JP4820983B2 - 微生物群集、人工培地、微生物群集組成物、微生物群集の活性維持・増強方法、汚染土壌の浄化方法、土壌汚染物質の拡散防止方法 - Google Patents

微生物群集、人工培地、微生物群集組成物、微生物群集の活性維持・増強方法、汚染土壌の浄化方法、土壌汚染物質の拡散防止方法 Download PDF

Info

Publication number
JP4820983B2
JP4820983B2 JP2005146279A JP2005146279A JP4820983B2 JP 4820983 B2 JP4820983 B2 JP 4820983B2 JP 2005146279 A JP2005146279 A JP 2005146279A JP 2005146279 A JP2005146279 A JP 2005146279A JP 4820983 B2 JP4820983 B2 JP 4820983B2
Authority
JP
Japan
Prior art keywords
microbial community
soil
aromatic chlorine
microbial
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005146279A
Other languages
English (en)
Other versions
JP2006320249A (ja
Inventor
新太 片山
大輔 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2005146279A priority Critical patent/JP4820983B2/ja
Publication of JP2006320249A publication Critical patent/JP2006320249A/ja
Application granted granted Critical
Publication of JP4820983B2 publication Critical patent/JP4820983B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、各種のPCB(ポリ塩化ビフェニル)やいわゆるダイオキシン類等の芳香族塩素化合物に対して嫌気的分解活性を示す微生物群集に関する。更に、本発明は、このような微生物群集の分解活性の維持・増強に有効な人工培地と、この人工培地に上記の微生物群集を接種してなる微生物群集組成物とに関する。更に、本発明は、芳香族塩素化合物で汚染された土壌に対する上記の微生物群集や微生物群集組成物の有効な利用に関する。
なお「ダイオキシン類」とは、社会通念に従い、ポリ塩化ベンゾパラジオキシン(慣用名ダイオキシン)やポリ塩化ベンゾフラン(PCDF)を言う。PCBの内、コプラナーPCB(Co−PCB: 2,6−位に塩素が結合していない平面性PCB)も「ダイオキシン類」に含まれる。PCBやダイオキシン類等の多環芳香族塩素化合物(芳香環を2つ又はそれ以上持つ芳香族塩素化合物)は、芳香族塩素化合物の内でも、とりわけ難分解性である。
周知のように、PCBやダイオキシン類によって代表される芳香族塩素化合物は生物毒性のある合成化学物質であるが、物理化学的に非常に安定であるため、環境中における長期残留問題を引き起こしている。
近年、芳香族塩素化合物を高濃度に含有する土砂等の廃棄物に対して、物理・化学的方法を中心に各種の処理技術の開発が進められている。一方、芳香族塩素化合物の排出源とは直接に関係しない通常の土壌中にも、主に河床や底質層等の嫌気的環境において、低濃度ではあるがPCB等の芳香族塩素化合物が広範囲に残留している。そして、これらが種々の経路を通じて生物体へ高濃度に蓄積することが懸念されている。
土壌中等に低濃度に残留するPCB等の浄化に当たっては、いわゆるバイオレメディエーション等の微生物分解技術が期待されている。これらの微生物分解技術においては、要するに、多様な微生物からなる微生物群集が土壌中で芳香族塩素化合物の嫌気的分解(少なくとも脱塩素反応)を行うものと理解される。そして、土壌中での低濃度汚染物質の浄化と言う点を考えたとき、原位置浄化が可能で設備投資も少なくて済む微生物分解技術は、コスト的に有利である。
芳香族塩素化合物に対する微生物分解技術に関する従来技術としては、例えば以下の非特許文献1〜非特許文献5又は特許文献1を挙げることができる。
下記の非特許文献1、非特許文献2には嫌気性USAB( Upflow Anaerobic
Sludge Blanket)反応装置によるPCB嫌気性分解の報告がある。但し、その嫌気性分解を行う微生物は特定されていない。
Natarajan, M. et al., "Dechlorination of spikedPCBs in lake sediment by anaerobic microbial granules" Water Res, 32,3013-3020(1998) Nollet, H. et al., "Carbon/electron sourcedependense of polychlorinated biphenyl dechlorination pathways foranaerobic granules" Chemosphere, 58, 299-310(2005) 下記の非特許文献3その他の幾つかの報告において、芳香族塩素化合物の嫌気的分解活性を持つ微生物群集が報告されている。但し、いずれの報告においても微生物群集の分解活性の安定的な維持に関しては困難を伴っている様子であり、その後の発表がない。
Mohn, N. W. et al., "Microbial reductivedehalogenation" Microbial Rev., 56, 482-507(1992) 下記の非特許文献4、非特許文献5においてはPCE(テトラクロロエチレン)やクロロベンゼンの脱塩素活性を持つ Dehalococcoides属細菌がPCBの幾つかの同族体を脱塩素することを報告している。但し、それらの同族体は、例えば 2,3,4,5,6-PeCB 等の、片側のフェニル基のみに塩素が結合したタイプのものに限られている。
Fennel, D. E. et al., "Dehalococcoidesethanogenes Strain195 reductively dechlorinates diverse ChlorinatedAromatic pollutants" Environ. Sci. Technol., 38, 2075-2081(2004) Adrian, L. et al., "Bacterial dehaloresirationwith Chlorinated benzenes" Nature, 408, 580-583(2000) 下記の特許文献1には、難分解性の有機塩素農薬PCNBを分解する好気性細菌ブルクホルデリアセパシアを、砕片化多孔質材に集積させる技術が開示されている。但し、この細菌が多環芳香族塩素化合物であるPCBやダイオキシン類の分解に有効か否かは不明である。又、好気性細菌は還元的な環境の多い汚染土壌の浄化には使用し難いと考えられる。
特開平 11-318435(特願平 10-135156)
上記の非特許文献1〜非特許文献5や特許文献1からも伺われるように、芳香族塩素化合物の微生物分解技術に関しては、嫌気性微生物について不明な点が多く、脱塩素反応の詳しいメカニズムは未だ明らかでない。そのため、次のような幾つかの大きな問題点が指摘される。
(1)芳香族塩素化合物、とりわけ難分解性であるPCBやダイオキシン類等の多環芳香族塩素化合物に対して、単独で十分な分解活性を示すスーパー菌株の存在は未だ報告されていない。このようなスーパー菌株が分離される可能性を否定するものではないが、そのような菌株を実際に特定し分離することは、容易ではないと考えられる。
(2)従って、差し当たり、これらの化合物に対して全体として分解活性を示す微生物群集を取得して利用することが現実的である。その場合でも、芳香族塩素化合物、特に多環芳香族塩素化合物に対して十分な分解活性を持つ微生物群集はほとんど報告されていない。そして、このような微生物群集を取得できた場合においても、恐らくはその微生物群集における個々の微生物種の経時的な消長等のために、微生物群集の分解活性を安定的に維持することが困難である。
(3)更に、汚染土壌中の芳香族塩素化合物としては、芳香族骨格構造に対する結合塩素数や結合位置が異なる多様な同族体が混在しているのが通常である。例えばPCBには209種類の同族体があり得る。PCB分解活性があるとする微生物群集の従来の報告例は、塩素の結合位置等が限定された一部の同族体についてのみの分解活性の報告であり、このような限定のない広範囲な同族体に対して分解活性を示す微生物群集は、未だ報告されていない。
そこで本発明は、芳香族塩素化合物に対し、特に多環芳香族塩素化合物に対し、更にはこれらの広範囲な同族体に対して優れた嫌気的分解活性を示し、かつ、その分解活性を安定的に維持することができる微生物群集を提供することを目的とする。又、本発明は、このような微生物群集の分解活性の更なる維持・増強に有効な人工培地と、この人工培地に微生物群集を接種してなる微生物群集組成物とを提供することを目的とする。更に、本発明は、芳香族塩素化合物により汚染された土壌に対する上記微生物群集や微生物群集組成物の有効な利用方法を提供することを目的とする。
(第1発明の構成)
上記課題を解決するための本願第1発明の構成は、芳香族塩素化合物で汚染されていない湿地還元層土壌の土壌微生物群集に芳香族塩素化合物を投与し、嫌気的条件下で土壌中培養することにより得られる微生物群集であって、下記(1)の分解活性を示し、更に下記(2)及び/又は(3)に該当する分解活性維持能力を示すものである、微生物群集である。
(1)少なくとも多環芳香族塩素化合物を包含する芳香族塩素化合物に対する嫌気的分解活性を示す。
(2)殺菌土壌に対する5回以上の継代培養を繰り返しても初期分解活性以上の分解活性を維持できる。
(3)初期分解活性以上の分解活性を10ケ月以上維持できる。
(第2発明の構成)
上記課題を解決するための本願第2発明の構成は、前記第1発明に係る土壌微生物群集が水田のグライ層土壌の土壌微生物群集である、微生物群集である。
(第3発明の構成)
上記課題を解決するための本願第3発明の構成は、前記第1発明又は第2発明に係る(1)の分解活性を示す土壌微生物群集が、前記土壌中培養を4ケ月以上行うことにより得られるものであり、前記第1発明又は第2発明に係る(1)〜(3)の分解活性及び分解活性維持能力を示す土壌微生物群集が、前記土壌中培養を10ケ月以上行うことにより得られるものである、微生物群集である。
(第4発明の構成)
上記課題を解決するための本願第4発明の構成は、少なくとも多環芳香族塩素化合物を包含する芳香族塩素化合物に対して嫌気的分解活性を示す微生物群集であって、優占種として少なくとも Clostridium属の嫌気的微生物を含み、かつ、以下の(4)及び/又は(5)に該当する、微生物群集である。
(4)キノンプロファイル法による微生物群集構造解析においてメナキノン6,7のみが検出される。
(5)主として、δ,ε−サブクラスのプロテオバクテリアに属する微生物からなる。
(第5発明の構成)
上記課題を解決するための本願第5発明の構成は、少なくとも多環芳香族塩素化合物を包含する芳香族塩素化合物に対して嫌気的分解活性を示す微生物群集であって、その分解反応の主反応として芳香環のメタ位及びパラ位における脱塩素反応を起こし、かつ、汚染土壌中で検出される芳香族塩素化合物の主体をなす2塩素化物〜6塩素化物のいずれに対しても脱塩素活性を示す、微生物群集である。
(第6発明の構成)
上記課題を解決するための本願第6発明の構成は、前記第5発明に係る芳香族塩素化合物の2塩素化物〜6塩素化物に対する脱塩素活性が、下記の式に定義する脱塩素化率として5%以上の値を示すものである、微生物群集である。
脱塩素化率(%)=〔1−(培養後全塩素化量/培養前全塩素化量)〕×100
(上記の式において、「全塩素化量」は、培地中の芳香族塩素化合物の2、3、4、5、6塩素化物のそれぞれの含有量を2P、3P、4P、5P、6Pであると規定した場合、(2P×2)、(3P×3)、(4P×4)、(5P×5)、(6P×6)の総和で与えられる。又、「培養前全塩素化量」、「培養後全塩素化量」とは、それぞれ、微生物群集の培養開始直前及び56日間の培養後における培地の全塩素化量を言う。)
(第7発明の構成)
上記課題を解決するための本願第7発明の構成は、芳香族塩素化合物に対して嫌気的分解活性を示す微生物群集を接種するために調製される人工培地であって、任意の微生物培地と、これに対して添加される、孔隙に富む多孔質材料である人工生息場材とからなり、接種された微生物群集の嫌気的分解活性を10ケ月以上維持させ、及び/又は、2倍以上に増強させることができるものである、人工培地である。
(第8発明の構成)
上記課題を解決するための本願第8発明の構成は、前記第7発明に係る多孔質材料が、活性炭、無機質材料製ビーズの集積体又は焼成土である、人工培地である。
ここにおいて、「無機質材料製ビーズの集積体」とは、ガラスやセラミックス等の無機質材料からなる球状又はこれに近似した形状のビーズ粒子が多数集積したもので、多数のビーズ粒子間の孔隙が結果的に細孔を構成している多孔質体を言う。その際、多数のビーズ粒子は流動可能に集積していても構わない。
(第9発明の構成)
上記課題を解決するための本願第9発明の構成は、前記第7発明又は第8発明に係る多孔質材料の平均孔隙径が10〜800μmの範囲内である、人工培地である。
(第10発明の構成)
上記課題を解決するための本願第10発明の構成は、前記第7発明〜第9発明のいずれかに係る多孔質材料に金属粉が混合されている、人工培地である。
(第11発明の構成)
上記課題を解決するための本願第11発明の構成は、前記第10発明に係る金属粉が鉄粉又はチタン粉である、人工培地である。
(第12発明の構成)
上記課題を解決するための本願第12発明の構成は、少なくとも多環芳香族塩素化合物を包含する芳香族塩素化合物に対して嫌気的分解活性を示す微生物群集を、第7発明〜第11発明のいずれかに係る人工培地に接種して嫌気条件下で培養したものである、微生物群集組成物である。
(第13発明の構成)
上記課題を解決するための本願第13発明の構成は、前記第12発明に係る微生物群集の嫌気的分解活性が接種後10ケ月以上維持され、及び/又は、接種後2倍以上に増強されている、微生物群集組成物である。
(第14発明の構成)
上記課題を解決するための本願第14発明の構成は、前記第12発明又は第13発明において規定された微生物群集が、第1発明〜第6発明のいずれかに係る微生物群集である、微生物群集組成物である。
(第15発明の構成)
上記課題を解決するための本願第15発明の構成は、少なくとも多環芳香族塩素化合物を包含する芳香族塩素化合物に対して嫌気的分解活性を示す微生物群集を、第7発明〜第11発明のいずれかに係る人工培地に接種して嫌気的条件下で培養することにより、接種前における微生物群集の嫌気的分解活性を10ケ月以上維持させ、及び/又は、2倍以上に増強させる、微生物群集の活性維持・増強方法である。
(第16発明の構成)
上記課題を解決するための本願第16発明の構成は、前記第15発明において規定された微生物群集が、第1発明〜第6発明のいずれかに係る微生物群集である、微生物群集の活性維持・増強方法である。
(第17発明の構成)
上記課題を解決するための本願第17発明の構成は、芳香族塩素化合物で汚染された土壌に対して、第1発明〜第6発明のいずれかに係る微生物群集又は第12発明〜第14発明のいずれかに係る微生物群集組成物を散布又は混合する、汚染土壌の浄化方法である。
(第18発明の構成)
上記課題を解決するための本願第18発明の構成は、芳香族塩素化合物で汚染された土壌地域に対して、第1発明〜第6発明のいずれかに係る微生物群集又は第12発明〜第14発明のいずれかに係る微生物群集組成物を含むバリヤー層を、当該土壌地域の周囲の土壌中に上下方向に構築し、及び/又は、当該土壌地域の底層の土壌中に水平方向に構築し、前記バリヤー層の外側への芳香族塩素化合物の拡散を防止する、土壌汚染物質の拡散防止方法である。
(第1発明の効果)
第1発明では、まず土着の優れた嫌気性微生物群集に着目し、これに対して嫌気的条件下に芳香族塩素化合物培地を提供して、有効な分解活性を誘導する。
従来、例えばPCB分解活性を有する微生物又は微生物群集を採取しようとする場合には、PCB高濃度汚染土壌を採取源とするのが常識的である。しかし、例えば水田のグライ層土壌のように良好な還元状態にある土壌であって、しかもPCB等で高濃度に汚染された土壌は見出し難いと考えられる。
このような点からは、微生物群集の採取源として従来のようにPCB高濃度汚染土壌に着目するよりも、むしろ、非汚染土壌であっても良好な還元状態にある土壌の微生物群集(優れた潜在能力を有する嫌気性微生物群集)に着目し、これに対して芳香族塩素化合物の分解活性を誘導すると言う方法が、効率的/合理的であると考えることができる。本願発明者は、第1発明として、このような方法を試みた結果、多環芳香族塩素化合物を含む種々の芳香族塩素化合物に対する優れた分解活性を示す土壌微生物群集を得ることができた。
しかも、こうして得られた微生物群集は、従来からの大きな問題であった嫌気的分解活性の獲得及びその分解活性の長期的維持について、第1発明の(1)、(2)、(3)に示すように非常に優れた特性を有するものであった。
(第2発明の効果)
本発明では微生物群集の採取源として湿地還元層土壌を用いるが、そのような土壌としては、低湿地や沼地等のグライ層土壌、例えば水田のグライ層土壌等が好ましく例示される。
(第3発明の効果)
湿地還元層土壌の微生物群集に対して芳香族塩素化合物の分解活性を誘導するには、ある程度の誘導期間(土壌中培養期間)を見込むことが望ましいが、特にPCBやダイオキシン類等の多環芳香族塩素化合物に対する十分な分解活性を誘導するためには、多環芳香族塩素化合物を投与して嫌気的条件下で4ケ月以上の期間を見込むことが好ましい。
更に、上記の分解活性を獲得に加え、その分解活性の十分な維持能力(経時的維持能力及び継代における維持能力)をも示す土壌微生物群集を得るには、多環芳香族塩素化合物を投与して、嫌気的条件下で10ケ月以上(更に好ましくは、1年以上)の期間を見込むことが好ましい。
(第4発明の効果)
本願発明者が得た芳香族塩素化合物分解性の微生物群集の一例については、その微生物群集の構造的特徴として、 Clostridium属の嫌気的微生物を優占種として含むこと、第4発明で前記した(4)及び/又は(5)に該当すること、等が判明している。従ってこの微生物群集は、専ら Dehalococcoides属細菌(前記の非特許文献4、5で報告されたもの)を主体とする微生物群集とは異なるものと考えられる。
(第5発明の効果)
本願発明者が得た芳香族塩素化合物分解性の微生物群集の一例については、その微生物群集における分解反応メカニズム面の特徴として、主反応が芳香環のメタ位及びパラ位における脱塩素反応であることが判明しているので、コプラナーPCB等の脱塩素反応に好適であると考えられる。
又、芳香族塩素化合物、特に多環芳香族塩素化合物の2塩素化物、3塩素化物、4塩素化物、5塩素化物及び6塩素化物のいずれに対しても有効な脱塩素活性を示すことが判明している。統計的に、PCB汚染土壌中では2〜6塩素化PCBが主体をなすことが分かっているので、この微生物群集は、PCB汚染土壌の浄化に極めて好適であると考えられる。
(第6発明の効果)
上記第5発明に係る芳香族塩素化合物分解性の微生物群集は、より具体的には、芳香族塩素化合物の2塩素化物〜6塩素化物に対する脱塩素活性が、第6発明に定義する「脱塩素化率」として、5%以上の値を示す。このように広範囲の芳香族塩素化合物に対して高い脱塩素活性を示す微生物群集は、今までに報告されたことがない。
(第7発明の効果)
本願発明者は、湿地還元層土壌の嫌気性微生物群集に対する上記のような分解活性誘導法によって、第1発明〜第6発明に述べるような優れた分解活性を示す微生物群集を得たが、更にその分解活性を増強し、かつ安定的に維持させる手段を研究する過程で、第7発明の人工培地の開発に成功した。
第7発明の人工培地は、孔隙に富む多孔質材料である人工生息場材を、適宜に組成された任意の微生物培地に添加するものであって、これに対して接種された微生物群集における芳香族塩素化合物に対する分解活性を、少なくとも10ケ月以上維持させることができる。実際には2年半以上維持させることに成功している。又、この接種により、芳香族塩素化合物に対する分解活性を2倍以上に増強させることに成功している。
(第8発明の効果)
上記の第7発明における人工生息場材を構成する多孔質材料とは、より好ましくは、活性炭、無機質材料製ビーズの集積体又は焼成土である。現在までに集積された実験データから言えば、芳香族塩素化合物の分解活性を有する微生物群集をこのような人工培地に接種した場合に、人工生息場材が無機質材料製ビーズの集積体又は焼成土である場合には微生物群集の分解活性を約2倍に増強させることに成功し、人工生息場材が活性炭(特に第10発明に係る金属粉混合活性炭)であるには微生物群集の分解活性を約3倍に増強させることに成功している。
(第9発明の効果)
人工生息場材たる多孔質材料は、細孔の平均孔隙径が、10〜800μmの範囲内であることが特に好ましい。平均孔隙径が10μm未満である場合には、必要な微生物の構成種が共生し難くなることが懸念される。一方、平均孔隙径が800μmを超える場合には、必要な微生物の構成種以外の微生物群による妨害が起こり易くなることが懸念される。
(第10発明の効果)
人工培地に接種された微生物群集の分解活性を安定的に維持し及び/又は増強する上で、人工生息場材には金属粉を混合しておくことが、特に好ましい。そのような効果は、人工生息場材としての活性炭に金属粉を混合した場合に特に顕著である。
金属粉を混合することのメリットは、芳香族塩素化合物の脱塩素反応に関して、人工生息場材の表面で電子を供給することができる点にあると考えられる。
(第11発明の効果)
上記した理由から、人工生息場材に混合する金属粉としては、鉄やチタン等の還元性である金属の粉がとりわけ好ましい。
(第12発明の効果)
少なくとも多環芳香族塩素化合物を包含する芳香族塩素化合物の嫌気的分解活性を有する微生物群集を、第7発明〜第11発明に係る人工培地に接種して嫌気条件下で培養すると、上記した理由から、微生物群集の芳香族塩素化合物に対する分解活性が更に安定的に維持され、及び/又は、増強された微生物群集組成物を得ることができる。
(第13発明の効果)
上記した第12発明の微生物群集組成物においては、より具体的には、接種前に微生物群集が示していた芳香族塩素化合物に対する嫌気的分解活性が、接種後10ケ月以上(好ましい場合には2年半以上)維持され、及び/又は、接種後2倍以上に増強され得る。
(第14発明の効果)
人工培地に接種する微生物群集は、少なくとも多環芳香族塩素化合物を包含する芳香族塩素化合物に対する嫌気的分解活性を有する限りにおいて限定されないが、特に第1発明〜第6発明に係る微生物群集を接種することが好ましい。この場合、特に多環芳香族塩素化合物に対する優れた嫌気的分解活性が、良好に維持され、及び/又は、増強される。
(第15発明の効果)
上記した第12発明の場合と同じ理由から、少なくとも多環芳香族塩素化合物を包含する芳香族塩素化合物に対して嫌気的分解活性を示す微生物群集を、第7発明〜第11発明に係る人工培地に接種して嫌気的条件下で培養すると言う方法により、接種前における微生物群集の嫌気的分解活性を10ケ月以上(好ましい場合には2年半以上)維持させ、及び/又は、2倍以上に増強させ得る。
(第16発明の効果)
上記した第15発明の方法において、人工培地に接種する微生物群集は、少なくとも多環芳香族塩素化合物を包含する芳香族塩素化合物に対する嫌気的分解活性を有する限りにおいて限定されないが、特に第1発明〜第6発明に係る微生物群集を接種することが好ましい。この場合、特に多環芳香族塩素化合物に対する優れた嫌気的分解活性が、良好に維持され、及び/又は、増強される。
(第17発明の効果)
以上に述べた点から、芳香族塩素化合物で汚染された土壌に対して、第1発明〜第6発明に係る微生物群集又は第12発明〜第14発明に係る微生物群集組成物を散布又は混合すると言う、汚染土壌の優れた浄化方法が提供される。
この方法は、特に、PCBやダイオキシン類のような多環芳香族塩素化合物で汚染された土壌に対して好適である。
(第18発明の効果)
芳香族塩素化合物で汚染された土壌を浄化するに当たり、上記した第17発明のような方法も有用であるが、一般論として微生物浄化法に共通する処理能力の量的限界を考慮した場合、第18発明のように当該汚染土壌地域の周囲、及び/又は、底層にバリヤー層を構築し、少なくともバリヤー層の外側への芳香族塩素化合物の拡散を防止する、と言う方法も極めて有効である。
次に、本願の第1発明〜第18発明を実施するための形態を、その最良の形態を含めて説明する。以下において単に「本発明」と言う時は、第1発明〜第18発明の内の該当する発明群を一括して指している。
〔微生物群集の取得方法〕
本発明において、芳香族塩素化合物に対する嫌気的分解活性を示す微生物群集を取得する方法は、微生物群集の採取源として芳香族塩素化合物で汚染されていない湿地還元層土壌の土壌微生物群集を利用する点、及び、このような湿地還元層土壌に芳香族塩素化合物を投与して、嫌気的条件下で土壌中培養する点に特徴がある。
本発明の説明の全体において、「嫌気的条件」とは、要するに酸素遮断条件であれば足り、このような嫌気的条件を維持するための手段としては、限定はされないが、例えば密封培養すること、培地環境の気相を嫌気性ガスに置換すること、培地を湛水すること、等を例示できる。
湿地還元層土壌としては、水田のグライ層土壌が特に好ましいが、その他にも、各種の低湿地、沼地、川床等のグライ層土壌も利用できる。いわゆるグライ層を明確に形成するに到っていない還元層土壌も利用可能である。湿地還元層土壌に投与する芳香族塩素化合物の種類は限定されないが、例えばPCB又はダイオキシン類を分解ターゲットとする微生物群集を取得したい場合には、これらを投与することが好ましい。湿地還元層土壌に対する芳香族塩素化合物の投与量は適宜に設定することができるが、例えば、0.1〜50ppm程度とすることができる。
非汚染土壌である還元層土壌の土壌微生物群集は、元々、芳香族塩素化合物に対する分解活性を示す場合は少ない。しかし、これに芳香族塩素化合物を投与して嫌気的条件下で一定期間の土壌中培養を行うと、その土壌微生物群集に芳香族塩素化合物に対する嫌気的分解活性を誘導することができる。土壌中培養を行う期間は、良好な分解活性の誘導のためには、4ケ月以上が好ましい。更に、その分解活性の長期的な経時的維持能力及び継代の繰り返しにおける維持能力をも獲得させる場合には、10ケ月以上が好ましく、1年以上が更に好ましい。
〔取得される微生物群集〕
上記の方法により本発明に係る芳香族塩素化合物分解性の微生物群集が得られるが、この微生物群集の第1の特徴点は、PCBやダイオキシン類のような多環芳香族塩素化合物にも有効な分解活性を示す点である。第2の特徴点は、分解反応の主反応として、芳香環のメタ位及びパラ位における脱塩素反応を起こす点である。このような微生物群集は、例えばコプラナーPCBの分解に有利であると考えられる。第3の特徴点は、多環芳香族塩素化合物も含めた芳香族塩素化合物の多様な同族体に対して広範囲な脱塩素活性を示すことであって、より具体的には、芳香族塩素化合物の2塩素化物〜6塩素化物に対する脱塩素活性が、前記した「脱塩素化率」として5%以上の値を示すと言うデータが得られている。
本発明に係る芳香族塩素化合物分解性の微生物群集は、直接顕微鏡法による解析において、長桿菌が優占する共生微生物群集であることが分かっている。一方、DGGE全バンドについてのランダムクローニングによるシーケンス解析によると、少なくとも Clostridium属の嫌気的微生物を、優占種として含む。その他にも、 Dehalococcoides属細菌、Pseudomonas 属細菌、Sedimentbacter属細菌、Peptostreptococcaceas 属細菌、Acetoanaerobacter 属細菌等も検出される場合があるが、これらは培養条件によっても異なる。更に、クロロ安息香酸による嫌気的集積物中や、嫌気的TCE脱塩素微生物集積物中から得られた未同定株が検出されている。これらの微生物の一部又は全部が微生物群集の脱塩素活性に関与している可能性がある。更にキノンプロファイル法による微生物群集構造解析においてはメナキノン6,7のみが検出され、主としてδ,ε−サブクラスのプロテオバクテリアに属する微生物からなることが判明している。
次に、本発明に係る微生物群集は、芳香族塩素化合物分解活性を長期的に維持できると言う大きな特徴を持ち、具体的には殺菌土壌に対する5回以上の継代培養を繰り返しても初期分解活性以上の分解活性を維持でき、実際には15回の継代培養を繰り返しても初期分解活性以上の分解活性を維持できており、更に初期分解活性以上の分解活性を10ケ月以上(より好ましい場合には2年半以上)維持することができる。
〔人工培地〕
本発明に係る人工培地は、芳香族塩素化合物に対して嫌気的分解活性を示す微生物群集を接種するために調製されるものであって、任意の微生物培地と、これに対して添加される人工生息場材とからなる。人工生息場材とは、孔隙に富む多孔質材料である。
多孔質材料の種類は必ずしも限定されないが、活性炭、無機質材料製ビーズの集積体、焼成土等を代表的に例示できる。その他、ゼオライト等の多孔質無機材料、セピオライト等の多孔質粘土鉱物等も例示することができる。これらの多孔質材料は、微細な孔隙の平均孔隙径が10〜800μmの範囲内にあるものが特に好ましく、200μm前後のものがとりわけ好ましい。その点からは、多孔質材料が無機質材料製ビーズの集積体である場合には、ビーズの平均粒子径が50〜2000μm程度であることが好ましい。
「発明の効果」欄で前記した理由から、人工生息場材たる多孔質材料には、金属の粉粒体、とりわけ鉄やチタン等の粉粒体を混合することが更に好ましい。その他にも、マンガン、亜鉛、ニッケル、銅、コボルト等のいずれかの金属の粉粒体を混合することも好ましい、と考えられる。
上記のように、人工培地は、微生物培地と、これに添加される人工生息場材とからなるが、培地は目的に応じて適宜に組成すれば良く、その組成は何ら限定されない。培地は、微生物群集の栄養源としての酢酸やアンモニア塩、リン酸塩、無機窒素、あるいは一般的にこの種の目的の培地に添加されることがあるビタミン類や微量金属元素を含有することができる。以下に、人工生息場材たる多孔質材料が平均粒子径500μmのガラスビーズである場合における、本発明に係る人工培地の好ましい組成の一例を示す。
(人工生息場材)
ガラスビーズ 4〜8g(培地20mLあたり)
(培地:pH7.0)
HPO 0.5g(培地1Lあたり)
(NHSO 0.5g(培地1Lあたり)
MgSO・7HO 0.1g(培地1Lあたり)
FeSO・7HO 0.02g(培地1Lあたり)
Yeast extract 0.5g(培地1Lあたり)
Na-acetate 8g(培地1Lあたり)
Na-lactate 10g(培地1Lあたり)
resazurin 0.001g(培地1Lあたり)
〔微生物群集組成物及び微生物群集の活性維持・増強方法〕
以上のように構成される人工培地に、本発明に係る微生物群集、あるいは公知のものも含めてその他の芳香族塩素化合物分解性の適宜な微生物群集を接種し、微生物群集組成物を構成することにより、嫌気的条件下において、その微生物群集の芳香族塩素化合物に対する分解活性を有効に維持させ、及び/又は、増強させることができる。微生物群集の接種法は限定されないが、例えば微生物群集の培養物の土壌懸濁物を接種源とする方法や、培養物上清液を接種すると言う接種法を採用することができる。
本願発明者の実験によれば、この人工培地に接種された微生物群集の芳香族塩素化合物分解活性を、嫌気的条件下において、10ケ月以上、より好ましい場合には1年以上、特に好ましい場合には2年半以上維持させ得た例があり、更には、分解活性を2倍以上に増強させ得た例がある。
〔汚染土壌の浄化方法又は汚染物質拡散防止方法〕
本発明によれば、以上に述べた各種の微生物群集又は微生物群集組成物を芳香族塩素化合物で汚染された土壌に対して適用することにより、優れた浄化効果を期待することができる。具体的な適用方法としては、例えば微生物群集又は微生物群集組成物を汚染土壌に対して散布し、又は混合することができる。
あるいは、芳香族塩素化合物で汚染された土壌地域の周囲の土壌中に微生物群集又は微生物群集組成物を含む上下方向のバリヤー層を構築し、及び/又は汚染土壌地域の底層の土壌中に微生物群集又は微生物群集組成物を含む水平方向のバリヤー層を構築し、バリヤー層の外側への芳香族塩素化合物の拡散を防止することもできる。
次に本発明の実施例を説明する。本発明の技術的範囲は、以下の実施例によって限定されるものではない。
〔実施例1:芳香族塩素化合物分解性の微生物群集の取得〕
芳香族塩素化合物非汚染水田より中粗粒強グライ土壌を採取した。採取直後の土壌はPCB分解活性をほとんど示さなかった。
上記の中粗粒強グライ土壌に対し、鐘淵化学工業製のPCB剤であるカネクロール300(商標)及びカネクロール400(商標)の重量比1:1の混合物を、PCB全体で約50ppmとなるように添加した。上記のPCB剤混合物には、塩素結合数が2〜7にわたる多様なPCB同族体が含まれている。
上記のPCB添加土壌を嫌気的条件下(窒素置換嫌気ボトル中)で約4ケ月間の長期液体培養に供したところ、様々なPCB同族体が同時に分解される活性が見出された。即ち、上記の嫌気的条件下での長期土壌培養により、約4ケ月の経過時点で(あるいはそれ以前の時点で)、PCBの多様な同族体に対する嫌気的分解活性を示す微生物群集が、土壌中微生物群として得られた。この微生物群集のPCB分解活性を図1に示す。
図1中、図1(a)に示す3本の横向きの棒グラフのうち、上側の棒グラフが、上記した土壌中微生物群が殺菌土壌培地を用いた15回の継代培養で示した脱塩素化率の平均値(6.8%)である。図1(a)の中央の棒グラフは、比較のために示したもので、上記した土壌中微生物群が、焼成土を人工生息場材とする人工培地を用いた15回の継代培養で示した脱塩素化率の平均値(30.8%)である。図1(a)の下側の棒グラフも比較のために示したもので、上記した土壌中微生物群が、粒径0.5mmのガラスビーズを人工生息場材とする人工培地を用いた15回の継代培養で示した脱塩素化率の平均値(37.1%)である。これらの棒グラフでは、エラーバーによる全変動も併せて示した。
図1中、図1(b)に示す多数本の横向きの棒グラフは、上記の図1(a)の上側の棒グラフで示す平均値のオリジナルデータであって、上記の内の第3回目以降の継代培養におけるそれぞれの脱塩素化率を上側より順に示している。ほぼ中央に棒グラフが認められないスペースがあるが、これは第9回目の継代培養に相当し、各PCB同族体の分解活性は得られているが、幾つかの低塩素化物の蓄積が見られたため、全体として、脱塩素化率及び分解率が低く見積もられているためである。
本実施例及び後述の各実施例におけるPCBの測定は、培養物からPCBを抽出し、電子捕獲型検出器付ガスクロマトグラフィー(GC/ECD)で分析することにより行った。又、PCBの分解活性は、培養物における培養開始前と培養後の全PCB回収量の対比により判定した。
〔実施例2:微生物群集の継代培養〕
実施例1で用いたと同様の水田土壌4gを、オートクレーブ中で121°C×30分の熱処理を毎日1回、3日間繰り返すと言う殺菌処理に供し、実施例1と同じPCB剤混合物を5ppm添加したもとで、これを炭素源を含む液体培地で飽和した全20mLの植継ぎ用培地を準備した。この植継ぎ用培地に対して実施例1で得られた微生物群集を含む土壌培地1mLを接種する植継ぎを行った後、実施例1と同様の条件で嫌気培養し、PCBに対する嫌気的分解活性の維持・増強(PCB分解性微生物の集積)を検討した。更に、同じ要領で、新たに準備した上記と同様の全20mLのPCB添加植継ぎ用培地に対して前培養物の一部を接種する植継ぎを繰り返す継代培養を行った。
それらの植継ぎ培養の結果、一般的に植継ぎ後8週間を経過しても植継ぎ前と同等のPCB分解活性が確認された。又、添加PCB全量に対する減少量もほぼ一定値を示した。更に、特定の2系統については、現在の処、15回の継代培養でほぼ2年半の間のPCB分解活性維持に成功している。
上記の植継ぎ培養においては、下記1)〜6)の条件を種々に変化させた場合について検討した。
1)植継ぎ用培地の炭素源として乳酸、酢酸又はグルコースを用いた場合。
2)脱塩素反応に配慮して植継ぎ用培地の性質(酸化還元電位)をシステイン塩酸塩、チオグリコール酸又は硫化ナトリウムの添加により変化させた場合。
3)植継ぎ用培地に対する土壌中微生物群の接種量を0.1〜10mLの範囲内で変更した場合。
4)植継ぎ後の培養温度を、4〜30°Cの範囲内での種々の一定温度に設定した場合。
5)培養期間をそれぞれ14日、28日、56日に設定した場合。
6)培養条件として、振とう培養又は静置培養を行った場合。
上記の1)〜6)のように各種の条件を変化させても、PCBに対する嫌気的分解活性は基本的に大差なく維持されていた。即ち、種々の植継ぎ培養条件において、実施例1に係る微生物群集のPCB嫌気的分解活性を維持することに成功した。上記の植継ぎ培養の各種条件の内、あえて最適な条件を幾つか絞り込むと、次のa)〜c)の通りであった。
a)植継ぎ用培地全20mLに対して、前培養物を1mL程度接種する。
b)植継ぎ用培地に炭素源は必要で、特に乳酸及び/又は酢酸が優れる。
c)還元剤無添加で、30°C程度での8週間程度の嫌気的培養を行う。
〔実施例3:実施例2の継代培養の結果及び考察〕
実施例2で15回の継代培養(各8週間)により約2年半近いPCB分解活性維持に成功している系統について、各継代培養でのPCBの分解活性を図2に示す。図2においては、継代回数を横軸に示し、縦軸にその継代培養における培養後の(8週間経過後の)全PCB残留率を示した。この培養後全PCB残留率は培養前の全PCB回収量に対する培養後全PCB残留量のパーセンテージで示した。培養期間中、PCBの10%未満の土壌吸着が認められた。図2において、第9回目の継代培養での全PCB残留率が100%前後となっているのは、前記の図1(b)の場合と同じ理由で、分解は起こっているものの分解率が低く見積もられているためである。
図2から分かるように、全体として2年半近くにわたり、かつ15回の継代にわたり、当初見られたPCB分解活性と同等以上の活性が維持されている。但し、継代培養を重ねるにつれて分解活性が向上して行く傾向は見られなかった。このことは、別の見地からは、植継ぎにおける微生物群集の安定性を意味しており、環境接種の際に土着菌との競合に耐えてPCB分解活性を安定的に再現できる可能性を示唆している。
〔実施例4:微生物群集の構造解析〕
実施例2における継代8週間経過後の微生物群集につき、キノンプロファイル法により群集構造解析を行ったところ、メナキノン6,7のみが検出された。従って、継代維持されている微生物群集は、主としてδ,ε−サブクラスのプロテオバクテリアに属する微生物からなることが分かった。
同時にPCR−DGGE(polymerase chain reaction-denaturing gradient
gel electrophoresis )法による解析も行い、各バンドについてランダムクローニングによるシーケンス解析を行い、微生物群集の解析も行った。それによると、少なくとも Clostridium属の嫌気的微生物を優占種として含み、その他にも、 Dehalococcoides属細菌、Pseudomonas 属細菌、Sedimentbacter属細菌、Peptostreptococcaceas 属細菌、Acetoanaerobacter 属細菌等も検出される場合があったが、条件によってその結果は異なった。更に、クロロ安息香酸による嫌気的集積物中や、嫌気的TCE脱塩素微生物集積物中から得られた未同定株が検出された。
〔実施例5:微生物群集用人工培地〕
上記の実施例1〜実施例4では殺菌土壌を用いて継代培養を行ったが、微生物群集のPCBに対する嫌気的分解活性が長期安定的に維持される一方、その分解活性が顕著に向上することはなかった。そこで、微生物群集のPCB分解活性を更に顕著に向上させる人工培地の開発を試みた。
(実施例5−1:ガラスビーズ及び焼成土)
人工培地の人工生息場材として、粒径0.5mmのガラスビーズ(の集積体)と、実施例1で用いたと同様の水田土壌に対して550°Cで24時間の焼成を行った焼成土とを用いた。これらの人工培地の組成は下記に示す。そして、前記した殺菌土壌と同量のこれら人工培地(液体培地)に対して実施例1と同濃度にPCB剤混合物を添加したもとで、前記した殺菌土壌の場合と同様に、実施例1で得られた微生物群集を含む土壌の一部を接種する植継ぎを行い、嫌気的条件下での継代培養を繰り返した。
〔工生息場材としてガラスビーズを用いた人工培地の組成〕
(人工生息場材)
ガラスビーズ 4〜8g(培地20mLあたり)
(培地:pH7.0)
HPO 0.5g(培地1Lあたり)
(NHSO 0.5g(培地1Lあたり)
MgSO・7HO 0.1g(培地1Lあたり)
FeSO・7HO 0.02g(培地1Lあたり)
Yeast extract 0.5g(培地1Lあたり)
Na-acetate 8g(培地1Lあたり)
Na-lactate 10g(培地1Lあたり)
resazurin 0.001g(培地1Lあたり)。
〔人工生息場材として焼成土を用いた人工培地の組成〕
(人工生息場材)
焼成土 4〜8g(培地20mLあたり)
(培地:pH7.0)
HPO 0.5g(培地1Lあたり)
(NHSO 0.5g(培地1Lあたり)
MgSO・7HO 0.1g(培地1Lあたり)
FeSO・7HO 0.02g(培地1Lあたり)
Yeast extract 0.5g(培地1Lあたり)
Na-acetate 8g(培地1Lあたり)
Na-lactate 10g(培地1Lあたり)
resazurin 0.001g(培地1Lあたり)。
継代培養における培養期間を56日(8週間)とした場合における、1回目及び6〜8回目の継代培養でのPCBの分解活性を図3に示す。図3では継代回数を横軸に示し、縦軸にその継代培養における培養後の全PCB残留率を示した。この全PCB残留率は培養前の全PCB回収量に対する培養後全PCB残留量のパーセンテージで示した。
なお、図3に示す各回の継代培養において、左側の棒グラフは人工生息場材としてガラスビーズを用いた場合の、中央の棒グラフは人工生息場材として焼成土を用いた場合の、それぞれ全PCB残留率である。又、右側の棒グラフは比較として実施例2と同様の方法で殺菌土壌を用いた場合のデータを再度示したものである。図3から、継代培養の培地として殺菌土壌を用いた場合に比較して、人工培地を用いた場合には全PCB残留率が著しく低い(微生物群集のPCB分解活性が著しく増強されている)ことが分かる。なお、培養期間中、PCBのガラスビーズへの吸着率は15%未満であった。
次に、図4に、上記した第1回〜第8回の各継代培養における8週間経過後の塩素結合数別PCBに対する分解活性の平均値を示す。図4において、左側のブロックの棒グラフは継代培養の培地として実施例2のように殺菌土壌を用いた場合のものであり、中央のブロックの棒グラフは、継代培養の培地として上記の粒径0.5mmのガラスビーズを人工生息場材とする人工培地を用いた場合のものであり、右側のブロックの棒グラフは、継代培養の培地として上記の焼成土を人工生息場材とする人工培地を用いた場合のものである。又、図4において、上下方向が塩素結合数別PCBの量的な増加又は減少のパーセンテージを示し、各ブロックの棒グラフは、左側から順に、結合塩素数がそれぞれ2、3、4、5、6、7であるPCBを示す。
図4から分かるように、中央及び右側のブロックの棒グラフにおけるPCBの減少は、左側のブロックの棒グラフに比較して顕著であり、かつ、塩素結合数3〜5のPCBが減少し、特に塩素結合数3、4のPCBが顕著に減少している。その結果として、塩素結合数2のPCBが相対的に増大しているが、その増大量が塩素結合数3〜5のPCBの減少と見合わないことから、2塩素化物〜5塩素化物のいずれに対しても有効な脱塩素活性を示すことが認められた。又、6塩素化物も、一定の有意な減少を示している。
一方、上記で用いた粒径0.5mmのガラスビーズの他に、粒径0.05mm及び粒径2.0mmのガラスビーズを人工培地の人工生息場材として用い、同上の継代培養を行った。しかし、これら0.5mm以外の粒径のガラスビーズを人工生息場材として用いた人工培地での継代培養では、継代を3〜4回繰り返す内に活性が次第に低減する傾向が見られた。ところが、一旦粒径0.5mmのガラスビーズを人工生息場材として用いた人工培地で活性維持に成功した培養物を、異なる粒径(0.05mm及び2.0mm)のガラスビーズを人工生息場材として用いた人工培地へ植継ぎ(異径ガラスビーズ人工培地への植継ぎ)を行うと、活性を低減させることなく維持できることを見出した。又、これらの異径ガラスビーズ人工培地への植継ぎにおいては、植継ぎ後56日間の培養でも、植継ぎ後32日間の培養でも、同等に高い活性を維持できることが分かった。それら異径ガラスビーズ人工培地への植継ぎの場合の、図3と同じ計算方法及び表記方法による全PCB残留率を、図5に示す。図5に示す各棒グラフは、左端のものから順に、「ガラスビーズなし(人工生息場材を含まない培地)で培養期間が32日」の場合(人工生息場材を含まない培地)、「粒径2.0mmのガラスビーズ使用で培養期間が32日」の場合、「粒径0.5mmのガラスビーズ使用で培養期間が32日」の場合、「粒径0.05mmのガラスビーズ使用で培養期間が32日」の場合、「粒径0.5mmのガラスビーズ使用で培養期間が56日」の場合、をそれぞれ示す。机上の計算上、粒径0.5mmのガラスビーズの集積体において形成される細孔の平均孔隙径は200μmであり、粒径2.0mmのガラスビーズの集積体において形成される細孔の平均孔隙径は800μmである。
なお、これらの人工培地を用いた場合の継代培養後の微生物群集をキノンプロファイル法で解析すると、ガラスビーズを人工生息場材とする人工培地においては全てのサンプルでメナキノン−7(H2)のみが、焼成土を人工生息場材とする人工培地では全てのサンプルでメナキノン−7のみが、それぞれ検出された。即ち、実施例2の殺菌土壌での継代培養の場合とは、微生物群集の構成にも変化を生じていることが示唆された。
(実施例5−2:金属粉混合活性炭)
人工培地の人工生息場材として、金属粉混合活性炭を用いた。即ち、活性炭に微生物群集を定着させるため、実施例5−1に従って粒径0.5mmのガラスビーズの集積体を人工生息場材とする人工培地による継代培養を行った培養物を接種源とし、鉄粉50重量%を混合した固形の鶏糞活性炭1粒(約3cm:TYK株式会社製)を前記のガラスビーズ集積体人工培地に入れた後、この培地に実施例1と同濃度に前記のPCB剤混合物を添加したもとで、嫌気条件下に4週間培養した。
継代培養は、培養後の前記固形活性炭を嫌気条件下でピンセットを用いて取り出し、そのまま新しいガラスビーズ培地へ再添加することにより行った。なお、人工培地たる活性炭の強いPCB吸着能を考慮し、微生物群集を含まない前記活性炭粒子を添加した継代培地をコントロールとした。
これらの実施例及びコントロールにおける、図3と同じ計算方法及び表記方法による全PCB残留率を、図6に示す。図6の各棒グラフは、左端のものから順に、コントロールの場合、本実施例の1継代目の場合、本実施例の3継代目の場合、本実施例の4継代目の場合及び本実施例の5継代目の場合である。
4継代目及び5継代目での全PCB残留率が非常に低いことが、注目される。4週間培養後における活性炭へのPCB吸着率は37.8%と高いが、コントロールでは全PCB量が減少していたのに対して、継代培養したものでは下記の図7のようにPCB種も異なることから、微生物活性が集積したものと考えることができる。
本実施例における結合塩素数別のPCB同族体の吸着率と残留率の比較を図7に示す。図7において縦軸の数値表示はPCB量(ng/sample)を示す。図の下方の「2Cl」、「3Cl」等の表記は結合塩素数によるPCB同族体のグループ区別を示す。各グループ区別内における「6」、「8」、「12」等の数字表記はPCBの同族体番号(#)を示し、例えば「20/33/45」と言う数字表記は、#20、#33、#45の混合ピークであることを示す。これらの各数字表記ごとに示された各3組の棒グラフは、左側から順に、「通常の場合」、「コントロールの場合」、及び「本実施例の場合」における結果を示す。図7から分かるように、結合塩素数が3又は4であるPCBの消失率が高く、これは本発明に係る微生物群集に固有の傾向である。
本実施例において活性炭に鉄粉を混合したことの影響については、人工生息場材である活性炭の表面において鉄粉が電子を供給することで、脱塩素反応に有利である、と考えることができる。
本願発明によって、多環芳香族塩素化合物の広範囲な同族体に対して優れた嫌気的分解活性を示し、しかもその分解活性を安定的に維持できる微生物群集が提供される。更に、このような微生物群集の分解活性の更なる維持・増強に有効な人工培地も提供される。
実施例1に係る微生物群集のPCB分解活性を示す図である。
実施例2に係る各継代培養でのPCBの分解活性を示す図である。
実施例5−1に係る継代培養でのPCB分解活性を示す図である。
実施例5−1に係る継代培養でのPCB脱塩素活性を示す図である。
実施例5−1に係る継代培養でのガラスビーズの粒径別、培養期間別の全PCB残留率を示す図である。
実施例5−2における継代培養での全PCB残留率を示す図である。
実施例5−2におけるPCB同族体の吸着率と残留率の比較を示す図である。

Claims (17)

  1. 芳香族塩素化合物で汚染されていない水田のグライ層土壌の土壌微生物群集に芳香族塩素化合物を投与し、嫌気的条件下で土壌中培養することによって得られる微生物群集であって、下記の(1)の分解活性を示し、更に下記の(2)及び/又は(3)に該当する分解活性維持能力を示すものであることを特徴とする微生物群集。
    (1)少なくとも多環芳香族塩素化合物を包含する芳香族塩素化合物に対する嫌気的分解活性を示す。
    (2)殺菌土壌に対する5回以上の継代培養を繰り返しても初期分解活性以上の分解活性を維持できる。
    (3)初期分解活性以上の分解活性を10ケ月以上維持できる。
  2. 前記(1)の分解活性を示す土壌微生物群集が前記土壌中培養を4ケ月以上行うことにより得られるものであり、前記(1)〜(3)の分解活性及び分解活性維持能力を示す土壌微生物群集が前記土壌中培養を10ケ月以上行うことにより得られるものであることを特徴とする請求項1に記載の微生物群集。
  3. 芳香族塩素化合物で汚染されていない水田のグライ層土壌の土壌微生物群集に芳香族塩素化合物を投与し、嫌気的条件下で土壌中培養することによって得られる、少なくとも多環芳香族塩素化合物を包含する芳香族塩素化合物に対して嫌気的分解活性を示す微生物群集であって、優占種として少なくとも Clostridium属の嫌気的微生物を含み、かつ、以下の(4)及び/又は(5)に該当することを特徴とする微生物群集。
    (4)キノンプロファイル法による微生物群集構造解析においてメナキノン6,7のみが検出される。
    (5)主として、δ,ε−サブクラスのプロテオバクテリアに属する微生物からなる。
  4. 芳香族塩素化合物で汚染されていない水田のグライ層土壌の土壌微生物群集に芳香族塩素化合物を投与し、嫌気的条件下で土壌中培養することによって得られる、少なくとも多環芳香族塩素化合物を包含する芳香族塩素化合物に対して嫌気的分解活性を示す微生物群集であって、その分解反応の主反応として芳香環のメタ位及びパラ位における脱塩素反応を起こし、かつ、汚染土壌中で検出される芳香族塩素化合物の主体をなす2塩素化物〜6塩素化物のいずれに対しても脱塩素活性を示すことを特徴とする微生物群集。
  5. 前記芳香族塩素化合物の2塩素化物〜6塩素化物に対する脱塩素活性が、下記の式に定義する脱塩素化率として5%以上の値を示すものであることを特徴とする請求項4に記載の微生物群集。
    脱塩素化率(%)=〔1−(培養後全塩素化量/培養前全塩素化量)〕×100
    (上記の式において、「全塩素化量」は、培地中の芳香族塩素化合物の2、3、4、5、6塩素化物のそれぞれの含有量を2P、3P、4P、5P、6Pであると規定した場合、(2P×2)、(3P×3)、(4P×4)、(5P×5)、(6P×6)の総和で与えられる。又、「培養前全塩素化量」、「培養後全塩素化量」とは、それぞれ、微生物群集の培養開始直前及び56日間の培養後における培地の全塩素化量を言う。)
  6. 芳香族塩素化合物に対して嫌気的分解活性を示す微生物群集を接種するために調製される人工培地であって、任意の微生物培地と、これに対して添加される、孔隙に富む多孔質材料である人工生息場材とからなり、接種された微生物群集の嫌気的分解活性を10ケ月以上維持させ、及び/又は、2倍以上に増強させることができるものであることを特徴とする人工培地。
  7. 前記多孔質材料が、活性炭、無機質材料製ビーズの集積体又は焼成土であることを特徴とする請求項6に記載の人工培地。
  8. 前記多孔質材料の平均孔隙径が10〜800μmの範囲内であることを特徴とする請求項6又は請求項7に記載の人工培地。
  9. 前記多孔質材料に金属粉が混合されていることを特徴とする請求項6〜請求項8のいずれかに記載の人工培地。
  10. 前記金属粉が鉄粉又はチタン粉であることを特徴とする請求項9に記載の人工培地。
  11. 芳香族塩素化合物で汚染されていない水田のグライ層土壌の土壌微生物群集に芳香族塩素化合物を投与し、嫌気的条件下で土壌中培養することによって得られる、少なくとも多環芳香族塩素化合物を包含する芳香族塩素化合物に対して嫌気的分解活性を示す微生物群集を、請求項6〜請求項10のいずれかに記載の人工培地に接種して嫌気条件下で培養したものであることを特徴とする微生物群集組成物。
  12. 前記微生物群集の嫌気的分解活性が接種後10ケ月以上維持され、及び/又は、接種後2倍以上に増強されていることを特徴とする請求項11に記載の微生物群集組成物。
  13. 前記請求項11又は請求項12において規定された微生物群集が請求項1〜請求項5のいずれかに記載の微生物群集であることを特徴とする請求項11又は請求項12に記載の微生物群集組成物。
  14. 芳香族塩素化合物で汚染されていない水田のグライ層土壌の土壌微生物群集に芳香族塩素化合物を投与し、嫌気的条件下で土壌中培養することによって得られる、少なくとも多環芳香族塩素化合物を包含する芳香族塩素化合物に対して嫌気的分解活性を示す微生物群集を、請求項6〜請求項10のいずれかに記載の人工培地に接種して嫌気的条件下で培養することにより、接種前における微生物群集の嫌気的分解活性を10ケ月以上維持させ、及び/又は、2倍以上に増強させることを特徴とする微生物群集の活性維持・増強方法。
  15. 前記請求項14において規定された微生物群集が請求項1〜請求項5のいずれかに記載の微生物群集であることを特徴とする請求項14に記載の微生物群集の活性維持・増強方法。
  16. 芳香族塩素化合物で汚染された土壌に対して、請求項1〜請求項5のいずれかに記載の微生物群集又は請求項11〜請求項13のいずれかに記載の微生物群集組成物を散布又は混合することを特徴とする汚染土壌の浄化方法。
  17. 芳香族塩素化合物で汚染された土壌地域に対して、請求項1〜請求項5のいずれかに記載の微生物群集又は請求項11〜請求項13のいずれかに記載の微生物群集組成物を含むバリヤー層を、当該土壌地域の周囲の土壌中に上下方向に構築し、及び/又は、当該土壌地域の底層の土壌中に水平方向に構築し、前記バリヤー層の外側への芳香族塩素化合物の拡散を防止することを特徴とする土壌汚染物質の拡散防止方法。
JP2005146279A 2005-05-19 2005-05-19 微生物群集、人工培地、微生物群集組成物、微生物群集の活性維持・増強方法、汚染土壌の浄化方法、土壌汚染物質の拡散防止方法 Active JP4820983B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005146279A JP4820983B2 (ja) 2005-05-19 2005-05-19 微生物群集、人工培地、微生物群集組成物、微生物群集の活性維持・増強方法、汚染土壌の浄化方法、土壌汚染物質の拡散防止方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005146279A JP4820983B2 (ja) 2005-05-19 2005-05-19 微生物群集、人工培地、微生物群集組成物、微生物群集の活性維持・増強方法、汚染土壌の浄化方法、土壌汚染物質の拡散防止方法

Publications (2)

Publication Number Publication Date
JP2006320249A JP2006320249A (ja) 2006-11-30
JP4820983B2 true JP4820983B2 (ja) 2011-11-24

Family

ID=37540380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005146279A Active JP4820983B2 (ja) 2005-05-19 2005-05-19 微生物群集、人工培地、微生物群集組成物、微生物群集の活性維持・増強方法、汚染土壌の浄化方法、土壌汚染物質の拡散防止方法

Country Status (1)

Country Link
JP (1) JP4820983B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105290101A (zh) * 2015-12-10 2016-02-03 天津环科立嘉环境修复科技有限公司 一种多氯联苯污染场地土壤修复的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305212B2 (ja) * 2007-04-25 2013-10-02 国立大学法人名古屋大学 多塩素化ビフェニル及びダイオキシン類を脱塩素化する微生物群集及びデハロバクター属細菌、並びに該微生物群集及び該デハロバクター属細菌の用途
CN102443698A (zh) * 2010-10-08 2012-05-09 北京有色金属研究总院 一种控制微生物浸出废线路板中金属过程中pH上升的方法
CN112903970B (zh) * 2021-01-28 2022-02-11 青海大学 一种三江源高寒沼泽湿地演替过程机理的研究方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179234A (ja) * 1999-12-27 2001-07-03 Asahi Glass Co Ltd 環境浄化方法およびそれに用いる微生物群を得る方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105290101A (zh) * 2015-12-10 2016-02-03 天津环科立嘉环境修复科技有限公司 一种多氯联苯污染场地土壤修复的方法

Also Published As

Publication number Publication date
JP2006320249A (ja) 2006-11-30

Similar Documents

Publication Publication Date Title
Nguyen et al. Removal of pharmaceuticals and personal care products using constructed wetlands: effective plant-bacteria synergism may enhance degradation efficiency
Yang et al. Biodegradation of sulfonamide antibiotics in sludge
Abed et al. Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds
Kubatova et al. PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil
Edwards et al. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals
EP1968898B1 (en) Bioremediation materials
Cunliffe et al. Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils
Sprocati et al. Effectiveness of a microbial formula, as a bioaugmentation agent, tailored for bioremediation of diesel oil and heavy metal co-contaminated soil
Thangadurai et al. Biodegradation of endosulfan by soil bacterial cultures
Hong et al. Characterization of a diesel-degrading bacterium, Pseudomonas aeruginosa IU5, isolated from oil-contaminated soil in Korea
Mohn et al. Aerobic biodegradation of biphenyl and polychlorinated biphenyls by Arctic soil microorganisms
Sopeña et al. Phenanthrene biodegradation by Pseudomonas xanthomarina isolated from an aged contaminated soil
JP4820983B2 (ja) 微生物群集、人工培地、微生物群集組成物、微生物群集の活性維持・増強方法、汚染土壌の浄化方法、土壌汚染物質の拡散防止方法
CN1793311A (zh) 一株降解多氯联苯的兼性厌氧菌及获得方法
Tu et al. Enhanced anaerobic biodegradation of OCDD-contaminated soils by Pseudomonas mendocina NSYSU: Microcosm, pilot-scale, and gene studies
Pourfadakari et al. A salt resistant biosurfactant produced by moderately halotolerant Pseudomonas aeruginosa (AHV-KH10) and its application for bioremediation of diesel-contaminated sediment in saline environment
Amorim et al. Bioaugmentation for treating transient 4-fluorocinnamic acid shock loads in a rotating biological contactor
CN105344057B (zh) 一种柠条生物炭的用途及其介导五氯苯酚厌氧还原脱氯的工艺
JP6103518B2 (ja) 揮発性有機塩素化合物の脱塩素化能を有する新規微生物およびその利用
US8633008B2 (en) Bacterium that can perform complete dechlorination of trichloroethene and the method to dechlorinate soils or ground water contaminated with trichloroethene using the bacterium
Ibrar et al. Biosurfactants and chemotaxis interplay in microbial consortium-based hydrocarbons degradation
May et al. “Dehalobium chlorocoercia” DF-1—from Discovery to Application
Dudková et al. Sediment‐free anaerobic microbial enrichments with novel dechlorinating activity against highly chlorinated commercial PCBs
JP2017055757A (ja) クロロエテン類とγ−ヘキサクロロシクロヘキサンの脱塩素が可能な微生物、及び、当該微生物を用いる浄化方法
Launen et al. Characterization of the indigenous PAH-degrading bacteria of Spartina dominated salt marshes in the New York/New Jersey Harbor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4820983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350