の製造方法。
8. 加水分解調整剤(B成分)は、下記式(2)で表されるカルボジイミド化合物である上記7に記載の製造方法。
Figure JPOXMLDOC01-appb-I000010
(式中、R~Rは各々独立に炭素数1~20の脂肪族基、3~20の脂環族基、炭素数5~15の芳香族基、またはこれらの組み合わせであり、ヘテロ原子を含んでいてもよい。X、Yは各々独立に水素原子、炭素数1~20の脂肪族基、3~20の脂環族基、炭素数5~15の芳香族基、またはこれらの組み合わせであり、ヘテロ原子を含んでいてもよい。各々の芳香環は置換基によって結合し環状構造を形成していてもよい。)
9. 加水分解調整剤(B成分)は、ビス(2,6−ジイソプロピルフェニル)カルボジイミドである上記8に記載の製造方法。
10. 加水分解調整剤(B成分)は、下記式(3)で表される繰り返し単位からなるカルボジイミド化合物である上記8に記載の製造方法。
Figure JPOXMLDOC01-appb-I000011
(式中、R~Rは各々独立に炭素数1~20の脂肪族基、3~20の脂環族基、炭素数5~15の芳香族基、またはこれらの組み合わせであり、ヘテロ原子を含んでいてもよい。)
11. 芯部に含有する自触媒作用を有する樹脂(A成分)と鞘部に含有する自触媒作用を有する樹脂(A’成分)を同一の樹脂とする上記1~10のいずれかに記載の製造方法。
12.紡糸後、60℃以上の熱処理を行う工程を含む、上記1~11のいずれかに記載の製造方法。
13. 上記1~12のいずれかに記載の方法で製造された芯鞘型複合繊維。
14. 繊維横断面上の中心を通る直交する二直線上において顕微IR測定をした時、下記式(α)を満たす上記13に記載の繊維。
Figure JPOXMLDOC01-appb-I000012
(但し、式中、PIs:繊維表面の4点におけるカルボジイミド基/カルボニル基で求めたIRピーク強度比の平均値、PIc:繊維中心のカルボジイミド基/カルボニル基で求めた最も高いIRピーク強度比)
15. 繊維横断面上の中心を通る直交する二直線上において顕微IR測定をした時、下記式(β)を満たすrを半径とする円周上に存在する4つの点bの平均値が下記式(γ)を満たす上記14に記載の繊維。
Figure JPOXMLDOC01-appb-I000013
(但し、式中、r:顕微IR測定をしたそれぞれの直線上の繊維横断面上の中心から繊維表面までの距離、r:顕微IR測定をしたそれぞれの直線上にあり、繊維横断面上の中心から繊維表面までの間に存在するある点aまでの距離0<r<r)
Figure JPOXMLDOC01-appb-I000014
(但し、式中、PIb:顕微IR測定をしたそれぞれの直線上にあり、点aから繊維表面までの間に存在するある点bにおけるカルボジイミド基/カルボニル基で求めたIRピーク強度比)
16. 芯部と鞘部とから構成される芯鞘型複合繊維であって、
(i)芯部は、自触媒作用を有する樹脂(A成分)および加水分解調整剤(B成分)を含有する樹脂組成物(C成分)からなり、加水分解調整剤(B成分)の含有量は、全重量を基準として1~40重量部であり、
(ii)鞘部は、自触媒作用を有する樹脂(A’成分)に、C成分より低い濃度で加水分解調整剤(B成分)を含有するか、または加水分解調整剤(B成分)を実質的に含有しない樹脂組成物(D成分)であり、
(iii)複合繊維の酸性末端基量が5eq/ton以下である、上記13に記載の芯鞘型複合繊維。
17. 芯部の自触媒作用を有する樹脂(A成分)と、鞘部の自触媒作用を有する樹脂(A’成分)とが、同一の樹脂である上記16記載の芯鞘型複合繊維。
The present inventors diligently studied a resin composition that rapidly decomposes after maintaining the weight and shape of the resin for a certain period in hot water at a temperature higher than 135 ° C.
As a result, if the acid group concentration can be kept low using a resin with autocatalytic action, hydrolysis and the decrease in molecular weight during that time will be moderated, so the weight and shape will be maintained, and the acid group concentration will be kept low. It was found that the decomposition of the resin was promoted when it became impossible (see FIG. 3).
As a result of further investigation, by using a carbodiimide compound having a water resistance at 120 ° C. of 95% or more and a reactivity with an acidic group at 190 ° C. of 50% or more for sealing of acidic groups, the temperature is higher than 135 ° C. It was found that the acidic group concentration can be efficiently kept low in hot water and the timing of resin decomposition can be controlled by the amount of addition.
However, the carbodiimide compound satisfying the above water resistance and reactivity with acidic groups is a compound having an isocyanate group in association with a reaction in which the agent itself leaks during processing, and the carbodiimide compound is bonded to the terminal of the polymer compound. There is a problem of being liberated.
Thus, as a result of intensive studies, the present inventors have reached the present invention by arranging a resin composition that does not substantially contain a hydrolysis regulator in the sheath of the core-sheath composite fiber. By disposing a layer substantially not containing a hydrolysis regulator on the surface of the fiber, the process contamination by the carbodiimide compound and the compound having an isocyanate group is reduced in the spinning process, and the heating process and hot water after spinning are performed. It has been found that a desired hydrolyzability can be obtained in high-temperature hot water by diffusing the carbodiimide compound to the fiber surface by the heat inside.
That is, the object of the present invention can be achieved by the following.
1. A method for producing a core-sheath type composite fiber composed of a core part and a sheath part,
A resin composition (C component) containing a resin (A component) having an autocatalytic action and a hydrolysis regulator (B component) is disposed in the core part, and a resin having an autocatalytic action is provided in the sheath part. A resin composition (D component) that is substantially free of hydrolysis modifier (B component) is arranged in (A ′ component), and the hydrolysis regulator (B component) in the resin composition (C component) is all A method for producing a core-sheath composite fiber, characterized in that the amount is 1 to 40 parts by weight based on the weight.
2. The manufacturing method of said 1 satisfy | filling following formula (I).
Figure JPOXMLDOC01-appb-I000008
(However, in the formula, Qc: discharge amount of the core portion, Qs: discharge amount of the sheath portion, D: diameter of the discharge port)
3. 3. The production method according to 1 or 2 above, wherein the resin (component A) having an autocatalytic action is a polyester.
4). 4. The production method according to any one of 1 to 3 above, wherein the resin (component A) having autocatalytic action has a main chain mainly composed of water-soluble monomer units.
5. 5. The production method according to 4 above, wherein the resin (component A) having an autocatalytic action has a main chain mainly composed of lactic acid units represented by the following formula (1).
Figure JPOXMLDOC01-appb-I000009
6). 6. The production method according to 5 above, wherein the resin (component A) having an autocatalytic action includes a stereocomplex phase formed by poly L-lactic acid and poly D-lactic acid.
7). 7. The production method according to any one of 1 to 6 above, wherein the hydrolysis regulator (component B) has a carbodiimide group.
8). 8. The production method according to 7 above, wherein the hydrolysis regulator (component B) is a carbodiimide compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-I000010
(Wherein R 1 to R 4 are each independently an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof, X and Y may each independently represent a hydrogen atom, an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or these (It is a combination and may contain a hetero atom. Each aromatic ring may be bonded by a substituent to form a cyclic structure.)
9. 9. The production method according to 8 above, wherein the hydrolysis regulator (component B) is bis (2,6-diisopropylphenyl) carbodiimide.
10. 9. The production method according to 8 above, wherein the hydrolysis regulator (component B) is a carbodiimide compound comprising a repeating unit represented by the following formula (3).
Figure JPOXMLDOC01-appb-I000011
(Wherein R 5 to R 7 are each independently an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof, (It may contain atoms.)
11. 11. The production method according to any one of 1 to 10 above, wherein the resin having the autocatalytic action contained in the core part (component A) and the resin having the autocatalytic action contained in the sheath part (A ′ component) are the same resin. .
12 12. The production method according to any one of 1 to 11 above, comprising a step of performing a heat treatment at 60 ° C. or higher after spinning.
13. 13. A core-sheath type composite fiber produced by the method according to any one of 1 to 12 above.
14 14. The fiber according to 13 above, which satisfies the following formula (α) when microscopic IR measurement is performed on two orthogonal straight lines passing through the center of the fiber cross section.
Figure JPOXMLDOC01-appb-I000012
(However, in the formula, PIs: average value of IR peak intensity ratio obtained from carbodiimide group / carbonyl group at four points on the fiber surface, PIc: highest IR peak intensity ratio obtained from carbodiimide group / carbonyl group at fiber center)
15. When microscopic IR measurement is performed on two orthogonal straight lines passing through the center on the cross section of the fiber, the average value of the four points b existing on the circumference having ra as a radius satisfying the following formula (β) is expressed by the following formula: 15. The fiber according to the above 14, satisfying (γ).
Figure JPOXMLDOC01-appb-I000013
(Wherein, r: distance from the center of the fiber cross-section on each of the microscopic IR measurement linear to the fiber surface, r a: is on each having a microscopic IR measurement linear, fiber cross-section on 0 <r a <r) to a point a existing between the center of the fiber and the fiber surface
Figure JPOXMLDOC01-appb-I000014
(However, in the formula, PIb: IR peak intensity ratio obtained from carbodiimide group / carbonyl group at a certain point b existing between each point a and the fiber surface on each straight line obtained by microscopic IR measurement)
16. A core-sheath type composite fiber composed of a core part and a sheath part,
(I) The core is composed of a resin composition (C component) containing a resin (A component) having autocatalytic action and a hydrolysis regulator (B component), and the content of the hydrolysis regulator (B component) Is 1 to 40 parts by weight based on the total weight,
(Ii) The sheath part contains a hydrolysis regulator (B component) at a lower concentration than the C component in the resin (A ′ component) having autocatalytic action, or substantially contains the hydrolysis regulator (B component). A resin composition not contained (component D),
(Iii) The core-sheath type composite fiber according to the above 13, wherein the acidic end group amount of the composite fiber is 5 eq / ton or less.
17. 17. The core-sheath type composite fiber according to 16, wherein the resin (A component) having autocatalytic activity of the core part and the resin (A ′ component) having autocatalytic action of the sheath part are the same resin.
 本発明によれば、135℃よりも高温の熱水中で一定期間、樹脂の重量と形状を保持した後に分解する繊維を工程汚染の少なく提供することができる。120℃における耐水性が95%以上かつ190℃における酸性基との反応性が50%以上であるカルボジイミド化合物を酸性基の封止に用いることで、定常的な分解抑制を行うことができ、その添加量によって高温の熱水中での樹脂の分解のタイミングをコントロールできる。これらのカルボジイミド化合物は、高分子化合物の末端に結合する反応に伴いイソシアネート基を有する化合物が遊離してしまい、さらにカルボジイミド化合物自体も漏出することにより工程を汚染してしまうが、本発明の製造方法によれば工程汚染を少なく本発明の繊維を提供することができる。
 また、本発明の製造方法により得られた繊維は、オイルフィールドの掘削技術において所望の性能を発揮し、好適に用いることができる。
ADVANTAGE OF THE INVENTION According to this invention, the fiber which decomposes | disassembles after hold | maintaining the weight and shape of resin for a fixed period in hot water higher than 135 degreeC can be provided with little process contamination. By using a carbodiimide compound having a water resistance at 120 ° C. of 95% or more and a reactivity with an acidic group at 190 ° C. of 50% or more for the sealing of acidic groups, it is possible to perform steady decomposition suppression, The timing of resin decomposition in hot hot water can be controlled by the amount added. With these carbodiimide compounds, the compound having an isocyanate group is liberated along with the reaction of bonding to the terminal of the polymer compound, and the carbodiimide compound itself leaks out and contaminates the process, but the production method of the present invention Therefore, the fiber of the present invention can be provided with less process contamination.
Further, the fiber obtained by the production method of the present invention exhibits a desired performance in an oil field excavation technique and can be suitably used.
 図1は、135℃より高温の熱水中で樹脂を使用した場合に、一定期間、樹脂の重量と形状を保持した後に素早く分解するイメージ図であって、本発明の繊維において達成される挙動である。
 図2は、135℃より高温の熱水中で樹脂を使用した場合に、初期から急速に分解が進むイメージ図であって、一般的な脂肪族ポリエステルにおける挙動である。
 図3は、135℃より高温の熱水中で樹脂を使用した場合に、図1のような樹脂の重量(w)変化の挙動を達成するために必要な分子量(m)と酸性基量(g)の変化を表したイメージ図であって、本発明の繊維において達成される挙動である。
FIG. 1 is an image diagram that quickly decomposes after maintaining the weight and shape of a resin for a certain period when the resin is used in hot water at a temperature higher than 135 ° C., and shows the behavior achieved in the fiber of the present invention. is there.
FIG. 2 is an image diagram in which decomposition rapidly proceeds from the initial stage when a resin is used in hot water at a temperature higher than 135 ° C., and is a behavior in a general aliphatic polyester.
FIG. 3 shows the molecular weight (m) and the amount of acidic groups (m) necessary to achieve the behavior of the resin weight (w) change as shown in FIG. 1 when the resin is used in hot water at a temperature higher than 135 ° C. FIG. 6 is an image diagram showing a change in g), which is a behavior achieved in the fiber of the present invention.
 以下、本発明について詳細に説明する。
<自触媒作用を有する樹脂(A成分)>
 本発明において自触媒作用を有する樹脂(A成分)は、分解によって生じた酸性基が自触媒作用を有する樹脂である。
 A成分は、水溶性モノマーを主成分とすることが好ましい。例えば米国特許第7275596号明細書などに記載されているように、芳香族ポリエステルの場合には、分解により生じたモノマーが本用途の他成分と反応し、水中で析出してしまうことなどがあるためである。
 ここで、水溶性とは25℃における水への溶解度が0.1g/L以上であることとする。水溶性モノマーの水への溶解度は、使用する樹脂組成物が分解後に水中に残らないという観点から、1g/L以上であることが好ましく、3g/L以上であることがより好ましく、5g/L以上であることがさらに好ましい。
 また、主成分とは、構成成分の90モル%以上のことである。主成分の割合は好ましくは95~100モル%、より好ましくは98~100モル%である。
 A成分として、ポリエステル、ポリアミド、ポリアミドイミド、ポリイミド、ポリウレタン、ポリエステルアミドからなる群より選ばれる少なくとも1種が挙げられる。好ましくはポリエステルが例示される。
 ポリエステルとしては、例えば、ジカルボン酸あるいはそのエステル形成性誘導体とジオールあるいはそのエステル形成性誘導体、ヒドロキシカルボン酸あるいはそのエステル形成性誘導体、ラクトンから選択された1種以上を重縮合してなるポリマーまたはコポリマーが例示される。好ましくはヒドロキシカルボン酸あるいはそのエステル形成性誘導体からなるポリエステルが例示される。より好ましくはヒドロキシカルボン酸あるいはそのエステル形成性誘導体からなる脂肪族ポリエステルが例示される。
 かかる熱可塑性ポリエステルは、成形性などのため、ラジカル生成源、例えばエネルギー活性線、酸化剤などにより処理されてなる架橋構造を含有していてもよい。
 ジカルボン酸あるいはエステル形成性誘導体としては、テレフタル酸、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、ビス(p−カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、5−テトラブチルホスホニウムイソフタル酸、5−ナトリウムスルホイソフタル酸などの芳香族ジカルボン酸が挙げられる。またシュウ酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マロン酸、グルタル酸、ダイマー酸などの脂肪族ジカルボン酸が挙げられる。また、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸などの脂環式ジカルボン酸が挙げられる。またこれらのエステル形成性誘導体が挙げられる。
 また、ジオールあるいはそのエステル形成性誘導体としては、炭素数2~20の脂肪族グリコールすなわち、エチレングリコール、1,3−プロパンジオール、プロピレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、デカメチレングリコール、シクロヘキサンジメタノール、シクロヘキサンジオール、ダイマージオールなどが挙げられる。
 また、分子量200~100,000の長鎖グリコール、すなわちポリエチレングリコール、ポリ1,3−プロピレングリコール、ポリ1,2−プロピレングリコール、ポリテトラメチレングリコールなどが挙げられる。また、芳香族ジオキシ化合物すなわち、4,4’−ジヒドロキシビフェニル、ハイドロキノン、tert−ブチルハイドロキノン、ビスフェノールA、ビスフェノールS、ビスフェノールFなどが挙げられる。またこれらのエステル形成性誘導体が挙げられる。
 また、ヒドロキシカルボン酸としては、グリコール酸、乳酸、ヒドロキシプロピオ酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸、p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸およびこれらのエステル形成性誘導体などが挙げられる。ラクトンとしてはカプロラクトン、バレロラクトン、プロピオラクトン、ウンデカラクトン、1,5−オキセパン−2−オンなどが挙げられる。
 脂肪族ポリエステルとしては、脂肪族ヒドロキシカルボン酸を主たる構成成分とするポリマー、脂肪族多価カルボン酸またはそのエステル形成性誘導体と脂肪族多価アルコールを主成分として重縮合してなるポリマーやそれらのコポリマーが例示される。
 脂肪族ヒドロキシカルボン酸を主たる構成成分とするポリマーとしては、グリコール酸、乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸などの重縮合体、もしくはコポリマーなどを例示することができる。なかでもポリグリコール酸、ポリ乳酸、ポリ3−ヒドロキシカルボン酪酸、ポリ4−ポリヒドロキシ酪酸、ポリ3−ヒドロキシヘキサン酸またはポリカプロラクトン、ならびにこれらのコポリマーなどが挙げられる。特にポリL−乳酸、ポリD−乳酸およびステレオコンプレックスポリ乳酸、ラセミポリ乳酸が挙げられる。
 また脂肪族多価カルボン酸と脂肪族多価アルコールを主たる構成成分とするポリマーが挙げられる。多価カルボン酸として、シュウ酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マロン酸、グルタル酸、ダイマー酸などの脂肪族ジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸などの脂環式ジカルボン酸単位およびそのエステル誘導体が挙げられる。また、ジオール成分として炭素数2~20の脂肪族グリコールすなわち、エチレングリコール、1,3−プロパンジオール、プロピレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、デカメチレングリコール、シクロヘキサンジメタノール、シクロヘキサンジオール、ダイマージオールなどが挙げられる。また分子量200~100,000の長鎖グリコール、すなわちポリエチレングリコール、ポリ1,3−プロピレングリコール、ポリ1,2−プロピレングリコール、ポリテトラメチレングリコールが挙げられる。具体的には、ポリエチレンアジペート、ポリエチレンサクシネート、ポリブチレンアジペートまたはポリブチレンサクシネートならびにこれらのコポリマーなどが挙げられる。
 ポリエステルは周知の方法(例えば、飽和ポリエステル樹脂ハンドブック(湯木和男著、日刊工業新聞社(1989年12月22日発行)などに記載)により製造することができる。
 さらにポリエステルとしては、前記ポリエステルに加え、不飽和多価カルボン酸あるいはそのエステル形成性誘導体を共重合してなる不飽和ポリエステル樹脂、低融点ポリマーセグメントを含むポリエステルエラストマーが例示される。
 不飽和多価カルボン酸としては、無水マレイン酸、テトラヒドロ無水マレイン酸、フマル酸、エンドメチレンテトラヒドロ無水マレイン酸などが例示される。かかる不飽和ポリエステルには、硬化特性を制御するため、各種モノマー類が添加され、熱キュア、ラジカルキュア、光、電子線などの活性エネルギー線によるキュア処理により硬化、成形される。
 さらに本発明においてポリエステルは、柔軟成分を共重合してなるポリエステルエラストマーでもよい。ポリエステルエラストマーは公知文献、例えば特開平11−92636号公報などに記載のごとく高融点ポリエステルセグメントと分子量400~6,000の低融点ポリマーセグメントとからなるブロックコポリマーである。高融点ポリエステルセグメントだけでポリマーを形成した場合の融点が150℃以上であり、好適に使用できる。
 ポリエステルは、ヒドロキシカルボン酸あるいはそのエステル形成性誘導体からなるポリエステルが好ましい。また、ヒドロキシカルボン酸あるいはそのエステル形成性誘導体からなる脂肪族ポリエステルがより好ましい。さらに、脂肪族ポリエステルがポリL−乳酸、ポリD−乳酸およびステレオコンプレックスポリ乳酸であることが特に好ましい。
 ここで、ポリ乳酸は、主鎖が下記式(1)で表される乳酸単位からなる。本明細書において「主として」とは、好ましくは90~100モル%、より好ましくは95~100モル%、さらに好ましくは98~100モル%の割合である。
Figure JPOXMLDOC01-appb-I000015
 式(1)で表される乳酸単位には、互いに光学異性体であるL−乳酸単位とD−乳酸単位がある。ポリ乳酸の主鎖は主として、L−乳酸単位、D−乳酸単位またはこれらの組み合わせであることが好ましい。
 ポリ乳酸は、主鎖が主としてD−乳酸単位よりなるポリD−乳酸、主鎖が主としてL−乳酸単位よりなるポリL−乳酸が好ましい。主鎖を構成する他の単位の割合は、好ましくは0~10モル%、より好ましくは0~5モル%、さらに好ましくは0~2モル%の範囲である。
 主鎖を構成する他の単位としては、ジカルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトン等由来の単位が例示される。
 ジカルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸等が挙げられる。多価アルコールとしてはエチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、グリセリン、ソルビタン、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の脂肪族多価アルコール類あるいはビスフェノールにエチレンオキシドが付加させたものなどの芳香族多価アルコール等が挙げられる。ヒドロキシカルボン酸として、グリコール酸、ヒドロキシ酪酸等が挙げられる。ラクトンとしては、グリコリド、ε−カプロラクトン、βプロピオラクトン、δ−ブチロラクトン、β−またはγ−ブチロラクトン、ピバロラクトン、δ−バレロラクトン等が挙げられる。
 ポリ乳酸の重量平均分子量は、繊維の熱水耐久性、機械物性および成形性を両立させるため、好ましくは5万~50万、より好ましくは8万~35万、さらに好ましくは10~25万の範囲である。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定、標準ポリスチレンに換算した値である。
 自触媒作用を有する樹脂(A成分)がポリ乳酸(ポリD−乳酸またはポリL−乳酸)であり、ホモ相ポリ乳酸であるとき、示差走査熱量計(DSC)測定で、150~190℃の間に結晶融解ピーク(Tmh)を有し、結晶融解熱(△Hmsc)が10J/g以上であることが好ましい。かかる結晶融点および結晶融解熱の範囲を満たすことにより耐熱性を高めることができる。
 また、自触媒作用を有する樹脂(A成分)がポリ乳酸である場合には、ポリ乳酸を構成するポリL−乳酸またはポリD−乳酸の光学純度は、98%以上が好ましく、より好ましくは98.5%以上、さらに好ましくは99%以上、もっとも好ましくは99.5%以上である。光学純度が低い場合には、高融点のホモ相ポリ乳酸を得ることができない場合がある。
 光学純度が高いほどDSCで得られるステレオコンプレックス結晶相の融点も高くなる傾向にあり、好ましくは165℃以上、より好ましくは170℃以上、さらに好ましくは173℃以上、もっとも好ましくは175℃以上である。
 また、ポリ乳酸の主鎖は、ポリL−乳酸単位とポリD−乳酸単位とにより形成されたステレオコンプレックス相を含むステレオコンプレックスポリ乳酸であることが好ましい。
 ステレオコンプレックスポリ乳酸は、示差走査熱量計(DSC)測定で、190℃以上の結晶融解ピークを示すことが好ましい。
 ステレオコンプレックスポリ乳酸は、下記式で規定されるステレオコンプレックス化度(S)が30~100%であることが好ましい。
 S=〔ΔHms/(ΔHmh+ΔHms)〕×100
(但し、ΔHmsは、ステレオコンプレックス相ポリ乳酸の結晶融解エンタルピー、ΔHmhは、ポリ乳酸ホモ相結晶の融解エンタルピーを表す。)
 ステレオコンプレックスポリ乳酸の結晶化度、とりわけXRD測定による結晶化度は、3~60%、より好ましくは5~60%、さらに好ましくは7~60%、特に好ましくは10~60%の範囲である。
 ステレオコンプレックスポリ乳酸の結晶融点は、好ましくは190~250℃、より好ましくは200~230℃の範囲である。ステレオコンプレックスポリ乳酸のDSC測定による結晶融解エンタルピーは、好ましくは20J/g以上、より好ましくは20~80J/g、さらに好ましくは30~80J/gの範囲である。ステレオコンプレックスポリ乳酸の結晶融点が190℃未満であると、耐熱性が悪くなる。また250℃を超えると、250℃以上の高温において成形することが必要となり、樹脂の熱分解を抑制することが困難となる場合がある。従って、本発明の樹脂組成物は、示差走査熱量計(DSC)測定で、190℃以上の結晶融解ピークを示すことが好ましい。
 また、ポリ乳酸のアイソタクチック数平均連鎖長(L)は、好ましくは30~200であり、より好ましくは35~150、さらに好ましくは40~120、特に好ましくは45~100である。30より小さい場合は、ステレオコンプレックス結晶相の融点が低くなってしまい、200より大きい場合には、ステレオコンプレックス結晶相を形成しづらくなってしまう。
 アイソタクチック数平均連鎖長(L)は、ポリ乳酸のCH炭素の4連子構造のピークをMakromol.Chem.,191,2287(1990)にしたがい帰属し、Polymer,33,2817(1992)に従い、その面積比(Iiii,Iisi,Isii,Iiis,Isis,Issi,Iiss,Isss)により下記式で定義される値である。iはアイソタクチック(LL、DD)、sはシンジオタクチック(LD、DL)連結を表す。
=(3Iiii+2Iisi+2Isii+2Iiis+Isis+Issi+Iiss)/(Iisi+Iiis+Isii+2Isis+2Issi+2Iiss+3Isss)+1
 ステレオコンプレックスポリ乳酸において、ポリD−乳酸とポリL−乳酸の重量比は90/10~10/90であることが好ましい。より好ましくは80/20~20/80、さらに好ましくは30/70~70/30、とりわけ好ましくは40/60~60/40の範囲であり、理論的には1/1にできるだけ近い方が好ましい。
 ステレオコンプレックスポリ乳酸の重量平均分子量は、好ましくは5万~50万、より好ましくは8万~35万、さらに好ましくは10~25万の範囲である。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定、標準ポリスチレンに換算した値である。
 ポリL−乳酸およびポリD−乳酸は、従来公知の方法で製造することができる。例えば、L−ラクチドまたはD−ラクチドを金属含有触媒の存在下、開環重合することにより製造することができる。また金属含有触媒を含有する低分子量のポリ乳酸を、所望により結晶化させた後、あるいは結晶化させることなく、減圧下または常圧から加圧化、不活性ガス気流の存在下、あるいは非存在下、固相重合させ製造することもできる。さらに有機溶媒の存在または非存在下、乳酸を脱水縮合させる直接重合法により製造することができる。
 重合反応は、従来公知の反応容器で実施可能であり、例えば開環重合あるいは直接重合法においてはヘリカルリボン翼等、高粘度用攪拌翼を備えた縦型反応器あるいは横型反応器を単独、または並列して使用することができる。また、回分式あるいは連続式あるいは半回分式のいずれでも良いし、これらを組み合わせてもよい。
 重合開始剤としてアルコールを用いてもよい。かかるアルコールとしては、ポリ乳酸の重合を阻害せず不揮発性であることが好ましく、例えばデカノール、ドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノール、エチレングリコール、トリメチロールプロパン、ペンタエリスルトールなどを好適に用いることができる。固相重合法で使用するポリ乳酸プレポリマーは、予め結晶化させることが、樹脂ペレット融着防止の面から好ましい実施形態と言える。プレポリマーは固定された縦型或いは横型反応容器、またはタンブラーやキルンの様に容器自身が回転する反応容器(ロータリーキルン等)中、プレポリマーのガラス転移温度から融点未満の温度範囲で、固体状態で重合される。
 金属含有触媒としては、アルカリ金属、アルカリ土類金属、希土類、遷移金属類、アルミニウム、ゲルマニウム、スズ、アンチモン、チタン等の脂肪酸塩、炭酸塩、硫酸塩、リン酸塩、酸化物、水酸化物、ハロゲン化物、アルコラート等が例示される。なかでもスズ、アルミニウム、亜鉛、カルシウム、チタン、ゲルマニウム、マンガン、マグネシウムおよび稀土類元素より選択される少なくとも一種の金属を含有する脂肪酸塩、炭酸塩、硫酸塩、リン酸塩、酸化物、水酸化物、ハロゲン化物、アルコラートが好ましい。
 触媒活性、副反応の少なさからスズ化合物、具体的には塩化第一スズ、臭化第一スズ、ヨウ化第一スズ、硫酸第一スズ、酸化第二スズ、ミリスチン酸スズ、オクチル酸スズ、ステアリン酸スズ、テトラフェニルスズ等のスズ含有化合物が好ましい触媒として例示でされる。なかでも、スズ(II)化合物、具体的にはジエトキシスズ、ジノニルオキシスズ、ミリスチン酸スズ(II)、オクチル酸スズ(II)、ステアリン酸スズ(II)、塩化スズ(II)などが好適に例示される。
 触媒の使用量は、ラクチド1Kg当たり0.42×10−4~100×10−4(モル)でありさらに反応性、得られるポリラクチド類の色調、安定性を考慮すると1.68×10−4~42.1×10−4(モル)、特に好ましくは2.53×10−4~16.8×10−4(モル)使用される。
 ポリ乳酸の重合に使用された金属含有触媒は、ポリ乳酸使用に先立ち、従来公知の失活剤で不活性化しておくのが好ましい。かかる失活剤として、イミノ基を有し且つ重合金属触媒に配位し得るキレート配位子の群からなる有機リガンドが挙げられる。
 またジヒドリドオキソリン(I)酸、ジヒドリドテトラオキソ二リン(II,II)酸、ヒドリドトリオキソリン(III)酸、ジヒドリドペンタオキソ二リン(III)酸、ヒドリドペンタオキソ二(II,IV)酸、ドデカオキソ六リン(III)酸、ヒドリドオクタオキソ三リン(III,IV,IV)酸、オクタオキソ三リン(IV,III,IV)酸、ヒドリドヘキサオキソ二リン(III,V)酸、ヘキサオキソ二リン(IV)酸、デカオキソ四リン(IV)酸、ヘンデカオキソ四リン(IV)酸、エネアオキソ三リン(V,IV,IV)酸等の酸価数5以下の低酸化数リン酸が挙げられる。
 また式xHO・yPで表され、x/y=3のオルトリン酸が挙げられる。また2>x/y>1であり、縮合度より二リン酸、三リン酸、四リン酸、五リン酸等と称せられるポリリン酸およびこれらの混合物が挙げられる。またx/y=1で表されるメタリン酸、なかでもトリメタリン酸、テトラメタリン酸が挙げられる。また1>x/y>0で表され、五酸化リン構造の一部をのこした網目構造を有するウルトラリン酸(これらを総称してメタリン酸系化合物と呼ぶことがある。)が挙げられる。またこれらの酸の酸性塩が挙げられる。またこれらの酸の一価、多価のアルコール類、あるいはポリアルキレングリコール類の部分エステル、完全エステルが挙げられる。またこれらの酸のホスホノ置換低級脂肪族カルボン酸誘導体などが例示される。
 触媒失活能から、式xHO・yPで表され、x/y=3のオルトリン酸が好ましい。また2>x/y>1であり、縮合度より二リン酸、三リン酸、四リン酸、五リン酸等と称せられるポリリン酸およびこれらの混合物が好ましい。またx/y=1で表されるメタリン酸、なかでもトリメタリン酸、テトラメタリン酸が好ましい。また1>x/y>0で表され、五酸化リン構造の一部を残した網目構造を有するウルトラリン酸(これらを総称してメタリン酸系化合物と呼ぶことがある。)が好ましい。またこれらの酸の酸性塩が好ましい。またこれらの酸の一価、多価のアルコール類、あるいはポリアルキレングリコール類の部分エステルが好ましい。
 本発明で使用するメタリン酸系化合物は、3~200程度のリン酸単位が縮合した環状のメタリン酸あるいは立体網目状構造を有するウルトラ領域メタリン酸あるいはそれらの(アルカル金属塩、アルカリ土類金属塩、オニウム塩)を包含する。なかでも環状メタリン酸ナトリウムやウルトラ領域メタリン酸ナトリウム、ホスホノ置換低級脂肪族カルボン酸誘導体のジヘキシルホスホノエチルアセテート(以下DHPAと略称することがある)などが好適に使用される。
 ポリ乳酸は、含有ラクチド量が5,000ppm以下のものが好ましい。ポリ乳酸中に含有するラクチドは溶融加工時、樹脂を劣化させ、色調を悪化させ、場合によっては製品として使用不可能にする場合がある。
 溶融開環重合された直後のポリL−乳酸および/またはポリD−乳酸は通常1~5重量%のラクチドを含有するが、ポリL−乳酸および/またはポリD−乳酸重合終了の時点からポリ乳酸成形までの間の任意の段階において、従来公知のラクチド減量法により、即ち一軸あるいは多軸押出機での真空脱揮法、あるいは重合装置内での高真空処理等を単独であるいは組み合わせて実施することにラクチドを好適な範囲に低減することができる。
 ラクチド含有量は少ないほど、樹脂の溶融安定性、耐湿熱安定性は向上するが、樹脂溶融粘度を低下させる利点もあり、所望の目的に合致した含有量にするのが合理的、経済的である。即ち、実用的な溶融安定性が達成される1,000ppm以下に設定するのが合理的である。さらに好ましくは700ppm以下、より好ましくは500ppm以下、特に好ましくは100ppm以下の範囲が選択される。ポリ乳酸成分がかかる範囲のラクチド含有量を有することにより、本発明成形品の溶融成形時の樹脂の安定性を向上させ、成形品の製造を効率よく実施できる利点および成形品の耐湿熱安定性、低ガス性を高めることが出来る。
 また、自触媒作用を有する樹脂(A成分)がステレオコンプレックスポリ乳酸である場合に、ポリ乳酸を構成するポリL−乳酸およびポリD−乳酸の光学純度は、98%以上が好ましく、より好ましくは98.5%以上、さらに好ましくは99%以上、もっとも好ましくは99.5%以上である。光学純度が低い場合には、アイソタクチック数平均連鎖長が長くならず、高融点のステレオコンプレックス結晶相を得ることができない場合がある。
 光学純度が高いほどDSCで得られるステレオコンプレックス結晶相の融点も高くなる傾向にあり、好ましくは200℃以上、より好ましくは205℃以上、さらに好ましくは210℃以上、もっとも好ましくは215℃以上である。
 ステレオコンプレックスポリ乳酸は、ポリL−乳酸とポリD−乳酸とを重量比で10/90~90/10の範囲で接触させることにより、好ましくは溶融接触させることにより、より好ましくは溶融混練させることにより得ることができる。接触温度はポリ乳酸の溶融時の安定性、熱分解およびステレオコンプレックス結晶化度の向上の観点より、好ましくは210~300℃、より好ましくは220~290℃、さらに好ましくは225~280℃の範囲である。
 溶融混練の方法は特に限定されるものではないが、従来公知のバッチ式或いは連続式の溶融混合装置が好適に使用される。たとえば、溶融攪拌槽、一軸、二軸の押出し機、ニーダー、無軸籠型攪拌槽、住友重機械工業(株)製「バイボラック(登録商標)」、三菱重工業(株)製N−SCR,(株)日立製作所製めがね翼、格子翼あるいはケニックス式攪拌機、あるいはズルツァー式SMLXタイプスタチックミキサー具備管型重合装置などを使用できるが、生産性、ポリ乳酸の品質とりわけ色調の点でセルフクリーニング式の重合装置である無軸籠型攪拌槽、N−SCR、2軸押し出しルーダーなどが好適に使用される。
 本発明で用いるポリ乳酸には、本発明の主旨に反しない範囲において、ステレオコンプレックスポリ乳酸結晶の形成を安定的且つ高度に促進させるために特定の添加物を配合する手法が好ましく適用される。添加物としてはエステル交換触媒能を有していれば特に限定されるものではない。中でも有機酸金属塩が好適に用いられ、公知のリン酸金属塩やカルボン酸金属塩、スルホン酸金属塩などが挙げられる。
<加水分解調整剤(B成分)>
 本発明において加水分解調整剤(B成分)は、樹脂(A成分)の末端基および分解によって生じた酸性基を封止する剤である。すなわち、樹脂(A成分)の自触媒作用を抑制し、加水分解を遅延させる効果を有する剤である。
 酸性基として、カルボキシル基、スルホン酸基、スルフィン酸基、ホスホン酸基およびホスフィン酸基からなる群より選ばれる少なくとも一種が挙げられる。本発明においては、とりわけカルボキシル基が例示される。
 使用する条件が135℃より高温の熱水中のため、B成分は120℃における耐水性が95%以上かつ190℃における酸性基との反応性が50%以上であることが好ましい。
 ここで、120℃における耐水性とは、例えば、1)ジメチルスルホキシド50mlに1gのB成分を溶解させた系に、2gの水を加え、120℃で5時間還流させながら撹拌した時に、溶解している部分の解析から算出される5時間処理後に変化せず残っている剤の概算量、あるいは、2)ジメチルスルホキシドに溶解しない場合には、B成分を溶解させることができ、且つ親水性のある溶媒を用いて上記1)と同様の処理を行って求めた概算量を用いて、下記式(iv)で表される値である。
 なお、2)において、用いる溶媒の沸点が120℃未満であるときは、その溶媒に、B成分の少なくとも一部が溶解する範囲においてジメチルスルホキシドを混合し、その混合溶媒50mlを用いた。混合割合は通常は(1:2)~(2:1)の範囲から選択すればよいが、上記条件を満たす限り特に限定されない。2)において用いる溶媒としては、通常は、テトラヒドロフラン、N,N−ジメチルホルムアミド、酢酸エチルから選べば溶解可能である。
耐水性(%)=〔5h処理後の剤量/初期の剤量〕×100 (iv)
 耐水性は、この他、同等の評価によって表してもよい。
 不安定な剤を耐水評価した場合、加水分解によって剤の一部が変性し、酸性基の封止能が低下する。そのような剤は、高温の熱水中で使用した場合、水により失活するため、目的の酸性基を封止する能力が著しく低下してしまう。以上のことから、120℃における耐水性は、97%以上がより好ましく、99%以上がさらに好ましく、99.9%以上が特に好ましい。99.9%以上、すなわち高温の熱水中で安定であると、選択的かつ効率的に酸性基との反応を行うことができる。
 また、190℃における酸性基との反応性とは、例えば、評価用ポリ乳酸100重量部に対し、加水分解調整剤のカルボキシル基と反応する基が、評価用ポリ乳酸のカルボキシル基濃度の1.5倍当量に相当する量の剤を加え、ラボプラストミル((株)東洋精機製作所製)を使用して、窒素雰囲気下、樹脂温度190℃、回転数30rpmで1分間溶融混練して得られた樹脂組成物について、カルボキシル基濃度を測定し、下記式(v)で与えられる値である。
反応性(%)=〔(評価用ポリ乳酸のカルボキシル基濃度−樹脂組成物のカルボキシル基濃度)/評価用ポリ乳酸のカルボキシル基濃度〕×100 (v)
 評価用ポリ乳酸としては、MWが12万から20万、カルボキシル基濃度が10~30当量/tonであることが好ましい。このようなポリ乳酸としては、例えば、ネイチャーワークス製ポリ乳酸「NW3001D」(MWは15万、カルボキシル基濃度は22.1当量/ton)などを好適に使用することができ、その場合、加水分解調整剤のカルボキシル基と反応する基が33.15当量/tonとなる剤の量を加え、ラボプラストミル((株)東洋精機製作所製)を使用して、窒素雰囲気下、樹脂温度190℃、回転数30rpmで1分間溶融混練して得られた樹脂組成物について、カルボキシル基濃度を測定することで、反応性の値を求めることができる。
 酸性基との反応性は、この他、同等の評価によって与えてもよい。
 安定な剤を反応性評価した場合、上記条件で混練しても樹脂組成物のカルボキシル基濃度はほとんど変化しない。そのような剤は、高温の熱水中で使用した場合、目的の酸性基を封止する能力がほとんど発現しないため、樹脂(A成分)の分解を抑制できない。
 以上のことから、190℃における酸性基との反応性は、60%以上がより好ましく、70%以上がさらに好ましく、80%以上が特に好ましい。80%以上、すなわち高温の熱水中での酸性基との反応性が高いと、効率的に酸性基との反応を行うことができる。
 加水分解調整剤(B成分)は、120℃における耐水性が95%以上かつ190℃における酸性基との反応性が50%以上であることが重要である。すなわち、非常に安定な剤は、耐水性は高い値となるが、酸性基との反応性は低い値となり、その場合、高温の熱水中で目的の酸性基を封止する能力がほとんど発現しない。また、非常に不安定な剤は、酸性基との反応性は高い値となるが、耐水性は低い値となり、その場合、高温の熱水中で水により失活するため、目的の酸性基を封止する能力が著しく低下してしまう。
 以上のことから、耐水性および酸性基との反応性が高い加水分解調整剤が本発明において好適に使用される。
 B成分として、カルボジイミド化合物、イソシアネート化合物、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、アジリジン化合物などの付加反応型の化合物が挙げられる。また、これら化合物を2つ以上組合せて使用することができる。耐水性や酸性基との反応性の観点から、好ましくはカルボジイミド化合物が例示される。
 カルボジイミド化合物としては、下記一般式(4)、(5)の基本構造を有するものを挙げることができる。
Figure JPOXMLDOC01-appb-I000016
(式中、R、Rは各々独立に、炭素数1~20の脂肪族基、3~20の脂環族基、炭素数5~15の芳香族基、またはこれらの組み合わせであり、ヘテロ原子を含んでいてもよい。RとRが結合し環状構造を形成していてもよく、スピロ構造などにより2つ以上の環状構造を形成していてもよい)
Figure JPOXMLDOC01-appb-I000017
(式中、R10は、炭素数1~20の脂肪族基、3~20の脂環族基、炭素数5~15の芳香族基、またはこれらの組み合わせであり、ヘテロ原子を含んでいてもよい。nは2~1000の整数である。)
 安定性や使いやすさの観点から、芳香族カルボジイミド化合物がより好ましい。例えば、下記式(2)、(3)のような芳香族カルボジイミド化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000018
(式中、R~Rは各々独立に、炭素数1~20の脂肪族基、3~20の脂環族基、炭素数5~15の芳香族基、またはこれらの組み合わせであり、ヘテロ原子を含んでいてもよい。X、Yは各々独立に、水素原子、炭素数1~20の脂肪族基、3~20の脂環族基、炭素数5~15の芳香族基、またはこれらの組み合わせであり、ヘテロ原子を含んでいてもよい。各々の芳香環は置換基によって結合し環状構造を形成していてもよく、スピロ構造などにより2つ以上の環状構造を形成していてもよい)
Figure JPOXMLDOC01-appb-I000019
(式中、R~Rは各々独立に、炭素数1~20の脂肪族基、3~20の脂環族基、炭素数5~15の芳香族基、またはこれらの組み合わせであり、ヘテロ原子を含んでいてもよい。nは2~1000の整数である。)
 このような芳香族カルボジイミド化合物の具体例としては、ビス(2,6−ジイソプロピルフェニル)カルボジイミド、1,3,5−トリイソプロピルベンゼン−2,4−ジイソシアネートを脱炭酸縮合反応して合成されるポリカルボジイミド、これら2種の組合せなどが例示される。
<樹脂組成物>
 本発明の芯鞘型複合繊維は、芯部を形成する樹脂組成物(C成分)および鞘部を形成する樹脂組成物(D成分)の少なくとも二種の樹脂組成物から形成される。
 芯部は、自触媒作用を有する樹脂(A成分)および加水分解調整剤(B成分)を含有する樹脂組成物(C成分)からなる。
 樹脂組成物(C成分)は、135℃以上の熱水中において、一定期間、その形状を保持した後、加水分解調整剤(B成分)の酸性基を封止する効果が消え、酸性基の自触媒作用により樹脂の分解は促進され、それに伴い酸性基の濃度が指数関数的に上昇し、さらに分解が促進される。
 その現象が一定期間、樹脂の重量と形状を保持した後に可能な限り早く起こることが、オイルフィールドの掘削技術などで本発明の樹脂組成物を使用する際に適している。また、樹脂の主鎖が主として水溶性モノマー単位からなる場合は、分解物は水に溶解していく。
 そのため、135℃以上の任意の温度の熱水中において、100時間後に樹脂組成物の非水溶分の重量が30%未満であることが必要である。分解速度が急激に変化するタイミングは、加水分解調整剤の添加量により制御することが可能である。また、芯部と鞘部の体積比なども考慮すると、樹脂組成物(C成分)全体を100重量部として樹脂(A成分)を60~99重量部、加水分解調整剤(B成分)を1~40重量部含有する。加水分解調整剤(B成分)の含有量が1重量部よりも少ないと、繊維全体に加水分解調整剤が行き渡らずに十分な酸性基の封止効果が発揮されない場合がある。また、40重量部よりも多いと、成型性の悪化、工程汚染などを生じる場合などがある。かかる観点より、加水分解調整剤(B成分)の含有量は、1~40重量部が好ましく、2~30重量部がより好ましく、3~20重量部がさらに好ましく、5~15重量部がもっとも好ましい。
 鞘部は、自触媒作用を有する樹脂(A’成分)に、加水分解調整剤(B成分)を実質的に含有しない樹脂組成物(D成分)である。樹脂組成物(D成分)は鞘部に配され、芯部で生じたイソシアネート化合物および加水分解調整剤自体の繊維外部への漏出を低減させることが必要である。
 また、自触媒作用を有する樹脂(A’成分)は、樹脂組成物(C成分)に用いる自触媒作用を有する樹脂(A成分)と同一のものを用いることが好ましい。同一のものを用いた場合には、樹脂組成物(C成分)中の加水分解調整剤(B成分)が紡糸後の加熱工程および熱水中の熱により加水分解調整剤(B成分)が繊維内でより均一に拡散するからである。
 本発明の芯鞘型複合繊維は、芯部の樹脂組成物(C成分)の加水分解調整剤(B成分)の含有量が、鞘部の樹脂組成物(D成分)の加水分解調整剤(B成分)の含有量より多いことを特徴とする。
 芯部の樹脂組成物(C成分)および鞘部の樹脂組成物(D成分)の加水分解調整剤(B成分)の含有量は、以下の方法で分析できる。芯鞘型複合繊維を鋭利な刃を備えたミクロトームにて繊維長方向に垂直な断面に切断し、断面の顕微IRマッピング測定を行い、加水分解調整剤(B成分)に特有のIR吸収ピーク面積および自触媒作用を有する樹脂(A成分およびA’成分)に特有のIR吸収ピーク面積を2次元マッピングする。顕微IR測定には、結晶子を用いた減衰全反射(ATR)法を用い、空間分解能が十分に高いマップを作成する。あらかじめ作成しておいた検量線により、IR吸収ピーク面積のマップから加水分解調整剤(B成分)含有量の繊維横断面分布を得る。繊維の中心付近の加水分解調整剤(B成分)含有量の平均値を芯部の樹脂組成物(C成分)の加水分解調整剤(B成分)の含有量とし、繊維外周部分の加水分解調整剤(B成分)含有量の平均値を鞘部の樹脂組成物(D成分)の加水分解調整剤(B成分)の含有量とする。
 なお、特殊なカルボジイミドとしてWO2010/071213号パンフレットに開示されているような、カルボジイミド基を1個有しその第一窒素と第二窒素とが結合基により結合されている環状構造を含むカルボジイミド化合物は、樹脂の末端基および分解によって生じた酸性基を封止することができるが、その際にイソシアネート化合物を遊離しないため、鞘部の樹脂組成物(D成分)に含有しておいてもよい。その他、イソシアネート化合物を遊離しない化合物として、エポキシ化合物、オキサゾリン等を鞘部の樹脂組成物(D成分)に含有し酸性基を封止していてもよい。
<芯鞘型複合繊維の酸性末端基量>
 本発明の複合繊維は、その酸性末端基量が5eq/ton以下である。芯部の樹脂組成物(C成分)は十分に多量の加水分解調整剤(B成分)を含有することにより、その酸性末端基量は十分に低い濃度に保たれる。
 一方、鞘部の樹脂組成物(D成分)は、加水分解調整剤(B成分)が実質的に含まれない、あるいはその含有量が小さいため、酸性末端基が加水分解調整剤(B成分)と反応せず残存する。残存する酸性末端基量が多い場合は、熱水中において自触媒作用を有する樹脂(A成分およびA’成分)の加水分解を促進し、所望の分解特性を得られない。
 かかる観点から、複合繊維の酸性末端基量は5eq/ton以下が好ましく、3eq/ton以下がより好ましく、2eq/ton以下がさらに好ましく、1.5eq/ton以下が最も好ましい。
 一方で、イソシアネート基を有する化合物による工程汚染の低減の観点からは、ある程度酸性末端基が残存している状態が好ましい。従って、複合繊維の酸性末端基は0.05eq/ton以上が好ましく、0.1eq/ton以上がより好ましい。
<添加剤>
 樹脂組成物(樹脂組成物(C成分)および樹脂組成物(D成分)の双方を言う)は、発明の効果を失わない範囲で、公知の添加剤、フィラーを含有していても良い。例えば、安定剤、結晶化促進剤、充填剤、離型剤、帯電防止剤、可塑剤、耐衝撃改良剤、末端封止剤、相溶化剤などが挙げられる。
 なお、添加剤については、発明の効果を失わないという観点から、水溶性モノマーを主成分とする自触媒作用を有する樹脂(A成分)の分解を促進する成分、例えば、リン酸成分や樹脂組成物中で分解してリン酸成分を生じるようなホスファイト系添加剤など、については使用しないか、あるいは極力減量するか、あるいは失活するかなどの方法で影響を低減することが重要である。例えば、加水分解調整剤(B成分)と一緒に、それらを失活あるいは抑制する成分を併用する方法などを好適にとることができる。
<安定剤>
 樹脂組成物には、安定剤を含有することができる。安定剤としては通常の熱可塑性樹脂の安定剤に使用されるものを用いることができる。例えば酸化防止剤、光安定剤等を挙げることができる。これらの剤を配合することで機械的特性、成形性、耐熱性および耐久性に優れた成形品を得ることができる。
 酸化防止剤としてはヒンダードフェノール系化合物、ヒンダードアミン系化合物、ホスファイト系化合物、チオエーテル系化合物等を挙げることができる。
 ヒンダードフェノール系化合物としては、n−オクタデシル−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)−プロピオネート、n−オクタデシル−3−(3’−メチル−5’−tert−ブチル−4’−ヒドロキシフェニル)−プロピオネート、n−テトラデシル−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)−プロピオネート、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)−プロピオネート]、1,4−ブタンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)−プロピオネート]、2,2’−メチレン−ビス(4−メチル−tert−ブチルフェノール)、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)−プロピオネート]、テトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、3,9−ビス[2−{3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]2,4,8,10−テトラオキサスピロ(5,5)ウンデカン等が挙げられる。
 ヒンダードアミン系化合物として、N,N’−ビス−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオニルヘキサメチレンジアミン、N,N’−テトラメチレン−ビス[3−(3’−メチル−5’−tert−ブチル−4’−ヒドロキシフェニル)プロピオニル]ジアミン、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)−プロピオニル]ヒドラジン、N−サリチロイル−N’−サリチリデンヒドラジン、3−(N−サリチロイル)アミノ−1,2,4−トリアゾール、N,N’−ビス[2−{3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}エチル]オキシアミド等を挙げることができる。好ましくは、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)−プロピオネート]、およびテトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン等が挙げられる。
 ホスファイト系化合物としては、少なくとも1つのP−O結合が芳香族基に結合しているものが好ましく、具体的には、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、テトラキス(2,6−ジ−tert−ブチルフェニル)4,4’−ビフェニレンホスファイト、ビス(2,6—ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、4,4’−ブチリデン−ビス(3−メチル−6−tert−ブチルフェニル−ジ−トリデシル)ホスファイト、1,1,3−トリス(2−メチル−4−ジトリデシルホスファイト−5−tert−ブチルフェニル)ブタン、トリス(ミックスドモノおよびジ−ノニルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、4,4’−イソプロピリデンビス(フェニル−ジアルキルホスファイト)、2,4,8,10−テトラ−tert−ブチル−6−[3−(3−メチル−4−ヒドロキシ−5−t−ブチルフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン「スミライザー(登録商標)」GP)等が挙げられる。
 チオエーテル系化合物の具体例として、ジラウリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ペンタエリスリトール−テトラキス(3−ラウリルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ドデシルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−オクタデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3−ミリスチルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ステアリルチオプロピオネート)等が挙げられる。
 光安定剤としては、具体的には例えば、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、芳香族ベンゾエート系化合物、蓚酸アニリド系化合物、シアノアクリレート系化合物およびヒンダードアミン系化合物等を挙げることができる。
 ベンゾフェノン系化合物としては、ベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−スルホベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ドデシロキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、5−クロロ−2−ヒドロキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−(2−ヒドロキシ−3−メチル−アクリロキシイソプロポキシ)ベンゾフェノン等が挙げられる。
 ベンゾトリアゾール系化合物としては、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3,5−ジ−tert−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3,5−ジ−tert−アミル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3’,5’−ジ−tert−ブチル−4’−メチル−2’−ヒドロキシフェニル)ベンゾトリアゾール、2−(3,5−ジ−tert−アミル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(5−tert−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2’−ヒドロキシ−3’,5’−ビス(α,α−ジメチルベンジル)フェニル]ベンゾトリアゾール、2−[2’−ヒドロキシ−3’,5’−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2−(4’−オクトキシ−2’−ヒドロキシフェニル)ベンゾトリアゾール等が挙げられる。
 芳香族ベンゾエート系化合物としては、p−tert−ブチルフェニルサリシレート、p−オクチルフェニルサリシレート等のアルキルフェニルサリシレート類が挙げられる。
 蓚酸アニリド系化合物としては、2−エトキシ−2’−エチルオキザリックアシッドビスアニリド、2−エトキシ−5−tert−ブチル−2’−エチルオキザリックアシッドビスアニリド、2−エトキシ−3’−ドデシルオキザリックアシッドビスアニリド等が挙げられる。
 シアノアクリレート系化合物としては、エチル−2−シアノ−3,3’−ジフェニルアクリレート、2−エチルヘキシル−シアノ−3,3’−ジフェニルアクリレート等が挙げられる。
 ヒンダードアミン系化合物としては、4−アセトキシ−2,2,6,6−テトラメチルピペリジン、4−ステアロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−(フェニルアセトキシ)−2,2,6,6−テトラメチルピペリジン、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、4−メトキシ−2,2,6,6−テトラメチルピペリジン、4−オクタデシルオキシ−2,2,6,6−テトラメチルピペリジン、4−シクロヘキシルオキシ−2,2,6,6−テトラメチルピペリジン、4−ベンジルオキシ−2,2,6,6−テトラメチルピペリジン、4−フェノキシ−2,2,6,6−テトラメチルピペリジン、4−(エチルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、4−(シクロヘキシルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、4−(フェニルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、ビス(2,2,6,6−テトラメチル−4−ピペリジル)カーボネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)オギザレート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)マロネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)アジペート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)テレフタレート、1,2−ビス(2,2,6,6−テトラメチル−4−ピペリジルオキシ)−エタン、α,α’−ビス(2,2,6,6−テトラメチル−4−ピペリジルオキシ)−p−キシレン、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−トリレン−2,4−ジカルバメート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−ヘキサメチレン−1,6−ジカルバメート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)−ベンゼン−1,3,5−トリカルボキシレート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)−ベンゼン−1,3,4−トリカルボキシレート、1−「2−{3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}−2,2,6,6−テトラメチルピペリジン、1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノールとβ,β,β’,β’−テトラメチル−3,9−[2,4,8,10−テトラオキサスピロ(5,5)ウンデカン]ジメタノールとの縮合物等を挙げることができる。
 本発明において安定剤成分は1種類で使用してもよいし2種以上を組み合わせて使用してもよい。また安定剤成分として、ヒンダードフェノール系化合物および/またはベンゾトリアゾール系化合物が好ましい。
 安定剤の含有量は自触媒作用を有する樹脂(A成分)100重量部当たり、好ましくは0.01~3重量部、より好ましくは0.03~2重量部である。
<結晶化促進剤>
 樹脂組成物は、有機若しくは無機の結晶化促進剤を含有することができる。結晶化促進剤を含有することで、機械的特性、耐熱性、および成形性に優れた成形品を得ることができる。
 即ち、結晶化促進剤の適用により、成形性、結晶性が向上し、通常の射出成形においても十分に結晶化し耐熱性、耐湿熱安定性に優れた成形品を得ることができる。加えて、成形品を製造する製造時間を大幅に短縮でき、その経済的効果は大きい。
 結晶化促進剤は一般に結晶性樹脂の結晶化核剤として用いられるものを用いることができ、無機系の結晶化核剤および有機系の結晶化核剤のいずれをも使用することができる。
 無機系の結晶化核剤として、タルク、カオリン、シリカ、合成マイカ、クレイ、ゼオライト、グラファイト、カーボンブラック、酸化亜鉛、酸化マグネシウム、酸化チタン、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、硫化カルシウム、窒化ホウ素、モンモリロナイト、酸化ネオジム、酸化アルミニウム、フェニルフォスフォネート金属塩等が挙げられる。これらの無機系の結晶化核剤は組成物中での分散性およびその効果を高めるために、各種分散助剤で処理され、一次粒子径が0.01~0.5μm程度の高度に分散状態にあるものが好ましい。
 有機系の結晶化核剤としては、安息香酸カルシウム、安息香酸ナトリウム、安息香酸リチウム、安息香酸カリウム、安息香酸マグネシウム、安息香酸バリウム、蓚酸カルシウム、テレフタル酸ジナトリウム、テレフタル酸ジリチウム、テレフタル酸ジカリウム、ラウリン酸ナトリウム、ラウリン酸カリウム、ミリスチン酸ナトリウム、ミリスチン酸カリウム、ミリスチン酸カルシウム、ミリスチン酸バリウム、オクタコ酸ナトリウム、オクタコ酸カルシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、モンタン酸ナトリウム、モンタン酸カルシウム、トルイル酸ナトリウム、サリチル酸ナトリウム、サリチル酸カリウム、サリチル酸亜鉛、アルミニウムジベンゾエート、β−ナフトエ酸ナトリウム、β−ナフトエ酸カリウム、シクロヘキサンカルボン酸ナトリウム等の有機カルボン酸金属塩、p−トルエンスルホン酸ナトリウム、スルホイソフタル酸ナトリウム等の有機スルホン酸金属塩が挙げられる。
 また、ステアリン酸アミド、エチレンビスラウリン酸アミド、パルミチン酸アミド、ヒドロキシステアリン酸アミド、エルカ酸アミド、トリメシン酸トリス(tert−ブチルアミド)等の有機カルボン酸アミド、低密度ポリエチレン、高密度ポリエチレン、ポリイソプロピレン、ポリブテン、ポリ−4−メチルペンテン、ポリ−3−メチルブテン−1、ポリビニルシクロアルカン、ポリビニルトリアルキルシラン、分岐型ポリ乳酸、エチレン−アクリル酸コポマーのナトリウム塩、スチレン−無水マレイン酸コポリマーのナトリウム塩(いわゆるアイオノマー)、ベンジリデンソルビトールおよびその誘導体、例えばジベンジリデンソルビトール等が挙げられる。
 これらのなかでタルク、および有機カルボン酸金属塩から選択された少なくとも1種が好ましく使用される。本発明で使用する結晶化促進剤は1種のみでもよく、2種以上を併用しても良い。
 結晶化促進剤の含有量は、自触媒作用を有する樹脂(A成分)100重量部当たり、好ましくは0.01~20重量部、より好ましくは0.05~10重量部である。
<充填剤>
 樹脂組成物は、有機若しくは無機の充填剤を含有することができる。充填剤成分を含有することで、機械的特性、耐熱性、および金型成形性に優れた成形品を得ることができる。
 有機充填剤として、籾殻、木材チップ、おから、古紙粉砕材、衣料粉砕材等のチップ状のもの、綿繊維、麻繊維、竹繊維、木材繊維、ケナフ繊維、ジュート繊維、バナナ繊維、ココナツ繊維等の植物繊維もしくはこれらの植物繊維から加工されたパルプやセルロース繊維および絹、羊毛、アンゴラ、カシミヤ、ラクダ等の動物繊維等の繊維状のもの、ポリエステル繊維、ナイロン繊維、アクリル繊維等の合成繊維、紙粉、木粉、セルロース粉末、籾殻粉末、果実殻粉末、キチン粉末、キトサン粉末、タンパク質、澱粉等の粉末状のものが挙げられる。成形性の観点から紙粉、木粉、竹粉、セルロース粉末、ケナフ粉末、籾殻粉末、果実殻粉末、キチン粉末、キトサン粉末、タンパク質粉末、澱粉等の粉末状のものが好ましく、紙粉、木粉、竹粉、セルロース粉末、ケナフ粉末が好ましい。紙粉、木粉がより好ましい。特に紙粉が好ましい。
 これら有機充填剤は天然物から直接採取したものを使用してもよいが、古紙、廃材木および古衣等の廃材をリサイクルしたものを使用してもよい。
 また木材として、松、杉、檜、もみ等の針葉樹材、ブナ、シイ、ユーカリ等の広葉樹材等が好ましい。
 紙粉は成形性の観点から接着剤、とりわけ、紙を加工する際に通常使用される酢酸ビニル樹脂系エマルジョンやアクリル樹脂系エマルジョン等のエマルジョン系接着剤、ポリビニルアルコール系接着剤、ポリアミド系接着剤等のホットメルト接着剤等を含むものが好ましく例示される。
 有機充填剤の含有量は特に限定されるものではないが、成形性および耐熱性の観点から、自触媒作用を有する樹脂(A成分)100重量部当たり、好ましくは0.1~20重量部、より好ましくは0.5~15重量部、さらに好ましくは10~150重量部、特に好ましくは1~10重量部である。
 有機充填剤の含有量が0.1重量部未満であると、組成物の成形性向上効果が小さく、20重量部を超える場合には充填剤の均一分散が困難になり、あるいは成形性、耐熱性以外にも材料としての強度、外観が低下する可能性があるため好ましくない。
 樹脂組成物は、無機充填剤を含有してもよい。無機充填剤含有により、機械特性、耐熱性、成形性の優れた樹脂組成物を得ることができる。本発明で使用する無機充填剤としては、通常の熱可塑性樹脂の強化に用いられる繊維状、板状、粉末状のものを用いることができる。
 具体的には例えば、カーボンナノチューブ、ガラス繊維、アスベスト繊維、炭素繊維、グラファイト繊維、金属繊維、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、マグネシウム系ウイスカー、珪素系ウイスカー、ワラストナイト、イモゴライト、セピオライト、アスベスト、スラグ繊維、ゾノライト、石膏繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化珪素繊維およびホウ素繊維等の繊維状無機充填剤、層状珪酸塩、有機オニウムイオンで交換された層状珪酸塩、ガラスフレーク、非膨潤性雲母、グラファイト、金属箔、セラミックビーズ、タルク、クレイ、マイカ、セリサイト、ゼオライト、ベントナイト、ドロマイト、カオリン、粉末珪酸、長石粉、チタン酸カリウム、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化カルシクム、酸化アルミニウム、酸化チタン、珪酸アルミニウム、酸化ケイ素、石膏、ノバキュライト、ドーソナイトおよび白土フラーレンなどのカーボンナノ粒子等の板状や粒子状の無機充填剤が挙げられる。
 層状珪酸塩の具体例としては、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト等のスメクタイト系粘土鉱物、バーミキュライト、ハロサイト、カネマイト、ケニヤイト等の各種粘土鉱物、Li型フッ素テニオライト、Na型フッ素テニオライト、Li型四珪素フッ素雲母、Na型四珪素フッ素雲母等の膨潤性雲母等が挙げられる。これらは天然のものであっても合成のものであって良い。これらのなかでモンモリロナイト、ヘクトライト等のスメクタイト系粘土鉱物やLi型フッ素テニオライト、Na型四珪素フッ素雲母等の膨潤性合成雲母が好ましい。
 これらの無機充填剤のなかでは繊維状もしくは板状の無機充填剤が好ましく、特にガラス繊維、ワラステナイト、ホウ酸アルミニウムウイスカー、チタン酸カリウムウイスカー、マイカ、およびカオリン、陽イオン交換された層状珪酸塩が好ましい。また繊維状充填剤のアスペクト比は5以上であることが好ましく、10以上であることがさらに好ましく、20以上であることがさらに好ましい。
 かかる充填剤はエチレン/酢酸ビニル共重合体等の熱可塑性樹脂やエポキシ樹脂等の熱硬化性樹脂で被覆または収束処理されていてもよく、またアミノシランやエポキシシラン等のカップリング剤で処理されていても良い。
 無機充填剤の含有量は、自触媒作用を有する樹脂(A成分)100重量部当たり、好ましくは0.1~20重量部、より好ましくは0.5~15重量部、さらに好ましくは10~150重量部、特に好ましくは1~10重量部である。
<離型剤>
 樹脂組成物は、離型剤を含有することができる。離型剤は通常の熱可塑性樹脂に用いられるものを使用することができる。
 離型剤として具体的には、脂肪酸、脂肪酸金属塩、オキシ脂肪酸、パラフィン、低分子量のポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、脂肪族ケトン、脂肪酸部分鹸化エステル、脂肪酸低級アルコールエステル、脂肪酸多価アルコールエステル、脂肪酸ポリグリコールエステル、変性シリコーン等を挙げることができる。これらを配合することで機械特性、成形性、耐熱性に優れたポリ乳酸成形品を得ることができる。
 脂肪酸としては炭素数6~40のものが好ましく、具体的には、オレイン酸、ステアリン酸、ラウリン酸、ヒドロキシステアリン酸、ベヘン酸、アラキドン酸、リノール酸、リノレン酸、リシノール酸、パルミチン酸、モンタン酸およびこれらの混合物等が挙げられる。脂肪酸金属塩としては炭素数6~40の脂肪酸のアルカリ金属塩、アルカリ土類金属塩が好ましく、具体的にはステアリン酸カルシウム、モンタン酸ナトリウム、モンタン酸カルシウム、等が挙げられる。
 オキシ脂肪酸としては1,2−オキシステアリン酸、等が挙げられる。パラフィンとしては炭素数18以上のものが好ましく、流動パラフィン、天然パラフィン、マイクロクリスタリンワックス、ペトロラクタム等が挙げられる。
 低分子量のポリオレフィンとしては例えば分子量5,000以下のものが好ましく、具体的にはポリエチレンワックス、マレイン酸変性ポリエチレンワックス、酸化タイプポリエチレンワックス、塩素化ポリエチレンワックス、ポリプロピレンワックス等が挙げられる。脂肪酸アミドとしては炭素数6以上のものが好ましく、具体的にはオレイン酸アミド、エルカ酸アミド、ベヘン酸アミド等が挙げられる。
 アルキレンビス脂肪酸アミドとしては炭素数6以上のものが好ましく、具体的にはメチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、N,N−ビス(2−ヒドロキシエチル)ステアリン酸アミド等が挙げられる。脂肪族ケトンとしては炭素数6以上のものが好ましく、高級脂肪族ケトン等が挙げられる。
 脂肪酸部分鹸化エステルとしてはモンタン酸部分鹸化エステル等が挙げられる。脂肪酸低級アルコールエステルとしてはステアリン酸エステル、オレイン酸エステル、リノール酸エステル、リノレン酸エステル、アジピン酸エステル、ベヘン酸エステル、アラキドン酸エステル、モンタン酸エステル、イソステアリン酸エステル等が挙げられる。
 脂肪酸多価アルコールエステルとしては、グリセロールトリステアレート、グリセロールジステアレート、グリセロールモノステアレート、ペンタエリスルトールテトラステアレート、ペンタエリスルトールトリステアレート、ペンタエリスルトールジステアレート、ペンタエリスルトールモノステアレート、ペンタエリスルトールアジペートステアレート、ソルビタンモノベヘネート等が挙げられる。脂肪酸ポリグリコールエステルとしてはポリエチレングリコール脂肪酸エステルやポリプロピレングリコール脂肪酸エステル等が挙げられる。
 変性シリコーンとしてはポリエーテル変性シリコーン、高級脂肪酸アルコキシ変性シリコーン、高級脂肪酸含有シリコーン、高級脂肪酸エステル変性シリコーン、メタクリル変性シリコーン、フッ素変性シリコーン等が挙げられる。
 そのうち脂肪酸、脂肪酸金属塩、オキシ脂肪酸、脂肪酸エステル、脂肪酸部分鹸化エステル、パラフィン、低分子量ポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、が好ましく、脂肪酸部分鹸化エステル、アルキレンビス脂肪酸アミドがより好ましい。なかでもモンタン酸エステル、モンタン酸部分鹸化エステル、ポリエチレンワックッス、酸価ポリエチレンワックス、ソルビタン脂肪酸エステル、エルカ酸アミド、エチレンビスステアリン酸アミドが好ましく、特にモンタン酸部分鹸化エステル、エチレンビスステアリン酸アミドが好ましい。
 離型剤は、1種類で用いても良いし2種以上を組み合わせて用いても良い。離型剤の含有量は、自触媒作用を有する樹脂(A成分)100重量部に対し、好ましくは0.01~3重量部、より好ましくは0.03~2重量部である。
<帯電防止剤>
 樹脂組成物は、帯電防止剤を含有することができる。帯電防止剤として、(β−ラウラミドプロピオニル)トリメチルアンモニウムスルフェート、ドデシルベンゼンスルホン酸ナトリウムなどの第4級アンモニウム塩系、スルホン酸塩系化合物、アルキルホスフェート系化合物等が挙げられる。
 本発明において帯電防止剤は1種類で用いても良いし2種以上を組み合わせて用いても良い。帯電防止剤の含有量は、自触媒作用を有する樹脂(A成分)100重量部に対し、好ましくは0.05~5重量部、より好ましくは0.1~5重量部である。
<可塑剤>
 樹脂組成物は、可塑剤を含有することができる。可塑剤としては一般に公知のものを使用することができる。例えば、ポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、リン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤、およびエポキシ系可塑剤、等が挙げられる。
 ポリエステル系可塑剤として、アジピン酸、セバシン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸等の酸成分とエチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ジエチレングリコール等のジオール成分からなるポリエステルやポリカプロラクトン等のヒドロキシカルボン酸からなるポリエステル等が挙げられる。これらのポリエステルは単官能カルボン酸または単官能アルコールで末端封止されていても良い。
 グリセリン系可塑剤として、グリセリンモノステアレート、グリセリンジステアレート、グリセリンモノアセトモノラウレート、グリセリンモノアセトモノステアレート、グリセリンジアセトモノオレート、グリセリンモノアセトモノモンタネート等が挙げられる。
 多価カルボン酸系可塑剤として、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジヘプチル、フタル酸ジベンジル、フタル酸ブチルベンジル等のフタル酸エステル、トリメリット酸トリブチル、トリメリット酸トリオクチル、トリメリット酸トリヘキシル等のトリメリット酸エステル、アジピン酸イソデシル、アジピン酸−n−デシル−n−オクチル等のアジピン酸エステル、アセチルクエン酸トリブチル等のクエン酸エステル、アゼライン酸ビス(2−エチルヘキシル)等のアゼライン酸エステル、セバシン酸ジブチル、セバシン酸ビス(2−エチルヘキシル)等のセバシン酸エステルが挙げられる。
 リン酸エステル系可塑剤として、リン酸トリブチル、リン酸トリス(2−エチルヘキシル)、リン酸トリオクチル、リン酸トリフェニル、リン酸トリクレジル、リン酸ジフェニル−2−エチルヘキシル等が挙げられる。
 ポリアルキレングリコール系可塑剤として、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリ(エチレンオキシド−プロピレンオキシド)ブロックおよびまたはランダム共重合体、ビスフェノール類のエチレンオキシド付加重合体、ビスフェノール類のテトラヒドロフラン付加重合体等のポリアルキレングリコールあるいはその末端エポキシ変性化合物、末端エステル変性化合物および末端エーテル変性化合物等の末端封止剤化合物等が挙げられる。
 エポキシ系可塑剤として、エポキシステアリン酸アルキルと大豆油とからなるエポキシトリグリセリド、およびビスフェノールAとエピクロルヒドリンを原料とするエポキシ樹脂が挙げられる。
 その他の可塑剤の具体的な例としては、ネオペンチルグリコールジベンゾエート、ジエチレングリコールジベンゾエート、トリエチレングリコール−ビス(2−エチルブチレート)等の脂肪族ポリオールの安息香酸エステル、ステアリン酸アミド等の脂肪酸アミド、オレイン酸ブチル等の脂肪酸エステル、アセチルリシノール酸メチル、アセチルリシノール酸ブチル等のオキシ酸エステル、ペンタエリスリトール類、ペンタエリスリトール類の脂肪酸エステル、各種ソルビトール、ポリアクリル酸エステル、シリコーンオイル、およびパラフィン類等が挙げられる。
 可塑剤として、特にポリエステル系可塑剤、ポリアルキレン系可塑剤、グリセリン系可塑剤、ペンタエリスリトール類、ペンタエリスリトール類の脂肪酸エステルから選択された少なくとも1種よりなるものが好ましく使用でき、1種のみでも良くまた2種以上を併用することもできる。
 可塑剤の含有量は、自触媒作用を有する樹脂(A成分)100重量部当たり、好ましくは0.01~20重量部、より好ましくは0.05~15重量部、さらに好ましくは0.1~10重量部である。本発明においては結晶化核剤と可塑剤を各々単独で使用してもよいし、両者を併用して使用することがさらに好ましい。また、本願に必須である加水分解調整剤に可塑剤の効果を有するものを用いることがもっとも好ましい。
<耐衝撃改良剤>
 樹脂組成物は、耐衝撃改良剤を含有することができる。耐衝撃改良剤とは熱可塑性樹脂の耐衝撃性改良に用いることができるものであり、特に制限はない。例えば以下の耐衝撃改良剤の中から選択される少なくとも1種を用いることができる。
 耐衝撃改良剤の具体例としては、エチレン−プロピレン共重合体、エチレン−プロピレン−非共役ジエン共重合体、エチレン−ブテン−1共重合体、各種アクリルゴム、エチレン−アクリル酸共重合体およびそのアルカリ金属塩(いわゆるアイオノマー)、エチレン−グリシジル(メタ)アクリレート共重合体、エチレン−アクリル酸エステル共重合体(例えばエチレン−アクリル酸エチル共重合体、エチレン−アクリル酸ブチル共重合体)、変性エチレン−プロピレン共重合体、ジエンゴム(例えばポリブタジエン、ポリイソプレン、ポリクロロプレン)、ジエンとビニル共重合体(例えばスチレン−ブタジエンランダム共重合体、スチレン−ブタジエンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレンランダム共重合体、スチレン−イソプレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、ポリブタジエンにスチレンをグラフト共重合させたもの、ブタジエン−アクリロニトリル共重合体)、ポリイソブチレン、イソブチレンとブタジエンまたはイソプレンとの共重合体、天然ゴム、チオコールゴム、多硫化ゴム、ポリウレタンゴム、ポリエーテルゴム、エピクロロヒドリンゴム等が挙げられる。
 さらに各種架橋度を有するものや各種ミクロ構造、例えばシス構造、トランス構造等を有するものやコア層とそれを覆う1以上のシェル層とから構成され、また隣接する層が異種重合体から構成されるいわゆるコアシェル型と呼ばれる多層構造重合体等も使用することができる。
 さらに上記具体例に挙げた各種の(共)重合体はランダム共重合体、ブロック共重合体およびブロック共重合体等のいずれであっても、本発明の耐衝撃改良剤として用いることができる。
 耐衝撃改良剤の含有量は、自触媒作用を有する樹脂(A成分)100重量部に対して、好ましくは0.1~20重量部、より好ましくは0.5~15重量部、さらに好ましくは1~10重量部である。
<相溶化剤>
 相溶化剤としては、芯部を構成する成分と鞘部を構成する成分のいずれの成分とも相溶性のある化合物や、芯部を構成する成分と鞘部を構成する成分との両成分の末端と反応して架橋構造をとる化合物等が好ましく用いられるが、これらに限られるものではない。例えば、前者の相溶化剤としては、芯部を構成する成分、鞘部を構成する成分と基本構造が類似した部分を併せ持つ界面活性剤コポリマーや、ブロックコポリマー等が挙げられる。
 また、架橋構造を形成するものとして、両末端にエポキシ基を有するエポキシ化合物、オキサゾリン化合物、オキサジン化合物やそれらのコポリマー、カルボジイミド化合物やそれらのコポリマー等が挙げられる。架橋剤を用いる場合は、架橋剤を芯部を構成する成分か鞘部を構成するいずれか、又は両成分に添加し、架橋剤が複合界面近傍に存在するそれぞれの成分の末端基と反応することで界面接着性が向上する。
<その他>
 樹脂組成物は、本発明の趣旨に反しない範囲において、フェノール樹脂、メラミン樹脂、熱硬化性ポリエステル樹脂、シリコーン樹脂、エポキシ樹脂等の熱硬化性樹脂を含有させても良い。
 また樹脂組成物は、本発明の趣旨に反しない範囲において、臭素系、リン系、シリコーン系、アンチモン化合物等の難燃剤を含有させても良い。
 また、有機、無機系の染料、顔料を含む着色剤、例えば、二酸化チタン等の酸化物、アルミナホワイト等の水酸化物、硫化亜鉛等の硫化物、紺青等のフェロシアン化物、ジンククロメート等のクロム酸塩、硫酸バリウム等の硫酸塩、炭酸カルシウム等の炭酸塩、群青等の珪酸塩、マンガンバイオレット等のリン酸塩、カーボンブラック等の炭素、ブロンズ粉やアルミニウム粉等の金属着色剤等を含有させても良い。
 また、ナフトールグリーンB等のニトロソ系、ナフトールイエローS等のニトロ系、ナフトールレッド、クロモフタルイエロー等のアゾ系、フタロシアニンブルーやファストスカイブルー等のフタロシアニン系、インダントロンブルー等の縮合多環系着色剤等、グラファイト、フッソ樹脂等の摺動性改良剤等の添加剤を含有させても良い。これらの添加剤は単独であるいは2種以上を併用することもできる。
<樹脂組成物の製造方法>
 樹脂組成物は、加水分解調整剤(B成分)と公知のあらゆる添加剤を含む場合がある。
 なお、自触媒作用を有する樹脂(A成分)としてステレオコンプレックスポリ乳酸を用いる場合には、ポリL−乳酸とポリD−乳酸とを混合しステレオコンプレックスポリ乳酸を形成させた後、加水分解調整剤(B成分)や添加剤を混合してもよいし、ステレオコンプレックスポリ乳酸を形成する際に加水分解調整剤(B成分)や添加剤を混合してもよいし、紡糸時に、ポリL−乳酸とポリD−乳酸および加水分解調整剤(B成分)や添加剤を混合してもよい。
 自触媒作用を有する樹脂(A成分)に添加、混合する方法は特に限定なく、従来公知の方法により、溶液、融液あるいは適用する自触媒作用を有する樹脂(A成分)のマスターバッチとして添加する方法、あるいは加水分解調整剤(B成分)が溶解、分散または溶融している液体に自触媒作用を有する樹脂(A成分)の固体を接触させ加水分解調整剤(B成分)を浸透させる方法などをとることができる。
 溶液、融液あるいは自触媒作用を有する樹脂(A成分)のマスターバッチとして添加する方法をとる場合には、従来公知の混練装置を使用して添加する方法をとることができる。混練に際しては、溶液状態での混練法あるいは溶融状態での混練法が、均一混練性の観点より好ましい。混練装置としては、とくに限定なく、従来公知の縦型の反応容器、混合槽、混練槽あるいは一軸または多軸の横型混練装置、例えば一軸あるいは多軸のルーダー、ニーダーなどが例示される。混合時間は特に指定はなく、混合装置、混合温度にもよるが、0.1分間から2時間、好ましくは0.2分間から60分間、より好ましくは0.2分間から30分間が選択される。
 溶媒としては、自触媒作用を有する樹脂(A成分)および加水分解調整剤(B成分)に対し、不活性であるものを用いることができる。特に、両者に親和性を有し、両者を少なくとも部分的に溶解する溶媒が好ましい。
 溶媒としてはたとえば、炭化水素系溶媒、ケトン系溶媒、エステル系溶媒、エーテル系溶媒、ハロゲン系溶媒、アミド系溶媒などを用いることができる。
 炭化水素系溶媒として、ヘキサン、シクロヘキサン、ベンゼン、トルエン、キシレン、ヘプタン、デカンなどが挙げられる。ケトン系溶媒として、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソホロンなどが挙げられる。
 エステル系溶媒としては、酢酸エチル、酢酸メチル、コハク酸エチル、炭酸メチル、安息香酸エチル、ジエチレングリコールジアセテートなどが挙げられる。エーテル系溶媒としては、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、ジフェニルエーテルなどが挙げられる。ハロゲン系溶媒としては、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、1,1’,2,2’−テトラクロロエタン、クロロベンゼン、ジクロロベンゼンなどを挙げることができる。アミド系溶媒としては、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどが挙げられる。これらの溶媒は単一であるいは所望により混合溶媒として使用することができる。
 溶媒は、樹脂組成物100重量部あたり1~1,000重量部の範囲で適用される。1重量部より少ないと、溶媒適用に意義がない。また、溶媒使用量の上限値は、特にないが、操作性、反応効率の観点より1,000重量部程度である。
 加水分解調整剤(B成分)が溶解、分散または溶融している液体に水溶性モノマーを主成分とする自触媒作用を有する樹脂(A成分)の固体を接触させ加水分解調整剤(B成分)を浸透させる方法をとる場合には、上記のごとき溶剤に溶解した加水分解調整剤(B成分)に固体の水溶性モノマーを主成分とする自触媒作用を有する樹脂(A成分)を接触させる方法や、加水分解調整剤(B成分)のエマルジョン液に固体の自触媒作用を有する樹脂(A成分)を接触させる方法などをとることができる。接触させる方法としては、自触媒作用を有する樹脂(A成分)を浸漬する方法や、自触媒作用を有する樹脂(A成分)に塗布する方法、散布する方法などを好適にとることができる。
 加水分解調整剤(B成分)による水自触媒作用を有する樹脂(A成分)の酸性基の封止反応は、室温(25℃)~300℃程度の温度で可能であるが、反応効率の観点より50~280℃、より好ましくは100~280℃の範囲ではより促進される。自触媒作用を有する樹脂(A成分)は、溶融している温度ではより反応が進行しやすいが、加水分解調整剤(B成分)の揮散、分解などを抑制するため、300℃より低い温度で反応させることが好ましい。自触媒作用を有する樹脂(A成分)の溶融温度を低下、攪拌効率を上げるためにも、溶媒を適用することは効果がある。
 反応は無触媒で十分速やかに進行するが、反応を促進する触媒を使用することもできる。触媒としては、一般的に加水分解調整剤(B成分)で使用される触媒が適用できる。これらは1種または2種以上使用することができる。触媒の添加量は、特に限定されるものではないが、樹脂組成物100重量部に対し、0.001~1重量部が好ましく、また0.01~0.1重量部がより好ましく、さらには0.02~0.1重量部が最も好ましい。
 また、本発明では加水分解調整剤(B成分)を2種以上組合せて使用してもよく、例えば、自触媒作用を有する樹脂(A成分)の初期の酸性基の封止反応を行う加水分解調整剤(B成分)と、135℃より高温の熱水中で生じる酸性基の封止反応を行う加水分解調整剤(B成分)について別々のものを使用してもよい。
 さらに、加水分解調整剤(B成分)の助剤、すなわち加水分解を遅延させるためにB成分の効果を補助する剤を併用することが好ましい。そのような剤としては、公知のあらゆるものが使用できるが、例えば、ハイドロタルサイト、アルカリ土類金属の酸化物、アルカリ土類金属の水酸化物およびアルカリ土類金属の炭酸化物から選ばれる少なくとも一つの化合物が例示される。助剤の含有量は加水分解調整剤(B成分)100重量部当たり、好ましくは0.1~30重量部、より好ましくは0.5~20重量部、さらに好ましくは0.7~10重量部である。
<芯鞘型複合繊維の製造方法>
 本発明の芯鞘型複合繊維の製造方法は、芯部を形成するノズルより溶融した樹脂組成物(C成分)を吐出し、鞘部を形成するノズルより溶融した樹脂組成物(D成分)を吐出する紡糸工程を含む。(a)樹脂組成物(C成分)は、自触媒作用を有する樹脂(A成分)および加水分解調整剤(B成分)を含有し、加水分解調整剤(B成分)の含有量は、全重量を基準として1~40重量部である。(b)樹脂組成物(D成分)は、自触媒作用を有する樹脂(A’成分)に加水分解調整剤(B成分)を実質的に含まない。
(紡糸)
 本発明の繊維は通常の溶融紡糸により得られ、その後、後加工をしてもよい。
 樹脂組成物(C成分)および樹脂組成物(D成分)はエクストルーダ型やプレッシャーメルター型の溶融押出し機で溶融された後、ギアポンプにより計量され、パック内で濾過された後、口金に設けられたノズルからモノフィラメント、マルチフィラメント等として吐出される。
 この際、自触媒作用を有する樹脂(A成分)と加水分解調整剤(B成分)、および添加剤は予め混練されたものを用いてもよいし、ドライブレンドあるいはその他の添加方法により別々に溶融押し出し機に供給してもよい。特に加水分解調整剤(B成分)については、固体、液体いずれの状態で供給してもよい。具体的な供給方法としてはテーブルフィーダー、ディスクフィーダー、スクリューフィーダー、チューブポンプ、ダイアフラムポンプ、ギアポンプ、プランジャーポンプなど公知の方法が挙げられる。
 口金の形状、口金数は特に制限されるものではない。吐出された糸は直ちに冷却・固化された後集束され、油剤を付与されて巻き取られる。巻き取り速度は特に限定されるものではないが100m/分~10,000m/分の範囲が好ましい。
 本発明の複合繊維は、紡糸時には芯部のみに加水分解調整剤(B成分)が含有されているため、熱水中で使用前の繊維の状態では、単独層で紡糸した繊維と比較して芯部と鞘部とで加水分解調整剤(B成分)の濃度差が大きい傾向にある。具体的な濃度差としては、繊維芯部と鞘部で好ましくは0.1~20%、より好ましくは0.2~15%、さらに好ましくは0.3~10%、最も好ましくは0.4~5%である。濃度差が0.1%より大きい状態であるほど繊維外へのイソシアネート化合物および加水分解調整剤(B成分)自体の漏出量が少なく、20%より小さい場合には、加水分解調整剤が繊維表層まで十分拡散し、良好な加水分解性能を示す。
 芯部と鞘部との吐出量比は下記式(I)を満たすことが望ましい。下記式を満たす場合には、吐出時の鞘部の厚みが十分厚くなるため、鞘部の部分欠落や鞘部を透過してイソシアネート基を有する化合物および加水分解調整剤(B成分)そのものの加工時における繊維外への漏出をさらに抑制することができる。
Figure JPOXMLDOC01-appb-I000020
(但し、式中、Qc:芯部の吐出量、Qs:鞘部の吐出量、D:吐出口の口径)
(延伸)
 紡糸された未延伸糸はそのまま使用することもできるが、延伸して使用することもできる。未延伸で使用する場合、紡糸後、巻き取り前に、融点未満の温度で熱処理を行って結晶化処理してもよい。熱処理にはホットローラーのほか、接触式加熱ヒータ、非接触式熱板、熱媒浴など任意の方法を採用することができる。また、溶剤に浸漬するなどの結晶化方法を採用してもよい。
 延伸を行う場合は紡糸工程と延伸工程は必ずしも分離する必要はなく、紡糸後、いったん巻き取ることなく引き続き延伸を行う直接紡糸延伸法を採用しても構わない。
 延伸は1段延伸でも、2段以上の多段延伸でも良く、高強度の繊維を作製する観点から、延伸倍率は3倍以上が好ましく、さらには4倍以上が好ましい。一方、低配向の繊維を作製する観点からは3倍未満が好ましく、さらには2倍未満が好ましい。このように延伸倍率については、所望する繊維の強度、結晶化速度、配向度などの観点から延伸温度、延伸速度など他の延伸条件と組み合わせて適切な条件が選択される。
 延伸の予熱方法としては、ロール昇温のほか、平板状あるいはピン状の接触式加熱ヒータ、非接触式熱板、熱媒浴などが挙げられるが、通常用いられる方法を用いればよい。延伸温度は例えば、40~130℃、好ましくは50~120℃、特に好ましくは60~110℃の範囲が選択される。
(熱処理)
 延伸に引き続き、巻き取り前には、融点未満の温度で、熱処理が行われることが好ましい。熱処理にはホットローラーのほか、接触式加熱ヒータ、非接触式熱板、熱媒浴など任意の方法を採用することができる。
 熱処理温度は例えば、100~220℃、好ましくは110~210℃、特に好ましくは120~200℃の範囲が選択される。熱処理は、融点近傍で段階的に上げていくことで融点を向上することもできる。
 また、延伸処理後、熱処理後に弛緩処理を行うこともできる。さらに弛緩処理を行った後再度延伸処理をしたり、複数回弛緩処理をしたりしてもよい。
(カット、捲縮)
 本発明の芯鞘型複合繊維は短繊維であってもよい。短繊維を製造する場合は、長繊維での延伸方法に加えて、用途に応じた所定の繊維長にロータリーカッター等でカットする工程、更に捲縮が必要とされる場合は、定長熱処理と弛緩熱処理の間に押し込みクリンパー等で捲縮を付与する工程が加わる。その際、捲縮付与性を高めるため、水蒸気や電熱ヒータ等を用いて、クリンパー前で予熱することができる。
 また、延伸後、テンション下、170℃~220℃で熱固定することにより、高いステレオコンプレックッス結晶化度(S)、低い熱収縮性を有するとともに強度3.5cN/dTex以上のポリ乳酸繊維を得ることもできる。
(酸性末端基の封止)
 本発明の芯鞘型複合繊維は、紡糸時、延伸時、熱固定時の加熱および使用時における加熱により、繊維内の加水分解調整剤(B成分)が拡散し、自触媒作用を有する樹脂(A成分およびA’成分)の酸性末端基を封止することで、所望する分解挙動を示す。
 本発明において加熱とは、繊維を加熱する処理を指し、延伸工程あるいは熱固定工程も含まれる。加熱は、加水分解調整剤(B成分)が高分子化合物の末端に結合する反応に伴い生じるイソシアネート基を有する化合物や加水分解調整剤(B成分)そのものが繊維外に漏出しない範囲で実施されることが好ましい。具体的には、大気中で処理する場合には60℃~220℃の範囲で行い、60℃~120℃の場合は30秒以上10分以内、120℃~220℃の場合は1秒以上1分以内の短時間で行うことが好ましい。
 加熱は、イソシアネート基を有する化合物や加水分解調整剤(B成分)が繊維外に漏出することを抑制するため、水中でも好ましく行うことができる。水中で行う場合、40℃~60℃の場合は1時間~72時間、60℃~100℃の場合は30秒~3時間で行うことが、余分な加水分解を防止する観点から好ましい。イソシアネート基を有する化合物や加水分解調整剤(B成分)が繊維外に漏出することを抑制するため、加水分解調整剤を十分に含む流体中、あるいは加圧ガスや加圧水中で行うこともできる。
<芯鞘型繊維の特性>
 本発明の芯鞘型複合繊維は、下記A1~A3のいずれかを満たすことが望ましい。
A1:135℃から160℃の任意の温度の熱水中において、3時間後に樹脂組成物由来の酸性基が30当量/ton以下かつ樹脂組成物の非水溶分の重量が50%以上かつ24時間後に樹脂組成物の非水溶分の重量が50%以下。
A2:160℃から180℃の任意の温度の熱水中において、2時間後に樹脂組成物由来の酸性基が30当量/ton以下かつ樹脂組成物の非水溶分の重量が50%以上かつ24時間後に樹脂組成物の非水溶分の重量が50%以下。
A3:180℃から220℃の任意の温度の熱水中において、1時間後に樹脂組成物由来の酸性基が30当量/ton以下かつ樹脂組成物の非水溶分の重量が50%以上かつ24時間後に樹脂組成物の非水溶分の重量が50%以下。
 本発明の芯鞘型繊維が好適に使用できる範囲は温度によって変化する。また、A1~A3において、規定した一定期間(1時間、2時間、3時間)よりも早い時間は樹脂組成物由来の酸性基が30当量/ton以下かつ非水溶分の重量が50%以上であることが好ましい。非水溶分の重量は70%以上がより好ましく、80%以上がさらに好ましく、90%以上が最も好ましい。
 A1において、一定期間は3時間であり、その間、繊維の重量と形状を保持することを示している。また、オイルフィールドの掘削技術などで所望の性能を発揮するという観点から、135℃から160℃の任意の温度の熱水中において、本発明で定義される2時間よりも長い一定期間後に樹脂組成物由来の酸性基が30当量/ton以下かつ非水溶分の重量が50%以上であってもよい。
 A2において、一定期間は2時間であり、その間、繊維の重量と形状を保持することを示している。また、オイルフィールドの掘削技術などで所望の性能を発揮するという観点から、160℃から180℃の任意の温度の熱水中において、本発明で定義される2時間よりも長い一定期間後に樹脂組成物由来の酸性基が30当量/ton以下かつ非水溶分の重量が50%以上であってもよい。
 A3において、一定期間は1時間であり、その間、繊維の重量と形状を保持することを示している。オイルフィールドの掘削技術などで所望の性能を発揮するという観点から、180℃から220℃の任意の温度の熱水中において、本発明で定義される1時間よりも長い一定期間後に樹脂組成物由来の酸性基が30当量/ton以下かつ樹脂組成物の非水溶分の重量が50%以上であってもよい。
 A1~A3において規定した一定期間(1時間、2時間、3時間)後、B成分の酸性基を封止する効果が消え、酸性基の自触媒作用により樹脂の分解は促進され、それに伴い酸性基の濃度が指数関数的に上昇する。さらに、分解が進むと樹脂は水溶性モノマーとなり、水に溶解していく。その現象が一定期間、繊維の重量と形状を保持した後に可能な限り早く起こることが、オイルフィールドの掘削技術などで本発明の繊維を使用する際に適している。そのため、24時間後に樹脂組成物の非水溶分の重量が50%以下であることが好ましい。上記理由より、18時間後に樹脂組成物の非水溶分の重量が50%以下であることがより好ましく、12時間後に樹脂組成物の非水溶分の重量が50%以下であることがさらに好ましく、6時間後に樹脂組成物の非水溶分の重量が50%以下であることがさらに好ましい。
 本発明の芯鞘型複合繊維は、135℃から220℃の任意の温度の熱水中において、100時間後に非水溶分の重量が10%以下であることが好ましい。例えば、オイルフィールドの掘削技術などで本発明の繊維を使用する際、繊維は一定期間、重量と形状を保持した後に速やかに水中に溶解することで、効果的に働くことができる。そのため、135℃から220℃の任意の温度の熱水中において、100時間後に樹脂組成物の非水溶分の重量が10%以下であることが好ましい。また、使用後の水中の処理や所望の性能を発揮するという観点から、非水溶分は少ないほどよく、100時間後に非水溶分の重量が5%以下であることがより好ましく、1%以下であることがさらに好ましい。
<芯鞘型複合繊維の形状>
 本発明の芯鞘型複合繊維の鞘部の厚みは0.1~20μmが好ましく、より好ましくは0.2~15μm、さらに好ましくは0.3~10μm、もっとも好ましくは0.4~5μmである。0.1μmより厚い場合にはイソシアネート基を有する化合物および加水分解調整剤(B成分)そのものの加工時における繊維外への漏出をさらに抑制することができる。一方、20μmより薄い場合には加水分解調整剤が繊維表層まで十分拡散し、良好な加水分解性能を示す。
 繊維横断面としては芯部の面積Aと鞘部の面積Bとの比A:B=20:80~95:5が好ましく、より好ましくは30:70~90:10、さらに好ましくは40:60~80:20、もっとも好ましくは50:50~70:30である。鞘部の面積比が5%以上の場合にはイソシアネート基を有する化合物および加水分解調整剤(B成分)そのものの加工時における繊維外への漏出をさらに抑制することができる。一方、鞘部の面積比が80%以下の場合には加水分解調整剤が繊維表層まで十分拡散し、良好な加水分解性能を示す。
 上述した、鞘部の厚みおよび面積比は所望する加水分解挙動、熱処理条件および使用条件により適宜調整される。
 また、複合繊維の断面形状は、丸断面、多角断面、多葉断面、中空断面、その他公知の断面形状のいずれでもよく、芯鞘構造も単芯の他、2芯、3芯といった多芯構造であってもよい。さらには、正芯(同心)の単芯型でもよいし、偏芯(偏心)の単芯型であってもよい。
 また、芯鞘構造は芯部と鞘部との間に中間部を有する3層以上の層構成であってもよく、その場合、少なくとも最表面の鞘部が実質的に加水分解調整剤(B成分)を含まないことが重要である。
<その他>
 本発明の芯鞘型複合繊維は、目的を達成する範囲であれば、繊維単独で使用してもよく、他種繊維と混用することもできる。混用の態様としては、他種繊維からなる繊維構造物との各種組み合わせのほか、他の繊維との混繊糸、複合仮撚糸、混紡糸、長短複合糸、流体加工糸、カバリングヤーン、合撚、混綿、などが例示される。混用する場合、樹脂組成物の特徴を発揮するため混用比率は1重量%以上、より好ましくは10重量%以上、さらに好ましくは30重量%以上の範囲が選択される。
 混用される他の繊維としてはたとえば、綿、麻、レーヨン、テンセルなどのセルロース繊維、ウール、絹、アセテート、ポリエステル、ナイロン、アクリル、ビニロン、ポリオレフィン、ポリウレタンなどを挙げることができる。
Hereinafter, the present invention will be described in detail.
<Resin having autocatalytic action (component A)>
In the present invention, the resin (component A) having an autocatalytic action is a resin in which an acidic group generated by decomposition has an autocatalytic action.
The component A preferably contains a water-soluble monomer as a main component. For example, as described in US Pat. No. 7,275,596, for example, in the case of an aromatic polyester, a monomer generated by decomposition may react with other components in this application and precipitate in water. Because.
Here, water solubility means that the solubility in water at 25 ° C. is 0.1 g / L or more. The solubility of the water-soluble monomer in water is preferably 1 g / L or more, more preferably 3 g / L or more, from the viewpoint that the resin composition to be used does not remain in water after decomposition. More preferably, it is the above.
Moreover, a main component is 90 mol% or more of a structural component. The proportion of the main component is preferably 95 to 100 mol%, more preferably 98 to 100 mol%.
Examples of the component A include at least one selected from the group consisting of polyester, polyamide, polyamideimide, polyimide, polyurethane, and polyesteramide. Preferably polyester is illustrated.
Examples of the polyester include a polymer or copolymer obtained by polycondensation of one or more selected from dicarboxylic acid or an ester-forming derivative thereof and diol or an ester-forming derivative thereof, hydroxycarboxylic acid or an ester-forming derivative thereof, or a lactone. Is exemplified. Preferred examples include polyesters made of hydroxycarboxylic acid or ester-forming derivatives thereof. More preferably, an aliphatic polyester composed of hydroxycarboxylic acid or an ester-forming derivative thereof is exemplified.
Such a thermoplastic polyester may contain a cross-linked structure treated with a radical generation source such as an energy active ray or an oxidizing agent for moldability and the like.
Dicarboxylic acid or ester-forming derivatives include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4, Aromatic dicarboxylic acids such as 4′-diphenyl ether dicarboxylic acid, 5-tetrabutylphosphonium isophthalic acid and 5-sodium sulfoisophthalic acid can be mentioned. Moreover, aliphatic dicarboxylic acids, such as oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malonic acid, glutaric acid, and dimer acid, are mentioned. Moreover, alicyclic dicarboxylic acids, such as 1, 3- cyclohexane dicarboxylic acid and 1, 4- cyclohexane dicarboxylic acid, are mentioned. Moreover, these ester-forming derivatives are mentioned.
Examples of the diol or ester-forming derivative thereof include aliphatic glycols having 2 to 20 carbon atoms, that is, ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5 -Pentanediol, 1,6-hexanediol, decamethylene glycol, cyclohexanedimethanol, cyclohexanediol, dimer diol and the like.
Further, long-chain glycols having a molecular weight of 200 to 100,000, that is, polyethylene glycol, poly 1,3-propylene glycol, poly 1,2-propylene glycol, polytetramethylene glycol and the like can be mentioned. In addition, aromatic dioxy compounds, that is, 4,4′-dihydroxybiphenyl, hydroquinone, tert-butylhydroquinone, bisphenol A, bisphenol S, bisphenol F and the like can be mentioned. Moreover, these ester-forming derivatives are mentioned.
Examples of the hydroxycarboxylic acid include glycolic acid, lactic acid, hydroxypropioic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxybenzoic acid, p-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, and these Examples thereof include ester-forming derivatives. Examples of the lactone include caprolactone, valerolactone, propiolactone, undecalactone, and 1,5-oxepan-2-one.
Examples of the aliphatic polyester include a polymer mainly composed of an aliphatic hydroxycarboxylic acid, a polymer obtained by polycondensation of an aliphatic polyvalent carboxylic acid or an ester-forming derivative thereof and an aliphatic polyhydric alcohol as main components, and those polymers. Copolymers are exemplified.
Examples of the polymer having an aliphatic hydroxycarboxylic acid as a main constituent component include polycondensates such as glycolic acid, lactic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxyvaleric acid, and hydroxycaproic acid, and copolymers. Among these, polyglycolic acid, polylactic acid, poly-3-hydroxycarboxylic butyric acid, poly-4-polyhydroxybutyric acid, poly-3-hydroxyhexanoic acid or polycaprolactone, and copolymers thereof can be mentioned. Particularly, poly L-lactic acid, poly D-lactic acid, stereocomplex polylactic acid, and racemic polylactic acid can be mentioned.
Moreover, the polymer which has aliphatic polyhydric carboxylic acid and aliphatic polyhydric alcohol as the main structural components is mentioned. As polyvalent carboxylic acids, oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malonic acid, glutaric acid, dimer acid and other aliphatic dicarboxylic acids, 1,3-cyclohexanedicarboxylic acid, 1, Examples include alicyclic dicarboxylic acid units such as 4-cyclohexanedicarboxylic acid and ester derivatives thereof. Further, as the diol component, an aliphatic glycol having 2 to 20 carbon atoms, that is, ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6 -Hexanediol, decamethylene glycol, cyclohexanedimethanol, cyclohexanediol, dimer diol and the like. Further, long chain glycols having a molecular weight of 200 to 100,000, that is, polyethylene glycol, poly 1,3-propylene glycol, poly 1,2-propylene glycol, and polytetramethylene glycol can be mentioned. Specific examples include polyethylene adipate, polyethylene succinate, polybutylene adipate or polybutylene succinate, and copolymers thereof.
Polyester can be produced by a known method (for example, a saturated polyester resin handbook (written by Kazuo Yuki, published by Nikkan Kogyo Shimbun, published December 22, 1989)).
Furthermore, examples of the polyester include an unsaturated polyester resin obtained by copolymerizing an unsaturated polyvalent carboxylic acid or an ester-forming derivative thereof in addition to the polyester, and a polyester elastomer containing a low melting point polymer segment.
Examples of the unsaturated polycarboxylic acid include maleic anhydride, tetrahydromaleic anhydride, fumaric acid, endomethylenetetrahydromaleic anhydride and the like. In order to control the curing characteristics, various monomers are added to the unsaturated polyester, and it is cured and molded by a curing treatment with an active energy beam such as thermal curing, radical curing, light, or electron beam.
Further, in the present invention, the polyester may be a polyester elastomer obtained by copolymerizing a soft component. The polyester elastomer is a block copolymer composed of a high melting point polyester segment and a low melting point polymer segment having a molecular weight of 400 to 6,000 as described in known literatures such as JP-A-11-92636. When the polymer is formed only from the high melting point polyester segment, the melting point is 150 ° C. or more, which can be suitably used.
The polyester is preferably a polyester comprising a hydroxycarboxylic acid or an ester-forming derivative thereof. Further, an aliphatic polyester composed of hydroxycarboxylic acid or an ester-forming derivative thereof is more preferable. Furthermore, it is particularly preferable that the aliphatic polyester is poly L-lactic acid, poly D-lactic acid, and stereocomplex polylactic acid.
Here, polylactic acid consists of lactic acid units whose main chain is represented by the following formula (1). In the present specification, “mainly” is preferably a ratio of 90 to 100 mol%, more preferably 95 to 100 mol%, and still more preferably 98 to 100 mol%.
Figure JPOXMLDOC01-appb-I000015
The lactic acid unit represented by the formula (1) includes an L-lactic acid unit and a D-lactic acid unit, which are optical isomers. The main chain of the polylactic acid is preferably mainly an L-lactic acid unit, a D-lactic acid unit or a combination thereof.
The polylactic acid is preferably poly-D-lactic acid whose main chain is mainly composed of D-lactic acid units, and poly-L-lactic acid whose main chain is mainly composed of L-lactic acid units. The proportion of other units constituting the main chain is preferably in the range of 0 to 10 mol%, more preferably 0 to 5 mol%, and still more preferably 0 to 2 mol%.
Examples of other units constituting the main chain include units derived from dicarboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, lactones and the like.
Examples of the dicarboxylic acid include succinic acid, adipic acid, azelaic acid, sebacic acid, terephthalic acid, and isophthalic acid. Examples of the polyhydric alcohol include aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, octanediol, glycerin, sorbitan, neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, and polypropylene glycol. Or aromatic polyhydric alcohol etc., such as what added ethylene oxide to bisphenol, etc. are mentioned. Examples of the hydroxycarboxylic acid include glycolic acid and hydroxybutyric acid. Examples of the lactone include glycolide, ε-caprolactone, β-propiolactone, δ-butyrolactone, β- or γ-butyrolactone, pivalolactone, δ-valerolactone, and the like.
The weight average molecular weight of the polylactic acid is preferably 50,000 to 500,000, more preferably 80,000 to 350,000, and even more preferably 100,000 to 250,000 in order to achieve both hot water durability, mechanical properties and moldability of the fiber. It is a range. The weight average molecular weight is a value measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
When the resin having a self-catalytic action (component A) is polylactic acid (poly D-lactic acid or poly L-lactic acid) and is a homophase polylactic acid, it is 150 to 190 ° C. as measured by a differential scanning calorimeter (DSC). It preferably has a crystal melting peak (Tmh) between them and a heat of crystal melting (ΔHmsc) of 10 J / g or more. Heat resistance can be improved by satisfying the range of the crystal melting point and the crystal melting heat.
When the resin (component A) having an autocatalytic action is polylactic acid, the optical purity of poly L-lactic acid or poly D-lactic acid constituting the polylactic acid is preferably 98% or more, more preferably 98. 0.5% or more, more preferably 99% or more, and most preferably 99.5% or more. When the optical purity is low, a high melting point homophase polylactic acid may not be obtained.
The higher the optical purity, the higher the melting point of the stereocomplex crystal phase obtained by DSC, preferably 165 ° C. or higher, more preferably 170 ° C. or higher, more preferably 173 ° C. or higher, most preferably 175 ° C. or higher. .
The main chain of polylactic acid is preferably stereocomplex polylactic acid including a stereocomplex phase formed by poly L-lactic acid units and poly D-lactic acid units.
Stereocomplex polylactic acid preferably exhibits a crystal melting peak of 190 ° C. or higher by differential scanning calorimetry (DSC) measurement.
The stereocomplex polylactic acid preferably has a stereocomplexation degree (S) defined by the following formula of 30 to 100%.
S = [ΔHms / (ΔHmh + ΔHms)] × 100
(However, ΔHms represents the crystal melting enthalpy of stereocomplex phase polylactic acid, and ΔHmh represents the melting enthalpy of polylactic acid homophase crystal.)
The crystallinity of stereocomplex polylactic acid, particularly the crystallinity by XRD measurement, is in the range of 3 to 60%, more preferably 5 to 60%, still more preferably 7 to 60%, and particularly preferably 10 to 60%. .
The crystal melting point of stereocomplex polylactic acid is preferably in the range of 190 to 250 ° C., more preferably 200 to 230 ° C. The crystal melting enthalpy by DSC measurement of stereocomplex polylactic acid is preferably 20 J / g or more, more preferably 20 to 80 J / g, still more preferably 30 to 80 J / g. When the crystalline melting point of stereocomplex polylactic acid is less than 190 ° C., the heat resistance is deteriorated. Moreover, when it exceeds 250 degreeC, it will be necessary to shape | mold at the high temperature of 250 degreeC or more, and it may become difficult to suppress thermal decomposition of resin. Therefore, it is preferable that the resin composition of the present invention exhibits a crystal melting peak of 190 ° C. or higher as measured by a differential scanning calorimeter (DSC).
In addition, the isotactic number average chain length of polylactic acid (L i ) Is preferably 30 to 200, more preferably 35 to 150, still more preferably 40 to 120, and particularly preferably 45 to 100. When it is smaller than 30, the melting point of the stereocomplex crystal phase becomes low, and when it is larger than 200, it becomes difficult to form the stereocomplex crystal phase.
Isotactic number average chain length (L i ) Shows the peak of the quadruple structure of CH carbon of polylactic acid in Makromol. Chem. , 191, 287 (1990), and according to Polymer, 33, 2817 (1992), the area ratio (I iii , I isi , I sii , I iis , I sis , I ssi , I iss , I sss ) Is a value defined by the following formula. i represents isotactic (LL, DD), and s represents syndiotactic (LD, DL) linkage.
L i = (3I iii + 2I isi + 2I sii + 2I iis + I sis + I ssi + I iss ) / (I isi + I iis + I sii + 2I sis + 2I ssi + 2I iss + 3I sss +1
In the stereocomplex polylactic acid, the weight ratio of poly D-lactic acid to poly L-lactic acid is preferably 90/10 to 10/90. More preferably, it is in the range of 80/20 to 20/80, more preferably 30/70 to 70/30, particularly preferably 40/60 to 60/40, and theoretically preferably as close to 1/1 as possible. .
The weight average molecular weight of the stereocomplex polylactic acid is preferably in the range of 50,000 to 500,000, more preferably 80,000 to 350,000, and still more preferably 100,000 to 250,000. The weight average molecular weight is a value measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
Poly L-lactic acid and poly D-lactic acid can be produced by a conventionally known method. For example, it can be produced by ring-opening polymerization of L-lactide or D-lactide in the presence of a metal-containing catalyst. In addition, low molecular weight polylactic acid containing a metal-containing catalyst is crystallized as desired or without crystallization, under reduced pressure or from normal pressure, in the presence of an inert gas stream, or absent It can also be produced by solid phase polymerization. Furthermore, it can be produced by a direct polymerization method in which lactic acid is subjected to dehydration condensation in the presence or absence of an organic solvent.
The polymerization reaction can be carried out in a conventionally known reaction vessel. For example, in a ring-opening polymerization or direct polymerization method, a vertical reactor or a horizontal reactor equipped with a stirring blade for high viscosity, such as a helical ribbon blade, is used alone, or Can be used in parallel. Moreover, any of a batch type, a continuous type, a semibatch type may be sufficient, and these may be combined.
Alcohol may be used as a polymerization initiator. Such alcohol is preferably non-volatile without inhibiting the polymerization of polylactic acid, such as decanol, dodecanol, tetradecanol, hexadecanol, octadecanol, ethylene glycol, trimethylolpropane, pentaerythritol, etc. Can be suitably used. It can be said that the polylactic acid prepolymer used in the solid-phase polymerization method is preferably crystallized in advance from the viewpoint of preventing resin pellet fusion. The prepolymer is in a solid state in a fixed vertical or horizontal reaction vessel, or in a reaction vessel (such as a rotary kiln) in which the vessel itself rotates, such as a tumbler or kiln, in the temperature range from the glass transition temperature of the prepolymer to less than the melting point. Polymerized.
Metal-containing catalysts include alkali metals, alkaline earth metals, rare earths, transition metals, fatty acid salts such as aluminum, germanium, tin, antimony, titanium, carbonates, sulfates, phosphates, oxides, hydroxides , Halides, alcoholates and the like. Among them, fatty acid salts, carbonates, sulfates, phosphates, oxides, hydroxides containing at least one metal selected from tin, aluminum, zinc, calcium, titanium, germanium, manganese, magnesium and rare earth elements Products, halides, and alcoholates are preferred.
Tin compounds due to low catalytic activity and side reactions, specifically stannous chloride, stannous bromide, stannous iodide, stannous sulfate, stannic oxide, tin myristate, tin octylate Tin-containing compounds such as tin stearate and tetraphenyltin are exemplified as preferred catalysts. Among these, tin (II) compounds, specifically, diethoxytin, dinonyloxytin, tin (II) myristate, tin (II) octylate, tin (II) stearate, tin (II) chloride and the like are suitable. Illustrated.
The amount of catalyst used is 0.42 x 10 per kg of lactide. -4 ~ 100 × 10 -4 (Mole) and further considering the reactivity, color tone and stability of the resulting polylactides, 1.68 × 10 -4 ~ 42.1 × 10 -4 (Mole), particularly preferably 2.53 × 10 -4 ~ 16.8 × 10 -4 (Mol) used.
The metal-containing catalyst used for the polymerization of polylactic acid is preferably deactivated with a conventionally known deactivator prior to using polylactic acid. Examples of such a deactivator include an organic ligand having a group of chelate ligands having an imino group and capable of coordinating with a polymerized metal catalyst.
Also, dihydridooxoline (I) acid, dihydridotetraoxodiphosphorus (II, II) acid, hydridotrioxoline (III) acid, dihydridopentaoxodiphosphoric acid (III), hydridopentaoxodi (II, IV) Acid, dodecaoxohexaphosphoric acid (III), hydridooctaoxotriphosphoric acid (III, IV, IV) acid, octaoxotriphosphoric acid (IV, III, IV) acid, hydridohexaoxodiphosphoric acid (III, V) acid, hexaoxodiacid Examples thereof include low oxidation number phosphoric acids having an acid number of 5 or less, such as phosphorus (IV) acid, decaoxotetraphosphoric (IV) acid, hendecaoxotetraphosphoric (IV) acid, and eneoxooxophosphorus (V, IV, IV) acid.
Also xH 2 O • yP 2 O 5 And orthophosphoric acid of x / y = 3. Moreover, polyphosphoric acid which is 2> x / y> 1, and is called diphosphoric acid, triphosphoric acid, tetraphosphoric acid, pentaphosphoric acid or the like based on the degree of condensation, and a mixture thereof are exemplified. Moreover, the metaphosphoric acid represented by x / y = 1, especially trimetaphosphoric acid and tetrametaphosphoric acid are mentioned. Further, ultraphosphoric acid represented by 1> x / y> 0 and having a network structure in which a part of the phosphorus pentoxide structure is partially removed (these may be collectively referred to as a metaphosphoric acid compound) may be mentioned. . Moreover, the acid salt of these acids is mentioned. Moreover, the monovalent | monohydric and polyhydric alcohol of these acids, the partial ester of polyalkylene glycol, and complete ester are mentioned. Examples thereof include phosphono-substituted lower aliphatic carboxylic acid derivatives of these acids.
From the catalyst deactivation ability, the formula xH 2 O • yP 2 O 5 An orthophosphoric acid represented by x / y = 3 is preferred. Moreover, 2> x / y> 1, and polyphosphoric acid referred to as diphosphoric acid, triphosphoric acid, tetraphosphoric acid, pentaphosphoric acid and the like, and a mixture thereof are preferable from the degree of condensation. Further, metaphosphoric acid represented by x / y = 1, particularly trimetaphosphoric acid and tetrametaphosphoric acid are preferable. Ultraphosphoric acid represented by 1> x / y> 0 and having a network structure in which a part of the phosphorus pentoxide structure is left (these may be collectively referred to as a metaphosphoric acid compound) is preferable. Moreover, the acidic salt of these acids is preferable. Further, monovalent or polyhydric alcohols of these acids or partial esters of polyalkylene glycols are preferred.
The metaphosphoric acid compound used in the present invention is a cyclic metaphosphoric acid in which about 3 to 200 phosphoric acid units are condensed, an ultra-regional metaphosphoric acid having a three-dimensional network structure, or an alkali metal salt or an alkaline earth metal salt thereof. Onium salts). Among them, cyclic sodium metaphosphate, ultra-region sodium metaphosphate, phosphono-substituted lower aliphatic carboxylic acid derivative dihexylphosphonoethyl acetate (hereinafter sometimes abbreviated as DHPA) and the like are preferably used.
The polylactic acid preferably has a lactide content of 5,000 ppm or less. The lactide contained in the polylactic acid deteriorates the resin and deteriorates the color tone at the time of melt processing, and in some cases, it may be disabled as a product.
Poly L-lactic acid and / or poly D-lactic acid immediately after the melt ring-opening polymerization usually contains 1 to 5% by weight of lactide, but poly L-lactic acid and / or poly D-lactic acid is At any stage up to lactic acid molding, a conventionally known lactide weight loss method, that is, vacuum devolatilization with a single-screw or multi-screw extruder, or high vacuum treatment in a polymerization apparatus is carried out alone or in combination. In addition, lactide can be reduced to a suitable range.
The smaller the lactide content, the better the melt stability and heat-and-moisture resistance of the resin, but there is also the advantage of lowering the resin melt viscosity, making it reasonable and economical to meet the desired purpose. is there. That is, it is reasonable to set it to 1,000 ppm or less, at which practical melt stability is achieved. More preferably, a range of 700 ppm or less, more preferably 500 ppm or less, particularly preferably 100 ppm or less is selected. The polylactic acid component has a lactide content within such a range, thereby improving the stability of the resin during melt molding of the molded product of the present invention, and the advantage that the molded product can be efficiently manufactured, and the moisture resistant heat stability of the molded product. , Low gas can be improved.
Further, when the resin (component A) having an autocatalytic action is stereocomplex polylactic acid, the optical purity of poly L-lactic acid and poly D-lactic acid constituting polylactic acid is preferably 98% or more, more preferably It is 98.5% or more, more preferably 99% or more, and most preferably 99.5% or more. When the optical purity is low, the isotactic number average chain length does not become long, and a high-melting stereocomplex crystal phase may not be obtained.
The higher the optical purity, the higher the melting point of the stereocomplex crystal phase obtained by DSC, preferably 200 ° C or higher, more preferably 205 ° C or higher, more preferably 210 ° C or higher, most preferably 215 ° C or higher. .
Stereocomplex polylactic acid is prepared by bringing poly L-lactic acid and poly D-lactic acid into contact in a weight ratio of 10/90 to 90/10, preferably by melt contact, and more preferably melt kneading. Can be obtained. The contact temperature is preferably in the range of 210 to 300 ° C., more preferably 220 to 290 ° C., and further preferably 225 to 280 ° C. from the viewpoints of stability of polylactic acid when melted, thermal decomposition, and improvement of stereocomplex crystallinity. It is.
The method of melt kneading is not particularly limited, but a conventionally known batch type or continuous type melt mixing apparatus is preferably used. For example, a melt-stirred tank, a single-screw or twin-screw extruder, a kneader, a non-shaft vertical stirring tank, “Vibolac (registered trademark)” manufactured by Sumitomo Heavy Industries, Ltd., N-SCR, manufactured by Mitsubishi Heavy Industries, Ltd. ( Glasses blades, lattice blades or Kenix type stirrers made by Hitachi, Ltd., or Sulzer type SMLX type static mixer equipped pipe type polymerization equipment can be used, but self-cleaning type in terms of productivity, quality of polylactic acid, especially color tone. A non-axial vertical stirring tank, an N-SCR, a twin-screw extruder, or the like that is a polymerization apparatus is preferably used.
In the polylactic acid used in the present invention, a method of blending a specific additive in order to stably and highly promote the formation of stereocomplex polylactic acid crystals is preferably applied without departing from the gist of the present invention. The additive is not particularly limited as long as it has a transesterification catalytic ability. Among them, organic acid metal salts are preferably used, and examples thereof include known phosphoric acid metal salts, carboxylic acid metal salts, and sulfonic acid metal salts.
<Hydrolysis regulator (component B)>
In the present invention, the hydrolysis regulator (component B) is an agent that seals the terminal groups of the resin (component A) and acidic groups generated by the decomposition. That is, the agent has an effect of suppressing the autocatalytic action of the resin (component A) and delaying the hydrolysis.
Examples of the acidic group include at least one selected from the group consisting of a carboxyl group, a sulfonic acid group, a sulfinic acid group, a phosphonic acid group, and a phosphinic acid group. In the present invention, a carboxyl group is particularly exemplified.
Since the use conditions are hot water higher than 135 ° C., the B component preferably has a water resistance at 120 ° C. of 95% or more and a reactivity with acidic groups at 190 ° C. of 50% or more.
Here, the water resistance at 120 ° C. means, for example, 1) 2 g of water is added to a system in which 1 g of B component is dissolved in 50 ml of dimethyl sulfoxide, and dissolved when stirred at 120 ° C. for 5 hours while refluxing. Approximate amount of the agent that remains unchanged after 5 hours of treatment calculated from the analysis of the part that is present, or 2) If it does not dissolve in dimethyl sulfoxide, the B component can be dissolved and hydrophilic It is a value represented by the following formula (iv) using an approximate amount obtained by performing the same treatment as in 1) above using a certain solvent.
In 2), when the boiling point of the solvent to be used was less than 120 ° C., dimethyl sulfoxide was mixed with the solvent in a range where at least a part of the component B was dissolved, and 50 ml of the mixed solvent was used. The mixing ratio is usually selected from the range of (1: 2) to (2: 1), but is not particularly limited as long as the above conditions are satisfied. The solvent used in 2) is usually soluble if selected from tetrahydrofuran, N, N-dimethylformamide, and ethyl acetate.
Water resistance (%) = [Amount after 5 hours treatment / initial amount] × 100 (iv)
In addition, the water resistance may be expressed by an equivalent evaluation.
When the water resistance of an unstable agent is evaluated, a part of the agent is denatured by hydrolysis, and the acidic group sealing ability is lowered. When such an agent is used in hot hot water, it is deactivated by water, so that the ability to seal the target acidic group is significantly reduced. From the above, the water resistance at 120 ° C. is more preferably 97% or more, further preferably 99% or more, and particularly preferably 99.9% or more. When it is 99.9% or more, that is, stable in high-temperature hot water, the reaction with acidic groups can be carried out selectively and efficiently.
Moreover, the reactivity with an acidic group at 190 ° C. means, for example, that a group that reacts with a carboxyl group of a hydrolysis modifier is 1. It is obtained by adding an amount of an agent equivalent to 5 times equivalent and melt-kneading for 1 minute at a resin temperature of 190 ° C. and a rotation speed of 30 rpm in a nitrogen atmosphere using a lab plast mill (manufactured by Toyo Seiki Seisakusho). With respect to the resin composition, the carboxyl group concentration was measured, and the value given by the following formula (v).
Reactivity (%) = [(carboxyl group concentration of polylactic acid for evaluation−carboxyl group concentration of resin composition) / carboxyl group concentration of polylactic acid for evaluation] × 100 (v)
The evaluation polylactic acid preferably has a MW of 120,000 to 200,000 and a carboxyl group concentration of 10 to 30 equivalents / ton. As such polylactic acid, for example, polylactic acid “NW3001D” (MW is 150,000, carboxyl group concentration is 22.1 equivalent / ton) manufactured by Nature Works can be preferably used. Add the amount of the agent that makes the group that reacts with the carboxyl group of the adjusting agent 33.15 equivalents / ton, and use Labo Plast Mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.) under a nitrogen atmosphere under a resin temperature of 190 ° C., The reactivity value can be obtained by measuring the carboxyl group concentration of the resin composition obtained by melt-kneading for 1 minute at a rotation speed of 30 rpm.
In addition to this, the reactivity with an acidic group may be given by an equivalent evaluation.
When the reactivity of a stable agent is evaluated, the carboxyl group concentration of the resin composition hardly changes even when kneaded under the above conditions. Such an agent, when used in high-temperature hot water, hardly exhibits the ability to seal the target acidic group, and therefore cannot suppress the decomposition of the resin (component A).
From the above, the reactivity with acidic groups at 190 ° C. is more preferably 60% or more, further preferably 70% or more, and particularly preferably 80% or more. When the reactivity with acidic groups in high-temperature hot water is 80% or more, the reaction with acidic groups can be carried out efficiently.
It is important that the hydrolysis regulator (component B) has a water resistance at 120 ° C. of 95% or more and a reactivity with acidic groups at 190 ° C. of 50% or more. That is, a very stable agent has a high water resistance, but a low reactivity with acidic groups. In that case, the ability to seal the target acidic groups in hot hot water is almost manifested. do not do. In addition, a very unstable agent has a high reactivity with an acidic group, but has a low water resistance. In that case, it is deactivated by water in high-temperature hot water. The ability to seal is significantly reduced.
From the above, the hydrolysis regulator having high water resistance and high reactivity with acidic groups is preferably used in the present invention.
Examples of the component B include addition reaction type compounds such as carbodiimide compounds, isocyanate compounds, epoxy compounds, oxazoline compounds, oxazine compounds, and aziridine compounds. Two or more of these compounds can be used in combination. From the viewpoint of water resistance and reactivity with acidic groups, a carbodiimide compound is preferably exemplified.
Examples of the carbodiimide compound include those having the basic structures of the following general formulas (4) and (5).
Figure JPOXMLDOC01-appb-I000016
(Wherein R 8 , R 9 Are each independently an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof, and may contain a hetero atom. R 8 And R 9 May be bonded to form a cyclic structure, or two or more cyclic structures may be formed by a spiro structure or the like)
Figure JPOXMLDOC01-appb-I000017
(Wherein R 10 Is an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof, and may contain a hetero atom. n is an integer of 2 to 1000. )
From the viewpoints of stability and ease of use, an aromatic carbodiimide compound is more preferable. For example, aromatic carbodiimide compounds such as the following formulas (2) and (3) are exemplified.
Figure JPOXMLDOC01-appb-I000018
(Wherein R 1 ~ R 4 Are each independently an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof, and may contain a hetero atom. X and Y are each independently a hydrogen atom, an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof. May be included. Each aromatic ring may be bonded by a substituent to form a cyclic structure, or two or more cyclic structures may be formed by a spiro structure or the like)
Figure JPOXMLDOC01-appb-I000019
(Wherein R 5 ~ R 7 Are each independently an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof, and may contain a hetero atom. n is an integer of 2 to 1000. )
Specific examples of such aromatic carbodiimide compounds include polysynthesized by decarboxylation condensation reaction of bis (2,6-diisopropylphenyl) carbodiimide and 1,3,5-triisopropylbenzene-2,4-diisocyanate. Examples thereof include carbodiimide and a combination of the two.
<Resin composition>
The core-sheath-type conjugate fiber of the present invention is formed from at least two types of resin compositions: a resin composition (C component) that forms a core part and a resin composition (D component) that forms a sheath part.
A core part consists of a resin composition (C component) containing resin (A component) which has an autocatalytic action, and a hydrolysis regulator (B component).
The resin composition (component C) retains its shape for a certain period in hot water at 135 ° C. or higher, and then the effect of sealing the acidic group of the hydrolysis modifier (component B) disappears. The autocatalytic action promotes the decomposition of the resin, and accordingly, the concentration of acidic groups increases exponentially and further promotes the decomposition.
It is suitable when the resin composition of the present invention is used in an oil field excavation technique or the like that the phenomenon occurs as soon as possible after maintaining the weight and shape of the resin for a certain period. In addition, when the main chain of the resin is mainly composed of water-soluble monomer units, the decomposition product is dissolved in water.
Therefore, it is necessary that the weight of the non-water-soluble content of the resin composition is less than 30% after 100 hours in hot water at an arbitrary temperature of 135 ° C. or higher. The timing at which the decomposition rate changes abruptly can be controlled by the amount of hydrolysis modifier added. In consideration of the volume ratio between the core and the sheath, the resin composition (C component) as a whole is 100 parts by weight, the resin (A component) is 60 to 99 parts by weight, and the hydrolysis regulator (B component) is 1 part. Contains ~ 40 parts by weight. If the content of the hydrolysis regulator (component B) is less than 1 part by weight, the hydrolysis regulator may not spread over the entire fiber, and a sufficient acidic group sealing effect may not be exhibited. On the other hand, when the amount is more than 40 parts by weight, the moldability may be deteriorated, process contamination may occur. From this viewpoint, the content of the hydrolysis regulator (component B) is preferably 1 to 40 parts by weight, more preferably 2 to 30 parts by weight, still more preferably 3 to 20 parts by weight, and most preferably 5 to 15 parts by weight. preferable.
A sheath part is a resin composition (D component) which does not contain a hydrolysis regulator (B component) substantially in resin (A 'component) which has an autocatalytic action. The resin composition (component D) is disposed in the sheath part, and it is necessary to reduce leakage of the isocyanate compound generated in the core part and the hydrolysis regulator itself to the outside of the fiber.
Moreover, it is preferable to use the same resin as the resin (A component) having an autocatalytic action used for the resin composition (C component) as the resin having an autocatalytic action (A ′ component). When the same material is used, the hydrolysis regulator (component B) in the resin composition (component C) is the fiber after the spinning step and heat in hot water. It is because it diffuses more uniformly in the inside.
In the core-sheath type composite fiber of the present invention, the content of the hydrolysis adjusting agent (B component) of the resin composition (C component) of the core part is the hydrolysis adjusting agent (D component) of the resin composition (D component) of the sheath part ( More than the content of B component).
Content of the hydrolysis regulator (B component) of the resin composition (C component) of a core part and the resin composition (D component) of a sheath part can be analyzed by the following method. The core-sheath type composite fiber is cut into a cross section perpendicular to the fiber length direction with a microtome equipped with a sharp blade, and the cross-sectional microscopic IR mapping measurement is performed, and the IR absorption peak area peculiar to the hydrolysis regulator (component B) In addition, IR absorption peak areas peculiar to resins having autocatalytic action (component A and component A ′) are two-dimensionally mapped. For microscopic IR measurement, an attenuated total reflection (ATR) method using a crystallite is used, and a map having sufficiently high spatial resolution is created. A fiber cross-sectional distribution of the content of the hydrolysis modifier (component B) is obtained from a map of the IR absorption peak area using a calibration curve prepared in advance. The average value of the hydrolysis regulator (B component) content near the center of the fiber is taken as the content of the hydrolysis regulator (B component) of the resin composition (C component) in the core, and the hydrolysis adjustment of the fiber outer peripheral portion The average value of the agent (B component) content is defined as the content of the hydrolysis regulator (B component) of the resin composition (D component) in the sheath.
As a special carbodiimide, a carbodiimide compound having a carbodiimide group and a cyclic structure in which the first nitrogen and the second nitrogen are bonded by a linking group as disclosed in WO2010 / 071213 The terminal group of the resin and the acidic group generated by decomposition can be sealed, but since the isocyanate compound is not liberated at that time, it may be contained in the resin composition (D component) of the sheath. In addition, as a compound that does not liberate an isocyanate compound, an epoxy compound, oxazoline, and the like may be contained in the sheath resin composition (component D) to seal the acidic group.
<Amount of acidic end group of core-sheath type composite fiber>
The composite fiber of the present invention has an acidic end group amount of 5 eq / ton or less. When the resin composition (C component) in the core contains a sufficiently large amount of the hydrolysis regulator (B component), the amount of acidic end groups is kept at a sufficiently low concentration.
On the other hand, since the resin composition (D component) of the sheath part is substantially free of the hydrolysis regulator (B component) or its content is small, the acidic end group is a hydrolysis regulator (B component). Remains without reacting. When the amount of the remaining acidic end groups is large, hydrolysis of the resin (A component and A ′ component) having autocatalytic action in hot water is accelerated, and desired decomposition characteristics cannot be obtained.
From this viewpoint, the acidic end group amount of the composite fiber is preferably 5 eq / ton or less, more preferably 3 eq / ton or less, further preferably 2 eq / ton or less, and most preferably 1.5 eq / ton or less.
On the other hand, from the viewpoint of reducing process contamination by a compound having an isocyanate group, a state in which acidic end groups remain to some extent is preferable. Accordingly, the acidic end group of the composite fiber is preferably 0.05 eq / ton or more, and more preferably 0.1 eq / ton or more.
<Additives>
The resin composition (refers to both the resin composition (C component) and the resin composition (D component)) may contain known additives and fillers as long as the effects of the invention are not lost. For example, a stabilizer, a crystallization accelerator, a filler, a release agent, an antistatic agent, a plasticizer, an impact resistance improver, a terminal blocking agent, a compatibilizing agent, and the like can be given.
As for the additive, from the viewpoint of not losing the effect of the invention, a component that accelerates the decomposition of the autocatalytic resin (component A) mainly composed of a water-soluble monomer, such as a phosphoric acid component or a resin composition It is important to reduce the effect by not using phosphite-based additives that decompose in materials to produce phosphoric acid components, or by reducing or deactivating as much as possible. . For example, the method of using together the component which deactivates or suppresses them together with a hydrolysis regulator (B component) etc. can be taken suitably.
<Stabilizer>
The resin composition can contain a stabilizer. As a stabilizer, what is used for the stabilizer of a normal thermoplastic resin can be used. For example, an antioxidant, a light stabilizer, etc. can be mentioned. By blending these agents, a molded product having excellent mechanical properties, moldability, heat resistance and durability can be obtained.
Examples of the antioxidant include hindered phenol compounds, hindered amine compounds, phosphite compounds, thioether compounds, and the like.
Examples of hindered phenol compounds include n-octadecyl-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) -propionate, n-octadecyl-3- (3′-methyl-5 ′). -Tert-butyl-4'-hydroxyphenyl) -propionate, n-tetradecyl-3- (3 ', 5'-di-tert-butyl-4'-hydroxyphenyl) -propionate, 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) -propionate], 1,4-butanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) -Propionate], 2,2'-methylene-bis (4-methyl-tert-butylphenol), triethylene glycol-bis [3- (3-t ert-butyl-5-methyl-4-hydroxyphenyl) -propionate], tetrakis [methylene-3- (3 ′, 5′-di-tert-butyl-4-hydroxyphenyl) propionate] methane, 3,9-bis [2- {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] 2,4,8,10-tetraoxaspiro (5,5) undecane Etc.
As a hindered amine compound, N, N′-bis-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionylhexamethylenediamine, N, N′-tetramethylene-bis [3- (3′-Methyl-5′-tert-butyl-4′-hydroxyphenyl) propionyl] diamine, N, N′-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) -propionyl ] Hydrazine, N-salicyloyl-N'-salicylidenehydrazine, 3- (N-salicyloyl) amino-1,2,4-triazole, N, N'-bis [2- {3- (3,5-di -Tert-butyl-4-hydroxyphenyl) propionyloxy} ethyl] oxyamide and the like. Preferably, triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) -propionate] and tetrakis [methylene-3- (3 ′, 5′-di-tert-butyl) -4-hydroxyphenyl) propionate] methane and the like.
As the phosphite compound, those in which at least one P—O bond is bonded to an aromatic group are preferable. Specifically, tris (2,6-di-tert-butylphenyl) phosphite, tetrakis ( 2,6-di-tert-butylphenyl) 4,4′-biphenylene phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol-di-phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) phosphite, 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane, tris (mixed mono and di-noni) Phenyl) phosphite, tris (nonylphenyl) phosphite, 4,4′-isopropylidenebis (phenyl-dialkylphosphite), 2,4,8,10-tetra-tert-butyl-6- [3- (3 -Methyl-4-hydroxy-5-t-butylphenyl) propoxy] dibenzo [d, f] [1,3,2] dioxaphosphine “Sumilyzer (registered trademark) GP” and the like.
Specific examples of thioether compounds include dilauryl thiodipropionate, ditridecyl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, pentaerythritol-tetrakis (3-lauryl thiopropionate), Pentaerythritol-tetrakis (3-dodecylthiopropionate), pentaerythritol-tetrakis (3-octadecylthiopropionate), pentaerythritol tetrakis (3-myristylthiopropionate), pentaerythritol-tetrakis (3-stearylthio) Propionate) and the like.
Specific examples of the light stabilizer include benzophenone compounds, benzotriazole compounds, aromatic benzoate compounds, oxalic acid anilide compounds, cyanoacrylate compounds, hindered amine compounds, and the like.
Examples of the benzophenone compounds include benzophenone, 2,4-dihydroxybenzophenone, 2,2′-dihydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2 ′. -Dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sulfobenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 5-chloro-2-hydroxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-methoxy -2'-carbo Shi benzophenone, 2-hydroxy-4- (2-hydroxy-3-methyl - acryloxy-isopropoxyphenyl) benzophenone.
Examples of the benzotriazole compound include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (3,5-di-tert-butyl-2-hydroxyphenyl) benzotriazole, 2- (3,5- Di-tert-amyl-2-hydroxyphenyl) benzotriazole, 2- (3 ′, 5′-di-tert-butyl-4′-methyl-2′-hydroxyphenyl) benzotriazole, 2- (3,5- Di-tert-amyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (5-tert-butyl-2-hydroxyphenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis (Α, α-Dimethylbenzyl) phenyl] benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis (α, α-dimethylben ) Phenyl] -2H- benzotriazole, 2- (4'-octoxy-2'-hydroxyphenyl) benzotriazole.
Examples of the aromatic benzoate compounds include alkylphenyl salicylates such as p-tert-butylphenyl salicylate and p-octylphenyl salicylate.
Examples of oxalic acid anilide compounds include 2-ethoxy-2′-ethyloxalic acid bisanilide, 2-ethoxy-5-tert-butyl-2′-ethyloxalic acid bisanilide, and 2-ethoxy-3′-. Examples include dodecyl oxalic acid bisanilide.
Examples of the cyanoacrylate compound include ethyl-2-cyano-3,3′-diphenyl acrylate and 2-ethylhexyl-cyano-3,3′-diphenyl acrylate.
Examples of hindered amine compounds include 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-2,2,6, 6-tetramethylpiperidine, 4- (phenylacetoxy) -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-methoxy-2,2, 6,6-tetramethylpiperidine, 4-octadecyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6,6-tetramethylpiperidine, 4-benzyloxy-2,2 , 6,6-tetramethylpiperidine, 4-phenoxy-2,2,6,6-tetramethylpiperidine, 4- (ethylcarba Yloxy) -2,2,6,6-tetramethylpiperidine, 4- (cyclohexylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, 4- (phenylcarbamoyloxy) -2,2,6,6 -Tetramethylpiperidine, bis (2,2,6,6-tetramethyl-4-piperidyl) carbonate, bis (2,2,6,6-tetramethyl-4-piperidyl) oxalate, bis (2,2,6 , 6-tetramethyl-4-piperidyl) malonate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) adipate, Bis (2,2,6,6-tetramethyl-4-piperidyl) terephthalate, 1,2-bis (2,2,6,6-tetramethyl-4-piperidylo Cis) -ethane, α, α′-bis (2,2,6,6-tetramethyl-4-piperidyloxy) -p-xylene, bis (2,2,6,6-tetramethyl-4-piperidyl) -Tolylene-2,4-dicarbamate, bis (2,2,6,6-tetramethyl-4-piperidyl) -hexamethylene-1,6-dicarbamate, tris (2,2,6,6-tetramethyl -4-piperidyl) -benzene-1,3,5-tricarboxylate, tris (2,2,6,6-tetramethyl-4-piperidyl) -benzene-1,3,4-tricarboxylate, 1- “2- {3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy} -2,2,6,6-tetramethylpiperidine, 1,2,3,4-butanetetracarboxylic acid And 1, 2, 2, 6 Condensation product of 6-pentamethyl-4-piperidinol and β, β, β ′, β′-tetramethyl-3,9- [2,4,8,10-tetraoxaspiro (5,5) undecane] dimethanol Etc.
In this invention, a stabilizer component may be used by 1 type and may be used in combination of 2 or more type. In addition, a hindered phenol compound and / or a benzotriazole compound is preferable as the stabilizer component.
The content of the stabilizer is preferably 0.01 to 3 parts by weight, more preferably 0.03 to 2 parts by weight, per 100 parts by weight of the resin (component A) having an autocatalytic action.
<Crystallization accelerator>
The resin composition can contain an organic or inorganic crystallization accelerator. By containing the crystallization accelerator, a molded product having excellent mechanical properties, heat resistance, and moldability can be obtained.
That is, by applying the crystallization accelerator, moldability and crystallinity are improved, and a molded product that is sufficiently crystallized even in normal injection molding and excellent in heat resistance and moist heat resistance can be obtained. In addition, the manufacturing time for manufacturing the molded product can be greatly shortened, and the economic effect is great.
As the crystallization accelerator, those generally used as crystallization nucleating agents for crystalline resins can be used, and both inorganic crystallization nucleating agents and organic crystallization nucleating agents can be used.
As inorganic crystallization nucleating agents, talc, kaolin, silica, synthetic mica, clay, zeolite, graphite, carbon black, zinc oxide, magnesium oxide, titanium oxide, calcium carbonate, calcium sulfate, barium sulfate, calcium sulfide, boron nitride , Montmorillonite, neodymium oxide, aluminum oxide, phenylphosphonate metal salt and the like. These inorganic crystallization nucleating agents are treated with various dispersing aids in order to enhance the dispersibility in the composition and its effect, and are highly dispersed in a primary particle size of about 0.01 to 0.5 μm. Are preferred.
Organic crystallization nucleating agents include calcium benzoate, sodium benzoate, lithium benzoate, potassium benzoate, magnesium benzoate, barium benzoate, calcium oxalate, disodium terephthalate, dilithium terephthalate, dipotassium terephthalate, Sodium laurate, potassium laurate, sodium myristate, potassium myristate, calcium myristate, barium myristate, sodium octacolate, calcium octacolate, sodium stearate, potassium stearate, lithium stearate, calcium stearate, magnesium stearate , Barium stearate, sodium montanate, calcium montanate, sodium toluate, sodium salicylate, potassium salicylate, salicy Organic carboxylic acid metal salts such as zinc acid, aluminum dibenzoate, β-naphthoic acid sodium, β-naphthoic acid potassium, sodium cyclohexanecarboxylic acid and the like, and organic sulfonic acid metal salts such as sodium p-toluenesulfonate and sodium sulfoisophthalate. Can be mentioned.
Also, organic carboxylic acid amides such as stearic acid amide, ethylenebislauric acid amide, palmitic acid amide, hydroxystearic acid amide, erucic acid amide, trimesic acid tris (tert-butylamide), low density polyethylene, high density polyethylene, polyiso Propylene, polybutene, poly-4-methylpentene, poly-3-methylbutene-1, polyvinylcycloalkane, polyvinyltrialkylsilane, branched polylactic acid, sodium salt of ethylene-acrylic acid copolymer, sodium of styrene-maleic anhydride copolymer Examples thereof include salts (so-called ionomers), benzylidene sorbitol and derivatives thereof such as dibenzylidene sorbitol.
Among these, at least one selected from talc and organic carboxylic acid metal salts is preferably used. Only one type of crystallization accelerator may be used in the present invention, or two or more types may be used in combination.
The content of the crystallization accelerator is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight per 100 parts by weight of the resin (component A) having an autocatalytic action.
<Filler>
The resin composition can contain an organic or inorganic filler. By containing the filler component, a molded product having excellent mechanical properties, heat resistance, and moldability can be obtained.
Organic fillers such as rice husks, wood chips, okara, waste paper ground materials, clothing ground materials, cotton fibers, hemp fibers, bamboo fibers, wood fibers, kenaf fibers, jute fibers, banana fibers, coconut fibers Plant fibers such as pulp or cellulose fibers processed from these plant fibers and fibrous fibers such as animal fibers such as silk, wool, angora, cashmere and camel, synthetic fibers such as polyester fibers, nylon fibers and acrylic fibers , Paper powder, wood powder, cellulose powder, rice husk powder, fruit husk powder, chitin powder, chitosan powder, protein, starch and the like. From the viewpoint of moldability, powdery materials such as paper powder, wood powder, bamboo powder, cellulose powder, kenaf powder, rice husk powder, fruit husk powder, chitin powder, chitosan powder, protein powder, and starch are preferred. Powder, bamboo powder, cellulose powder and kenaf powder are preferred. Paper powder and wood powder are more preferable. Paper dust is particularly preferable.
These organic fillers may be those directly collected from natural products, but may also be those obtained by recycling waste materials such as waste paper, waste wood and old clothes.
The wood is preferably a softwood material such as pine, cedar, oak or fir, or a hardwood material such as beech, shii or eucalyptus.
Paper powder is an adhesive from the viewpoint of moldability, especially emulsion adhesives such as vinyl acetate resin emulsions and acrylic resin emulsions that are usually used when processing paper, polyvinyl alcohol adhesives, polyamide adhesives Those containing hot melt adhesives such as are preferably exemplified.
The content of the organic filler is not particularly limited, but from the viewpoint of moldability and heat resistance, it is preferably 0.1 to 20 parts by weight, preferably 100 to 20 parts by weight per 100 parts by weight of the resin (component A) having autocatalytic action. The amount is more preferably 0.5 to 15 parts by weight, further preferably 10 to 150 parts by weight, and particularly preferably 1 to 10 parts by weight.
When the content of the organic filler is less than 0.1 parts by weight, the effect of improving the moldability of the composition is small, and when it exceeds 20 parts by weight, uniform dispersion of the filler becomes difficult, or the moldability and heat resistance are increased. In addition to the properties, the strength and appearance of the material may decrease, which is not preferable.
The resin composition may contain an inorganic filler. By containing the inorganic filler, a resin composition having excellent mechanical properties, heat resistance, and moldability can be obtained. As the inorganic filler used in the present invention, a fibrous, plate-like, or powder-like material used for reinforcing ordinary thermoplastic resins can be used.
Specifically, for example, carbon nanotube, glass fiber, asbestos fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wollastonite, imogolite, sepiolite, Asbestos, slag fiber, zonolite, gypsum fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, and other fibrous inorganic fillers, layered silicate, and organic onium ions Layered silicate, glass flake, non-swelling mica, graphite, metal foil, ceramic beads, talc, clay, mica, sericite, zeolite, bentonite, dolomite, kaolin, powdered silicic acid, feldspar powder, potassium titanate, shirasuba Plates and particles of inorganic fillers such as carbon nanoparticles such as carbon, calcium carbonate, magnesium carbonate, barium sulfate, calcium oxide, aluminum oxide, titanium oxide, aluminum silicate, silicon oxide, gypsum, novaculite, dosonite and white clay fullerene Agents.
Specific examples of layered silicates include smectite clay minerals such as montmorillonite, beidellite, nontronite, saponite, hectorite, and soconite, various clay minerals such as vermiculite, halosite, kanemite, and kenyanite, Li-type fluorine teniolite, Na And swellable mica such as Li-type fluorine teniolite, Li-type tetrasilicon fluorine mica and Na-type tetrasilicon fluorine mica. These may be natural or synthetic. Among these, smectite clay minerals such as montmorillonite and hectorite, and swellable synthetic mica such as Li type fluorine teniolite and Na type tetrasilicon fluorine mica are preferable.
Among these inorganic fillers, fibrous or plate-like inorganic fillers are preferable, and glass fiber, wollastonite, aluminum borate whisker, potassium titanate whisker, mica, and kaolin, a cation-exchanged layered silicate. Is preferred. The aspect ratio of the fibrous filler is preferably 5 or more, more preferably 10 or more, and further preferably 20 or more.
Such a filler may be coated or converged with a thermoplastic resin such as an ethylene / vinyl acetate copolymer or a thermosetting resin such as an epoxy resin, or may be treated with a coupling agent such as aminosilane or epoxysilane. May be.
The content of the inorganic filler is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 15 parts by weight, and further preferably 10 to 150 parts by weight per 100 parts by weight of the resin (component A) having an autocatalytic action. Part by weight, particularly preferably 1 to 10 parts by weight.
<Release agent>
The resin composition can contain a release agent. As the mold release agent, those used for ordinary thermoplastic resins can be used.
Specific examples of release agents include fatty acids, fatty acid metal salts, oxy fatty acids, paraffins, low molecular weight polyolefins, fatty acid amides, alkylene bis fatty acid amides, aliphatic ketones, fatty acid partial saponified esters, fatty acid lower alcohol esters, fatty acid polyvalents. Examples include alcohol esters, fatty acid polyglycol esters, and modified silicones. By blending these, a polylactic acid molded product excellent in mechanical properties, moldability, and heat resistance can be obtained.
Fatty acids having 6 to 40 carbon atoms are preferred. Specifically, oleic acid, stearic acid, lauric acid, hydroxystearic acid, behenic acid, arachidonic acid, linoleic acid, linolenic acid, ricinoleic acid, palmitic acid, montan Examples thereof include acids and mixtures thereof. The fatty acid metal salt is preferably an alkali metal salt or alkaline earth metal salt of a fatty acid having 6 to 40 carbon atoms, and specific examples include calcium stearate, sodium montanate, calcium montanate, and the like.
Examples of the oxy fatty acid include 1,2-oxystearic acid. Paraffin having 18 or more carbon atoms is preferable, and examples thereof include liquid paraffin, natural paraffin, microcrystalline wax, petrolactam and the like.
As the low molecular weight polyolefin, for example, those having a molecular weight of 5,000 or less are preferable, and specific examples include polyethylene wax, maleic acid-modified polyethylene wax, oxidized type polyethylene wax, chlorinated polyethylene wax, and polypropylene wax. Fatty acid amides having 6 or more carbon atoms are preferred, and specific examples include oleic acid amide, erucic acid amide, and behenic acid amide.
The alkylene bis fatty acid amide is preferably one having 6 or more carbon atoms, and specifically includes methylene bis stearic acid amide, ethylene bis stearic acid amide, N, N-bis (2-hydroxyethyl) stearic acid amide and the like. As the aliphatic ketone, those having 6 or more carbon atoms are preferable, and examples thereof include higher aliphatic ketones.
Examples of the fatty acid partial saponified ester include a montanic acid partial saponified ester. Examples of the fatty acid lower alcohol ester include stearic acid ester, oleic acid ester, linoleic acid ester, linolenic acid ester, adipic acid ester, behenic acid ester, arachidonic acid ester, montanic acid ester, isostearic acid ester and the like.
Examples of fatty acid polyhydric alcohol esters include glycerol tristearate, glycerol distearate, glycerol monostearate, pentaerythritol tetrastearate, pentaerythritol tristearate, pentaerythritol distearate, pentaerythrul Examples include tall monostearate, pentaerythritol adipate stearate, sorbitan monobehenate and the like. Examples of fatty acid polyglycol esters include polyethylene glycol fatty acid esters and polypropylene glycol fatty acid esters.
Examples of the modified silicone include polyether-modified silicone, higher fatty acid alkoxy-modified silicone, higher fatty acid-containing silicone, higher fatty acid ester-modified silicone, methacryl-modified silicone, and fluorine-modified silicone.
Of these, fatty acid, fatty acid metal salt, oxy fatty acid, fatty acid ester, fatty acid partial saponified ester, paraffin, low molecular weight polyolefin, fatty acid amide, and alkylene bis fatty acid amide are preferred, and fatty acid partial saponified ester and alkylene bis fatty acid amide are more preferred. Of these, montanic acid ester, montanic acid partially saponified ester, polyethylene wax, acid value polyethylene wax, sorbitan fatty acid ester, erucic acid amide, and ethylene bisstearic acid amide are preferable, and particularly, montanic acid partially saponified ester and ethylene bisstearic acid amide preferable.
A mold release agent may be used by 1 type and may be used in combination of 2 or more type. The content of the release agent is preferably 0.01 to 3 parts by weight, and more preferably 0.03 to 2 parts by weight with respect to 100 parts by weight of the resin (component A) having an autocatalytic action.
<Antistatic agent>
The resin composition can contain an antistatic agent. Examples of the antistatic agent include quaternary ammonium salt compounds such as (β-lauramidopropionyl) trimethylammonium sulfate and sodium dodecylbenzenesulfonate, sulfonate compounds, and alkyl phosphate compounds.
In the present invention, the antistatic agent may be used alone or in combination of two or more. The content of the antistatic agent is preferably 0.05 to 5 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the resin (component A) having an autocatalytic action.
<Plasticizer>
The resin composition can contain a plasticizer. As the plasticizer, generally known plasticizers can be used. Examples include polyester plasticizers, glycerin plasticizers, polycarboxylic acid ester plasticizers, phosphate ester plasticizers, polyalkylene glycol plasticizers, and epoxy plasticizers.
As a polyester plasticizer, acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid and ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, Examples thereof include polyesters composed of diol components such as 1,4-butanediol, 1,6-hexanediol and diethylene glycol, and polyesters composed of hydroxycarboxylic acid such as polycaprolactone. These polyesters may be end-capped with a monofunctional carboxylic acid or a monofunctional alcohol.
Examples of the glycerol plasticizer include glycerol monostearate, glycerol distearate, glycerol monoacetomonolaurate, glycerol monoacetomonostearate, glycerol diacetomonooleate, and glycerol monoacetomonomontanate.
Polyvalent carboxylic acid plasticizers include dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diheptyl phthalate, dibenzyl phthalate, butyl benzyl phthalate, trimellitic acid tributyl, trimellitic acid trioctyl, Trimellitic acid esters such as trihexyl meritate, isodecyl adipate, adipic acid esters such as adipate-n-decyl-n-octyl, citrate esters such as tributyl acetylcitrate, and bis (2-ethylhexyl) azelate Examples include sebacic acid esters such as azelaic acid ester, dibutyl sebacate, and bis (2-ethylhexyl) sebacate.
Examples of the phosphate ester plasticizer include tributyl phosphate, tris phosphate (2-ethylhexyl), trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, diphenyl-2-ethylhexyl phosphate, and the like.
Polyalkylene glycol plasticizers such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, poly (ethylene oxide-propylene oxide) block and / or random copolymers, ethylene oxide addition polymers of bisphenols, tetrahydrofuran addition polymers of bisphenols, etc. And end-capping compounds such as a terminal epoxy-modified compound, a terminal ester-modified compound, and a terminal ether-modified compound.
Examples of the epoxy plasticizer include an epoxy triglyceride composed of alkyl epoxy stearate and soybean oil, and an epoxy resin using bisphenol A and epichlorohydrin as raw materials.
Specific examples of other plasticizers include benzoic acid esters of aliphatic polyols such as neopentyl glycol dibenzoate, diethylene glycol dibenzoate, triethylene glycol-bis (2-ethylbutyrate), and fatty acids such as stearamide. Fatty acid esters such as amides and butyl oleate, oxy acid esters such as methyl acetylricinoleate and butyl acetylricinoleate, pentaerythritols, fatty acid esters of pentaerythritols, various sorbitols, polyacrylic acid esters, silicone oils, and paraffins Etc.
As the plasticizer, polyester plasticizers, polyalkylene plasticizers, glycerin plasticizers, pentaerythritols, pentaerythritol fatty acid esters can be preferably used, and only one kind can be used. It is also possible to use two or more kinds in combination.
The content of the plasticizer is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 15 parts by weight, and still more preferably 0.1 to 100 parts by weight per 100 parts by weight of the resin (component A) having an autocatalytic action. 10 parts by weight. In the present invention, each of the crystallization nucleating agent and the plasticizer may be used alone, or more preferably used in combination. Moreover, it is most preferable to use what has a plasticizer effect for the hydrolysis regulator essential for this application.
<Impact resistance improver>
The resin composition can contain an impact resistance improver. The impact resistance improver is one that can be used to improve the impact resistance of a thermoplastic resin, and is not particularly limited. For example, at least one selected from the following impact resistance improvers can be used.
Specific examples of impact modifiers include ethylene-propylene copolymers, ethylene-propylene-nonconjugated diene copolymers, ethylene-butene-1 copolymers, various acrylic rubbers, ethylene-acrylic acid copolymers and their Alkali metal salts (so-called ionomers), ethylene-glycidyl (meth) acrylate copolymers, ethylene-acrylate copolymers (for example, ethylene-ethyl acrylate copolymers, ethylene-butyl acrylate copolymers), modified ethylene -Propylene copolymer, diene rubber (eg polybutadiene, polyisoprene, polychloroprene), diene and vinyl copolymer (eg styrene-butadiene random copolymer, styrene-butadiene block copolymer, styrene-butadiene-styrene block copolymer) Coalescence, styrene Soprene random copolymer, styrene-isoprene block copolymer, styrene-isoprene-styrene block copolymer, polybutadiene graft copolymerized with styrene, butadiene-acrylonitrile copolymer), polyisobutylene, isobutylene and butadiene Or a copolymer with isoprene, natural rubber, thiocol rubber, polysulfide rubber, polyurethane rubber, polyether rubber, epichlorohydrin rubber and the like can be mentioned.
In addition, those having various cross-linking degrees, various micro structures such as those having a cis structure, a trans structure, etc., a core layer and one or more shell layers covering the core layer, and adjacent layers are composed of heterogeneous polymers. A so-called core-shell type multi-layered polymer can also be used.
Furthermore, the various (co) polymers mentioned in the above specific examples may be any of random copolymers, block copolymers, block copolymers and the like, and can be used as the impact resistance improver of the present invention.
The content of the impact modifier is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 15 parts by weight, and still more preferably 100 parts by weight of the resin (component A) having autocatalytic action. 1 to 10 parts by weight.
<Compatibilizer>
As a compatibilizing agent, a compound that is compatible with any of the components constituting the core and the sheath, or the ends of both the components constituting the core and the component constituting the sheath. A compound having a cross-linked structure by reacting with is preferably used, but is not limited thereto. For example, the former compatibilizing agent includes a surfactant copolymer having a component similar to the component constituting the core portion and the component constituting the sheath portion, a block copolymer, and the like.
Moreover, as what forms a crosslinked structure, the epoxy compound which has an epoxy group in both ends, an oxazoline compound, an oxazine compound, those copolymers, a carbodiimide compound, those copolymers, etc. are mentioned. When using a cross-linking agent, add the cross-linking agent to either the component constituting the core or the sheath, or both components, and the cross-linking agent reacts with the end groups of each component present in the vicinity of the composite interface This improves the interfacial adhesion.
<Others>
The resin composition may contain a thermosetting resin such as a phenol resin, a melamine resin, a thermosetting polyester resin, a silicone resin, or an epoxy resin within a range not departing from the spirit of the present invention.
In addition, the resin composition may contain a flame retardant such as bromine, phosphorus, silicone, and antimony compound as long as it does not contradict the gist of the present invention.
Also, colorants containing organic and inorganic dyes and pigments, such as oxides such as titanium dioxide, hydroxides such as alumina white, sulfides such as zinc sulfide, ferrocyanides such as bitumen, zinc chromate, etc. Sulfates such as chromate and barium sulfate, carbonates such as calcium carbonate, silicates such as ultramarine, phosphates such as manganese violet, carbon such as carbon black, metal colorants such as bronze powder and aluminum powder, etc. It may be included.
Also, nitroso type such as naphthol green B, nitro type such as naphthol yellow S, azo type such as naphthol red and chromophthal yellow, phthalocyanine type such as phthalocyanine blue and fast sky blue, and condensed polycyclic coloring such as indanthrone blue An additive such as a slidability improver such as a graphite or fluorine resin may be added. These additives can be used alone or in combination of two or more.
<Method for producing resin composition>
The resin composition may contain a hydrolysis regulator (component B) and any known additive.
In addition, when using stereocomplex polylactic acid as resin (A component) which has an autocatalytic action, after mixing poly L-lactic acid and poly D-lactic acid to form stereocomplex polylactic acid, it is a hydrolysis regulator. (B component) and additives may be mixed, a hydrolysis adjusting agent (B component) and additives may be mixed when forming stereocomplex polylactic acid, or poly L-lactic acid during spinning. And poly D-lactic acid and a hydrolysis regulator (component B) and additives may be mixed.
There is no particular limitation on the method of adding and mixing to the resin having the autocatalytic action (component A), and it is added as a master batch of the resin (component A) having the autocatalytic action to be applied by a known method by a conventionally known method. A method, or a method in which a solid of a resin (A component) having autocatalytic action is brought into contact with a liquid in which a hydrolysis regulator (B component) is dissolved, dispersed or melted, and the hydrolysis regulator (B component) is permeated. Can be taken.
When taking the method of adding as a master batch of a solution, a melt or a resin (component A) having an autocatalytic action, a method of adding using a conventionally known kneading apparatus can be taken. In kneading, a kneading method in a solution state or a kneading method in a molten state is preferable from the viewpoint of uniform kneading properties. The kneading apparatus is not particularly limited, and examples thereof include conventionally known vertical reaction vessels, mixing tanks, kneading tanks or uniaxial or multiaxial horizontal kneading apparatuses such as uniaxial or multiaxial ruders and kneaders. The mixing time is not particularly specified, and depends on the mixing apparatus and the mixing temperature, but is selected from 0.1 minutes to 2 hours, preferably 0.2 minutes to 60 minutes, more preferably 0.2 minutes to 30 minutes. .
As a solvent, what is inactive with respect to resin (A component) and a hydrolysis regulator (B component) which have an autocatalytic action can be used. In particular, a solvent that has affinity for both and at least partially dissolves both is preferable.
As the solvent, for example, hydrocarbon solvents, ketone solvents, ester solvents, ether solvents, halogen solvents, amide solvents and the like can be used.
Examples of the hydrocarbon solvent include hexane, cyclohexane, benzene, toluene, xylene, heptane, decane and the like. Examples of ketone solvents include acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, and isophorone.
Examples of ester solvents include ethyl acetate, methyl acetate, ethyl succinate, methyl carbonate, ethyl benzoate, and diethylene glycol diacetate. Examples of the ether solvent include diethyl ether, dibutyl ether, tetrahydrofuran, dioxane, diethylene glycol dimethyl ether, triethylene glycol diethyl ether, diphenyl ether and the like. Examples of the halogen solvent include dichloromethane, chloroform, tetrachloromethane, dichloroethane, 1,1 ′, 2,2′-tetrachloroethane, chlorobenzene, dichlorobenzene and the like. Examples of the amide solvent include formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like. These solvents may be used alone or as a mixed solvent as desired.
The solvent is applied in the range of 1 to 1,000 parts by weight per 100 parts by weight of the resin composition. If the amount is less than 1 part by weight, there is no significance in applying the solvent. The upper limit of the amount of solvent used is not particularly limited, but is about 1,000 parts by weight from the viewpoints of operability and reaction efficiency.
Hydrolysis modifier (B component) is brought into contact with a liquid in which hydrolysis modifier (B component) is dissolved, dispersed or melted, and a solid of resin (A component) having an autocatalytic action mainly composed of a water-soluble monomer. In the case of taking a method of infiltrating water, a method of bringing a hydrolysis regulator (component B) dissolved in a solvent as described above into contact with a resin (component A) having an autocatalytic action mainly composed of a solid water-soluble monomer. Alternatively, a method of bringing a solid resin (A component) into contact with an emulsion liquid of a hydrolysis regulator (B component) can be used. As a method for contacting, a method of immersing a resin (A component) having an autocatalytic action, a method of applying to a resin (A component) having an autocatalytic action, a method of spraying, and the like can be suitably employed.
The capping reaction of the acidic group of the water autocatalytic resin (component A) by the hydrolysis modifier (component B) is possible at a temperature of room temperature (25 ° C.) to 300 ° C., but from the viewpoint of reaction efficiency. Further promotion is achieved in the range of 50 to 280 ° C., more preferably 100 to 280 ° C. Resin having self-catalytic action (component A) is more likely to react at a melting temperature, but at a temperature lower than 300 ° C. in order to suppress volatilization and decomposition of the hydrolysis regulator (component B). It is preferable to react. Applying a solvent is also effective in reducing the melting temperature of the resin (component A) having autocatalytic action and increasing the stirring efficiency.
Although the reaction proceeds sufficiently rapidly without a catalyst, a catalyst that accelerates the reaction can also be used. As a catalyst, the catalyst generally used with a hydrolysis regulator (B component) is applicable. These can be used alone or in combination of two or more. The addition amount of the catalyst is not particularly limited, but is preferably 0.001 to 1 part by weight, more preferably 0.01 to 0.1 part by weight, more preferably 100 parts by weight of the resin composition. Most preferred is 0.02 to 0.1 parts by weight.
In the present invention, two or more kinds of hydrolysis regulators (component B) may be used in combination. For example, hydrolysis for performing an initial acidic group blocking reaction of a resin (component A) having an autocatalytic action. You may use a separate thing about a regulator (B component) and a hydrolysis regulator (B component) which performs the sealing reaction of the acidic group produced in hot water higher than 135 degreeC.
Furthermore, it is preferable to use an auxiliary for the hydrolysis adjusting agent (component B), that is, an agent for assisting the effect of the component B in order to delay the hydrolysis. As such an agent, any known agent can be used. For example, at least selected from hydrotalcite, alkaline earth metal oxide, alkaline earth metal hydroxide, and alkaline earth metal carbonate. One compound is exemplified. The content of the auxiliary agent is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 20 parts by weight, still more preferably 0.7 to 10 parts by weight per 100 parts by weight of the hydrolysis regulator (component B). It is.
<Method for producing core-sheath type composite fiber>
The manufacturing method of the core-sheath-type conjugate fiber of the present invention discharges the resin composition (C component) melted from the nozzle forming the core part, and the resin composition (D component) melted from the nozzle forming the sheath part. Including a spinning process of discharging. (A) The resin composition (component C) contains an autocatalytic resin (component A) and a hydrolysis regulator (component B), and the content of the hydrolysis modifier (component B) is the total weight. 1 to 40 parts by weight based on the above. (B) The resin composition (component D) contains substantially no hydrolysis modifier (component B) in the resin (A ′ component) having an autocatalytic action.
(spinning)
The fiber of the present invention may be obtained by ordinary melt spinning and then post-processed.
The resin composition (C component) and the resin composition (D component) were melted by an extruder type or pressure melter type melt extruder, then weighed by a gear pump, filtered in a pack, and then provided to the base. It is discharged from the nozzle as a monofilament, multifilament or the like.
At this time, the resin having the autocatalytic action (component A), the hydrolysis adjusting agent (component B), and the additive may be kneaded in advance, or melted separately by dry blending or other addition methods. You may supply to an extruder. In particular, the hydrolysis regulator (component B) may be supplied in a solid or liquid state. Specific supply methods include known methods such as a table feeder, a disk feeder, a screw feeder, a tube pump, a diaphragm pump, a gear pump, and a plunger pump.
The shape of the base and the number of bases are not particularly limited. The discharged yarn is immediately cooled and solidified, then converged, applied with oil, and wound. The winding speed is not particularly limited, but is preferably in the range of 100 m / min to 10,000 m / min.
Since the composite fiber of the present invention contains a hydrolysis regulator (component B) only in the core during spinning, in the state of the fiber before use in hot water, compared to the fiber spun in a single layer. There is a tendency that the concentration difference of the hydrolysis adjusting agent (component B) is large between the core and the sheath. The specific difference in concentration is preferably 0.1 to 20%, more preferably 0.2 to 15%, still more preferably 0.3 to 10%, and most preferably 0.4 between the fiber core and the sheath. ~ 5%. The more the concentration difference is greater than 0.1%, the smaller the amount of leakage of the isocyanate compound and the hydrolysis regulator (B component) itself out of the fiber, and when it is less than 20%, the hydrolysis regulator is the fiber surface layer. It fully diffuses and shows good hydrolysis performance.
The discharge ratio between the core and the sheath preferably satisfies the following formula (I). When the following formula is satisfied, the thickness of the sheath part at the time of discharge becomes sufficiently thick, so that the partial omission of the sheath part or the compound having an isocyanate group through the sheath part and the hydrolysis regulator (component B) itself are processed. Leakage to the outside of the fiber at the time can be further suppressed.
Figure JPOXMLDOC01-appb-I000020
(However, in the formula, Qc: discharge amount of the core portion, Qs: discharge amount of the sheath portion, D: diameter of the discharge port)
(Stretching)
The spun undrawn yarn can be used as it is, but can also be used after being drawn. When used in an unstretched state, it may be subjected to a crystallization treatment by performing a heat treatment at a temperature below the melting point after spinning and before winding. For the heat treatment, any method such as a hot roller, a contact heater, a non-contact hot plate, or a heat medium bath can be adopted. Moreover, you may employ | adopt crystallization methods, such as being immersed in a solvent.
When stretching is performed, the spinning step and the stretching step are not necessarily separated from each other, and a direct spinning stretching method in which stretching is performed without winding once after spinning may be employed.
The stretching may be one-stage stretching or multi-stage stretching of two or more stages. From the viewpoint of producing a high-strength fiber, the stretching ratio is preferably 3 times or more, and more preferably 4 times or more. On the other hand, from the viewpoint of producing a low-oriented fiber, it is preferably less than 3 times, and more preferably less than 2 times. As described above, as for the draw ratio, appropriate conditions are selected in combination with other drawing conditions such as drawing temperature and drawing speed from the viewpoint of desired fiber strength, crystallization speed, degree of orientation, and the like.
As a preheating method for stretching, in addition to roll temperature rise, a flat or pin-like contact heater, non-contact hot plate, heating medium bath, and the like can be used, and a commonly used method may be used. The stretching temperature is selected, for example, in the range of 40 to 130 ° C., preferably 50 to 120 ° C., particularly preferably 60 to 110 ° C.
(Heat treatment)
Following the stretching, it is preferable that a heat treatment is performed at a temperature lower than the melting point before winding. For the heat treatment, any method such as a hot roller, a contact heater, a non-contact hot plate, or a heat medium bath can be adopted.
As the heat treatment temperature, for example, a range of 100 to 220 ° C., preferably 110 to 210 ° C., particularly preferably 120 to 200 ° C. is selected. In the heat treatment, the melting point can be improved by increasing in steps near the melting point.
Further, after the stretching treatment, a relaxation treatment can be performed after the heat treatment. Further, after the relaxation treatment, the stretching treatment may be performed again, or the relaxation treatment may be performed a plurality of times.
(Cut, crimped)
The core-sheath type composite fiber of the present invention may be a short fiber. When producing short fibers, in addition to the method of drawing with long fibers, a step of cutting with a rotary cutter or the like into a predetermined fiber length according to the application, and if further crimping is required, constant length heat treatment and A step of imparting crimp with an indentation crimper or the like is added during the relaxation heat treatment. In that case, in order to improve crimp imparting property, it can preheat before crimper using water vapor | steam, an electric heater, etc. FIG.
Further, after stretching, by heat-setting at 170 ° C. to 220 ° C. under tension, a polylactic acid fiber having high stereo complex crystallinity (S), low heat shrinkage and strength of 3.5 cN / dTex or more is obtained. It can also be obtained.
(Sealing of acidic end groups)
The core-sheath type composite fiber of the present invention is a resin having an autocatalytic action due to diffusion of the hydrolysis regulator (component B) in the fiber by spinning, drawing, heating during heat setting, and heating during use. The desired decomposition behavior is exhibited by sealing the acidic end groups of the A component and the A ′ component).
In the present invention, heating refers to a process of heating the fiber, and includes a stretching process or a heat setting process. Heating is carried out within a range in which the compound having an isocyanate group and the hydrolysis modifier (B component) itself produced by the reaction in which the hydrolysis modifier (B component) binds to the terminal of the polymer compound does not leak out of the fiber. It is preferable. Specifically, when processing in the atmosphere, it is performed in a range of 60 ° C. to 220 ° C., in the case of 60 ° C. to 120 ° C., within 30 seconds to 10 minutes, and in the case of 120 ° C. to 220 ° C., 1 second or more 1 It is preferable to carry out in a short time within minutes.
Heating can be preferably carried out in water in order to prevent the compound having an isocyanate group and the hydrolysis regulator (component B) from leaking out of the fiber. When carried out in water, it is preferably 1 hour to 72 hours at 40 ° C. to 60 ° C. and 30 seconds to 3 hours at 60 ° C. to 100 ° C. from the viewpoint of preventing excessive hydrolysis. In order to suppress leakage of the compound having an isocyanate group and the hydrolysis regulator (component B) to the outside of the fiber, it can be carried out in a fluid sufficiently containing the hydrolysis regulator, or in a pressurized gas or pressurized water.
<Characteristics of core-sheath fiber>
The core-sheath type composite fiber of the present invention desirably satisfies any of the following A1 to A3.
A1: In hot water at an arbitrary temperature of 135 ° C. to 160 ° C., after 3 hours, acidic groups derived from the resin composition are 30 equivalents / ton or less and the weight of the non-water-soluble content of the resin composition is 50% or more and 24 hours. Later, the weight of the non-water content of the resin composition is 50% or less.
A2: In hot water at an arbitrary temperature of 160 ° C. to 180 ° C., after 2 hours, acidic groups derived from the resin composition are 30 equivalents / ton or less and the weight of the non-water-soluble content of the resin composition is 50% or more and 24 hours. Later, the weight of the non-water content of the resin composition is 50% or less.
A3: In hot water at an arbitrary temperature of 180 ° C. to 220 ° C., the acidic group derived from the resin composition is 30 equivalents / ton or less after 1 hour, and the weight of the non-aqueous component of the resin composition is 50% or more and 24 hours. Later, the weight of the non-water content of the resin composition is 50% or less.
The range in which the core-sheath fiber of the present invention can be suitably used varies depending on the temperature. Further, in A1 to A3, the time earlier than the specified fixed period (1 hour, 2 hours, 3 hours) is that the acidic group derived from the resin composition is 30 equivalents / ton or less and the weight of the non-aqueous component is 50% or more. Preferably there is. The weight of the non-aqueous component is more preferably 70% or more, further preferably 80% or more, and most preferably 90% or more.
In A1, the fixed period is 3 hours, during which the fiber weight and shape are maintained. Further, from the viewpoint of exerting desired performance in an oil field excavation technique or the like, in a hot water at an arbitrary temperature of 135 ° C. to 160 ° C., a resin composition after a certain period longer than 2 hours as defined in the present invention. The acidic group derived from the product may be 30 equivalent / ton or less and the weight of the non-aqueous component may be 50% or more.
In A2, the fixed period is 2 hours, and the weight and shape of the fiber are maintained during that period. Further, from the viewpoint of exerting desired performance in an oil field excavation technique or the like, in a hot water at an arbitrary temperature of 160 ° C. to 180 ° C., a resin composition after a certain period longer than 2 hours as defined in the present invention. The acidic group derived from the product may be 30 equivalent / ton or less and the weight of the non-aqueous component may be 50% or more.
In A3, the fixed period is 1 hour, and during this time, the weight and shape of the fiber are retained. From the viewpoint of exerting desired performance in an oil field drilling technique or the like, it is derived from the resin composition after a certain period longer than 1 hour defined in the present invention in hot water at an arbitrary temperature of 180 ° C. to 220 ° C. The acid group may be 30 equivalent / ton or less and the weight of the non-water-soluble content of the resin composition may be 50% or more.
After a certain period of time defined in A1 to A3 (1 hour, 2 hours, 3 hours), the effect of blocking the acidic group of the component B disappears, and the decomposition of the resin is promoted by the autocatalytic action of the acidic group. The group concentration increases exponentially. Further, as the decomposition proceeds, the resin becomes a water-soluble monomer and dissolves in water. It is suitable when using the fibers of the present invention, such as in an oil field drilling technique, that the phenomenon occurs as soon as possible after maintaining the weight and shape of the fibers for a period of time. Therefore, it is preferable that the weight of the non-water content of the resin composition is 50% or less after 24 hours. For the above reasons, the weight of the water-insoluble content of the resin composition after 18 hours is more preferably 50% or less, and the content of the water-insoluble content of the resin composition after 12 hours is more preferably 50% or less, More preferably, the weight of the non-water content of the resin composition is 50% or less after 6 hours.
The core-sheath type composite fiber of the present invention preferably has a water-insoluble content of 10% or less after 100 hours in hot water at an arbitrary temperature of 135 ° C. to 220 ° C. For example, when the fiber of the present invention is used in an oil field excavation technique or the like, the fiber can work effectively by dissolving in water quickly after maintaining its weight and shape for a certain period of time. Therefore, it is preferable that the weight of the non-water-soluble content of the resin composition is 10% or less after 100 hours in hot water at an arbitrary temperature of 135 ° C. to 220 ° C. Further, from the viewpoint of exerting treatment in water after use and desired performance, the less water-insoluble content is better, and the weight of water-insoluble content after 100 hours is more preferably 5% or less, and 1% or less. More preferably it is.
<Shape of core-sheath type composite fiber>
The thickness of the sheath portion of the core-sheath type composite fiber of the present invention is preferably 0.1 to 20 μm, more preferably 0.2 to 15 μm, still more preferably 0.3 to 10 μm, and most preferably 0.4 to 5 μm. . When the thickness is greater than 0.1 μm, leakage of the compound having an isocyanate group and the hydrolysis regulator (component B) itself during processing can be further suppressed. On the other hand, when the thickness is less than 20 μm, the hydrolysis adjusting agent sufficiently diffuses to the fiber surface layer and exhibits good hydrolysis performance.
As the fiber cross section, the ratio A: B = 20: 80 to 95: 5 of the area A of the core and the area B of the sheath is preferable, more preferably 30:70 to 90:10, and still more preferably 40:60. ~ 80: 20, most preferably 50:50 to 70:30. When the area ratio of the sheath is 5% or more, leakage of the compound having an isocyanate group and the hydrolysis regulator (B component) itself during processing can be further suppressed. On the other hand, when the area ratio of the sheath portion is 80% or less, the hydrolysis adjusting agent sufficiently diffuses to the fiber surface layer, and exhibits good hydrolysis performance.
The above-described thickness and area ratio of the sheath are appropriately adjusted depending on the desired hydrolysis behavior, heat treatment conditions and use conditions.
In addition, the cross-sectional shape of the composite fiber may be any of a round cross-section, a polygon cross-section, a multi-leaf cross-section, a hollow cross-section, and other known cross-sectional shapes. It may be. Furthermore, it may be a single-core type with a positive core (concentric) or a single-core type with an eccentricity (eccentricity).
Further, the core-sheath structure may have a layer structure of three or more layers having an intermediate part between the core part and the sheath part. In this case, at least the outermost sheath part is substantially a hydrolysis modifier (B It is important that no component is included.
<Others>
The core-sheath type composite fiber of the present invention may be used alone or in combination with other types of fibers as long as the object is achieved. In addition to various combinations with fiber structures composed of other types of fibers, mixed modes include mixed yarns with other fibers, composite false twisted yarns, mixed spun yarns, long and short composite yarns, fluid processed yarns, covering yarns, and twisted yarns. , Mixed cotton, and the like. When mixed, the mixing ratio is selected from the range of 1% by weight or more, more preferably 10% by weight or more, and further preferably 30% by weight or more in order to exhibit the characteristics of the resin composition.
Examples of other fibers used in combination include cellulose fibers such as cotton, hemp, rayon, and tencel, wool, silk, acetate, polyester, nylon, acrylic, vinylon, polyolefin, and polyurethane.
 以下、以下、本発明を実施例によりさらに具体的に説明するが本発明はこれにより何ら限定を受けるものではない。各物性は以下の方法により測定した。
(1)重量平均分子量(Mw)および数平均分子量(Mn):
 ポリマーの重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定、標準ポリスチレンに換算した。
 GPC測定は、以下の検出器およびカラムを使用し、クロロホルムを溶離液とし温度40℃、流速1.0ml/minにて、濃度1mg/ml(1%ヘキサフルオロイソプロパノールを含むクロロホルム)の試料を10μl注入し測定した。
検出器;示差屈折計((株)島津製作所製)RID−6A。
カラム;東ソ−(株)TSKgelG3000HXL、TSKgelG4000HXL,TSKgelG5000HXLとTSKguardcolumnHXL−Lを直列に接続したもの、あるいは東ソ−(株)TSKgelG2000HXL、TSKgelG3000HXLとTSKguardcolumnHXL−Lを直列に接続したもの。
(2)ステレオコンプレックス結晶化度〔S(%)〕,結晶融解温度などのDSC測定:
 DSC(TAインストルメント社製,TA−2920)を用いて試料を、第一サイクルにおいて、窒素気流下、20℃/分で250℃まで昇温し、ガラス転移温度(Tg)、ステレオコンプレックス相ポリ乳酸結晶融解温度(Tm)およびステレオコンプレックス相ポリ乳酸結晶融解エンタルピー(ΔHms)およびホモ相ポリ乳酸結晶融解エンタルピー(ΔHmh)を測定した。
 また結晶化開始温度(Tc*)、結晶化温度(Tc)は上記測定試料を急速冷却し、さらに引き続き、同じ条件で第二サイクル測定を行い測定した。ステレオコンプレックス結晶化度は上記測定で得られたステレオコンプレックス相およびホモ相ポリ乳酸結晶融解エンタルピーより、下記式により求めた値である。
S=[ΔHms/(ΔHmh+ΔHms)]×100
(但し、ΔHmsはステレオコンプレックス相結晶の融解エンタルピー、ΔHmhはホモ相ポリ乳酸結晶の融解エンタルピー)
(3)加水分解調整剤の耐水性評価:
 ジメチルスルホキシド50mlに1gの試料を溶解あるいは部分溶解させた系に、2gの水を加え、120℃で5時間還流させながら撹拌した後に得られた溶解サンプル部分をHPLCあるいはH−NMRにより測定した。
 NMRは、JEOL製ECA600を使用した。溶媒は重ジメチルスルホキシドを用い、構造の変化量(積分値)から5時間後の剤量を求めた。
 また、HPLCの条件は下記の通りで実施し、0時間の剤量の面積を100%として、5時間後の剤量の面積から剤量を求めた。
装置:島津製作所製超高速液体クロマトグラフィー「Nexera(登録商標)」
UV検出器:島津製作所製SPD−20A 254nm
カラム:ジーエルサイエンス製Inertsil Ph−3 3μm 4.6mm×150mm(またはこれと同等のカラムも使用できる)
カラム温度:40℃
試料の調整:ジメチルスルホキシド溶液をDMFで500倍に希釈して使用した。
注入量:2μl
移動相:A:メタノール、B:水
流量:1.0ml/min(0min:A/B=50/50→10min:A/B=98/2→18minまで保持→23min:A/B=50/50→30min)
得られた5時間後の剤量を用い、下記式(vi)から耐水性を求めた。
 耐水性(%)=〔5h処理後の剤量/初期の剤量〕×100(vi)
 それ以外の耐水性評価(B成分がテトラヒドロフランに溶解する場合の例示。):
 テトラヒドロフラン25mlとジメチルスルホキシド25mlに1gの試料を溶解した系に、2gの水を加え、120℃で5時間還流させながら撹拌した後に得られた溶解サンプル部分をFT−IRにより測定した。
 FT−IRの条件は下記の通りで実施し、剤の処理によって変化しない1つの基(アルキル鎖部分など)とカルボジイミド基の面積を用い、0時間のカルボジイミド基の面積と変化しない基の面積の商を100として、5時間後のカルボジイミド基の面積と変化しない基の面積の商から剤量を求めた。
 得られた5時間後の剤量を用い、上記式(iv)から耐水性を求めた。
装置:Nicolet iN10
測定法:顕微透過法
測定視野:50μm×50μm
分解能:4cm−1
測定波数:4000~740cm−1
積算回数:128回
試料の調整:溶解サンプルをフッ化バリウムプレート上にのせ、溶媒を揮発させた。
(4)繊維横断面の顕微IR測定:
 繊維を水糊で包埋した後、鋭利な刃を備えたミクロトームにて繊維長方向に垂直な断面(繊維横断面)に切断し、以下記載の装置を用いて、繊維横断面上の中心を通る直交する直線上において、顕微IR測定を行った。カルボジイミド化合物(B成分)のカルボジイミド基のIR吸収ピーク面積および自触媒作用を有する樹脂(A成分)のカルボニル基のIR吸収ピーク面積は下記測定条件で求め、これをそれぞれのIRピーク強度とした。
 繊維表面は、IR測定を行った二直線上のカルボニル基のIRピーク強度が3.5以上となるところとした。
装置:BRUKER社製VERTEX HYPERION3000
測定法:減衰全反射(ATR)法
波数分解能:8cm−1
積算回数:128回
実効素子サイズ:0.5×0.5μm/pixel
IR吸収ピーク面積積分エリア:カルボジイミド基(2280~2040cm−1
              :カルボニル基(1910~1530cm−1
得られたカルボジイミド基のピーク面積をカルボニル基のピーク面積で規格化した値を、カルボジイミド化合物の存在量とした。
 なお、繊維中心とは、繊維横断面上の中心から1辺までの距離が繊維横断面の外接円の半径の20%である正方形内の領域とし、PIcは上記領域内における測定値の最も高い値とする。ただし、上記正方形の1辺の長さが実行素子サイズの倍数ではない場合、上記領域を満たす最低面積の正方形を繊維中心とする。
 なお、円以外の繊維横断面形状においては、繊維横断面上の重心を中心と見做し、これを通り繊維表面間距離が最も長くなる直線上、および重心を通りこの直線に直交する直線上において顕微IR測定を実施し、評価する。また、rは一番短い物を採用する。
 なお、繊維外への加水分解調整剤(B成分)の漏出、加工時の工程汚染抑制、および繊維内への加水分解調整剤(B成分)の十分な拡散の観点から、式(α)を満たすことが好ましい。更に、繊維外への加水分解調整剤(B成分)の漏出、加工時の工程汚染抑制の観点から、繊維表面よりも内側の領域において式(γ)を満たすことが好ましい。加水分解調整剤(B成分)の繊維内への十分な拡散を考慮した場合、繊維表面よりも内側の領域は、式(β)を満たす領域であることが好ましい。
(5)加水分解調整剤の酸性基との反応性評価:
 ネイチャーワークス製ポリ乳酸「NW3001D」(MWは15万、カルボキシル基濃度は22.1当量/ton)を評価用ポリ乳酸に使用し、加水分解調整剤のカルボキシル基と反応する基が33.15当量/tonとなる剤の量を加え、ラボプラストミル((株)東洋精機製作所製)を使用して、窒素雰囲気下、樹脂温度190℃、回転数30rpmで1分間溶融混練して得られた樹脂組成物についてカルボキシル基濃度を測定し、下記式(v)から酸性基との反応性を求めた。
反応性(%)=〔(評価用ポリ乳酸のカルボキシル基濃度−樹脂組成物のカルボキシル
基濃度)/評価用ポリ乳酸のカルボキシル基濃度〕×100 (v)
(6)高温熱水中での湿熱評価:
 繊維300mgおよび蒸留水12mlを、110℃に予熱した密閉式溶解るつぼ(オーエムラボテック株式会社製、MR−28、内容積28ml)に仕込んで密閉し、予め所定温度150℃、170℃、190℃に保持しておいた熱風乾燥機(光洋サーモシステム株式会社製、KLO−45M)内にるつぼを静置した。
 るつぼを静置後、熱風乾燥機に静置してからるつぼ内部の温度が所定の試験温度に到達する時間を試験開始時点とし、この試験開始時点から一定期間(150℃の場合は3時間、170℃の場合は2時間、190℃の場合は1時間)が経過した時点で、るつぼを熱風乾燥機から取り出した。
 熱風乾燥機から取り出したるつぼを20分間の空冷後、10分間の水冷により常温まで冷却した後、るつぼを開封して内部の試料および水を回収した。内部の試料および水は、ろ紙(JIS P3801:1995、5種A規格)を用いてろ過を行い、ろ紙上に残る残渣を60℃、133.3Pa以下の真空にて3時間乾燥後、重量を下記式(vi)から求めた。
重量(%)=[処理後の残渣の重量/初期の繊維の重量]×100 (vi)
重量が90%以上を「○」判定、重量が90%未満を「×」判定とした。
(7)繊維外への加水分解調整剤(B成分)の拡散:
 紡糸時の工程におけるイソシアネート化合物による臭気を感じた場合あるいは目視にて加水分解調整剤(B成分)の拡散による工程汚染が認められた場合は「×」判定(不合格)とし、いずれも認められない場合には「○」判定(合格)とした。
(8)酸性末端基量(カルボキシル基濃度):
 複合繊維の酸性末端基量は、以下のように測定した。500mgの複合繊維試料をクロロホルム/(1,1,1,3,3,3)−ヘキサフルオロイソプロパノール=1/1容積の混合溶媒15mlに溶解させ、溶液を撹拌しながらメタノール85mlを徐々に滴下して樹脂を再沈殿させ、1μmの孔径をもつ、ろ紙にてろ過し、さらにメタノールでろ紙上に残った粉末状の樹脂を十分に洗浄した。ろ紙上の樹脂を常温で真空ポンプを用いて3時間乾燥し、乾燥後の樹脂粉末から100mgの試料を採取し、窒素気流下にて80℃の精製o−クレゾール中で15分撹拌し溶解させた。溶液にブロモクレゾールブルーを指示薬として添加後、0.05規定水酸化カリウムのエタノール溶液で滴定した。
 あらかじめブランクとして窒素気流下にて80℃の精製o−クレゾール中を15分撹拌し、ブロモクレゾールブルーを指示薬として添加後、0.05規定水酸化カリウムのエタノール溶液で滴定したブランク値を差し引き、正味の滴定値とした。サンプルのo−クレゾールへの溶解および滴定を3回行い、その平均値を酸性末端基量とした。
 複合繊維以外の試料のカルボキシル基濃度は、H−NMRによって確認した。NMRは、JEOL製ECA600を使用した。溶媒は重クロロホルムとヘキサフルオロイソプロパノールを用い、ヘキシルアミンを添加して測定した。
以下、本実施例で使用する化合物を説明する。
<自触媒作用を有する樹脂(A成分)>
 自触媒作用を有する樹脂(A成分)として以下の化合物を使用した。
[製造例1]ポリL−乳酸樹脂(A1):
L−ラクチド((株)武蔵野化学研究所製、光学純度100%)100重量部に対し、オクチル酸スズを0.005重量部、ステアリルアルコール0.1重量部を加え、窒素雰囲気下、撹拌翼のついた反応機にて、180℃で2時間反応し、オクチル酸スズに対し1.2倍当量の燐酸を添加しその後、13.3Paで残存するラクチドを除去し、チップ化し、ポリL−乳酸樹脂(A1)を得た。
 得られたポリL−乳酸樹脂(A1)の重量平均分子量は18万、融点(Tmhn)は175℃、カルボキシル基濃度は13当量/tonであった。
[製造例2]ポリD−乳酸樹脂(A2):
 製造例1のL−ラクチドのかわりにD−ラクチド((株)武蔵野化学研究所製、光学純度100%)を使用する以外は製造例1と同様の操作を行い、ポリD−乳酸樹脂(A2)を得た。
 得られたポリD−乳酸樹脂(A2)の重量平均分子量は18万、融点(Tmh)は175℃、カルボキシル基濃度は14当量/ton、であった。
[製造例3]ステレオコンプレックスポリ乳酸(A3):
 製造例1および2で得られたポリL−乳酸樹脂(A1)およびポリD−乳酸樹脂(A2)よりなるポリ乳酸樹脂各50重量部を110℃で5時間乾燥し、径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]に供給し、シリンダー温度280℃、スクリュー回転数300rpm、吐出量7kg/h、およびベント減圧度3kPaで溶融押出してペレット化し、ステレオコンプレックスポリ乳酸(A3)を得た。
 得られたステレオコンプレックスポリ乳酸樹脂(A3)の重量平均分子量は13.5万、融点(Tms)は221℃、カルボキシル基濃度は16当量/ton、ステレオコンプレックス結晶化度(S)は51%であった。
[製造例4]ステレオコンプレックスポリ乳酸(A4):
 製造例1および2で得られたポリL−乳酸樹脂(A1)およびポリD−乳酸樹脂(A2)各50重量部よりなるポリ乳酸樹脂計100重量部並びに燐酸−2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)ナトリウム(「アデカスタブ(登録商標)」NA−11:(株)ADEKA製)0.04重量部をブレンダーで混合後、110℃で5時間乾燥し、径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]に供給し、シリンダー温度280℃、スクリュー回転数300rpm、吐出量7kg/h、およびベント減圧度3kPaで溶融押出してペレット化し、ステレオコンプレックスポリ乳酸(A4)を得た。
 得られたステレオコンプレックスポリ乳酸樹脂(A4)の重量平均分子量は13万、融点(Tms)は216℃、カルボキシル基濃度は16当量/ton、ステレオコンプレックス結晶化度(S)は100%であった。
<加水分解調整剤(B成分)>
加水分解調整剤(B成分)として、以下の添加剤を使用した。
B1:DIPC(カルボジイミド化合物、川口化学工業(株)製)
B2:「スタバクゾール(登録商標)」P(カルボジイミド化合物、ラインケミー社製)
B3:「カルボジライト(カルボジライト)」LA−1(カルボジイミド化合物、日清紡ケミカル(株)製)
B4:「セロキサイド(登録商標)」2021P(エポキシ化合物、(株)ダイセル製)
CC2:WO2010/071213号パンフレット、製造例2に記載の環状カルボジイミドCC2
 各B成分の耐水性と酸性基との反応性は下記表に記載した。
Figure JPOXMLDOC01-appb-T000021
 耐水性が95%以上かつ酸性基との反応性が50%以上のものを○と判定した。
 なお、B1とB4についてはジメチルスルホキシドを使用した耐水性評価を、B2とB3については、それ以外の耐水性評価を行った。
[実施例1]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A3)90重量部と加水分解調整剤(B1)10重量部とを2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A3)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実丸断面、同心芯鞘構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表2に記載のとおりである。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡散による工程汚染は認められなかったため、繊維外への加水分解調整剤(B成分)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、170℃での高温熱水中での湿熱評価を行った。評価結果については、表2に示した。
[実施例2]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)90重量部と加水分解調整剤(B2)10重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実丸断面、同心芯鞘構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表2に記載のとおりである。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡散による工程汚染は認められなかったため、繊維外への加水分解調整剤(B成分)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、170℃での高温熱水中での湿熱評価を行った。評価結果については、表2に示した。
[実施例3]
 50℃にて除湿乾燥を行なったポリL−乳酸(A1)97重量部と加水分解調整剤(B1)3重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったポリD−乳酸(A2)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実丸断面、同心芯鞘構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表2に記載のとおりである。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡散による工程汚染は認められなかったため、繊維外への加水分解調整剤(B成分)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、150℃での高温熱水中での湿熱評価を行った。評価結果については、表2に示した。
[実施例4]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)88重量部と加水分解調整剤(B1)12重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったポリブチレンテレフタレート(ウィンテックポリマー株式会社「ジュラネックス」TRE−DM2)(PBT)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実丸断面、同心芯鞘構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表2に記載のとおりである。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡散による工程汚染は認められなかったため、繊維外への加水分解調整剤(B成分)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、170℃での高温熱水中での湿熱評価を行った。評価結果については、表2に示した。
[比較例1]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A3)90重量部と加水分解調整剤(B1)10重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものをエクストルーダ型の紡糸装置を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表2に記載のとおりである。紡糸時の工程におけるイソシアネート化合物による臭気が顕著であり、目視による加水分解調整剤(B成分)の拡散による工程汚染が認められた。得られた繊維について、170℃での高温熱水中での湿熱評価を行った。評価結果については、表2に示した。
[比較例2]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)90重量部と加水分解調整剤(B3)10重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実丸断面、同心芯鞘構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表2に記載のとおりである。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡散による工程汚染は認められなかったため、繊維外への加水分解調整剤(B成分)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、170℃での高温熱水中での湿熱評価を行った。評価結果については、表2に示した。
[比較例3]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)90重量部と加水分解調整剤(B4)10重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実丸断面、同心芯鞘構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表2に記載のとおりである。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡散による工程汚染は認められなかったため、繊維外への加水分解調整剤(B成分)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、170℃での高温熱水中での湿熱評価を行った。評価結果については、表2に示した。
[比較例4]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)90重量部と加水分解調整剤(CC2)10重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものをエクストルーダ型の紡糸装置を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表2に記載のとおりである。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡散による工程汚染は認められなかったため、繊維外への加水分解調整剤(B成分)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、170℃での高温熱水中での湿熱評価を行った。評価結果については、表2に示した。
Figure JPOXMLDOC01-appb-T000022
[実施例5]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A3)90重量部と加水分解調整剤(B1)10重量部とを2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A3)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実で丸断面の同心芯鞘構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表2に記載のとおりである。延伸に続いて203℃のローラーで3秒の熱固定を行った。紡糸時の工程におけるイソシアネート化合物による臭気および目視によるDIPC(B成分)の拡散による工程汚染は認められなかったため、繊維外へのDIPC(B成分)の拡散はなく、繊維内で適度に拡散しているものと思われる。
 得られた繊維について、繊維横断面の顕微IR測定を実施した結果、式(α)の平均値は0.42であり、合格であった。さらに170℃での高温熱水中での湿熱評価を行った。評価結果については、表3に示した。
[実施例6]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)90重量部と加水分解調整剤(B2)10重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実で丸断面の同心構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表2に記載のとおりである。延伸に続いて196℃のローラーで4秒の熱固定を行った。紡糸時の工程におけるイソシアネート化合物による臭気および目視によるDIPC(B成分)の拡散による工程汚染は認められなかったため、繊維外へのDIPC(B1)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、繊維横断面の顕微IR測定を実施した結果、式(α)の平均値は0.38であり、合格であった。さらに170℃での高温熱水中での湿熱評価を行った。評価結果については、表3に示した。
[実施例7]
 50℃にて除湿乾燥を行なったポリL−乳酸(A1)97重量部と加水分解調整剤(B1)3重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったポリD−乳酸(A1)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実で丸断面の同心構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表2に記載のとおりである。延伸に続いて120℃のローラーで6秒の熱固定を行った。紡糸時の工程におけるイソシアネート化合物による臭気および目視によるDIPC(B1)の拡散による工程汚染は認められなかったため、繊維外へのDIPC(B1)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、繊維横断面の顕微IR測定を実施した結果、式(α)の平均値は0.1であり、合格であった。さらに150℃での高温熱水中での湿熱評価を行った。評価結果については、表3に示した。
[比較例5]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A3)90重量部とDIPC(B1)10重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものをエクストルーダ型の紡糸装置を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表2に記載のとおりである。延伸に続いて203℃のローラーで3秒の熱固定を行った。紡糸時の工程におけるイソシアネート化合物による臭気が顕著であり、目視によるDIPC(B1)の拡散による工程汚染が認められた。得られた繊維について、繊維横断面の顕微IR測定を実施した結果、式(α)の平均値は0.9であり、不合格であった。さらに170℃での高温熱水中での湿熱評価を行った。評価結果については、表3に示した。
[比較例6]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)90重量部とDIPC(B1)10重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものをエクストルーダ型の紡糸装置を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表2に記載のとおりである。延伸に続いて203℃のローラーで3秒の熱固定を行った。紡糸時の工程におけるイソシアネート化合物による臭気が顕著であり、目視によるDIPC(B1)の拡散による工程汚染が認められた。得られた繊維について、繊維横断面の顕微IR測定を実施した結果、式(α)の平均値は0.85であり、不合格であった。さらに170℃での高温熱水中での湿熱評価を行った。評価結果については、表3に示した。
Figure JPOXMLDOC01-appb-T000023
[実施例8]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A3)90重量部と加水分解調整剤(B1)10重量部とを2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A3)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実で丸断面の同心構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表4に記載のとおりである。延伸に続いて203℃のローラーで3秒の熱固定を行った。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡散による工程汚染は認められなかったため、繊維外への加水分解調整剤(B成分)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、酸性末端基量の測定および170℃での高温熱水中での湿熱評価を行った。評価結果については、表4に示した。
[実施例9]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)90重量部と加水分解調整剤(B2)10重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実で丸断面の同心構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表4に記載のとおりである。延伸に続いて196℃のローラーで4秒の熱固定を行った。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡散による工程汚染は認められなかったため、繊維外への加水分解調整剤(B成分)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、酸性末端基量の測定および170℃での高温熱水中での湿熱評価を行った。評価結果については、表4に示した。
[実施例10]
 50℃にて除湿乾燥を行なったポリL−乳酸(A1)97重量部と加水分解調整剤(B1)3重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったポリD−乳酸(A2)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実で丸断面の同心構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表4に記載のとおりである。延伸に続いて120℃のローラーで6秒の熱固定を行った。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡散による工程汚染は認められなかったため、繊維外への加水分解調整剤(B成分)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、酸性末端基量の測定および150℃での高温熱水中での湿熱評価を行った。評価結果については、表4に示した。
[実施例11]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)88重量部と加水分解調整剤(B1)12重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったポリブチレンテレフタレート(ウィンテックポリマー株式会社「ジュラネックス」TRE−DM2)(PBT)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実で丸断面の同心構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表4に記載のとおりである。延伸に続いて180℃のローラーで4秒の熱固定を行った。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡散による工程汚染は認められなかったため、繊維外への加水分解調整剤(B成分)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、酸性末端基量の測定および170℃での高温熱水中での湿熱評価を行った。評価結果については、表4に示した。
[実施例12]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A3)90重量部と加水分解調整剤(B1)10重量部とを2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。
 また、50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A3)99.5重量部と加水分解調整剤(CC2)0.5重量部とを2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを鞘部用の樹脂組成物とした。
 エクストルーダ型の芯鞘複合紡糸装置(中実で丸断面の同心構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表4に記載のとおりである。熱固定は行わなかった。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡散による工程汚染は認められなかったため、繊維外への加水分解調整剤(B成分)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、酸性末端基量の測定および170℃での高温熱水中での湿熱評価を行った。評価結果については、表4に示した。
[比較例7]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A3)90重量部と加水分解調整剤(B1)10重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものをエクストルーダ型の紡糸装置を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表4に記載のとおりである。延伸に続いて203℃のローラーで3秒の熱固定を行った。紡糸時の工程におけるイソシアネート化合物による臭気が顕著であり、目視による加水分解調整剤(B成分)の拡散による工程汚染が認められた。得られた繊維について、酸性末端基量の測定および170℃での高温熱水中での湿熱評価を行った。評価結果については、表4に示した。
[実施例13]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)90重量部と加水分解調整剤(B3)10重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実で丸断面の同心構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表4に記載のとおりである。延伸に続いて196℃のローラーで4秒の熱固定を行った。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡散による工程汚染は認められなかったため、繊維外への加水分解調整剤(B成分)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、酸性末端基量の測定および170℃での高温熱水中での湿熱評価を行った。評価結果については、表4に示した。
[実施例14]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)90重量部と加水分解調整剤(B4)10重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実で丸断面の同心構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表4に記載のとおりである。延伸に続いて196℃のローラーで4秒の熱固定を行った。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡散による工程汚染は認められなかったため、繊維外への加水分解調整剤(B成分)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、酸性末端基量の測定および170℃での高温熱水中での湿熱評価を行った。評価結果については、表4に示した。
[実施例15]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A4)90重量部と加水分解調整剤(CC2)10重量部を2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものをエクストルーダ型の紡糸装置を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表4に記載のとおりである。延伸に続いて196℃のローラーで4秒の熱固定を行った。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡散による工程汚染は認められなかったため、繊維外への加水分解調整剤(B成分)の拡散はなく、繊維内で適度に拡散しているものと思われる。得られた繊維について、酸性末端基量の測定および170℃での高温熱水中での湿熱評価を行った。評価結果については、表4に示した。
[比較例8]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A3)78重量部と加水分解調整剤(B1)22重量部とを2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A3)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実で丸断面の同心構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表4に記載のとおりである。熱固定は行わなかった。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡散による工程汚染は認められなかった。得られた繊維について、酸性末端基量の測定および170℃での高温熱水中での湿熱評価を行った。評価結果については、表4に示した。
[比較例9]
 50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A3)60重量部と加水分解調整剤(B1)40重量部とを2軸押出機にて混練し、樹脂組成物を得た。この樹脂組成物を50℃にて除湿乾燥を行ったものを芯部用の樹脂組成物とした。鞘部用の樹脂組成物としては、50℃にて除湿乾燥を行なったステレオコンプレックスポリ乳酸(A3)を用いた。
 エクストルーダ型の芯鞘複合紡糸装置(中実で丸断面の同心構造)を用いて230℃で紡糸を行った。口金の孔数、吐出部口径、吐出量、紡糸速度、延伸倍率は表4に記載のとおりである。延伸に続いて196℃のローラーで4秒の熱固定を行った。紡糸時の工程におけるイソシアネート化合物による臭気および目視による加水分解調整剤(B成分)の拡
散による工程汚染は認められなかった。得られた繊維について、酸性末端基量の測定および170℃での高温熱水中での湿熱評価を行った。評価結果については、表4に示した。
Figure JPOXMLDOC01-appb-T000024
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited thereto. Each physical property was measured by the following methods.
(1) Weight average molecular weight (Mw) and number average molecular weight (Mn):
The weight average molecular weight and number average molecular weight of the polymer were measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
For GPC measurement, 10 μl of a sample of 1 mg / ml (chloroform containing 1% hexafluoroisopropanol) at a temperature of 40 ° C. and a flow rate of 1.0 ml / min was used with the following detector and column. Injected and measured.
Detector: Differential refractometer (manufactured by Shimadzu Corporation) RID-6A.
Column: Toso-Co., Ltd. TSKgelG3000HXL, TSKgelG4000HXL, TSKgelG5000HXL and TSKguardcolumnHXL-L connected in series, or Toso- Co., Ltd. TSKgelG2000HXL, TSKgelG3000HXL, TSKumHXL
(2) DSC measurement of stereocomplex crystallinity [S (%)], crystal melting temperature, etc .:
The sample was heated to 250 ° C. at 20 ° C./min under a nitrogen stream in the first cycle using DSC (TA Instrument, TA-2920), and the glass transition temperature (Tg), stereocomplex phase poly Lactic acid crystal melting temperature (Tm), stereocomplex phase polylactic acid crystal melting enthalpy (ΔHms) and homophase polylactic acid crystal melting enthalpy (ΔHmh) were measured.
Further, the crystallization start temperature (Tc *) and the crystallization temperature (Tc) were measured by rapidly cooling the measurement sample, and then measuring the second cycle under the same conditions. The stereocomplex crystallinity is a value obtained by the following formula from the stereocomplex phase and homophase polylactic acid crystal melting enthalpy obtained by the above measurement.
S = [ΔHms / (ΔHmh + ΔHms)] × 100
(However, ΔHms is the melting enthalpy of stereocomplex phase crystals, ΔHmh is the melting enthalpy of homophase polylactic acid crystals)
(3) Water resistance evaluation of hydrolysis modifier:
2 g of water was added to a system in which 1 g of sample was dissolved or partially dissolved in 50 ml of dimethyl sulfoxide, and the dissolved sample portion obtained after stirring at 120 ° C. for 5 hours under reflux was analyzed by HPLC or1Measured by 1 H-NMR.
NMR used ECA600 manufactured by JEOL. Heavy dimethyl sulfoxide was used as the solvent, and the amount of the agent after 5 hours was determined from the amount of change in structure (integrated value).
The HPLC conditions were as follows, and the dosage was determined from the dosage area after 5 hours, with the dosage area at 0 hours being 100%.
Apparatus: Ultra high performance liquid chromatography “Nexera (registered trademark)” manufactured by Shimadzu Corporation
UV detector: Shimadzu SPD-20A 254 nm
Column: Inertsil Ph-3 3 μm 4.6 mm × 150 mm manufactured by GL Sciences (or an equivalent column can be used)
Column temperature: 40 ° C
Sample preparation: A dimethyl sulfoxide solution was diluted 500-fold with DMF and used.
Injection volume: 2 μl
Mobile phase: A: methanol, B: water
Flow rate: 1.0 ml / min (0 min: A / B = 50/50 → 10 min: A / B = 98/2 → hold until 18 min → 23 min: A / B = 50/50 → 30 min)
Water resistance was determined from the following formula (vi) using the obtained amount of the agent after 5 hours.
Water resistance (%) = [Amount after 5 h treatment / initial amount] × 100 (vi)
Other water resistance evaluation (example when B component is dissolved in tetrahydrofuran):
2 g of water was added to a system in which 1 g of a sample was dissolved in 25 ml of tetrahydrofuran and 25 ml of dimethyl sulfoxide, and the dissolved sample portion obtained after stirring at reflux at 120 ° C. for 5 hours was measured by FT-IR.
The conditions of FT-IR are as follows. Using one group (such as an alkyl chain moiety) that does not change with the treatment of the agent and the area of the carbodiimide group, the area of the carbodiimide group for 0 hour and the area of the group that does not change Taking the quotient as 100, the amount of the agent was determined from the quotient of the area of the carbodiimide group after 5 hours and the area of the group not changing.
Using the obtained amount of the agent after 5 hours, water resistance was determined from the above formula (iv).
Device: Nicolet iN10
Measurement method: Microscopic transmission method
Measurement field: 50 μm × 50 μm
Resolution: 4cm-1
Measurement wave number: 4000-740cm-1
Integration count: 128 times
Sample preparation: The dissolved sample was placed on a barium fluoride plate, and the solvent was volatilized.
(4) Microscopic IR measurement of the fiber cross section:
After embedding the fiber with water glue, it is cut into a cross section (fiber cross section) perpendicular to the fiber length direction with a microtome equipped with a sharp blade, and the center on the fiber cross section is determined using the apparatus described below. Microscopic IR measurement was performed on a straight line passing through. The IR absorption peak area of the carbodiimide group of the carbodiimide compound (component B) and the IR absorption peak area of the carbonyl group of the resin having the autocatalytic action (component A) were determined under the following measurement conditions, which were taken as the respective IR peak intensities.
The fiber surface was such that the IR peak intensity of the carbonyl group on the two straight lines subjected to IR measurement was 3.5 or more.
Apparatus: VERTEX HYPERION 3000 manufactured by BRUKER
Measurement method: attenuated total reflection (ATR) method
Wave number resolution: 8cm-1
Integration count: 128 times
Effective element size: 0.5 × 0.5 μm / pixel
IR absorption peak area integration area: carbodiimide group (2280-2040 cm-1)
Ss: carbonyl group (1910-1530cm)-1)
The value obtained by normalizing the peak area of the obtained carbodiimide group with the peak area of the carbonyl group was defined as the abundance of the carbodiimide compound.
The fiber center is an area in a square in which the distance from the center on the fiber cross section to one side is 20% of the radius of the circumscribed circle of the fiber cross section, and PIc has the highest measured value in the above area. Value. However, when the length of one side of the square is not a multiple of the effective element size, the square of the minimum area satisfying the region is set as the fiber center.
For fiber cross-sectional shapes other than circles, the center of gravity on the fiber cross-section is regarded as the center, the straight line through which the distance between the fiber surfaces is the longest, and the straight line that passes through the center of gravity and is orthogonal to this straight line A micro IR measurement is carried out and evaluated. RaAdopt the shortest.
From the viewpoint of leakage of the hydrolysis regulator (B component) to the outside of the fiber, suppression of process contamination during processing, and sufficient diffusion of the hydrolysis regulator (B component) into the fiber, the formula (α) is expressed. It is preferable to satisfy. Furthermore, from the viewpoint of leakage of the hydrolysis regulator (component B) to the outside of the fiber and suppression of process contamination during processing, it is preferable to satisfy the formula (γ) in the region inside the fiber surface. In consideration of sufficient diffusion of the hydrolysis regulator (component B) into the fiber, the region inside the fiber surface is preferably a region satisfying the formula (β).
(5) Reactivity evaluation with acidic group of hydrolysis modifier:
Polylactic acid "NW3001D" (MW is 150,000, carboxyl group concentration is 22.1 equivalent / ton) used for evaluation polylactic acid, and the group that reacts with the carboxyl group of the hydrolysis regulator is 33.15 equivalent / Ton, and the resin obtained by melt-kneading for 1 minute at a resin temperature of 190 ° C. and a rotation speed of 30 rpm using a lab plast mill (manufactured by Toyo Seiki Seisakusho). The carboxyl group concentration of the composition was measured, and the reactivity with acidic groups was determined from the following formula (v).
Reactivity (%) = [(carboxyl concentration of polylactic acid for evaluation−carboxyl of resin composition
Group concentration) / carboxyl concentration of polylactic acid for evaluation] × 100 (v)
(6) Evaluation of wet heat in high-temperature hot water:
300 mg of fiber and 12 ml of distilled water were charged in a sealed melting crucible (O-M Labotech, MR-28, internal volume 28 ml) preheated to 110 ° C., and sealed in advance at predetermined temperatures of 150 ° C., 170 ° C. and 190 ° C. The crucible was allowed to stand in the hot air dryer (KLO-45M, manufactured by Koyo Thermo System Co., Ltd.).
After leaving the crucible to stand in a hot air dryer, the time for the temperature inside the crucible to reach a predetermined test temperature is set as the test start time, and from this test start time for a certain period (3 hours at 150 ° C, The crucible was taken out from the hot air dryer when 2 hours were passed at 170 ° C. and 1 hour at 190 ° C.).
The crucible taken out from the hot air dryer was air-cooled for 20 minutes and then cooled to room temperature by water cooling for 10 minutes, and then the crucible was opened to collect the internal sample and water. The internal sample and water were filtered using filter paper (JIS P3801: 1995, 5 types A standard), and the residue remaining on the filter paper was dried at 60 ° C. under a vacuum of 133.3 Pa for 3 hours, and then the weight was measured. It calculated | required from the following formula (vi).
Weight (%) = [weight of residue after treatment / weight of initial fiber] × 100 (vi)
A weight of 90% or more was judged as “◯”, and a weight of less than 90% was judged as “x”.
(7) Diffusion of hydrolysis regulator (component B) out of the fiber:
If the odor due to the isocyanate compound in the spinning process is felt or the process contamination due to the diffusion of the hydrolysis modifier (component B) is observed visually, it is judged as “x” (failed), and both are recognized. If not, it was judged as “good” (passed).
(8) Acid end group amount (carboxyl group concentration):
The acidic end group amount of the composite fiber was measured as follows. A 500 mg composite fiber sample was dissolved in 15 ml of a mixed solvent of chloroform / (1,1,1,3,3,3) -hexafluoroisopropanol = 1/1 volume, and 85 ml of methanol was gradually added dropwise while stirring the solution. Then, the resin was reprecipitated, filtered through a filter paper having a pore size of 1 μm, and the powdery resin remaining on the filter paper was thoroughly washed with methanol. The resin on the filter paper is dried at room temperature using a vacuum pump for 3 hours, a 100 mg sample is taken from the dried resin powder, and stirred and dissolved in 80 ° C. purified o-cresol under a nitrogen stream for 15 minutes. It was. Bromocresol blue was added to the solution as an indicator, and titrated with an ethanol solution of 0.05 N potassium hydroxide.
Stir in purified o-cresol at 80 ° C under nitrogen flow for 15 minutes in advance, add bromocresol blue as an indicator, subtract the blank value titrated with an ethanol solution of 0.05 N potassium hydroxide, The titration value was. The sample was dissolved and titrated in o-cresol three times, and the average value was defined as the amount of acidic end groups.
The carboxyl group concentration of samples other than the composite fiber is1Confirmed by 1 H-NMR. NMR used ECA600 made from JEOL. The solvent was deuterated chloroform and hexafluoroisopropanol, and hexylamine was added for measurement.
Hereinafter, the compounds used in this example will be described.
<Resin having autocatalytic action (component A)>
The following compounds were used as the resin (component A) having autocatalytic action.
[Production Example 1] Poly L-lactic acid resin (A1):
To 100 parts by weight of L-lactide (manufactured by Musashino Chemical Laboratory, Inc., optical purity 100%), 0.005 part by weight of octylate and 0.1 part by weight of stearyl alcohol are added, and a stirring blade is added in a nitrogen atmosphere. In a reactor with a temperature of 180 ° C. for 2 hours, phosphoric acid equivalent to 1.2 times the amount of tin octylate was added, and then the remaining lactide was removed at 13.3 Pa to form chips. A lactic acid resin (A1) was obtained.
The resulting poly L-lactic acid resin (A1) had a weight average molecular weight of 180,000, a melting point (Tmhn) of 175 ° C., and a carboxyl group concentration of 13 equivalents / ton.
[Production Example 2] Poly D-lactic acid resin (A2):
A poly D-lactic acid resin (A2) was prepared in the same manner as in Production Example 1 except that D-lactide (manufactured by Musashino Chemical Laboratory, Inc., optical purity 100%) was used instead of L-lactide in Production Example 1. )
The obtained poly-D-lactic acid resin (A2) had a weight average molecular weight of 180,000, a melting point (Tmh) of 175 ° C., and a carboxyl group concentration of 14 equivalent / ton.
[Production Example 3] Stereocomplex polylactic acid (A3):
50 parts by weight of the polylactic acid resin (A1) and the poly-D-lactic acid resin (A2) obtained in Production Examples 1 and 2 were each dried at 110 ° C. for 5 hours, and the bent type 2 having a diameter of 30 mmφ. Supplied to a screw extruder [TEX30XSST manufactured by Nippon Steel Works, Ltd.], melt extruded at a cylinder temperature of 280 ° C., a screw speed of 300 rpm, a discharge rate of 7 kg / h, and a vent vacuum of 3 kPa, and pelletized, and stereocomplex polylactic acid ( A3) was obtained.
The obtained stereocomplex polylactic acid resin (A3) has a weight average molecular weight of 135,000, a melting point (Tms) of 221 ° C., a carboxyl group concentration of 16 equivalents / ton, and a stereocomplex crystallinity (S) of 51%. there were.
[Production Example 4] Stereocomplex polylactic acid (A4):
100 parts by weight of polylactic acid resin comprising 50 parts by weight of poly L-lactic acid resin (A1) and poly D-lactic acid resin (A2) obtained in Production Examples 1 and 2 and phosphoric acid-2,2′-methylenebis (4 , 6-Di-tert-butylphenyl) sodium (“ADK STAB (registered trademark)” NA-11: manufactured by ADEKA Corporation) 0.04 part by weight was mixed with a blender and dried at 110 ° C. for 5 hours. To the bent type twin screw extruder [TEX30XSST manufactured by Nippon Steel Works, Ltd.], melt extruded at a cylinder temperature of 280 ° C., a screw rotation speed of 300 rpm, a discharge rate of 7 kg / h, and a vent pressure reduction degree of 3 kPa, and pelletized. Complex polylactic acid (A4) was obtained.
The obtained stereocomplex polylactic acid resin (A4) had a weight average molecular weight of 130,000, a melting point (Tms) of 216 ° C., a carboxyl group concentration of 16 equivalents / ton, and a stereocomplex crystallinity (S) of 100%. .
<Hydrolysis regulator (component B)>
The following additives were used as hydrolysis regulators (component B).
B1: DIPC (carbodiimide compound, manufactured by Kawaguchi Chemical Industry Co., Ltd.)
B2: “STABAXOL (registered trademark)” P (carbodiimide compound, manufactured by Rhein Chemie)
B3: “Carbodilite (Carbodilite)” LA-1 (carbodiimide compound, manufactured by Nisshinbo Chemical Co., Ltd.)
B4: “Celoxide (registered trademark)” 2021P (epoxy compound, manufactured by Daicel Corporation)
CC2: cyclic carbodiimide CC2 described in WO2010 / 071213 pamphlet, Production Example 2
The water resistance of each component B and the reactivity with acidic groups are listed in the table below.
Figure JPOXMLDOC01-appb-T000021
A sample having a water resistance of 95% or more and a reactivity with an acidic group of 50% or more was judged as ◯.
B1 and B4 were evaluated for water resistance using dimethyl sulfoxide, and B2 and B3 were evaluated for other water resistance.
[Example 1]
90 parts by weight of stereocomplex polylactic acid (A3) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of a hydrolysis regulator (B1) were kneaded with a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath, stereocomplex polylactic acid (A3) that was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid round cross section, concentric core-sheath structure). Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. The obtained fibers were subjected to wet heat evaluation in high-temperature hot water at 170 ° C. The evaluation results are shown in Table 2.
[Example 2]
90 parts by weight of stereocomplex polylactic acid (A4) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of hydrolysis regulator (B2) were kneaded by a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath, stereocomplex polylactic acid (A4) that was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid round cross section, concentric core-sheath structure). Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. The obtained fibers were subjected to wet heat evaluation in high-temperature hot water at 170 ° C. The evaluation results are shown in Table 2.
[Example 3]
97 parts by weight of poly L-lactic acid (A1) that had been dehumidified and dried at 50 ° C. and 3 parts by weight of a hydrolysis regulator (B1) were kneaded in a twin-screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath, poly D-lactic acid (A2) that was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid round cross section, concentric core-sheath structure). Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. The obtained fibers were subjected to wet heat evaluation in high-temperature hot water at 150 ° C. The evaluation results are shown in Table 2.
[Example 4]
88 parts by weight of stereocomplex polylactic acid (A4) that had been dehumidified and dried at 50 ° C. and 12 parts by weight of hydrolysis modifier (B1) were kneaded with a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath portion, polybutylene terephthalate (Wintech Polymer Co., Ltd. “Juranex” TRE-DM2) (PBT) which was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid round cross section, concentric core-sheath structure). Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. The obtained fibers were subjected to wet heat evaluation in high-temperature hot water at 170 ° C. The evaluation results are shown in Table 2.
[Comparative Example 1]
90 parts by weight of stereocomplex polylactic acid (A3) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of hydrolysis regulator (B1) were kneaded with a twin screw extruder to obtain a resin composition. The resin composition which had been dehumidified and dried at 50 ° C. was spun at 230 ° C. using an extruder-type spinning device. Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. The odor due to the isocyanate compound in the process at the time of spinning was remarkable, and process contamination due to the diffusion of the hydrolysis adjusting agent (component B) was observed. The obtained fibers were subjected to wet heat evaluation in high-temperature hot water at 170 ° C. The evaluation results are shown in Table 2.
[Comparative Example 2]
90 parts by weight of stereocomplex polylactic acid (A4) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of hydrolysis regulator (B3) were kneaded with a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath, stereocomplex polylactic acid (A4) that was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid round cross section, concentric core-sheath structure). Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. The obtained fibers were subjected to wet heat evaluation in high-temperature hot water at 170 ° C. The evaluation results are shown in Table 2.
[Comparative Example 3]
90 parts by weight of stereocomplex polylactic acid (A4) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of hydrolysis regulator (B4) were kneaded with a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath, stereocomplex polylactic acid (A4) that was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid round cross section, concentric core-sheath structure). Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. The obtained fibers were subjected to wet heat evaluation in high-temperature hot water at 170 ° C. The evaluation results are shown in Table 2.
[Comparative Example 4]
90 parts by weight of stereocomplex polylactic acid (A4) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of a hydrolysis regulator (CC2) were kneaded with a twin screw extruder to obtain a resin composition. The resin composition which had been dehumidified and dried at 50 ° C. was spun at 230 ° C. using an extruder-type spinning device. Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. The obtained fibers were subjected to wet heat evaluation in high-temperature hot water at 170 ° C. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000022
[Example 5]
90 parts by weight of stereocomplex polylactic acid (A3) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of a hydrolysis regulator (B1) were kneaded with a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath, stereocomplex polylactic acid (A3) that was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid, concentric core-sheath structure with a round cross section). Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed with a roller at 203 ° C. for 3 seconds. Odor due to isocyanate compound in the spinning process and process contamination due to visual diffusion of DIPC (component B) were not observed, so there was no diffusion of DIPC (component B) outside the fiber, and it diffused moderately within the fiber. It seems that there is.
As a result of carrying out micro IR measurement of the fiber cross section for the obtained fiber, the average value of the formula (α) was 0.42, which was acceptable. Furthermore, wet heat evaluation in high-temperature hot water at 170 ° C. was performed. The evaluation results are shown in Table 3.
[Example 6]
90 parts by weight of stereocomplex polylactic acid (A4) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of hydrolysis regulator (B2) were kneaded by a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath, stereocomplex polylactic acid (A4) that was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed for 4 seconds with a 196 ° C. roller. Odor due to isocyanate compound and process contamination due to visual diffusion of DIPC (component B) were not observed in the spinning process, so there was no diffusion of DIPC (B1) out of the fiber, and it was diffused moderately within the fiber. It seems to be. As a result of carrying out micro IR measurement of the fiber cross section for the obtained fiber, the average value of the formula (α) was 0.38, which was acceptable. Furthermore, wet heat evaluation in high-temperature hot water at 170 ° C. was performed. The evaluation results are shown in Table 3.
[Example 7]
97 parts by weight of poly L-lactic acid (A1) that had been dehumidified and dried at 50 ° C. and 3 parts by weight of a hydrolysis regulator (B1) were kneaded in a twin-screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath, poly D-lactic acid (A1) that was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed for 6 seconds with a roller at 120 ° C. Odor due to isocyanate compound in spinning process and process contamination due to visual diffusion of DIPC (B1) were not observed, so there was no diffusion of DIPC (B1) to the outside of the fiber, and it diffused moderately within the fiber I think that the. As a result of carrying out micro IR measurement of the fiber cross section for the obtained fiber, the average value of the formula (α) was 0.1, which was acceptable. Furthermore, wet heat evaluation in high-temperature hot water at 150 ° C. was performed. The evaluation results are shown in Table 3.
[Comparative Example 5]
90 parts by weight of stereocomplex polylactic acid (A3) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of DIPC (B1) were kneaded with a twin screw extruder to obtain a resin composition. The resin composition which had been dehumidified and dried at 50 ° C. was spun at 230 ° C. using an extruder-type spinning device. Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed with a roller at 203 ° C. for 3 seconds. The odor due to the isocyanate compound in the spinning process was significant, and process contamination due to the diffusion of DIPC (B1) was observed. As a result of carrying out micro IR measurement of the fiber cross section for the obtained fiber, the average value of the formula (α) was 0.9, which was unacceptable. Furthermore, wet heat evaluation in high-temperature hot water at 170 ° C. was performed. The evaluation results are shown in Table 3.
[Comparative Example 6]
90 parts by weight of stereocomplex polylactic acid (A4) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of DIPC (B1) were kneaded by a twin screw extruder to obtain a resin composition. The resin composition which had been dehumidified and dried at 50 ° C. was spun at 230 ° C. using an extruder-type spinning device. Table 2 shows the number of holes in the die, the diameter of the discharge part, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed with a roller at 203 ° C. for 3 seconds. The odor due to the isocyanate compound in the spinning process was significant, and process contamination due to the diffusion of DIPC (B1) was observed. As a result of carrying out micro IR measurement of the fiber cross section for the obtained fiber, the average value of the formula (α) was 0.85, which was unacceptable. Furthermore, wet heat evaluation in high-temperature hot water at 170 ° C. was performed. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000023
[Example 8]
90 parts by weight of stereocomplex polylactic acid (A3) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of a hydrolysis regulator (B1) were kneaded with a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath, stereocomplex polylactic acid (A3) that was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed with a roller at 203 ° C. for 3 seconds. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. About the obtained fiber, the measurement of the amount of acidic terminal groups and the wet heat evaluation in the high temperature hot water at 170 degreeC were performed. The evaluation results are shown in Table 4.
[Example 9]
90 parts by weight of stereocomplex polylactic acid (A4) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of hydrolysis regulator (B2) were kneaded by a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath, stereocomplex polylactic acid (A4) that was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed for 4 seconds with a 196 ° C. roller. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. About the obtained fiber, the measurement of the amount of acidic terminal groups and the wet heat evaluation in the high temperature hot water at 170 degreeC were performed. The evaluation results are shown in Table 4.
[Example 10]
97 parts by weight of poly L-lactic acid (A1) that had been dehumidified and dried at 50 ° C. and 3 parts by weight of a hydrolysis regulator (B1) were kneaded in a twin-screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath, poly D-lactic acid (A2) that was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed for 6 seconds with a roller at 120 ° C. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. About the obtained fiber, the measurement of the amount of acidic terminal groups and wet heat evaluation in high-temperature hot water at 150 ° C. were performed. The evaluation results are shown in Table 4.
[Example 11]
88 parts by weight of stereocomplex polylactic acid (A4) that had been dehumidified and dried at 50 ° C. and 12 parts by weight of hydrolysis modifier (B1) were kneaded with a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath portion, polybutylene terephthalate (Wintech Polymer Co., Ltd. “Juranex” TRE-DM2) (PBT) which was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed with a roller at 180 ° C. for 4 seconds. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. About the obtained fiber, the measurement of the amount of acidic terminal groups and the wet heat evaluation in the high temperature hot water at 170 degreeC were performed. The evaluation results are shown in Table 4.
[Example 12]
90 parts by weight of stereocomplex polylactic acid (A3) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of a hydrolysis regulator (B1) were kneaded with a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core.
Further, 99.5 parts by weight of stereocomplex polylactic acid (A3) that had been dehumidified and dried at 50 ° C. and 0.5 part by weight of a hydrolysis regulator (CC2) were kneaded with a twin screw extruder to obtain a resin composition. Got. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the sheath.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Heat setting was not performed. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. About the obtained fiber, the measurement of the amount of acidic terminal groups and the wet heat evaluation in the high temperature hot water at 170 degreeC were performed. The evaluation results are shown in Table 4.
[Comparative Example 7]
90 parts by weight of stereocomplex polylactic acid (A3) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of hydrolysis regulator (B1) were kneaded with a twin screw extruder to obtain a resin composition. The resin composition which had been dehumidified and dried at 50 ° C. was spun at 230 ° C. using an extruder-type spinning device. Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed with a roller at 203 ° C. for 3 seconds. The odor due to the isocyanate compound in the process at the time of spinning was remarkable, and process contamination due to the diffusion of the hydrolysis adjusting agent (component B) was observed. About the obtained fiber, the measurement of the amount of acidic terminal groups and the wet heat evaluation in the high temperature hot water at 170 degreeC were performed. The evaluation results are shown in Table 4.
[Example 13]
90 parts by weight of stereocomplex polylactic acid (A4) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of hydrolysis regulator (B3) were kneaded with a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath, stereocomplex polylactic acid (A4) that was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed for 4 seconds with a 196 ° C. roller. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. About the obtained fiber, the measurement of the amount of acidic terminal groups and the wet heat evaluation in the high temperature hot water at 170 degreeC were performed. The evaluation results are shown in Table 4.
[Example 14]
90 parts by weight of stereocomplex polylactic acid (A4) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of hydrolysis regulator (B4) were kneaded with a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath, stereocomplex polylactic acid (A4) that was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed for 4 seconds with a 196 ° C. roller. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. About the obtained fiber, the measurement of the amount of acidic terminal groups and the wet heat evaluation in the high temperature hot water at 170 degreeC were performed. The evaluation results are shown in Table 4.
[Example 15]
90 parts by weight of stereocomplex polylactic acid (A4) that had been dehumidified and dried at 50 ° C. and 10 parts by weight of a hydrolysis regulator (CC2) were kneaded with a twin screw extruder to obtain a resin composition. The resin composition which had been dehumidified and dried at 50 ° C. was spun at 230 ° C. using an extruder-type spinning device. Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed for 4 seconds with a 196 ° C. roller. Odor due to isocyanate compound in the spinning process and process contamination due to diffusion of hydrolysis modifier (component B) were not observed, so there was no diffusion of hydrolysis modifier (component B) outside the fiber, It seems to have diffused moderately. About the obtained fiber, the measurement of the amount of acidic terminal groups and the wet heat evaluation in the high temperature hot water at 170 degreeC were performed. The evaluation results are shown in Table 4.
[Comparative Example 8]
78 parts by weight of stereocomplex polylactic acid (A3) that had been dehumidified and dried at 50 ° C. and 22 parts by weight of hydrolysis modifier (B1) were kneaded by a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath, stereocomplex polylactic acid (A3) that was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Heat setting was not performed. Odor due to an isocyanate compound in the process at the time of spinning and process contamination due to the diffusion of the hydrolysis modifier (component B) were not observed. About the obtained fiber, the measurement of the amount of acidic terminal groups and the wet heat evaluation in the high temperature hot water at 170 degreeC were performed. The evaluation results are shown in Table 4.
[Comparative Example 9]
60 parts by weight of stereocomplex polylactic acid (A3) that had been dehumidified and dried at 50 ° C. and 40 parts by weight of hydrolysis regulator (B1) were kneaded with a twin screw extruder to obtain a resin composition. This resin composition was dehumidified and dried at 50 ° C. to obtain a resin composition for the core. As the resin composition for the sheath, stereocomplex polylactic acid (A3) that was dehumidified and dried at 50 ° C. was used.
Spinning was performed at 230 ° C. using an extruder-type core-sheath composite spinning device (solid and round concentric structure). Table 4 shows the number of holes in the die, the diameter of the discharge section, the discharge amount, the spinning speed, and the draw ratio. Following stretching, heat setting was performed for 4 seconds with a 196 ° C. roller. Odor due to isocyanate compound in the spinning process and expansion of hydrolysis modifier (component B) by visual inspection
No contamination of the process was observed. About the obtained fiber, the measurement of the amount of acidic terminal groups and the wet heat evaluation in the high temperature hot water at 170 degreeC were performed. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000024

Claims (17)

  1.  芯部と鞘部とから構成される芯鞘型複合繊維の製造方法であって、
    芯部には、自触媒作用を有する樹脂(A成分)と加水分解調整剤(B成分)とを含有する樹脂組成物(C成分)を配し、鞘部には、自触媒作用を有する樹脂(A’成分)に加水分解調整剤(B成分)を実質的に含まない樹脂組成物(D成分)を配し、樹脂組成物(C成分)中の加水分解調整剤(B成分)は全重量を基準として1~40重量部であることを特徴とする、芯鞘型複合繊維の製造方法。
    A method for producing a core-sheath type composite fiber composed of a core part and a sheath part,
    A resin composition (C component) containing a resin (A component) having an autocatalytic action and a hydrolysis regulator (B component) is disposed in the core part, and a resin having an autocatalytic action is provided in the sheath part. A resin composition (D component) that is substantially free of hydrolysis modifier (B component) is arranged in (A ′ component), and the hydrolysis regulator (B component) in the resin composition (C component) is all A method for producing a core-sheath composite fiber, characterized in that the amount is 1 to 40 parts by weight based on the weight.
  2.  下記式(I)を満たす請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-I000001
    (但し、式中、Qc:芯部の吐出量、Qs:鞘部の吐出量、D:吐出口の口径)
    The manufacturing method of Claim 1 which satisfy | fills following formula (I).
    Figure JPOXMLDOC01-appb-I000001
    (However, in the formula, Qc: discharge amount of the core portion, Qs: discharge amount of the sheath portion, D: diameter of the discharge port)
  3.  自触媒作用を有する樹脂(A成分)がポリエステルである請求項1または2記載の製造方法。 3. The production method according to claim 1, wherein the resin (component A) having autocatalytic action is polyester.
  4.  自触媒作用を有する樹脂(A成分)は主鎖が主として水溶性モノマー単位からなる請求項1~3のいずれかに記載の製造方法。 4. The process according to claim 1, wherein the autocatalytic resin (component A) has a main chain mainly composed of water-soluble monomer units.
  5.  自触媒作用を有する樹脂(A成分)は、主鎖が主として下記式(1)で表される乳酸単位からなる請求項4に記載の製造方法。
    Figure JPOXMLDOC01-appb-I000002
    The production method according to claim 4, wherein the resin (component A) having an autocatalytic action has a main chain mainly composed of lactic acid units represented by the following formula (1).
    Figure JPOXMLDOC01-appb-I000002
  6.  自触媒作用を有する樹脂(A成分)は、ポリL−乳酸とポリD−乳酸とにより形成されたステレオコンプレックス相を含む請求項5に記載の製造方法。 6. The production method according to claim 5, wherein the resin (component A) having an autocatalytic action includes a stereocomplex phase formed by poly L-lactic acid and poly D-lactic acid.
  7.  加水分解調整剤(B成分)がカルボジイミド基を有する請求項1~6のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 6, wherein the hydrolysis regulator (component B) has a carbodiimide group.
  8.  加水分解調整剤(B成分)は、下記式(2)で表されるカルボジイミド化合物である請求項7に記載の製造方法。
    Figure JPOXMLDOC01-appb-I000003
    (式中、R~Rは各々独立に炭素数1~20の脂肪族基、3~20の脂環族基、炭素数5~15の芳香族基、またはこれらの組み合わせであり、ヘテロ原子を含んでいてもよい。X、Yは各々独立に水素原子、炭素数1~20の脂肪族基、3~20の脂環族基、炭素数5~15の芳香族基、またはこれらの組み合わせであり、ヘテロ原子を含んでいてもよい。各々の芳香環は置換基によって結合し環状構造を形成していてもよい。)
    The method according to claim 7, wherein the hydrolysis regulator (component B) is a carbodiimide compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-I000003
    (Wherein R 1 to R 4 are each independently an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof, X and Y may each independently represent a hydrogen atom, an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or these (It is a combination and may contain a hetero atom. Each aromatic ring may be bonded by a substituent to form a cyclic structure.)
  9.  加水分解調整剤(B成分)は、ビス(2,6−ジイソプロピルフェニル)カルボジイミドである請求項8に記載の製造方法。 The method according to claim 8, wherein the hydrolysis regulator (component B) is bis (2,6-diisopropylphenyl) carbodiimide.
  10.  加水分解調整剤(B成分)は、下記式(3)で表される繰り返し単位からなるカルボジイミド化合物である請求項8に記載の製造方法。
    Figure JPOXMLDOC01-appb-I000004
    (式中、R~Rは各々独立に炭素数1~20の脂肪族基、3~20の脂環族基、炭素数5~15の芳香族基、またはこれらの組み合わせであり、ヘテロ原子を含んでいてもよい。)
    The method according to claim 8, wherein the hydrolysis regulator (component B) is a carbodiimide compound comprising a repeating unit represented by the following formula (3).
    Figure JPOXMLDOC01-appb-I000004
    (Wherein R 5 to R 7 are each independently an aliphatic group having 1 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof, (It may contain atoms.)
  11.  芯部に含有する自触媒作用を有する樹脂(A成分)と鞘部に含有する自触媒作用を有する樹脂(A’成分)を同一の樹脂とする請求項1~10のいずれかに記載の製造方法。 11. The production according to claim 1, wherein the resin having the autocatalytic action contained in the core part (component A) and the resin having the autocatalytic action contained in the sheath part (A ′ component) are the same resin. Method.
  12. 紡糸後、60℃以上の熱処理を行う工程を含む、請求項1~11のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 11, further comprising a step of performing a heat treatment at 60 ° C or higher after spinning.
  13.  請求項1~12のいずれかに記載の方法で製造された芯鞘型複合繊維。 A core-sheath type composite fiber produced by the method according to any one of claims 1 to 12.
  14.  繊維横断面上の中心を通る直交する二直線上において顕微IR測定をした時、下記式(α)を満たす請求項13に記載の繊維。
    Figure JPOXMLDOC01-appb-I000005
    (但し、式中、PIs:繊維表面の4点におけるカルボジイミド基/カルボニル基で求めたIRピーク強度比の平均値、PIc:繊維中心のカルボジイミド基/カルボニル基で求めた最も高いIRピーク強度比)
    The fiber according to claim 13, which satisfies the following formula (α) when microscopic IR measurement is performed on two orthogonal straight lines passing through the center on the cross section of the fiber.
    Figure JPOXMLDOC01-appb-I000005
    (However, in the formula, PIs: average value of IR peak intensity ratio obtained from carbodiimide group / carbonyl group at four points on the fiber surface, PIc: highest IR peak intensity ratio obtained from carbodiimide group / carbonyl group at fiber center)
  15.  繊維横断面上の中心を通る直交する二直線上において顕微IR測定をした時、下記式(β)を満たすrを半径とする円周上に存在する4つの点bの平均値が下記式(γ)を満たす請求項14に記載の繊維。
    Figure JPOXMLDOC01-appb-I000006
    (但し、式中、r:顕微IR測定をしたそれぞれの直線上の繊維横断面上の中心から繊維表面までの距離、r:顕微IR測定をしたそれぞれの直線上にあり、繊維横断面上の中心から繊維表面までの間に存在するある点aまでの距離0<r<r)
    Figure JPOXMLDOC01-appb-I000007
    (但し、式中、PIb:顕微IR測定をしたそれぞれの直線上にあり、点aから繊維表面までの間に存在するある点bにおけるカルボジイミド基/カルボニル基で求めたIRピーク強度比)
    When the microscopic IR measured in the two orthogonal straight line passing through the center of the fiber cross-section, the average value of the following formula b 4 a point present on the circumference of a r a satisfying the following formula (beta) and the radius The fiber according to claim 14, which satisfies (γ).
    Figure JPOXMLDOC01-appb-I000006
    (Wherein, r: distance from the center of the fiber cross-section on each of the microscopic IR measurement linear to the fiber surface, r a: is on each having a microscopic IR measurement linear, fiber cross-section on 0 <r a <r) to a point a existing between the center of the fiber and the fiber surface
    Figure JPOXMLDOC01-appb-I000007
    (However, in the formula, PIb: IR peak intensity ratio obtained from carbodiimide group / carbonyl group at a certain point b existing between each point a and the fiber surface on each straight line obtained by microscopic IR measurement)
  16.  芯部と鞘部とから構成される芯鞘型複合繊維であって、
    (i)芯部は、自触媒作用を有する樹脂(A成分)および加水分解調整剤(B成分)を含有する樹脂組成物(C成分)からなり、加水分解調整剤(B成分)の含有量は、全重量を基準として1~40重量部であり、
    (ii)鞘部は、自触媒作用を有する樹脂(A’成分)に、C成分より低い濃度で加水分解調整剤(B成分)を含有するか、または加水分解調整剤(B成分)を実質的に含有しない樹脂組成物(D成分)であり、
    (iii)複合繊維の酸性末端基量が5eq/ton以下である、請求項13に記載の芯鞘型複合繊維。
    A core-sheath type composite fiber composed of a core part and a sheath part,
    (I) The core is composed of a resin composition (C component) containing a resin (A component) having autocatalytic action and a hydrolysis regulator (B component), and the content of the hydrolysis regulator (B component) Is 1 to 40 parts by weight based on the total weight,
    (Ii) The sheath part contains a hydrolysis regulator (B component) at a lower concentration than the C component in the resin (A ′ component) having autocatalytic action, or substantially contains the hydrolysis regulator (B component). A resin composition not contained (component D),
    (Iii) The core-sheath type composite fiber according to claim 13, wherein the amount of acidic end groups of the composite fiber is 5 eq / ton or less.
  17.  芯部の自触媒作用を有する樹脂(A成分)と、鞘部の自触媒作用を有する樹脂(A’成分)とが、同一の樹脂である請求項16記載の芯鞘型複合繊維。 The core-sheath type composite fiber according to claim 16, wherein the resin (A component) having autocatalytic activity of the core part and the resin (A 'component) having autocatalytic action of the sheath part are the same resin.
PCT/JP2015/052790 2014-01-28 2015-01-27 Fiber WO2015115633A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-013380 2014-01-28
JP2014013380 2014-01-28
JP2014-194090 2014-09-24
JP2014194090A JP2017078229A (en) 2014-09-24 2014-09-24 Composite fiber
JP2015-005120 2015-01-14
JP2015005120 2015-01-14

Publications (1)

Publication Number Publication Date
WO2015115633A1 true WO2015115633A1 (en) 2015-08-06

Family

ID=53757198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052790 WO2015115633A1 (en) 2014-01-28 2015-01-27 Fiber

Country Status (1)

Country Link
WO (1) WO2015115633A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220380945A1 (en) * 2021-06-01 2022-12-01 Nan Ya Plastics Corporation Polylactic acid fiber

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254987B1 (en) * 1998-07-29 2001-07-03 Johns Manville International, Inc. Monofil bicomponent fibres of the sheath/core type
JP2005187950A (en) * 2003-12-24 2005-07-14 Toray Ind Inc Conjugated fiber
JP2007023444A (en) * 2005-07-20 2007-02-01 Toray Ind Inc Biodegradable nonwoven fabric having excellent hydrolysis resistance
JP2008057057A (en) * 2006-08-30 2008-03-13 Unitika Ltd Polylactic acid-based fiber and polylactic acid-based non-woven fabric
JP2008174889A (en) * 2006-12-22 2008-07-31 Nippon Ester Co Ltd Polylactic acid conjugate fiber
WO2010122915A1 (en) * 2009-04-20 2010-10-28 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition for welding and composite molded article
JP2012001845A (en) * 2010-06-16 2012-01-05 Teijin Ltd Fiber structure including at least polylactic acid containing conjugated fiber
JP2012007079A (en) * 2010-06-25 2012-01-12 Unitika Ltd Polylactic acid-based resin composition and molded body thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254987B1 (en) * 1998-07-29 2001-07-03 Johns Manville International, Inc. Monofil bicomponent fibres of the sheath/core type
JP2005187950A (en) * 2003-12-24 2005-07-14 Toray Ind Inc Conjugated fiber
JP2007023444A (en) * 2005-07-20 2007-02-01 Toray Ind Inc Biodegradable nonwoven fabric having excellent hydrolysis resistance
JP2008057057A (en) * 2006-08-30 2008-03-13 Unitika Ltd Polylactic acid-based fiber and polylactic acid-based non-woven fabric
JP2008174889A (en) * 2006-12-22 2008-07-31 Nippon Ester Co Ltd Polylactic acid conjugate fiber
WO2010122915A1 (en) * 2009-04-20 2010-10-28 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition for welding and composite molded article
JP2012001845A (en) * 2010-06-16 2012-01-05 Teijin Ltd Fiber structure including at least polylactic acid containing conjugated fiber
JP2012007079A (en) * 2010-06-25 2012-01-12 Unitika Ltd Polylactic acid-based resin composition and molded body thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220380945A1 (en) * 2021-06-01 2022-12-01 Nan Ya Plastics Corporation Polylactic acid fiber

Similar Documents

Publication Publication Date Title
WO2014157597A1 (en) Resin composition
JP5436449B2 (en) Resin composition containing cyclic carbodiimide
JP5838260B2 (en) Method for producing resin composition
WO2014003191A1 (en) Resin composition
JP2011153262A (en) Polylactic acid composition
JP2011068809A (en) Resin composition containing stereocomplex polylactic acid, and manufacturing method of the same
JP2009249518A (en) Stereocomplex polylactic acid composition excellent in hue and heat resistance
JP2017078229A (en) Composite fiber
JP2011153263A (en) Polylactic acid composition
WO2015060455A1 (en) Resin composition
JP2009249517A (en) Polylactic acid composition excellent in hue and moist heat stability
WO2015115633A1 (en) Fiber
JP5437743B2 (en) Polylactic acid composition
JP2014051570A (en) Resin composition for hot bending
JP5612317B2 (en) Polylactic acid resin composition
JP2009249450A (en) Polylactic acid molded article and manufacturing method
WO2015129920A1 (en) Fiber
JP5232596B2 (en) Polylactic acid composition and molded article thereof.
JP5646889B2 (en) Polylactic acid copolymer, composition and molded article comprising the same
JP2017101092A (en) Resin composition
JP2010168504A (en) Polylactic acid composition and molding comprising the same
JP2010174218A (en) Polylactic acid composition and molded article thereof
JP2015160872A (en) resin composition
JP6059417B2 (en) Method for producing polyester resin composition
JP2017101333A (en) fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP