JP4819624B2 - Soldering flux and solder paste composition - Google Patents

Soldering flux and solder paste composition Download PDF

Info

Publication number
JP4819624B2
JP4819624B2 JP2006239288A JP2006239288A JP4819624B2 JP 4819624 B2 JP4819624 B2 JP 4819624B2 JP 2006239288 A JP2006239288 A JP 2006239288A JP 2006239288 A JP2006239288 A JP 2006239288A JP 4819624 B2 JP4819624 B2 JP 4819624B2
Authority
JP
Japan
Prior art keywords
rosin
flux
weight
softening point
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006239288A
Other languages
Japanese (ja)
Other versions
JP2008062242A (en
Inventor
真之 千葉
昌大 渡部
正巳 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Chemical Inc
Original Assignee
Harima Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Chemical Inc filed Critical Harima Chemical Inc
Priority to JP2006239288A priority Critical patent/JP4819624B2/en
Publication of JP2008062242A publication Critical patent/JP2008062242A/en
Application granted granted Critical
Publication of JP4819624B2 publication Critical patent/JP4819624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、例えば、回路基板に対して回路部品等をはんだ接続する際に使用されるはんだ付け用フラックスおよびはんだペースト組成物に関する。   The present invention relates to a soldering flux and a solder paste composition used, for example, when soldering circuit components or the like to a circuit board.

従来から、電子回路部品等をはんだ接続するために、種々のはんだ付け用フラックスおよびはんだペースト組成物が使用されている。しかし、従来のフラックスおよびはんだペースト組成物では、はんだ付けを行った後のフラックス残渣に亀裂が発生し、この亀裂部に水分が結露して部品リード間の短絡不良を招くといった問題を生じることがあった。この問題は、特に、使用時の寒暖差が大きく、また振動も大きい車載用基板上で発生する可能性が高い。   Conventionally, various soldering fluxes and solder paste compositions have been used for soldering electronic circuit components and the like. However, in the conventional flux and solder paste composition, there is a problem that a crack is generated in the flux residue after soldering, and moisture is condensed in the cracked portion to cause a short circuit failure between the component leads. there were. This problem is particularly likely to occur on a vehicle-mounted substrate that has a large temperature difference during use and a large amount of vibration.

この問題を改善する方法として、これまでに以下のような亀裂防止手段が提案されている。すなわち、a)ロジンをベース樹脂とするはんだペーストにおいて、高沸点可塑剤であるトリメリット酸のエステルを添加する方法(特許文献1参照)のように、高沸点の可塑剤を添加してはんだ付け後の残渣中に可塑剤を残留させる手段、b)エチレン−アクリル共重合体を使用したはんだ付け用フラックス(特許文献2参照)のように、エチレンあるいはプロピレンの重合体等の柔軟な合成樹脂をベース樹脂とする手段、c)はんだ付け後に洗浄を行い、フラックス残渣を取り除く手段、である。   As a method for improving this problem, the following crack preventing means has been proposed. That is, a) In a solder paste using rosin as a base resin, a high-boiling plasticizer is added and soldered as in a method of adding an ester of trimellitic acid that is a high-boiling plasticizer (see Patent Document 1). Means for leaving the plasticizer in the residue afterwards, b) a flexible synthetic resin such as a polymer of ethylene or propylene, such as a soldering flux using an ethylene-acrylic copolymer (see Patent Document 2) A means for forming a base resin; c) a means for cleaning after soldering to remove a flux residue.

特開平9−234588号公報JP-A-9-234588 特開平9−122975号公報JP-A-9-122975

しかしながら、前記a)の手段では、フラックス残渣の亀裂発生が低減される一方で、液状物質の残留による信頼性低下が懸念されるという問題があった。前記b)の手段では、合成樹脂の使用により、ロジン系フラックスと比較して、はんだのぬれ性の確保が難しくなり、はんだ付け性が低下するという問題があった。前記c)の手段では、洗浄のための後工程や洗浄設備の増設等が必要になることで製品コストが高騰したり、洗浄に用いる溶剤によって環境汚染が懸念されるという問題があった。   However, the means a) has a problem in that the occurrence of cracks in the flux residue is reduced, but there is a concern that the reliability may be lowered due to the residual liquid substance. The means b) has a problem in that it becomes difficult to ensure the wettability of the solder and the solderability is deteriorated by using a synthetic resin as compared with the rosin flux. In the means c), there is a problem that the cost of the product increases due to the need for a post-process for cleaning and the addition of cleaning equipment, and environmental pollution is concerned by the solvent used for cleaning.

そこで、本発明は、はんだ付け後のフラックス残渣の亀裂発生を充分に抑制することができるとともに、信頼性が高く、良好なはんだ付け性を有し、製造コストや環境に対する負荷は従来と同等である、はんだ付け用フラックスおよびはんだペースト組成物を提供することを目的とする。   Therefore, the present invention can sufficiently suppress the occurrence of cracks in the flux residue after soldering, has high reliability, has good solderability, and has the same manufacturing cost and environmental load as conventional ones. An object is to provide a soldering flux and a solder paste composition.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、はんだ付け用フラックスのベース樹脂として、特定温度以下の軟化点を持つロジンを使用することにより、はんだ付け後のフラックス残渣に柔軟性が付与され、該フラックス残渣に亀裂が生じるのを効果的に抑制できるとともに、従来のロジンと同等の活性力と高い絶縁性を備えているので、高い信頼性の確保と良好なはんだ付け性を得ることができ、製造コストや環境に対する負荷も従来と同等に保つことができる、という新たな事実を見出し、本発明を完成するに至った。   As a result of intensive research to solve the above-mentioned problems, the present inventors have used a rosin having a softening point below a specific temperature as a base resin for soldering flux. Flexibility is provided, cracking in the flux residue can be effectively suppressed, and it has the same activity and high insulation as conventional rosins, ensuring high reliability and good soldering. The present inventors have found a new fact that the manufacturing cost and the load on the environment can be kept at the same level as before, and have completed the present invention.

すなわち、本発明は以下の構成からなる。
(1)ベース樹脂として、軟化点が60℃以下の低軟化点ロジンを含有することを特徴とするはんだ付け用フラックス。
(2)前記低軟化点ロジンがセコデヒドロアビエチン酸を含む、前記(1)記載のはんだ付け用フラックス。
(3)前記低軟化点ロジンがロジンの加熱分解成分を含む、前記(1)または(2)に記載のはんだ付け用フラックス。
(4)前記低軟化点ロジン中に含まれるセコデヒドロアビエチン酸および/または加熱分解成分の含有量が5重量%以上である、前記(2)または(3)に記載のはんだ付け用フラックス。
(5)前記低軟化点ロジンの含有量がフラックス総量に対して0.5〜80重量%である、前記(1)〜(4)のいずれかに記載のはんだ付け用フラックス。
(6)ベース樹脂として、アクリル化ロジンおよび/またはアクリル樹脂をも含有する、前記(1)〜(5)のいずれかに記載のはんだ付け用フラックス。
(7)前記(1)〜(6)のいずれかに記載のはんだ付け用フラックスとはんだ合金粉末とを含有することを特徴とするはんだペースト組成物。
That is, the present invention has the following configuration.
(1) A soldering flux comprising a low softening point rosin having a softening point of 60 ° C. or less as a base resin.
(2) The soldering flux according to (1), wherein the low softening point rosin contains secodehydroabietic acid.
(3) The soldering flux according to (1) or (2), wherein the low softening point rosin contains a thermal decomposition component of rosin.
(4) The soldering flux according to the above (2) or (3), wherein the content of secodehydroabietic acid and / or a thermal decomposition component contained in the low softening point rosin is 5% by weight or more.
(5) The soldering flux according to any one of (1) to (4), wherein the content of the low softening point rosin is 0.5 to 80% by weight based on the total amount of the flux.
(6) The soldering flux according to any one of (1) to (5), which also contains an acrylated rosin and / or an acrylic resin as a base resin.
(7) A solder paste composition comprising the soldering flux according to any one of (1) to (6) and a solder alloy powder.

本発明によれば、はんだ付け後のフラックス残渣の亀裂発生を充分に抑制することができるとともに、高信頼性と良好なはんだ付け性を得ることができる。これにより、フラックス残渣の亀裂に起因する短絡やはんだ付け不足による接合部品の脱落、腐食による断線等を防止することができるので、信頼性が高く、高品質な電子機器を容易に製造できる、という効果が得られる。特に、低温高温サイクル(冷熱サイクル)や振動に曝されるなどの過酷な環境下で使用される場合にも、耐腐食性と高い電気絶縁性を保持することが可能になり、はんだ付け部の信頼性を向上させることができる。また、本発明によれば、従来のように、はんだ付け後の残留フラックスを洗浄する必要がないので、製品コストの高騰させるおそれがなく、洗浄溶剤が人体や環境に悪影響を及ぼすおそれもない。   According to the present invention, it is possible to sufficiently suppress the occurrence of cracks in the flux residue after soldering, and to obtain high reliability and good solderability. As a result, it is possible to prevent short circuit due to cracks in the flux residue, dropout of joined parts due to insufficient soldering, disconnection due to corrosion, etc., so that highly reliable and high quality electronic equipment can be easily manufactured. An effect is obtained. In particular, even when used in harsh environments such as low temperature and high temperature cycles (cooling cycles) or exposure to vibration, it is possible to maintain corrosion resistance and high electrical insulation, Reliability can be improved. Further, according to the present invention, since there is no need to clean the residual flux after soldering as in the prior art, there is no possibility that the product cost will rise, and there is no possibility that the cleaning solvent will adversely affect the human body and the environment.

以下、本発明の一実施形態について詳細に説明する。
本発明のはんだ付け用フラックス(以下、単に「フラックス」と称することもある)は、ベース樹脂として、軟化点が60℃以下の低軟化点ロジンを含有する。軟化点が60℃以下の低軟化点ロジンは、一般に、柔軟な構造を有するとともに、軟化点が60℃を超える従来のロジンと同等の活性力と高い絶縁性を備えている。したがって、このような低軟化点ロジンをベース樹脂とすることにより、はんだ付け後のフラックス残渣中に亀裂が発生するのを効果的に抑制しつつ、良好なはんだ付け性と高信頼性を得ることができるのである。軟化点が60℃を超えるロジンであると、樹脂の柔軟性が低下し、残渣中の亀裂の発生を抑制するという本発明の効果が得られなくなる。
Hereinafter, an embodiment of the present invention will be described in detail.
The soldering flux of the present invention (hereinafter sometimes simply referred to as “flux”) contains, as a base resin, a low softening point rosin having a softening point of 60 ° C. or less. A low softening point rosin having a softening point of 60 ° C. or lower generally has a flexible structure, and has an active force equivalent to that of a conventional rosin having a softening point exceeding 60 ° C. and high insulation. Therefore, by using such a low softening point rosin as a base resin, it is possible to obtain good solderability and high reliability while effectively suppressing the occurrence of cracks in the flux residue after soldering. Can do it. When the rosin has a softening point exceeding 60 ° C., the flexibility of the resin is lowered, and the effect of the present invention that suppresses the generation of cracks in the residue cannot be obtained.

前記低軟化点ロジンは、セコデヒドロアビエチン酸を含むものであることが好ましい。フラックス中にセコデヒドロアビエチン酸が存在することによって、特に低温高温サイクルや振動にさらされる環境下で使用された場合にも、耐腐食性と高い電気絶縁性を保持させることができる。
前記セコデヒドロアビエチン酸は、下記式(I)に示す構造を有するものであり、各種ロジンに含まれる共役二重結合を有する成分(例えば、ネオアビエチン酸、パラストリン酸、レボピマール酸等のアビエチン酸型の共役二重結合を有する樹脂酸)が変性されたものである。詳しくは、前記セコデヒドロアビエチン酸は、アビエチン酸型の共役二重結合を有する樹脂酸を、そのカルボン酸部分を保持させたまま、不均斉化と同時に開環させてなるものである。
The low softening point rosin preferably contains secodehydroabietic acid. Due to the presence of secodehydroabietic acid in the flux, corrosion resistance and high electrical insulation can be maintained even when used in an environment exposed to low temperature and high temperature cycles or vibrations.
The secodehydroabietic acid has a structure represented by the following formula (I), and has a conjugated double bond contained in various rosins (for example, abietic acid type such as neoabietic acid, parastrinic acid, levopimaric acid) The resin acid having a conjugated double bond is modified. Specifically, the secodehydroabietic acid is formed by ring-opening a resin acid having an abietic acid type conjugated double bond simultaneously with disproportionation while retaining its carboxylic acid moiety.

Figure 0004819624
Figure 0004819624

前記セコデヒドロアビエチン酸を含む低軟化点ロジンは、例えば、前記共役二重結合を有する成分(アビエチン酸型の共役二重結合を有する樹脂酸)を含む各種ロジンを、ヨウ素、イオウ、鉄等の触媒存在下、150〜300℃、好ましくは250〜280℃で、3〜24時間程度加熱する方法で得ることができる。この方法によって、ロジン中のアビエチン酸型共役二重結合を有する樹脂酸を、不均斉化すると同時に開環させ、セコデヒドロアビエチン酸を生じさせるのである。該方法において、不均斉化反応と同時に開環反応を促進させるためには、後述する製造例のように、加熱中に存在させる触媒として下記式(II)に示す構造を有するアルキルフェノールジスルフィドオリゴマー(例えば、ノニルフェノールジスルフィドオリゴマー、t−アミルフェノールジスルフィドオリゴマー等)を用いることが有効である。また、前記方法において、所望の不均斉化および開環以外の副反応を抑制し、他の分解反応物を副生させないためには、加熱の際の温度制御が重要となる。   The low softening point rosin containing secodehydroabietic acid includes, for example, various rosins containing the component having a conjugated double bond (resin acid having an abietic acid type conjugated double bond) such as iodine, sulfur and iron. It can be obtained by a method of heating at 150 to 300 ° C., preferably 250 to 280 ° C. for about 3 to 24 hours in the presence of a catalyst. By this method, the resin acid having an abietic acid type conjugated double bond in rosin is disproportionated and simultaneously ring-opened to produce secodehydroabietic acid. In this method, in order to promote the ring-opening reaction simultaneously with the disproportionation reaction, an alkylphenol disulfide oligomer having a structure represented by the following formula (II) as a catalyst to be present during heating as in the following production example (for example, , Nonylphenol disulfide oligomer, t-amylphenol disulfide oligomer, etc.) are effective. Further, in the above method, temperature control during heating is important in order to suppress side reactions other than desired disproportionation and ring opening and prevent other decomposition products from being by-produced.

Figure 0004819624
Figure 0004819624

前記低軟化点ロジンは、ロジンの加熱分解成分を含むものであることが好ましい。フラックス中にロジンの加熱分解成分が存在することによって、特に低温高温サイクルや振動にさらされる環境下で使用された場合にも、耐腐食性と高い電気絶縁性を保持させることができる。
前記ロジンの加熱分解成分とは、通常、各種ロジンに含まれる種々の成分(例えば、アビエチン酸、ネオアビエチン酸、パラストリン酸、ピマール酸、イソピマール酸等)が熱分解されてなるものであり、具体的には、例えば、ガムロジンを熱分解させてなるピノリンやロジンオイル等が挙げられる。
前記加熱分解成分を含む低軟化点ロジンは、例えば、各種ロジンを、不活性ガス雰囲気中で、250〜300℃の温度で数時間加熱する方法で得ることができる。この方法では、前述したセコデヒドロアビエチン酸を含む低軟化点ロジンを得る方法と異なり、加熱時にヨウ素、イオウ、鉄等の触媒を存在させないので、不均斉化および開環反応は起こらず、単なる熱分解反応のみが起こる。
なお、前記低軟化点ロジンは、前記セコデヒドロアビエチン酸と前記加熱分解成分のいずれか一方のみを含有するものであってもよいし、両方を含有するものであってもよい。
The low softening point rosin preferably contains a thermal decomposition component of rosin. The presence of the thermal decomposition component of rosin in the flux makes it possible to maintain corrosion resistance and high electrical insulation even when used in environments exposed to low temperature and high temperature cycles and vibrations.
The thermal decomposition component of the rosin is usually obtained by thermally decomposing various components (for example, abietic acid, neoabietic acid, parastrinic acid, pimaric acid, isopimaric acid, etc.) contained in various rosins. Specifically, for example, pinoline or rosin oil obtained by thermally decomposing gum rosin can be used.
The low softening point rosin containing the thermal decomposition component can be obtained, for example, by a method in which various rosins are heated at a temperature of 250 to 300 ° C. for several hours in an inert gas atmosphere. In this method, unlike the above-described method for obtaining a low softening point rosin containing secodehydroabietic acid, a catalyst such as iodine, sulfur, iron, etc. is not present during heating. Only decomposition reactions occur.
The low softening point rosin may contain only one of the secodehydroabietic acid and the heat decomposition component, or may contain both.

低軟化点ロジン中に占める前記セコデヒドロアビエチン酸および/または前記加熱分解成分の含有量は、5重量%以上であることが好ましく、より好ましくは20重量%以上であるのがよい。セコデヒドロアビエチン酸および/または加熱分解成分が5重量%未満であると、ロジンの軟化点を60℃以下とすることが難しくなり、前記低軟化点樹脂にならないおそれがある。なお、低軟化点ロジン中に前記セコデヒドロアビエチン酸と前記加熱分解成分の両方が含まれる場合には、両者の合計量が前記範囲であればよい。本発明において、セコデヒドロアビエチン酸および/または加熱分解成分の含有量は、ガスクロマトグラフィーによって測定することができる。   The content of the secodehydroabietic acid and / or the thermal decomposition component in the low softening point rosin is preferably 5% by weight or more, and more preferably 20% by weight or more. If the secodehydroabietic acid and / or the thermal decomposition component is less than 5% by weight, it becomes difficult to make the softening point of rosin 60 ° C. or lower, and the low softening point resin may not be obtained. In addition, when both the said secodehydroabietic acid and the said thermal decomposition component are contained in the low softening point rosin, the total amount of both should just be the said range. In the present invention, the content of secodehydroabietic acid and / or a thermal decomposition component can be measured by gas chromatography.

低軟化点ロジンの含有量は、フラックス総量に対して0.5〜80重量%であることが好ましく、より好ましくは、2〜60重量%であるのがよい。低軟化点ロジンが0.5重量%未満であると、フラックス中の固形分量が少なくなるため、はんだ付け時の皮膜性が低下し、充分なはんだ付け性が得られないおそれがある。一方、低軟化点ロジンが80重量%を超えると、フラックスが高粘度化し、作業性が著しく低下するおそれがある。   The content of the low softening point rosin is preferably 0.5 to 80% by weight, more preferably 2 to 60% by weight, based on the total flux. When the low softening point rosin is less than 0.5% by weight, the solid content in the flux decreases, so that the film property at the time of soldering is lowered and sufficient solderability may not be obtained. On the other hand, if the low softening point rosin exceeds 80% by weight, the flux has a high viscosity and the workability may be significantly reduced.

本発明のはんだ付け用フラックスは、ベース樹脂として、前記低軟化点ロジンとともに、アクリル化ロジンおよび/またはアクリル樹脂をも含有することが好ましい。アクリル化ロジンを含有させることにより、さらにはんだ付け性の向上を図ることができ、他方、アクリル樹脂を含有させることにより、はんだ付け性や信頼性への影響を抑えつつフラックス残渣の柔軟性をさらに向上させ、より確実に亀裂の発生を防止することができる。したがって、アクリル化ロジンとアクリル樹脂は、少なくとも一方を、好ましくは両方を含有させるのがよい。   The soldering flux of the present invention preferably contains an acrylated rosin and / or an acrylic resin as the base resin together with the low softening point rosin. By including an acrylated rosin, solderability can be further improved. On the other hand, by adding an acrylic resin, the flexibility of the flux residue is further reduced while suppressing the influence on solderability and reliability. It is possible to improve and prevent the occurrence of cracks more reliably. Accordingly, at least one of the acrylated rosin and the acrylic resin, preferably both, should be contained.

アクリル化ロジンとしては、各種ロジンにアクリル酸やメタクリル酸を付加反応させてなるものを用いればよい。
アクリル化ロジンの含有量は、フラックス総量に対して0.1〜60重量%であるのが好ましく、より好ましくは1〜45重量%であるのがよい。アクリル化ロジンが0.1重量%未満であると、はんだ付け性の向上効果が期待できない可能性が高い。一方、アクリル化ロジンが60重量%を超えると、低軟化点ロジンの量が相対的に少なくなってしまい、残渣の耐亀裂性が悪化するおそれがある。
As the acrylated rosin, those obtained by addition reaction of various rosins with acrylic acid or methacrylic acid may be used.
The content of acrylated rosin is preferably 0.1 to 60% by weight, more preferably 1 to 45% by weight, based on the total flux. If the acrylated rosin is less than 0.1% by weight, there is a high possibility that the effect of improving the solderability cannot be expected. On the other hand, when the acrylated rosin exceeds 60% by weight, the amount of the low softening point rosin is relatively decreased, and the crack resistance of the residue may be deteriorated.

アクリル樹脂としては、重合性不飽和基を有するモノマー(例えば、(メタ)アクリル酸、その各種エステル、クロトン酸、イタコン酸、(無水)マレイン酸およびそのエステル、(メタ)アクリロニトリル、(メタ)アクリルアミド、塩化ビニル、酢酸ビニル等)を、過酸化物等の触媒を用いて、塊状重合法、液状重合法、懸濁重合法、乳化重合法等のラジカル重合により重合させたものを用いるのがよい。   Acrylic resins include monomers having polymerizable unsaturated groups (for example, (meth) acrylic acid, various esters thereof, crotonic acid, itaconic acid, (anhydrous) maleic acid and esters thereof, (meth) acrylonitrile, (meth) acrylamide. , Vinyl chloride, vinyl acetate, etc.) using a polymerization catalyst such as a bulk polymerization method, a liquid polymerization method, a suspension polymerization method, an emulsion polymerization method or the like. .

アクリル樹脂の含有量は、フラックス総量に対して0.1〜60重量%であるのが好ましく、より好ましくは1〜45重量%であるのがよい。アクリル樹脂が0.1重量%未満であると、残渣の柔軟性を向上させるという効果が期待できない可能性が高い。一方、アクリル樹脂が60重量%を超えると、フラックス固形分中の低軟化点ロジンの比率が相対的に低下してしまうため、はんだ付け性の低下を招くおそれがある。   The content of the acrylic resin is preferably 0.1 to 60% by weight, more preferably 1 to 45% by weight, based on the total amount of the flux. If the acrylic resin is less than 0.1% by weight, there is a high possibility that the effect of improving the flexibility of the residue cannot be expected. On the other hand, when the acrylic resin exceeds 60% by weight, the ratio of the low softening point rosin in the flux solid content is relatively decreased, which may cause a decrease in solderability.

本発明のはんだ付け用フラックスには、ベース樹脂として、さらに必要に応じて、従来から一般的にフラックスに用いられているロジンおよびその誘導体または合成樹脂を含有させることができる。その場合には、前述した低軟化点ロジン(必要に応じて、アクリル化ロジンおよびアクリル樹脂)のベース樹脂中に占める割合が充分に確保できるような範囲で含有させるのがよい。   The soldering flux of the present invention may further contain rosin and its derivatives or synthetic resins conventionally used in the flux as a base resin, if necessary. In that case, it is preferable that the low softening point rosin (acrylic rosin and acrylic resin, if necessary) is contained in a range that can sufficiently ensure the proportion of the base resin in the base resin.

従来から一般的にフラックスに用いられているロジンおよびその誘導体としては、例えば、通常のガムロジン、トールロジン、ウッドロジン等が挙げられる。また、それらの誘導体としては、熱処理した樹脂、重合ロジン、水素添加ロジン、ホルミル化ロジン、ロジンエステル、ロジン変性マレイン酸樹脂、ロジン変性フェノール樹脂、ロジン変性アルキド樹脂等が挙げられる。従来から一般的にフラックスに用いられている合成樹脂としては、例えば、スチレン−マレイン酸樹脂、エポキシ樹脂、ウレタン樹脂等が挙げられる。   Examples of rosin and derivatives thereof that have been generally used for flux conventionally include normal gum rosin, tall rosin, and wood rosin. Examples of these derivatives include heat-treated resins, polymerized rosins, hydrogenated rosins, formylated rosins, rosin esters, rosin-modified maleic resins, rosin-modified phenol resins, and rosin-modified alkyd resins. Examples of synthetic resins conventionally used for fluxes include styrene-maleic acid resins, epoxy resins, and urethane resins.

本発明のはんだ付け用フラックスは、前述したベース樹脂のほかに、通常、活性剤を含有するものであり、必要に応じてチキソ剤をも含有するものである。さらに、フラックスを液状にして使用する場合には、適当な有機溶剤を含有させることもできる。   The soldering flux of the present invention usually contains an activator in addition to the above-described base resin, and also contains a thixotropic agent as necessary. Further, when the flux is used in a liquid state, an appropriate organic solvent can be contained.

活性剤としては、例えば、エチルアミン、プロピルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、アニリン等のハロゲン化水素酸塩、乳酸、クエン酸、ステアリン酸、アジピン酸、ジフェニル酢酸等の有機カルボン酸等が挙げられる。
活性剤の含有量は、フラックス総量に対して0.1〜30重量%であるのがよい。活性剤が0.1重量%未満であると、活性力が不足し、はんだ付け性が低下するおそれがある。一方、活性剤が30重量%を超えると、フラックスの皮膜性が低下し、親水性が高くなるので、腐食性および絶縁性が低下するおそれがある。
Examples of the activator include hydrohalide salts such as ethylamine, propylamine, diethylamine, triethylamine, ethylenediamine, and aniline, and organic carboxylic acids such as lactic acid, citric acid, stearic acid, adipic acid, and diphenylacetic acid.
The content of the activator is preferably 0.1 to 30% by weight with respect to the total flux. When the activator is less than 0.1% by weight, there is a risk that the activity is insufficient and the solderability is lowered. On the other hand, when the activator exceeds 30% by weight, the film property of the flux is lowered and the hydrophilicity is increased, so that the corrosivity and the insulating property may be lowered.

チキソ剤としては、例えば、硬化ひまし油、蜜ロウ、カルナバワックス、ステアリン酸アミド、ヒドロキシステアリン酸エチレンビスアミド等が挙げられる。チキソ剤の含有量は、フラックス総量に対して1.0〜25重量%であるのがよい。   Examples of the thixotropic agent include hardened castor oil, beeswax, carnauba wax, stearamide, hydroxystearic acid ethylenebisamide, and the like. The thixotropic agent content is preferably 1.0 to 25% by weight based on the total flux.

有機溶剤としては、例えば、エチルアルコール、イソプロピルアルコール、エチルセロソルブ、ブチルカルビトール等のアルコール系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、トルエン、テレピン油等の炭化水素系溶剤等が挙げられる。これらの中でも、揮発性や活性剤の溶解性の点でイソプロピルアルコールが好ましい。   Examples of the organic solvent include alcohol solvents such as ethyl alcohol, isopropyl alcohol, ethyl cellosolve and butyl carbitol, ester solvents such as ethyl acetate and butyl acetate, hydrocarbon solvents such as toluene and turpentine oil, and the like. . Among these, isopropyl alcohol is preferable in terms of volatility and solubility of the activator.

有機溶剤の含有量は、フラックス総量に対して20〜99重量%であるのがよい。有機溶剤が20重量%未満であると、フラックスの粘性が高くなり、フラックスの塗布性が悪化するおそれがある。一方、有機溶剤が99重量%を超えると、フラックスとしての有効成分(ロジン等)が相対的に少なくなってしまうため、はんだ付け性が低下するおそれがある。   The content of the organic solvent is preferably 20 to 99% by weight with respect to the total flux. When the organic solvent is less than 20% by weight, the viscosity of the flux increases, and the applicability of the flux may deteriorate. On the other hand, when the organic solvent exceeds 99% by weight, the active component (such as rosin) as a flux is relatively decreased, and thus solderability may be deteriorated.

さらに、本発明のフラックスは、前述した各成分のほかに、本発明の効果を損なわない範囲で、一般にフラックスのベース樹脂として用いられている従来公知の合成樹脂(例えば、ポリエステル樹脂、フェノキシ樹脂、テルペン樹脂等)や、酸化防止剤、防黴剤、つや消し剤等の添加剤を含有させることもできる。   Furthermore, in addition to the components described above, the flux of the present invention is a conventionally known synthetic resin (for example, polyester resin, phenoxy resin, etc.) that is generally used as a base resin for the flux, as long as the effects of the present invention are not impaired. Terpene resins, etc.), additives such as antioxidants, antifungal agents, and matting agents can also be included.

本発明のはんだペースト組成物は、前述した本発明のはんだ付け用フラックスとはんだ合金粉末とを含有する。
はんだ合金粉末としては、特に制限はなく、一般に用いられている錫−鉛合金、さらに銀、ビスマスまたはインジウムなどを添加した錫−鉛合金等を用いることができる。また、錫−銀系、錫−銅系、錫−銀−銅系等の鉛フリー合金を用いてもよい。なお、はんだ合金粉末の粒径は、5〜50μm程度であるのがよい。
The solder paste composition of the present invention contains the aforementioned soldering flux of the present invention and a solder alloy powder.
There is no restriction | limiting in particular as solder alloy powder, The tin-lead alloy etc. which added silver, bismuth, or indium etc. which were generally used, and also silver-bismuth etc. can be used. Moreover, you may use lead-free alloys, such as a tin-silver type, a tin-copper type, and a tin-silver-copper type. The particle size of the solder alloy powder is preferably about 5 to 50 μm.

本発明のはんだペースト組成物におけるフラックスとはんだ合金粉末との重量比(フラックス:はんだ合金粉末)は、特に制限されないが、5:95〜20:80程度であるのがよい。   The weight ratio of the flux to the solder alloy powder (flux: solder alloy powder) in the solder paste composition of the present invention is not particularly limited, but is preferably about 5:95 to 20:80.

本発明のはんだペースト組成物は、電子機器部品等をはんだ接続する際に、ディスペンサーやスクリーン印刷等により基板上に塗布される。そして、塗布後、例えば150〜200℃程度でプリヒートを行い、最高温度170〜250℃程度でリフローを行う。基板上への塗布およびリフローは、大気中で行ってもよく、窒素、アルゴン、ヘリウム等の不活性雰囲気中で行ってもよい。   The solder paste composition of the present invention is applied onto a substrate by a dispenser, screen printing or the like when soldering electronic device parts or the like. And after application | coating, it preheats, for example at about 150-200 degreeC, and performs reflow at the maximum temperature of about 170-250 degreeC. Application and reflow on the substrate may be performed in the air or in an inert atmosphere such as nitrogen, argon, helium, or the like.

以下、実施例および比較例を挙げて本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
なお、得られたフラックスおよびはんだペースト組成物の評価は、下記の方法で行なった。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further in detail, this invention is not limited to a following example.
In addition, evaluation of the obtained flux and solder paste composition was performed by the following method.

<はんだ付け性試験>
20本のリードを持つ0.8mmピッチのSOP(Shrink Outline Package)パターンが15個存在するガラスエポキシ基板にフラックスを塗布した。フラックス塗布後の基板を噴流はんだ付け装置ではんだ付けした後(はんだ付けには、Sn−Ag−Cu合金(Sn:Ag:Cu=96.5:3.0:0.5(重量比))からなるはんだ合金粉末を使用)、目視観察によりSOPパターン部でのブリッジ不良の有無を判定し、ブリッジがあった場合、その数(不良発生数)をカウントし、全SOPパターン(300本)に対する不良発生数の割合を百分率で示した値を不良率(%)として求めることにより評価した。
<Solderability test>
Flux was applied to a glass epoxy substrate having 15 SOP (Shrink Outline Package) patterns with a pitch of 20 mm having 20 leads. After soldering the substrate after flux application with a jet soldering device (for soldering, Sn—Ag—Cu alloy (Sn: Ag: Cu = 96.5: 3.0: 0.5 (weight ratio)) The solder alloy powder consisting of the above is used), and the presence or absence of a bridging defect in the SOP pattern portion is determined by visual observation. Evaluation was performed by obtaining a value indicating the percentage of the number of defects as a percentage (%).

<はんだボール試験>
0.8mmピッチのQFP(Quad Flat Package)パターンが存在する基板に、同じパターンを有する厚み200μmのメタルマスクを用いてはんだペースト組成物を印刷した。印刷後10分以内に、大気下において175±5℃で80±5秒間プリヒートを行い、最高温度235±5℃でリフローを行った。そして、はんだ付け性の指標となるはんだボールの発生状況を、20倍の実体顕微鏡を用いて80パッド(80個のはんだ付け部)の周囲に発生したはんだボール数(個)をカウントすることにより評価した。
<Solder ball test>
A solder paste composition was printed on a substrate having a 0.8 mm pitch QFP (Quad Flat Package) pattern using a metal mask having the same pattern and a thickness of 200 μm. Within 10 minutes after printing, preheating was performed at 175 ± 5 ° C. for 80 ± 5 seconds in the atmosphere, and reflow was performed at a maximum temperature of 235 ± 5 ° C. Then, by measuring the number of solder balls generated around the 80 pads (80 soldering portions) using a 20 × stereo microscope, the number of solder balls (pieces) generated as a solderability index is counted. evaluated.

<残渣亀裂試験>
上記のはんだ付け性試験またははんだボール試験を行った後の基板を試験片とし、該試験片に、−30℃×30分→85℃×30分を100サイクルの条件で冷熱サイクル負荷をかけた後、基板上のSOPパターンまたはQFPパターンのはんだ付け部における亀裂発生状態を目視観察し、以下の基準で評価した。
○;亀裂が全く認められない。
△;亀裂は発生しているが、信頼性に悪影響を及ぼす亀裂、すなわち2つ以上の隣接するはんだ付け部にまたがるような亀裂(以下「連結亀裂」と称する)は認められない。
×;連結亀裂が発生している。
<Residual crack test>
The board after the solderability test or the solder ball test described above was used as a test piece, and a thermal cycle load was applied to the test piece under the condition of −30 ° C. × 30 minutes → 85 ° C. × 30 minutes for 100 cycles. Then, the crack generation state in the soldering part of the SOP pattern or QFP pattern on a board | substrate was observed visually, and the following references | standards evaluated.
○: No cracks are observed.
Δ: Cracks are generated, but cracks that adversely affect reliability, that is, cracks that straddle two or more adjacent soldered portions (hereinafter referred to as “connected cracks”) are not recognized.
X: The connection crack has generate | occur | produced.

<絶縁抵抗試験>
1)フラックスの場合;JIS−Z−3197に規定するくし形基板(II型)に、フラックスを塗布した。フラックス塗布後、噴流はんだ付け装置ではんだ付けを行った(はんだ付けには、Sn−Ag−Cu合金(Sn:Ag:Cu=96.5:3.0:0.5(重量比))からなるはんだ合金粉末を使用)。はんだ付け後の基板を、85℃、85%の恒温恒湿槽内に放置して経時的に(初期、500時間後および1000時間後)抵抗値(Ω)を測定することにより電気的な信頼性として絶縁抵抗を評価した。
2)はんだペースト組成物の場合;JIS−Z−3197に規定するくし形基板(II型)に、同じパターンを有する厚み100μmのメタルマスクを用いてはんだペースト組成物を印刷した。印刷後10分以内に、大気下において175±5℃で80±5秒間プリヒートを行い、最高温度235±5℃でリフローを行った。リフロー後の基板に上記残渣亀裂試験と同じ条件で冷熱サイクル負荷をかけ、その後、85℃、85%の恒温恒湿槽内に放置して経時的に(初期、500時間後および1000時間後)抵抗値(Ω)を測定することにより電気的な信頼性として絶縁抵抗を評価した。
<Insulation resistance test>
1) In the case of flux: Flux was applied to a comb substrate (type II) defined in JIS-Z-3197. After flux application, soldering was performed with a jet soldering apparatus (for soldering, from Sn—Ag—Cu alloy (Sn: Ag: Cu = 96.5: 3.0: 0.5 (weight ratio)) Used solder alloy powder). Electrical reliability by measuring the resistance value (Ω) over time (initial, after 500 hours and after 1000 hours) by leaving the soldered board in a constant temperature and humidity chamber at 85 ° C. and 85%. The insulation resistance was evaluated as a property.
2) In the case of solder paste composition: The solder paste composition was printed on a comb-shaped substrate (type II) defined in JIS-Z-3197 using a metal mask having the same pattern and a thickness of 100 μm. Within 10 minutes after printing, preheating was performed at 175 ± 5 ° C. for 80 ± 5 seconds in the atmosphere, and reflow was performed at a maximum temperature of 235 ± 5 ° C. The substrate after reflow was subjected to a thermal cycle load under the same conditions as the above-mentioned residual crack test, and then left in a constant temperature and humidity chamber at 85 ° C. and 85% over time (initial, 500 hours and 1000 hours later). The insulation resistance was evaluated as electrical reliability by measuring the resistance value (Ω).

<腐食試験>
フラックスまたははんだペースト組成物を用いてJIS−Z−3197に規定する銅板腐食試験片を作製し、該試験片に上記残渣亀裂試験と同じ条件で冷熱サイクル負荷をかけた。その後、各試験片を40℃、85%の恒温恒湿槽内に放置して、500時間後および1000時間後に、目視観察により点食もしくは腐食発生の有無を確認した。
<Corrosion test>
The copper plate corrosion test piece prescribed | regulated to JIS-Z-3197 was produced using the flux or the solder paste composition, and the thermal cycle load was applied to this test piece on the same conditions as the said residual crack test. Thereafter, each test piece was left in a constant temperature and humidity chamber at 40 ° C. and 85%, and after 500 hours and 1000 hours, the presence or absence of pitting or corrosion was confirmed by visual observation.

(製造例1)
ガムロジン100重量部に対し、ノニルフェノールジスルフィドオリゴマー(イオウ含有量10重量%)0.5重量部を添加し、260℃に昇温した後、同温度で6時間保持して、合成ロジンAを得た。
この合成ロジンAは、軟化点が57℃であり、セコデヒドロアビエチン酸を3.6重量%、加熱分解物であるピノリンを2.2重量%含有するものであった。
(Production Example 1)
To 100 parts by weight of gum rosin, 0.5 part by weight of nonylphenol disulfide oligomer (sulfur content: 10% by weight) was added, heated to 260 ° C., and held at the same temperature for 6 hours to obtain synthetic rosin A. .
This synthetic rosin A had a softening point of 57 ° C. and contained 3.6% by weight of secodehydroabietic acid and 2.2% by weight of pinoline as a thermal decomposition product.

(製造例2)
ガムロジン100重量部に対し、ノニルフェノールジスルフィドオリゴマー(イオウ含有量10重量%)0.35重量部と、ヨウ素0.14重量部と、ナフテン酸鉄0.013重量部とを添加し、250℃に昇温した後、同温度で3時間保持して、合成ロジンBを得た。
この合成ロジンBは、軟化点が44℃であり、セコデヒドロアビエチン酸を14.8重量%含有するものであった。
(Production Example 2)
To 100 parts by weight of gum rosin, 0.35 part by weight of nonylphenol disulfide oligomer (10% by weight of sulfur), 0.14 part by weight of iodine and 0.013 part by weight of iron naphthenate were added and the temperature was raised to 250 ° C. After warming, the mixture was held at the same temperature for 3 hours to obtain synthetic rosin B.
This synthetic rosin B had a softening point of 44 ° C. and contained 14.8% by weight of secodehydroabietic acid.

(製造例3)
ガムロジン100重量部に対し、ノニルフェノールジスルフィドオリゴマー(イオウ含有量10重量%)0.56重量部と、ヨウ素0.05重量部と、ナフテン酸鉄0.01重量部とを添加し、250℃に昇温した後、同温度で3時間保持して、合成ロジンCを得た。
この合成ロジンCは、軟化点が48℃であり、セコデヒドロアビエチン酸を11.2重量%含有するものであった。
(Production Example 3)
To 100 parts by weight of gum rosin, 0.56 parts by weight of nonylphenol disulfide oligomer (sulfur content 10% by weight), 0.05 parts by weight of iodine and 0.01 parts by weight of iron naphthenate were added and the temperature was raised to 250 ° C. After warming, the same temperature was maintained for 3 hours to obtain synthetic rosin C.
This synthetic rosin C had a softening point of 48 ° C. and contained 11.2% by weight of secodehydroabietic acid.

(製造例4)
ガムロジン100重量部に対し、t−アミルフェノールジスルフィドオリゴマー(イオウ含有量23重量%)0.30重量部と、ヨウ素0.05重量部と、ナフテン酸鉄0.01重量部とを添加し、260℃に昇温した後、同温度で3時間保持して、合成ロジンDを得た。
この合成ロジンDは、軟化点が35℃であり、セコデヒドロアビエチン酸を21.2重量%含有するものであった。
(Production Example 4)
To 100 parts by weight of gum rosin, 0.30 part by weight of t-amylphenol disulfide oligomer (sulfur content 23% by weight), 0.05 part by weight of iodine and 0.01 part by weight of iron naphthenate are added, 260 After raising the temperature to 0 ° C., the same temperature was maintained for 3 hours to obtain a synthetic rosin D.
This synthetic rosin D had a softening point of 35 ° C. and contained 21.2% by weight of secodehydroabietic acid.

(製造例5)
ガムロジン100重量部を窒素ガス雰囲気下、280℃に昇温した後、同温度で10時間保持して、合成ロジンEを得た。
この合成ロジンEは、軟化点が56℃であり、ガムロジンの加熱分解成分であるピノリンおよびジテルペンを合計で6.1重量%含有するものであった。
(Production Example 5)
A synthetic rosin E was obtained by heating 100 parts by weight of gum rosin to 280 ° C. in a nitrogen gas atmosphere and holding at that temperature for 10 hours.
This synthetic rosin E had a softening point of 56 ° C. and contained 6.1% by weight in total of pinoline and diterpene, which are thermal decomposition components of gum rosin.

(実施例1〜4および比較例1)
ベース樹脂として、上記各製造例で得られた合成ロジン、アクリル樹脂(重量平均分子量5000、酸価50mgKOH/g)、アクリル化ロジン(軟化点110℃、酸価210mgKOH/g)およびガムロジン(軟化点79℃、酸価168mgKOH/g)、のうちのいずれかと、表1に示す活性剤および溶剤とを、表1に示す配合組成で混合し、均一になるように充分に熱を加えて溶解させ、フラックスをそれぞれ得た。
得られた各フラックスを用いて、はんだ付け性試験、残渣亀裂試験、絶縁抵抗試験および腐食試験を行った。結果を表1に示す。
(Examples 1-4 and Comparative Example 1)
As the base resin, the synthetic rosin, acrylic resin (weight average molecular weight 5000, acid value 50 mgKOH / g), acrylated rosin (softening point 110 ° C., acid value 210 mgKOH / g) and gum rosin (softening point) obtained in each of the above production examples. 79 ° C., acid value of 168 mg KOH / g), the activator and solvent shown in Table 1 are mixed in the composition shown in Table 1, and dissolved by applying sufficient heat so that they are uniform. , Flux was obtained respectively.
Using each of the obtained fluxes, a solderability test, a residual crack test, an insulation resistance test, and a corrosion test were performed. The results are shown in Table 1.

Figure 0004819624
Figure 0004819624

(実施例5〜8および比較例2)
ベース樹脂として、上記各製造例で得られた合成ロジン、アクリル樹脂(重量平均分子量8000、酸価75mgKOH/g)、アクリル化ロジン(軟化点105℃、酸価200mgKOH/g)およびガムロジン(軟化点77℃、酸価165mgKOH/g)、のうちのいずれかと、表2に示す活性剤、チキソ剤および溶剤とを、表2に示す配合組成で混合し、均一になるように充分に熱を加えて溶解させ、フラックスをそれぞれ得た。
次いで、得られた各フラックスと、Sn−Ag−Cu合金(Sn:Ag:Cu=96.5:3.0:0.5(重量比))からなるはんだ合金粉末(粒径38〜25μm)とを、フラックス:はんだ合金粉末=12:88(重量比)の比率で混合して、はんだペースト組成物をそれぞれ得た。
得られた各はんだペースト組成物を用いて、はんだボール試験、残渣亀裂試験、絶縁抵抗試験および腐食試験を行った。結果を表2に示す。
(Examples 5 to 8 and Comparative Example 2)
As the base resin, the synthetic rosin, acrylic resin (weight average molecular weight 8000, acid value 75 mgKOH / g), acrylated rosin (softening point 105 ° C., acid value 200 mgKOH / g) and gum rosin (softening point) obtained in each of the above production examples. 77 ° C., acid value of 165 mg KOH / g), and the activator, thixotropic agent and solvent shown in Table 2 are mixed in the composition shown in Table 2, and heat is applied sufficiently so as to be uniform. To obtain fluxes.
Next, solder alloy powder (particle size: 38 to 25 μm) composed of each obtained flux and Sn—Ag—Cu alloy (Sn: Ag: Cu = 96.5: 3.0: 0.5 (weight ratio)) Were mixed at a ratio of flux: solder alloy powder = 12: 88 (weight ratio) to obtain solder paste compositions, respectively.
Using each of the obtained solder paste compositions, a solder ball test, a residual crack test, an insulation resistance test, and a corrosion test were performed. The results are shown in Table 2.

Figure 0004819624
Figure 0004819624

表1および表2から、低軟化点ロジンである合成ロジンA〜Dを用いた実施例1〜8は、はんだ付け不良とはんだボールの発生が抑制されているとともに、冷熱サイクル負荷後も信頼性低下および腐食発生が抑制されており、優れた性能が得られていることがわかる。特に、セコデヒドロアビエチン酸を5重量%以上含有する合成ロジンB〜Dを用いた実施例2〜4および実施例6〜8は、冷熱サイクルでの亀裂発生の抑制効果が優れていることがわかる。   From Tables 1 and 2, Examples 1 to 8 using synthetic rosins A to D, which are low softening point rosins, are suppressed from poor soldering and the generation of solder balls, and are also reliable after a thermal cycle load. It can be seen that the reduction and the occurrence of corrosion are suppressed, and excellent performance is obtained. In particular, Examples 2 to 4 and Examples 6 to 8 using synthetic rosins B to D containing 5% by weight or more of secodehydroabietic acid are found to be excellent in the effect of suppressing the occurrence of cracks in the thermal cycle. .

以上から明らかなように、本発明によれば、はんだ付け性に優れ、低温高温サイクルや振動にさらされる環境下で使用される場合にも耐腐食性と高い電気絶縁性を保持でき、はんだ付け部の信頼性を向上させることができる。
As is apparent from the above, according to the present invention, the solderability is excellent, and the corrosion resistance and high electrical insulation can be maintained even when used in an environment exposed to low temperature and high temperature cycles or vibrations. The reliability of the part can be improved.

Claims (5)

ベース樹脂として、軟化点が60℃以下の低軟化点ロジンを含有するはんだ付け用フラックスであって、前記低軟化点ロジンがセコデヒドロアビエチン酸および/またはロジンの加熱分解成分を含むことを特徴とするはんだ付け用フラックス。 A soldering flux containing a low softening point rosin having a softening point of 60 ° C. or lower as a base resin , wherein the low softening point rosin contains secodehydroabietic acid and / or a thermal decomposition component of rosin Soldering flux. 前記低軟化点ロジン中に含まれるセコデヒドロアビエチン酸および/または加熱分解成分の含有量が5重量%以上である、請求項に記載のはんだ付け用フラックス。 2. The soldering flux according to claim 1 , wherein the content of secodehydroabietic acid and / or a thermal decomposition component contained in the low softening point rosin is 5% by weight or more. 前記低軟化点ロジンの含有量がフラックス総量に対して0.5〜80重量%である、請求項1または2に記載のはんだ付け用フラックス。 The soldering flux according to claim 1 or 2 , wherein the content of the low softening point rosin is 0.5 to 80% by weight based on the total amount of the flux. ベース樹脂として、アクリル化ロジンおよび/またはアクリル樹脂をも含有する、請求項1〜のいずれかに記載のはんだ付け用フラックス。 The soldering flux according to any one of claims 1 to 3 , further comprising an acrylated rosin and / or an acrylic resin as a base resin. 請求項1〜のいずれかに記載のはんだ付け用フラックスとはんだ合金粉末とを含有することを特徴とするはんだペースト組成物。 A solder paste composition comprising the soldering flux according to any one of claims 1 to 4 and a solder alloy powder.
JP2006239288A 2006-09-04 2006-09-04 Soldering flux and solder paste composition Active JP4819624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239288A JP4819624B2 (en) 2006-09-04 2006-09-04 Soldering flux and solder paste composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239288A JP4819624B2 (en) 2006-09-04 2006-09-04 Soldering flux and solder paste composition

Publications (2)

Publication Number Publication Date
JP2008062242A JP2008062242A (en) 2008-03-21
JP4819624B2 true JP4819624B2 (en) 2011-11-24

Family

ID=39285399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239288A Active JP4819624B2 (en) 2006-09-04 2006-09-04 Soldering flux and solder paste composition

Country Status (1)

Country Link
JP (1) JP4819624B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5486282B2 (en) * 2009-12-08 2014-05-07 荒川化学工業株式会社 Solder paste flux and solder paste
JP5902009B2 (en) * 2012-03-16 2016-04-13 株式会社タムラ製作所 Method of forming solder bump
JP6240467B2 (en) * 2013-10-30 2017-11-29 株式会社タムラ製作所 Solder paste flux and solder paste
JP5490959B1 (en) * 2013-11-18 2014-05-14 ハリマ化成株式会社 Rosin for solder flux and solder flux using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877791A (en) * 1981-10-31 1983-05-11 Toppan Printing Co Ltd Flux composition for soldering

Also Published As

Publication number Publication date
JP2008062242A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP6310894B2 (en) Solder composition and method for producing electronic substrate
JP5181136B2 (en) Solder joint structure and soldering flux
EP2826589B1 (en) Flux, solder composition and method for producing electronic circuit mounting substrate
JP4461009B2 (en) Soldering paste and flux
JP2008062252A (en) Flux for soldering, and solder paste composition
JP2008062253A (en) Flux for soldering and solder paste composition
JP6196036B2 (en) Flux and solder paste
US7798389B2 (en) Flux for soldering, soldering method, and printed circuit board
JP6275356B1 (en) Flux composition, solder paste composition, and electronic circuit board
JP2012004347A (en) Solder bump formation method
JP6423840B2 (en) Flux composition and solder paste
JP4819624B2 (en) Soldering flux and solder paste composition
JP2020055035A (en) Solder composition and electronic substrate
JP6012946B2 (en) Flux and solder paste composition
JP5209825B2 (en) Soldering flux and solder paste composition
JP2018202436A (en) Solder paste and solder joint
JP7452834B2 (en) flux and solder paste
JP2007083253A (en) Solder paste composition
JP2003103397A (en) Solder paste constituent and reflow soldering method
JP6259795B2 (en) Solder composition and method for producing electronic substrate
TWI784893B (en) Flux and solder paste
JP5604374B2 (en) Soldering flux and solder paste composition
JP7324024B2 (en) flux and solder paste
JP2024135750A (en) Flux composition, solder composition, and electronic board
CN114434046A (en) Flux composition, solder composition, and method for manufacturing electronic substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4819624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250