JP4819659B2 - Sink detection method, injection molding machine and injection molding method in injection molding - Google Patents

Sink detection method, injection molding machine and injection molding method in injection molding Download PDF

Info

Publication number
JP4819659B2
JP4819659B2 JP2006327000A JP2006327000A JP4819659B2 JP 4819659 B2 JP4819659 B2 JP 4819659B2 JP 2006327000 A JP2006327000 A JP 2006327000A JP 2006327000 A JP2006327000 A JP 2006327000A JP 4819659 B2 JP4819659 B2 JP 4819659B2
Authority
JP
Japan
Prior art keywords
injection molding
temperature sensor
molded product
sink marks
sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006327000A
Other languages
Japanese (ja)
Other versions
JP2008137315A (en
Inventor
祐介 深津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2006327000A priority Critical patent/JP4819659B2/en
Publication of JP2008137315A publication Critical patent/JP2008137315A/en
Application granted granted Critical
Publication of JP4819659B2 publication Critical patent/JP4819659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、射出成形におけるヒケの検出方法、射出成形機および射出成形方法に関し、更に詳しくは、温度センサを用いたヒケの検出方法、および温度センサにより成形品のヒケの有無を検出し、良品と不良品とに振分けるように構成された射出成形機およびこれを用いた射出成形方法に関するものである。   The present invention relates to a sink detection method, an injection molding machine, and an injection molding method in injection molding. More specifically, the sink detection method using a temperature sensor, and the presence or absence of sink marks in a molded product are detected by the temperature sensor. And an injection molding method using the same.

従来より、射出成形により成形される樹脂成形品、特にその肉厚部には、ヒケによる不良が発生することが多く、このヒケ不良は、一般的に成形品を目視により外観検査することによって選別されている。   Conventionally, resin molded products molded by injection molding, especially thick parts, often have defects due to sink marks. These sink defects are generally selected by visual inspection of the molded products. Has been.

これに対し、外観検査によらないヒケ検出方法として、特許文献1に示される超音波を使用したものが知られている。この方法は、射出成形用の金型に超音波探触子を設け、この金型のキャビティに向けて発信した超音波の反射波の有無により、成形品に発生するヒケの有無を検出するものである。   On the other hand, as a sink detection method not based on appearance inspection, a method using ultrasonic waves disclosed in Patent Document 1 is known. In this method, an ultrasonic probe is provided in a mold for injection molding, and the presence or absence of sink marks generated in the molded product is detected based on the presence or absence of reflected ultrasonic waves transmitted toward the mold cavity. It is.

特開平4−101821号公報Japanese Patent Laid-Open No. 4-101821

しかしながら、目視による外観検査の場合、成形後に検査員による検査工程が必要となるため、検査工程のためのコストが嵩んでしまうという問題があった。さらに、成形工程と検査工程が別工程であるため、検査工程で発覚したヒケ不良の問題点を、成形工程において成形条件を変更するなどの迅速な対応に生かすことができず、結果として大量の不良品を生産してしまう等の問題があった。   However, in the case of visual appearance inspection, since an inspection process by an inspector is required after molding, there is a problem that the cost for the inspection process increases. Furthermore, since the molding process and the inspection process are separate processes, the problem of sink defects detected in the inspection process cannot be utilized for quick response such as changing the molding conditions in the molding process. There were problems such as producing defective products.

また、特許文献1に記載されるような、超音波を用いた検出方法では、成形工程でヒケの発生の有無を検出することができるものの、金型に取り付ける超音波装置が高価であることに加え、成形品に発生した小さいヒケを確実に検出することができない等の問題があった。   In addition, in the detection method using ultrasonic waves as described in Patent Document 1, the presence or absence of sink marks can be detected in the molding process, but the ultrasonic device attached to the mold is expensive. In addition, there is a problem that small sink marks generated in the molded product cannot be reliably detected.

本発明が解決しようとする課題は、低コストで、成形品に発生するヒケを成形工程で確実に検出することができる射出成形におけるヒケの検出方法、ならびに射出成形機およびこれを用いた射出成形方法を提供することにある。   The problem to be solved by the present invention is a low-cost method for detecting sink marks in injection molding capable of reliably detecting sink marks generated in a molded product in a molding process, and an injection molding machine and injection molding using the same. It is to provide a method.

上記課題を解決するために本発明に係る射出成形におけるヒケの検出方法は、請求項1に記載のように、キャビティ内に射出される溶融樹脂と当接する位置に金型に温度センサを設け、該温度センサにより成形品冷却時の温度を連続的に測定して、得られた温度変化曲線における変曲点の有無を検出し、該温度変化曲線に変曲点が有る場合に成形品にヒケが発生したと判断することを要旨とするものである。   In order to solve the above-described problem, the sink detection method in injection molding according to the present invention is provided with a temperature sensor in a mold at a position in contact with the molten resin injected into the cavity as described in claim 1, The temperature sensor continuously measures the temperature when the molded product is cooled, detects the presence or absence of an inflection point in the obtained temperature change curve, and if the temperature change curve has an inflection point, sinks the molded product. The gist of this is to determine that this has occurred.

この場合、請求項2に記載のように、前記温度センサが赤外線温度センサであることが好ましく、また、請求項3に記載のように、前記温度センサが成形品のヒケの発生しやすい位置に設けられておればさらに好適である。   In this case, as described in claim 2, the temperature sensor is preferably an infrared temperature sensor, and as described in claim 3, the temperature sensor is located at a position where sink marks of the molded product are likely to occur. It is more preferable if it is provided.

また、上記課題を解決するために本発明に係る射出成形機は、請求項4に記載のように、キャビティ内に射出される溶融樹脂と当接するように金型に設けられた温度センサと、該温度センサにより成形品冷却時における温度を連続的に測定して、得られた温度変化曲線における変曲点の有無を検出し、該温度変化曲線に変曲点が有る場合に成形品にヒケが発生したと判断するヒケ検出手段と、該ヒケ検出手段により判断された成形品のヒケの有無に基づいて成形品を良品と不良品とに振分ける振分け手段とを備えたことを要旨とするものである。   In order to solve the above problems, an injection molding machine according to the present invention includes, as described in claim 4, a temperature sensor provided in a mold so as to abut against a molten resin injected into a cavity, The temperature sensor continuously measures the temperature during cooling of the molded product, detects the presence or absence of an inflection point in the obtained temperature change curve, and if there is an inflection point in the temperature change curve, sinks in the molded product. And a distribution unit that distributes the molded product into a non-defective product and a defective product based on the presence or absence of the sink of the molded product determined by the sink detection unit. Is.

この場合、請求項5に記載のように、前記温度センサが赤外線温度センサであることが好ましく、また、請求項6に記載のように、前記温度センサが成形品のヒケの発生しやすい位置に設けられておればさらに好適である。   In this case, as described in claim 5, it is preferable that the temperature sensor is an infrared temperature sensor, and as described in claim 6, the temperature sensor is at a position where sink marks of the molded product are likely to occur. It is more preferable if it is provided.

また、上記課題を解決するために本発明に係る射出成形方法は、請求項4〜6に記載の射出成形機を用いて連続的に射出成形を行い、成形品を良品と不良品とに振分けることで良品のみを得るようにしたことを要旨とするものである。   In order to solve the above problems, an injection molding method according to the present invention continuously performs injection molding using the injection molding machine according to claims 4 to 6, and the molded product is divided into a good product and a defective product. The gist is that only good products are obtained by dividing.

本発明に係る射出成形におけるヒケの検出方法によれば、キャビティ内に射出される溶融樹脂と当接する位置に温度センサを設けることによって、成形品にヒケが発生した場合には、成形品と温度センサとが離間するため、この温度センサで測定された成形品冷却工程における温度変化曲線に変曲点が発生する。したがって、温度変化曲線に生じる変曲点の有無を判断するのみで、ヒケの不良の発生の有無を判断することが可能となるため、成形工程後の外観検査等が不必要となり、成形品に発生するヒケを成形工程で確実に検出することができる。   According to the method for detecting sink marks in injection molding according to the present invention, when sink marks occur in a molded product by providing a temperature sensor at a position where it contacts the molten resin injected into the cavity, the molded product and temperature Since the sensor is separated, an inflection point is generated in the temperature change curve in the molded product cooling process measured by the temperature sensor. Therefore, it is possible to determine the presence or absence of sink defects simply by determining the presence or absence of an inflection point that occurs in the temperature change curve. Generated sink marks can be reliably detected in the molding process.

この場合、上記温度センサが赤外線温度センサであれば、温度変化曲線における変曲点を確実に検知することができる。また、温度センサが成形品のヒケの発生しやすい位置に設けられておれば、ヒケ発生による成形不良を見逃すことがほとんど無くなる。   In this case, if the temperature sensor is an infrared temperature sensor, an inflection point in the temperature change curve can be reliably detected. Further, if the temperature sensor is provided at a position where sink marks are likely to occur in the molded product, molding defects due to the occurrence of sink marks are almost never missed.

また、本発明に係る射出成形機および射出成形方法によれば、温度センサにより測定される温度変化曲線における変曲点の有無により、成形品におけるヒケ不良発生の有無を検出し、この検出した情報に基づき、成形品は良品と不良品とに振分けられる。したがって、成形工程終了後、成形品は自動的に良品と不良品とに振り分けられることとなるため、成形工程後の外観検査等による振分けが不要となる。   Further, according to the injection molding machine and the injection molding method according to the present invention, the presence or absence of an inflection point in the molded product is detected based on the presence or absence of an inflection point in the temperature change curve measured by the temperature sensor, and the detected information Based on the above, the molded product is divided into a good product and a defective product. Therefore, after the molding process is finished, the molded product is automatically sorted into a non-defective product and a defective product, so that sorting by an appearance inspection after the molding process is unnecessary.

この場合、上記と同様に、温度センサが赤外線温度センサであれば、温度変化曲線における変曲点を確実に検知することができ、温度センサが成形品のヒケの発生しやすい位置に設けられておれば、ヒケ発生による成形不良を見逃すことがほとんど無くなる。   In this case, similarly to the above, if the temperature sensor is an infrared temperature sensor, the inflection point in the temperature change curve can be reliably detected, and the temperature sensor is provided at a position where the sink of the molded product is likely to occur. If this is the case, molding defects due to the occurrence of sink marks are hardly missed.

以下、本発明の一実施形態を図面を参照して詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は本実施形態に係る射出成形機10の側面図である。射出成形機10は、は、鉛直に起立したベース11に、射出ユニット20、金型駆動ユニット40が取り付けられ、ベース11の下に成形品振分けユニット60(本発明に係る振分け手段に相当する)が配設されてなる。以下、各部位について具体的に説明する。   FIG. 1 is a side view of an injection molding machine 10 according to the present embodiment. In the injection molding machine 10, an injection unit 20 and a mold drive unit 40 are attached to a vertically standing base 11, and a molded product distribution unit 60 (corresponding to a distribution means according to the present invention) is provided under the base 11. Is provided. Hereinafter, each part will be specifically described.

射出ユニット20は、主として、ベース11上に取り付けられた基台22上に、加熱シリンダ24、および射出スクリュ27を回転させるための射出用サーボモータ26が取り付けられてなる。加熱シリンダ24には、ホッパー25が取り付けられており、このホッパー25から原料である樹脂ペレットが加熱シリンダ24に供給され、シリンダ内で溶融される。また加熱シリンダ24の先端には、射出ノズル29が取り付けられ、射出用サーボモータ26が回転駆動することにより射出スクリュ27が前進し、加熱シリンダ24内の溶融樹脂が固定側プレート28に取り付けられた固定側金型30aに射出されることとなる。   The injection unit 20 is mainly formed by attaching a heating cylinder 24 and an injection servo motor 26 for rotating the injection screw 27 on a base 22 attached on the base 11. A hopper 25 is attached to the heating cylinder 24, and resin pellets as raw materials are supplied from the hopper 25 to the heating cylinder 24 and melted in the cylinder. An injection nozzle 29 is attached to the tip of the heating cylinder 24, and the injection screw 27 advances by rotating the injection servomotor 26, and the molten resin in the heating cylinder 24 is attached to the fixed side plate 28. It is injected into the fixed mold 30a.

金型駆動ユニット40は、主として、シリンダ取付プレート44を介してベース11上に取り付けられた油圧シリンダである型締シリンダ42と、この型締シリンダ42の駆動軸42aと連結された可動側プレート46とで構成されている。可動側プレート46には、可動側金型30bが取り付けられており、この可動側金型30bは、型締シリンダ42を駆動源として、固定側金型30a方向に進退移動可能となっている。なお、シリンダ取付プレート44に設けられたガイドシャフト48が可動側プレート46に挿通されることで、可動側金型30bが回転しないよう規制されている。   The mold drive unit 40 mainly includes a mold clamping cylinder 42 which is a hydraulic cylinder mounted on the base 11 via a cylinder mounting plate 44, and a movable side plate 46 connected to a drive shaft 42a of the mold clamping cylinder 42. It consists of and. A movable mold 30b is attached to the movable plate 46, and the movable mold 30b can be moved back and forth in the direction of the fixed mold 30a using the clamping cylinder 42 as a drive source. The guide shaft 48 provided on the cylinder mounting plate 44 is inserted into the movable side plate 46 so that the movable side mold 30b is restricted from rotating.

また、可動側金型30bには、赤外の熱線放射を検知する赤外線温度センサ50が取り付けられている。図2に金型30の断面図を示す。図に示されるように、赤外線温度センサ50は、その先端部が金型30における成形空間であるキャビティ32に臨んで設けられている。この赤外線温度センサ50は、例えば成形品の肉厚部や、リブが設けられている個所等、成形品の形状からヒケが発生しやすいと予測される場所(本図では2個所)に設けられるため、成形される製品に応じてその数は異なる。   Further, an infrared temperature sensor 50 for detecting infrared heat ray radiation is attached to the movable mold 30b. FIG. 2 shows a sectional view of the mold 30. As shown in the figure, the infrared temperature sensor 50 is provided so that the tip thereof faces the cavity 32 which is a molding space in the mold 30. The infrared temperature sensor 50 is provided at a place where two sinks are likely to occur due to the shape of the molded product, such as a thick part of the molded product or a location where a rib is provided (two locations in the figure). Therefore, the number varies depending on the product to be molded.

成形品振分けユニット60は、主として、ベースプレート62上にシリンダ取付プレート66を介して取り付けられたエアシリンダ64と、良品用シュータ68a、不良品用シュータ68bとからなる。エアシリンダ64の駆動軸64aには、傾斜ブロック70が連結されている。この傾斜ブロック70は、ベースプレート62上の駆動軸64a方向に配設されたガイドレール72上をスライド可能に取り付けられている。   The molded product sorting unit 60 mainly includes an air cylinder 64 mounted on a base plate 62 via a cylinder mounting plate 66, a good product shooter 68a, and a defective product shooter 68b. An inclined block 70 is connected to the drive shaft 64 a of the air cylinder 64. The inclined block 70 is slidably mounted on a guide rail 72 disposed in the direction of the drive shaft 64a on the base plate 62.

また、ベースプレート62の下には、上記赤外線温度センサ50から得た信号を元にエアシリンダ64の駆動制御を行うための制御ボックス74が備えられている。さらに、この制御ボックス74の側面には、エアシリンダ64を進退移動させるためのエア流路を切り換える電磁弁76が取り付けられている。   A control box 74 for controlling the driving of the air cylinder 64 based on a signal obtained from the infrared temperature sensor 50 is provided under the base plate 62. Further, an electromagnetic valve 76 for switching an air flow path for moving the air cylinder 64 forward and backward is attached to the side surface of the control box 74.

図3は、この制御ボックス74を中心とした成形品振分けユニット60の電気的な構成図を示している。各赤外線温度センサ50により測定された温度データは、それぞれの赤外線温度センサ50と対になって設けられたアンプ51を介して、振分けユニット用制御回路61(本発明に係るヒケ検出手段に相当する)に送られる。振分けユニット用制御回路61は、この温度データに基づき、上記エアシリンダ64と接続された電磁弁76の開閉制御を行うこととなる。   FIG. 3 shows an electrical configuration diagram of the molded product sorting unit 60 around the control box 74. The temperature data measured by each infrared temperature sensor 50 is sent to a distribution unit control circuit 61 (corresponding to the sink detection means according to the present invention) via an amplifier 51 provided in a pair with each infrared temperature sensor 50. ). The distribution unit control circuit 61 performs opening / closing control of the electromagnetic valve 76 connected to the air cylinder 64 based on the temperature data.

ここで、上記可動側金型30bに設けられた赤外線温度センサ50による、射出成形におけるヒケの検出方法について、以下の実験例を参照して説明する。   Here, a method for detecting sink marks in injection molding by the infrared temperature sensor 50 provided in the movable mold 30b will be described with reference to the following experimental example.

(実験例)
上記射出成形機10により、ある成形条件で射出成形した場合における、成形開始の1ショット目から9ショット目までの成形品冷却時の温度変化を赤外線温度センサ50により連続的に測定した。図4は、この時測定された1ショット目(No.1)から9ショット目(No.9)までの温度変化曲線であり、図中に「S」が記載されているものは、成形品にヒケ不良が発生したものである。
(Experimental example)
When the injection molding machine 10 was used for injection molding under certain molding conditions, the temperature change during cooling of the molded product from the first shot to the ninth shot at the start of molding was continuously measured by the infrared temperature sensor 50. FIG. 4 is a temperature change curve from the first shot (No. 1) to the ninth shot (No. 9) measured at this time. Sink defects have occurred.

一般的に射出成形による製造開始直後は、金型温度や、溶融樹脂の温度が十分高くなっていない等の影響で成形品にヒケ不良が発生しやすいことが知られている。この実験例においても、1ショット目から8ショット目までは、成形品にヒケが発生し不良となったが、9ショット目には、ヒケが発生していない良品を得ることができた。   In general, it is known that immediately after the start of production by injection molding, sink defects are likely to occur in a molded product due to the influence of the mold temperature and the temperature of the molten resin not being sufficiently high. Also in this experimental example, sink marks were generated in the molded product from the first shot to the eighth shot, resulting in a defect, but in the ninth shot, a good product having no sink marks could be obtained.

ここで、図4に示されるように、1ショット目から8ショット目までの温度変化曲線には、成形品の冷却開始から約1.2〜1.3秒の時点で温度変化曲線に変曲点Pが発生していることが分かる。そして、この変曲点Pの大きさは、成形を重ねる毎に小さくなり、9ショット目の温度変化曲線に変曲点は発生していない。   Here, as shown in FIG. 4, the temperature change curve from the first shot to the eighth shot is inflected into the temperature change curve at about 1.2 to 1.3 seconds from the start of cooling of the molded product. It can be seen that the point P is generated. The size of the inflection point P becomes smaller every time molding is repeated, and no inflection point occurs in the temperature change curve of the ninth shot.

つまり、成形品にヒケが発生した場合には、赤外線温度センサ50の表面と成形品の表面とが離れる結果、その冷却時における温度変化曲線に変曲点が発生する。一方、成形品にヒケが発生しない場合には、No.9の曲線のように、単調減少の温度変化曲線となる。したがって、赤外線温度センサ50で測定された温度変化曲線における変曲点の有無に基づいて、成形品にヒケが発生したか否かを外観検査に依らずとも判断することができることとなる。   That is, when sink marks occur in the molded product, the surface of the infrared temperature sensor 50 and the surface of the molded product are separated from each other, resulting in an inflection point in the temperature change curve during cooling. On the other hand, when sink marks do not occur in the molded product, it becomes a monotonically decreasing temperature change curve like the curve of No. 9. Therefore, based on the presence or absence of an inflection point in the temperature change curve measured by the infrared temperature sensor 50, it can be determined whether or not sink marks have occurred in the molded product without depending on the appearance inspection.

次に、このようなヒケ検出方法を、前述した射出成形機10に適用した射出成形方法について以下説明する。図5は、この射出成形機10による樹脂製品の成形工程を説明するためのフローチャートである。   Next, an injection molding method in which such a sink detection method is applied to the above-described injection molding machine 10 will be described. FIG. 5 is a flowchart for explaining a resin product molding process by the injection molding machine 10.

まず、図示されない操作盤等の操作により目標生産数(N)を入力後、スタートスイッチを押す(S501)と、射出成形機10のメイン制御回路により、射出用サーボモータ26、型締シリンダ42等が原位置であるか確認される(S502)。   First, after inputting the target production number (N) by operating an operation panel (not shown) and then pressing the start switch (S501), the main servo control circuit of the injection molding machine 10 causes the injection servo motor 26, the clamping cylinder 42, and the like. Is in-origin (S502).

この時、射出用サーボモータ26、型締シリンダ42等のアクチュエータのいずれかが原位置でない(S502「NO」)ことが検出された場合には、インターロック機構により射出成形機10が始動することはない(S503)。   At this time, when it is detected that any of the actuators such as the injection servo motor 26 and the mold clamping cylinder 42 is not in the original position (S502 “NO”), the injection molding machine 10 is started by the interlock mechanism. There is no (S503).

原位置を確認すべきアクチュエータのいずれもが原位置に位置すると確認された場合(S502「YES」)には、型締シリンダ42が前進し、可動側金型30bが固定側金型30aに押しつけられ型締される(S504)。この後、射出用サーボモータ26が回転駆動され(S505)、加熱シリンダ24内の溶融樹脂が金型30のキャビティ32内に射出される。   When it is confirmed that all of the actuators whose original positions should be confirmed are located at the original positions (S502 “YES”), the mold clamping cylinder 42 moves forward, and the movable mold 30b is pressed against the fixed mold 30a. The mold is clamped (S504). Thereafter, the injection servo motor 26 is rotationally driven (S505), and the molten resin in the heating cylinder 24 is injected into the cavity 32 of the mold 30.

溶融樹脂の射出が完了(S506)し、成形品の冷却工程に入ると、赤外線温度センサ50は温度測定を開始する(S507)。そして、成形品の冷却終了(S508)後、赤外線温度センサ50の温度測定は終了する(S509)。   When the injection of the molten resin is completed (S506) and the molded product cooling process is started, the infrared temperature sensor 50 starts temperature measurement (S507). And after completion | finish of cooling of a molded article (S508), the temperature measurement of the infrared temperature sensor 50 is complete | finished (S509).

温度測定終了後、制御ボックス74内の振分けユニット用制御回路61は、赤外線温度センサ50により測定された温度変化曲線を解析し、この温度変化曲線に変曲点が発生しているか否かを判定する(S510)。この時、測定された温度変化曲線に変曲点が発生していない(S510「NO」)とされた場合には、すぐさま型締シリンダ42が後退し(S511)、金型30に設けられた図示されないエジェクタピンにより、ワーク99が良品用シュータ68aに向けて落下排出される。   After the temperature measurement is completed, the distribution unit control circuit 61 in the control box 74 analyzes the temperature change curve measured by the infrared temperature sensor 50 and determines whether or not an inflection point has occurred in the temperature change curve. (S510). At this time, if it is determined that an inflection point has not occurred in the measured temperature change curve (S510 “NO”), the mold clamping cylinder 42 is immediately retracted (S511), and the mold 30 is provided. The workpiece 99 is dropped and discharged toward the non-defective shooter 68a by an ejector pin (not shown).

この後、生産数nがカウントアップされ(S512)、このカウントアップされた生産数(n+1)が目標生産数(N)に達したかどうかが判定される(S513)。目標生産数(N)に達したとされた場合(S513「YES」)には、射出成形機10は停止し、生産を終了する(S514)。一方、未だ目標生産数Nに達していないとされた場合(S513「NO」)には、ステップS504に戻り、次のサイクルの射出成形が行われることとなる。   Thereafter, the production number n is counted up (S512), and it is determined whether or not the counted production number (n + 1) has reached the target production number (N) (S513). When it is determined that the target production number (N) has been reached (S513 “YES”), the injection molding machine 10 stops, and the production ends (S514). On the other hand, if it is determined that the target production number N has not yet been reached (“NO” in S513), the process returns to step S504, and the injection molding of the next cycle is performed.

これに対し、ステップS510で温度変化曲線に変曲点が生じていることが検出された(S510「YES」)場合には、ワーク99にヒケ不良が発生しているものと判断され、振分けユニット用制御回路61の指令により電磁弁76がエア流路を切替え、エアシリンダ64が図1の矢印X方向に前進する(S515)。このエアシリンダ64が前進した後、型締シリンダ42は後退し(S516)、ヒケ不良が発生しているワーク99がエジェクタピンにより落下排出される。   On the other hand, if it is detected in step S510 that an inflection point has occurred in the temperature change curve (“YES” in S510), it is determined that a sink defect has occurred in the work 99, and the distribution unit is determined. In response to a command from the control circuit 61, the solenoid valve 76 switches the air flow path, and the air cylinder 64 moves forward in the direction indicated by the arrow X in FIG. After the air cylinder 64 moves forward, the mold clamping cylinder 42 moves backward (S516), and the work 99 in which sink defects have occurred is dropped and discharged by the ejector pin.

すると、図1に示されるように、エアシリンダ64の駆動軸に固定された傾斜ブロック70が図中の点線で示される位置まで前進しているため、良品用シュータ68aの入口は塞がれた状態となる。そして、良品用シュータ68aに向かって落下してきたワーク99は、傾斜ブロック70の傾斜面を転がり、不良品用シュータ68b内に落とし込まれることとなる。   Then, as shown in FIG. 1, since the inclined block 70 fixed to the drive shaft of the air cylinder 64 has advanced to the position indicated by the dotted line in the drawing, the entrance of the non-defective shooter 68a is blocked. It becomes a state. Then, the work 99 that has fallen toward the non-defective product shooter 68a rolls on the inclined surface of the inclined block 70 and is dropped into the defective product shooter 68b.

このように不良品が金型30より排出され、良品とは別に振り分けられた後、エアシリンダ64は後退し(S517)、原位置に復帰する。そして、ステップS504に戻り、次のサイクルの射出成形が行われることとなる。   Thus, after the defective product is discharged from the mold 30 and sorted separately from the non-defective product, the air cylinder 64 moves backward (S517) and returns to the original position. And it returns to step S504 and the injection molding of the next cycle will be performed.

このように、本実施形態に係る射出成形方法によれば、赤外線温度センサ50によりワーク99に発生するヒケ不良をワーク99冷却時の温度変化曲線の変曲点の有無により判断し、曲線に変曲点が生じた場合にはヒケ不良が発生しているとして、自動的に成形品振分けユニット60により良品と不良品とに振分けられる。したがって、成形後の外観検査等による振分けが不要となり、成形品に発生するヒケを成形工程で確実に検出することができる。   As described above, according to the injection molding method according to the present embodiment, the infrared temperature sensor 50 determines whether there is a sink defect occurring in the workpiece 99 based on the presence or absence of the inflection point of the temperature change curve when the workpiece 99 is cooled. When a bending point occurs, it is assumed that a sink defect has occurred, and the molded product distribution unit 60 automatically distributes the product into a non-defective product and a defective product. Therefore, distribution by appearance inspection after molding becomes unnecessary, and sink marks occurring in the molded product can be reliably detected in the molding process.

なお、上記射出成形方法の構成に加え、ワーク99のヒケ不良が連続的に検出された場合、射出成形機10の運転を停止し、作業者に不良が連続的に発生していることを知らせるようにしてもよい。このようにすることで、大量に不良品が発生してしまうことを未然に防止し、成形条件の変更等の迅速な対応が可能となる。   In addition to the configuration of the injection molding method described above, if a sink defect of the workpiece 99 is continuously detected, the operation of the injection molding machine 10 is stopped and the operator is informed that the defect has continuously occurred. You may do it. By doing in this way, it is possible to prevent in advance a large amount of defective products from occurring, and it is possible to quickly respond to changes in molding conditions and the like.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

例えば、上記実施形態では、傾斜ブロック70をエアシリンダ64により進退させることで、成形品が良品と不良品とに振分けられることを説明したが、確実に良品と不良品とに分別することができる方法であればこれに限られるものではない。例えば、射出成形工程に一般的に用いられている取出ロボットを温度変化曲線のデータに基づき制御することで、良品と不良品とを振り分けるようにしてもよい。   For example, in the above-described embodiment, it has been explained that the inclined block 70 is advanced and retracted by the air cylinder 64, so that the molded product is divided into the non-defective product and the defective product. The method is not limited to this. For example, a non-defective product and a non-defective product may be distributed by controlling a take-out robot generally used in the injection molding process based on temperature change curve data.

本発明の一実施形態に係る射出成形機の側面図である。It is a side view of the injection molding machine concerning one embodiment of the present invention. 図1に示した射出成形機に使用される射出成形用金型の断面図である。It is sectional drawing of the metal mold | die for injection molding used for the injection molding machine shown in FIG. 図1に示した射出成形機に配設された成形品振分けユニットの電気的な構成図である。It is an electrical block diagram of the molded article distribution unit arrange | positioned at the injection molding machine shown in FIG. ある成形条件で射出成形した場合における、成形開始の1ショット目から9ショット目までの成形品冷却時の温度変化を赤外線温度センサにより測定した場合の温度変化曲線である。It is a temperature change curve at the time of measuring the temperature change at the time of cooling of the molded article from the 1st shot of the start of molding to the 9th shot in the case of injection molding under a certain molding condition with an infrared temperature sensor. 図1に示した射出成形機における成形工程を説明するためのフローチャートである。It is a flowchart for demonstrating the shaping | molding process in the injection molding machine shown in FIG.

符号の説明Explanation of symbols

10 射出成形機
30 金型
32 キャビティ
50 赤外線温度センサ
60 成形品振分けユニット
61 振分けユニット用制御回路
DESCRIPTION OF SYMBOLS 10 Injection molding machine 30 Mold 32 Cavity 50 Infrared temperature sensor 60 Molded product distribution unit 61 Control circuit for distribution unit

Claims (7)

キャビティ内に射出される溶融樹脂と当接する位置に金型に温度センサを設け、該温度センサにより成形品冷却時の温度を連続的に測定して、得られた温度変化曲線における変曲点の有無を検出し、該温度変化曲線に変曲点が有る場合に成形品にヒケが発生したと判断することを特徴とする射出成形におけるヒケの検出方法。   A temperature sensor is provided in the mold at a position where it contacts the molten resin injected into the cavity, and the temperature at the time of cooling the molded product is continuously measured by the temperature sensor, and the inflection point in the obtained temperature change curve is determined. A method for detecting sink marks in injection molding, wherein the presence or absence is detected and it is determined that sink marks have occurred in a molded product when the temperature change curve has an inflection point. 前記温度センサが赤外線温度センサであることを特徴とする請求項1に記載の射出成形におけるヒケの検出方法。   The method for detecting sink marks in injection molding according to claim 1, wherein the temperature sensor is an infrared temperature sensor. 前記温度センサが成形品のヒケの発生しやすい位置に設けられていることを特徴とする請求項1または2に記載の射出成形におけるヒケの検出方法。   3. The method for detecting sink marks in injection molding according to claim 1, wherein the temperature sensor is provided at a position where sink marks are likely to occur in a molded product. キャビティ内に射出される溶融樹脂と当接するように金型に設けられた温度センサと、該温度センサにより成形品冷却時における温度を連続的に測定して、得られた温度変化曲線における変曲点の有無を検出し、該温度変化曲線に変曲点が有る場合に成形品にヒケが発生したと判断するヒケ検出手段と、該ヒケ検出手段により判断された成形品のヒケの有無に基づいて成形品を良品と不良品とに振分ける振分け手段とを備えたことを特徴とする射出成形機。   A temperature sensor provided in the mold so as to come into contact with the molten resin injected into the cavity, and a temperature change curve obtained by continuously measuring the temperature when the molded product is cooled by the temperature sensor. Based on the presence or absence of sink marks in the molded article determined by the sink detection means, which detects the presence or absence of points, and determines that sink marks have occurred in the molded article when the temperature change curve has an inflection point. An injection molding machine comprising a sorting means for sorting the molded product into a non-defective product and a defective product. 前記温度センサが赤外線温度センサであることを特徴とする請求項4に記載の射出成形機。   The injection molding machine according to claim 4, wherein the temperature sensor is an infrared temperature sensor. 前記温度センサが成形品のヒケの発生しやすい位置に設けられていることを特徴とする請求項4または5に記載の射出成形機。   6. The injection molding machine according to claim 4, wherein the temperature sensor is provided at a position where sink marks of the molded product are likely to occur. 請求項4〜6に記載の射出成形機を用いて連続的に射出成形を行い、成形品を良品と不良品とに振分けることで良品のみを得るようにしたことを特徴とする射出成形方法。   7. An injection molding method characterized in that injection molding is performed continuously using the injection molding machine according to claim 4 and only good products are obtained by distributing molded products into good products and defective products. .
JP2006327000A 2006-12-04 2006-12-04 Sink detection method, injection molding machine and injection molding method in injection molding Expired - Fee Related JP4819659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006327000A JP4819659B2 (en) 2006-12-04 2006-12-04 Sink detection method, injection molding machine and injection molding method in injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006327000A JP4819659B2 (en) 2006-12-04 2006-12-04 Sink detection method, injection molding machine and injection molding method in injection molding

Publications (2)

Publication Number Publication Date
JP2008137315A JP2008137315A (en) 2008-06-19
JP4819659B2 true JP4819659B2 (en) 2011-11-24

Family

ID=39599281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006327000A Expired - Fee Related JP4819659B2 (en) 2006-12-04 2006-12-04 Sink detection method, injection molding machine and injection molding method in injection molding

Country Status (1)

Country Link
JP (1) JP4819659B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925962B1 (en) 2009-03-06 2009-11-09 이성기 The injection milding management equipment which uses a mold temperature and a gravimetry

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039535B2 (en) * 1976-01-12 1985-09-06 住友重機械工業株式会社 Automatic sorting equipment for injection molded products
JPS61229521A (en) * 1985-04-04 1986-10-13 Toshiba Mach Co Ltd Monitoring of injection process
JP2948920B2 (en) * 1990-12-18 1999-09-13 株式会社日本製鋼所 Press molding control method for synthetic resin
JP3366739B2 (en) * 1994-07-20 2003-01-14 株式会社太洋工作所 Mold for injection molding of thermoplastic resin
JP3560221B2 (en) * 1998-08-12 2004-09-02 理化工業株式会社 Injection molding control device and control method

Also Published As

Publication number Publication date
JP2008137315A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP6904866B2 (en) Injection molded product sorting device and injection molding system
JP2006334944A (en) Method for setting molding conditions
CN108883439B (en) Screw detection device for screw manufacturing equipment
JP7260417B2 (en) Abnormality detection device for injection molding machine
JP4819659B2 (en) Sink detection method, injection molding machine and injection molding method in injection molding
KR102062619B1 (en) Forging mold manufacturing device for automobile parts porduction
JP2009137076A (en) Injection molding mold, method for detecting defective plasticization in injection molding, and injection molding method
US10695968B2 (en) Controller for injection molding machine
JP2007022011A (en) Control device of molding machine and molding method of molding machine
JP2002248665A (en) Method and device for controlling injection molding machine
JP2728143B2 (en) Injection molding machine
JP7045376B2 (en) Sand mold molding machine and manufacturing method of sand mold parts
EP0511637A1 (en) A method and apparatus for injecting and mold clamping control of a blow molding machine
JP2010099914A (en) Device for manufacturing in-mold labeling container
CN113442398A (en) Molded product inspection device and injection molding system
JP2009262467A (en) Mold clamp-ejector apparatus of electromotive injection molding machine
JP7151564B2 (en) Injection molding machine and method for judging quality of molded products
US20060110489A1 (en) Apparatus for measuring separation of mold parts
JP2002086500A (en) Method and apparatus for detecting defective product, and molding apparatus
JP2021062558A (en) Molding machine
JP4252417B2 (en) Monitoring device and monitoring method for molding machine
JP3977792B2 (en) Molding machine control method
JP6426523B2 (en) Injection molding system
US20240342972A1 (en) Injection molding machine pass/fail determination system
JP3605215B2 (en) Measuring device for billet heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees