JP4818527B2 - Scattering particle size distribution measuring device - Google Patents

Scattering particle size distribution measuring device Download PDF

Info

Publication number
JP4818527B2
JP4818527B2 JP2001108458A JP2001108458A JP4818527B2 JP 4818527 B2 JP4818527 B2 JP 4818527B2 JP 2001108458 A JP2001108458 A JP 2001108458A JP 2001108458 A JP2001108458 A JP 2001108458A JP 4818527 B2 JP4818527 B2 JP 4818527B2
Authority
JP
Japan
Prior art keywords
light
array detector
receiving element
particle size
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001108458A
Other languages
Japanese (ja)
Other versions
JP2002310884A (en
Inventor
喜昭 東川
拓司 黒住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2001108458A priority Critical patent/JP4818527B2/en
Publication of JP2002310884A publication Critical patent/JP2002310884A/en
Application granted granted Critical
Publication of JP4818527B2 publication Critical patent/JP4818527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、光源からの光を試料に対して照射し、そのとき生ずる散乱光を集光レンズを介してアレイ状検出器に入射させ、このとき得られる散乱光強度パターンに基づいて試料中の粒子径分布を測定する散乱式粒子径分布測定装置に関する。
【0002】
【従来の技術】
図5は、従来の散乱式粒子径分布測定装置の要部を示すもので、この図において、1は例えばレーザ光2を発する光源、3はレーザ光2を適宜拡大するビーム拡大器、4は試料を収容する例えばフローセル、5はフローセル4の後方に設けられる集光レンズ、6は集光レンズ5からの散乱光や透過光を検出するアレイ状検出器、7はアレイ状検出器6からの信号を取り込むマルチプレクサ、8はマルチプレクサ7からの信号が入力され、散乱光強度パターンに基づいて演算を行って粒子径分布を求めるCPU、9は装置全体を制御するパソコンで、演算結果などを表示するカラーディスプレイなどの表示装置10を備えている。
【0003】
前記散乱式粒子径分布測定装置においては、フローセル4に試料を収容して、レーザ光2を試料フローセル4に対して照射すると、レーザ光2の一部がフローセル4内の試料中の粒子を照射して散乱光11となり、残りの光は粒子と粒子との間を通過して透過光12となる。そして、これら散乱光11および透過光12はともに、集光レンズ5を経てアレイ状検出器6に至る。
【0004】
【発明が解決しようとする課題】
ところで、前記アレイ状検出器6は、図6に示すように、透過光受光素子6aを中心にして複数の円弧状帯体の散乱光受光素子6bを同心円状に配置してなるものであるが、このようなアレイ状検出器6の中心に位置する透過光受光素子6aの直径は数μm〜数10μm程度であり、また、レーザ光2の光束径は数μm〜10数μm程度であるが、この種の散乱式粒子径分布測定装置においては、レーザ光2の光軸とアレイ状検出器6の中心(透過光受光素子6aの中心位置)とが厳密に一致している必要がある。
【0005】
しかしながら、装置をユーザに納入して据え付けを行うような場合や、定期点検時において部品を取り替えたりする場合、前記レーザ光軸とアレイ状検出器6の中心とに食い違いが生じ、場合によっては大きくずれることがある。この場合、光軸がいずれかの散乱光受光素子6b上にある場合には、レーザ光軸とアレイ状検出器6の中心とのおおよその位置関係が分かるため、レーザ光軸またはアレイ状検出器6を移動させる方向および移動量を推定でき、これに基づいて光軸調整を行うことができる。
【0006】
しかし、図6からも分かるように、アレイ状検出器6には受光素子6a,6bが形成されていない領域(不感領域)6cがあるため、この不感領域6cにレーザ光軸2aが位置する場合には、調整方向やその移動量の推測もできない。このような場合には、アレイ状検出器6を一つの方向(図示例ではアレイ状検出器6を下方に)大きく一旦移動させ、レーザ光2がどれかの検出素子6a,6b上にくるようにして、レーザ光軸2aの位置が分かる状態とし、その後に所定の光軸調整を行えばよいが、上述の説明から理解されるように、光軸調整のための手間が増えるといった問題がある。
【0007】
この発明は、上述の事柄に留意してなされたもので、その目的は、光軸がアレイ状検出器の不感領域に位置していても、これを確実に検出し、所定の光軸調整を簡単に行うことができる散乱式粒子径分布測定装置を提供することである。
【0008】
【課題を解決するための手段】
上記目的を達成するため、この発明では、光源から光をセル内の試料に対して照射し、そのとき生ずる散乱光を集光レンズを介してアレイ状検出器に入射させ、このとき得られる散乱光強度パターンに基づいて試料中の粒子径分布を測定する散乱式粒子径分布測定装置において、光軸調整に際して、前記光源とアレイ状検出器とを結ぶ光路上のいずれかに回折光発生手段を設けた状態で光源から光を照射して、前記アレイ状検出器上に回折像を生じさせ、前記アレイ状検出器の複数の受光素子で受光した0次回折光の強度を解析することにより、照射した光の中心がアレイ状検出器の中心からどれだけずれているかを判別できるようにし、0次回折光を受光する前記複数の受光素子として、透過光受光素子を中心にして同心円状に配置され、かつ前記透過光受光素子からの距離が互いに異なり前記透過光受光素子からの方向は略同一となる複数の円弧状帯体の散乱光受光素子から構成される受光素子群が複数設けられ、隣り合う前記受光素子群どうしが、前記透過光受光素子から延びる不感領域を挟むように配置され、0次回折光を検出した複数の前記散乱光受光素子の位置情報と検出信号の強度とに基づいて前記判別を行う演算部を有する。
【0009】
【発明の実施の形態】
発明の実施の形態を図面を参照しながら説明する。図1〜図4は、この発明の一つの実施例を示す。なお、以下の図において、図5および図6に示した符号と同一のものは、同一物を示している。
【0010】
まず、図1は、この発明の散乱式粒子径分布測定装置の要部の構成を概略的に示すもので、この散乱式粒子径分布測定装置が、図5に示した散乱式粒子径分布測定装置と大きく異なる点は、光源1とアレイ状検出器6とを結ぶ光路13上のいずれかの位置に回折光発生手段14を光路13に対して挿入、退避自在に設けたことである。
【0011】
前記回折光発生手段14としては、例えば、図2に示すように、光遮断性の材料よりなる適宜の大きさの板材15の中央にピンホール16を設けたものを好適に用いることができる。そして、この実施の形態においては、回折光発生手段14をビーム拡大器3とフローセル4との間の光路13中において、矢印UまたはV方向に手動またはモータなどによる駆動機構により移動できるように設けられている。
【0012】
次に、上記構成の散乱式粒子径分布測定装置の動作について、図3および図4をも参照しながら説明する。測定を行うときは、回折光発生手段14を、図1において矢印U方向に移動して退避させて光路13を遮断しない状態にする。そして、フローセル4に試料を供給し、その状態で、光源1からフローセル4に向けてレーザ光2を照射する。これにより、従来の散乱式粒子径分布測定装置と同様の測定を行うことができる。
【0013】
そして、光軸調整を行うときには、回折光発生手段14を、矢印V方向に移動して光路13内に光路に挿入し、光路13に直交するように位置させる。そして、セル4には分散媒を供給しておく。
【0014】
前記状態において、光源1からセル4に向けてレーザ光2を照射する。このレーザ光2は、回折光発生手段14のピンホール16を通過する際、回折光を生じ、この回折光は、セル4および集光レンズ5を経てアレイ状検出器6上に回折像を生じさせる。
【0015】
図3は、上述のように、光路13内に回折光発生手段14を設けたときにおけるレーザ光2の状態を模式的に示すもので、図中、17はアレイ状検出器6上の回折光の強度分布を示している。前記回折光は、同心円状の縞模様をしており、その中心の強度の大きい円内は、回折光のエネルギーの大半を含んでおり、0次回折光18と呼ばれる。なお、19は0次回折光18に連なる1次回折光である。
【0016】
そして、前記0次回折光18の大きさは、レーザ光2の波長や集光レンズ5の光学特性および回折光発生手段14におけるピンホール16の径によって定められるので、特に、ピンホール径を選択することにより、前記照射されたレーザ光2の光軸中心に受光素子6a,6bがないような場合であっても、0次回折光18の大きさを、図4に示すように、2以上の複数の受光素子6a,6bによって検出できるように設定することができる。
【0017】
上述のように、0次回折光18は、通常、2以上の複数の散乱光受光素子6a,6bによって検出されるので、この検出した各受光素子6a,6bの位置情報と、検出信号の強度を、CPU8において演算処理することによって、前記照射されたレーザ光2の光軸中心を求めることができ、さらに、この求められた光軸中心の位置から調整方向および調整量を求めることができ、これらをパソコン9に表示装置の表示画面10aに表示することができる。
【0018】
そして、前記表示に基づいてアレイ状検出器6を、手動またはモータ駆動のアクチュエータを用いた光軸調整機構により所定の方向に移動させることにより、光軸調整を短時間に確実に行うことができる。
【0019】
上述の実施例においては、回折光発生手段14を、ビーム拡大器3とフローセル4との間の光路13に対して挿入または退避するようにしていたが、これに限られるものではなく、光源1とアレイ状検出器6とを結ぶ光路13のいずれかにおいて挿入または退避できるようにしてあればよい。
【0020】
そして、回折光発生手段14としては、透光性部材に小径の遮光部を形成したものを用いてもよい。すなわち、図2に示した板材15を透光性とし、ピンホール16に代えて、この部分に遮光性素材よりなる球形または円形の粒子を形成してもよい。
【0021】
また、上述の実施例においては、セル4を光路13に設けた状態で、回折光発生手段14を挿入するようにしていたので、セル4を取外しできないような散乱式粒子径分布測定装置に好適であるが、この手法に代えて、セル4を光路13から外し、その位置に回折光発生手段14をセットするようにしてもよい。
【0022】
さらに、この発明は、レーザ光以外の他の光線を用いた散乱式粒子径分布測定装置にも適用できることはいうまでもない。また、セル2はフローセル以外の所謂バッチ処理方式のセルであってもよい。
【0023】
【発明の効果】
以上説明したように、この発明の散乱式粒子径分布測定装置においては、光軸がアレイ状検出器の不感領域に位置していても、これを確実に検出し、所定の光軸調整を簡単に行うことができる。
【図面の簡単な説明】
【図1】この発明の散乱式粒子径分布測定装置の一例を概略的に示す図である。
【図2】回折光発生手段の一例を示す図である。
【図3】光軸調整を行っている状態を示す図である。
【図4】光軸調整のためにアレイ状検出器の表面に回折光を集光させたときの状態を示す図である。
【図5】従来の散乱式粒子径分布測定装置の構成を概略的に示す図である。
【図6】従来技術の問題点を説明するための図である。
【符号の説明】
1…光源、2…光、4…セル、5…集光レンズ、6…アレイ状検出器、6a,6b…受光素子、11…散乱光、13…光路、14…回折光発生手段、18…0次回折光。
[0001]
BACKGROUND OF THE INVENTION
The present invention irradiates a sample with light from a light source, causes the scattered light generated at that time to enter an array detector through a condenser lens, and based on the scattered light intensity pattern obtained at this time, The present invention relates to a scattering type particle size distribution measuring apparatus for measuring a particle size distribution.
[0002]
[Prior art]
FIG. 5 shows a main part of a conventional scattering type particle size distribution measuring apparatus. In this figure, 1 is a light source that emits laser light 2, for example, 3 is a beam expander that appropriately expands the laser light 2, and 4 is For example, a flow cell for storing a sample, 5 is a condenser lens provided behind the flow cell 4, 6 is an array detector for detecting scattered light and transmitted light from the condenser lens 5, and 7 is from the array detector 6. A multiplexer for taking in the signal, a CPU 8 for receiving a signal from the multiplexer 7 and calculating the particle diameter distribution by performing an operation based on the scattered light intensity pattern, and a computer 9 for controlling the entire apparatus and displaying the operation result and the like. A display device 10 such as a color display is provided.
[0003]
In the scattering type particle size distribution measuring apparatus, when a sample is accommodated in the flow cell 4 and the laser beam 2 is irradiated onto the sample flow cell 4, a part of the laser beam 2 irradiates particles in the sample in the flow cell 4. Thus, the scattered light 11 is obtained, and the remaining light passes between the particles and becomes transmitted light 12. Then, both the scattered light 11 and the transmitted light 12 reach the array detector 6 through the condenser lens 5.
[0004]
[Problems to be solved by the invention]
Incidentally, as shown in FIG. 6, the array detector 6 is formed by concentrically arranging a plurality of arc-shaped scattered light receiving elements 6b around the transmitted light receiving element 6a. The diameter of the transmitted light receiving element 6a located at the center of the array detector 6 is about several μm to several tens of μm, and the beam diameter of the laser light 2 is about several μm to several tens of μm. In this kind of scattering type particle size distribution measuring apparatus, it is necessary that the optical axis of the laser beam 2 and the center of the array detector 6 (center position of the transmitted light receiving element 6a) exactly coincide.
[0005]
However, when the apparatus is delivered to the user for installation or when parts are replaced during periodic inspection, there is a discrepancy between the laser optical axis and the center of the array detector 6, and in some cases, the difference is large. It may shift. In this case, when the optical axis is on any one of the scattered light receiving elements 6b, the approximate positional relationship between the laser optical axis and the center of the array detector 6 is known. 6 can be estimated and the optical axis can be adjusted based on this.
[0006]
However, as can be seen from FIG. 6, since the array detector 6 has a region (insensitive region) 6c in which the light receiving elements 6a and 6b are not formed, the laser optical axis 2a is located in the insensitive region 6c. Therefore, it is impossible to estimate the adjustment direction and the amount of movement. In such a case, the array detector 6 is once moved greatly in one direction (in the illustrated example, the array detector 6 is moved downward) so that the laser beam 2 comes on one of the detection elements 6a and 6b. Then, it is sufficient to make the state where the position of the laser optical axis 2a is known and then perform a predetermined optical axis adjustment. However, as will be understood from the above description, there is a problem that the effort for adjusting the optical axis increases. .
[0007]
The present invention has been made in consideration of the above-described matters, and its purpose is to reliably detect even if the optical axis is located in the insensitive area of the array-shaped detector and to perform predetermined optical axis adjustment. It is an object of the present invention to provide a scattering type particle size distribution measuring apparatus that can be easily performed.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, light from a light source is irradiated onto a sample in a cell, and scattered light generated at that time is incident on an array detector through a condenser lens, and scattering obtained at this time is obtained. In a scattering type particle size distribution measuring apparatus for measuring a particle size distribution in a sample based on a light intensity pattern, a diffracted light generating means is provided on any one of optical paths connecting the light source and the array detector when adjusting the optical axis. Irradiation is performed by irradiating light from a light source in the provided state, generating a diffraction image on the array detector, and analyzing the intensity of 0th-order diffracted light received by a plurality of light receiving elements of the array detector. It is possible to determine how much the center of the light is deviated from the center of the array detector, and the plurality of light receiving elements that receive the 0th-order diffracted light are arranged concentrically around the transmitted light receiving element, A plurality of light receiving element groups each including a plurality of arc-shaped band scattered light receiving elements whose distances from the transmitted light receiving elements are different from each other and whose directions from the transmitted light receiving elements are substantially the same are provided adjacent to each other. The light receiving element groups are arranged so as to sandwich a dead area extending from the transmitted light receiving element, and the discrimination is performed based on position information of a plurality of scattered light receiving elements that detect zero-order diffracted light and the intensity of detection signals. An arithmetic unit for performing
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. 1 to 4 show one embodiment of the present invention. In addition, in the following figures, the same thing as the code | symbol shown in FIG. 5 and FIG. 6 has shown the same thing.
[0010]
First, FIG. 1 schematically shows the structure of the main part of the scattering type particle size distribution measuring apparatus of the present invention. This scattering type particle size distribution measuring apparatus is the scattering type particle size distribution measuring apparatus shown in FIG. A significant difference from the apparatus is that the diffracted light generating means 14 is provided so as to be freely inserted into and retracted from the optical path 13 at any position on the optical path 13 connecting the light source 1 and the array detector 6.
[0011]
As the diffracted light generating means 14, for example, as shown in FIG. 2, a plate hole 15 provided at the center of an appropriately sized plate material 15 made of a light blocking material can be suitably used. In this embodiment, the diffracted light generating means 14 is provided in the optical path 13 between the beam expander 3 and the flow cell 4 so that it can be moved in the direction of the arrow U or V by a drive mechanism such as a manual or motor. It has been.
[0012]
Next, the operation of the scattering particle size distribution measuring apparatus having the above configuration will be described with reference to FIGS. When performing the measurement, the diffracted light generating means 14 is moved in the direction of arrow U in FIG. Then, a sample is supplied to the flow cell 4, and the laser light 2 is irradiated from the light source 1 toward the flow cell 4 in that state. Thereby, the measurement similar to the conventional scattering type particle size distribution measuring apparatus can be performed.
[0013]
When adjusting the optical axis, the diffracted light generating means 14 is moved in the direction of the arrow V, inserted into the optical path 13 and positioned so as to be orthogonal to the optical path 13. The cell 4 is supplied with a dispersion medium.
[0014]
In this state, the laser light 2 is irradiated from the light source 1 toward the cell 4. This laser light 2 generates diffracted light when passing through the pinhole 16 of the diffracted light generating means 14, and this diffracted light generates a diffracted image on the array detector 6 through the cell 4 and the condenser lens 5. Let
[0015]
FIG. 3 schematically shows the state of the laser light 2 when the diffracted light generating means 14 is provided in the optical path 13 as described above. In FIG. 3, 17 is the diffracted light on the array detector 6. The intensity distribution is shown. The diffracted light has a concentric striped pattern, and a circle with a high intensity at the center contains most of the energy of the diffracted light, and is called zero-order diffracted light 18. Reference numeral 19 denotes a first-order diffracted light continuous with the 0th-order diffracted light 18.
[0016]
The size of the 0th-order diffracted light 18 is determined by the wavelength of the laser light 2, the optical characteristics of the condensing lens 5, and the diameter of the pinhole 16 in the diffracted light generating means 14. In particular, the pinhole diameter is selected. Thus, even when the light receiving elements 6a and 6b are not provided at the center of the optical axis of the irradiated laser beam 2, the magnitude of the zero-order diffracted light 18 is set to two or more as shown in FIG. The light receiving elements 6a and 6b can be set so as to be detected.
[0017]
As described above, the 0th-order diffracted light 18 is normally detected by the two or more scattered light receiving elements 6a and 6b. Therefore, the detected position information of each of the light receiving elements 6a and 6b and the intensity of the detection signal are determined. By performing arithmetic processing in the CPU 8, the center of the optical axis of the irradiated laser beam 2 can be obtained, and the adjustment direction and the adjustment amount can be obtained from the position of the obtained optical axis center. Can be displayed on the display screen 10a of the display device on the personal computer 9.
[0018]
Then, the optical axis adjustment can be reliably performed in a short time by moving the array detector 6 in a predetermined direction by an optical axis adjustment mechanism using a manual or motor-driven actuator based on the display. .
[0019]
In the above-described embodiment, the diffracted light generating means 14 is inserted into or retracted from the optical path 13 between the beam expander 3 and the flow cell 4, but the present invention is not limited to this. It is only necessary to be able to insert or retract in any one of the optical paths 13 connecting the detectors 6 and the array detector 6.
[0020]
And as the diffracted light generation means 14, you may use what formed the small diameter light-shielding part in the translucent member. That is, the plate material 15 shown in FIG. 2 may be made translucent, and instead of the pinhole 16, spherical or circular particles made of a light-shielding material may be formed in this portion.
[0021]
In the above-described embodiment, since the diffracted light generating means 14 is inserted with the cell 4 provided in the optical path 13, it is suitable for a scattering type particle size distribution measuring apparatus in which the cell 4 cannot be removed. However, instead of this method, the cell 4 may be removed from the optical path 13 and the diffracted light generating means 14 may be set at that position.
[0022]
Furthermore, it goes without saying that the present invention can also be applied to a scattering type particle size distribution measuring apparatus using light rays other than laser light. The cell 2 may be a so-called batch processing type cell other than the flow cell.
[0023]
【The invention's effect】
As described above, in the scattering type particle size distribution measuring apparatus of the present invention, even if the optical axis is located in the insensitive area of the array detector, this is reliably detected, and predetermined optical axis adjustment can be easily performed. Can be done.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an example of a scattering type particle size distribution measuring apparatus according to the present invention.
FIG. 2 is a diagram showing an example of diffracted light generating means.
FIG. 3 is a diagram illustrating a state in which optical axis adjustment is performed.
FIG. 4 is a diagram showing a state when diffracted light is collected on the surface of an array detector for optical axis adjustment.
FIG. 5 is a diagram schematically showing a configuration of a conventional scattering type particle size distribution measuring apparatus.
FIG. 6 is a diagram for explaining a problem of the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Light, 4 ... Cell, 5 ... Condensing lens, 6 ... Array detector, 6a, 6b ... Light receiving element, 11 ... Scattered light, 13 ... Optical path, 14 ... Diffracted light generation means, 18 ... Zero order diffracted light.

Claims (1)

光源から光をセル内の試料に対して照射し、そのとき生ずる散乱光を集光レンズを介してアレイ状検出器に入射させ、このとき得られる散乱光強度パターンに基づいて試料中の粒子径分布を測定する散乱式粒子径分布測定装置において、光軸調整に際して、前記光源とアレイ状検出器とを結ぶ光路上のいずれかに回折光発生手段を設けた状態で光源から光を照射して、前記アレイ状検出器上に回折像を生じさせ、前記アレイ状検出器の複数の受光素子で受光した0次回折光の強度を解析することにより、照射した光の中心がアレイ状検出器の中心からどれだけずれているかを判別できるようにし、
0次回折光を受光する前記複数の受光素子として、透過光受光素子を中心にして同心円状に配置され、かつ前記透過光受光素子からの距離が互いに異なり前記透過光受光素子からの方向は略同一となる複数の円弧状帯体の散乱光受光素子から構成される受光素子群が複数設けられ、隣り合う前記受光素子群どうしが、前記透過光受光素子から延びる不感領域を挟むように配置され、
0次回折光を検出した複数の前記散乱光受光素子の位置情報と検出信号の強度とに基づいて前記判別を行う演算部を有することを特徴とする散乱式粒子径分布測定装置。
Light from the light source is applied to the sample in the cell, and the resulting scattered light is incident on the array detector via the condenser lens. The particle diameter in the sample is based on the scattered light intensity pattern obtained at this time. In the scattering type particle size distribution measuring apparatus for measuring the distribution, when adjusting the optical axis, light is irradiated from the light source in a state where a diffracted light generating means is provided anywhere on the optical path connecting the light source and the array detector. The center of the irradiated light is the center of the array detector by generating a diffraction image on the array detector and analyzing the intensity of the zero-order diffracted light received by the plurality of light receiving elements of the array detector. So that it can be discriminated from the
The plurality of light receiving elements that receive 0th-order diffracted light are arranged concentrically around the transmitted light receiving element, and the distances from the transmitted light receiving element are different from each other and the directions from the transmitted light receiving element are substantially the same. A plurality of light-receiving element groups composed of a plurality of arc-shaped band scattered light light-receiving elements, and the adjacent light-receiving element groups are arranged so as to sandwich a dead area extending from the transmitted light light-receiving element,
A scattering type particle size distribution measuring apparatus comprising: a calculation unit that performs the determination based on position information of a plurality of the scattered light receiving elements that have detected zero-order diffracted light and the intensity of detection signals.
JP2001108458A 2001-04-06 2001-04-06 Scattering particle size distribution measuring device Expired - Lifetime JP4818527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108458A JP4818527B2 (en) 2001-04-06 2001-04-06 Scattering particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001108458A JP4818527B2 (en) 2001-04-06 2001-04-06 Scattering particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2002310884A JP2002310884A (en) 2002-10-23
JP4818527B2 true JP4818527B2 (en) 2011-11-16

Family

ID=18960589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108458A Expired - Lifetime JP4818527B2 (en) 2001-04-06 2001-04-06 Scattering particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP4818527B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612871B2 (en) * 2004-09-01 2009-11-03 Honeywell International Inc Frequency-multiplexed detection of multiple wavelength light for flow cytometry
CN107543781B (en) * 2017-07-06 2021-03-16 南开大学 Scattered light intensity distribution detection system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623921Y2 (en) * 1988-02-15 1994-06-22 株式会社島津製作所 Ring detector
JP3258889B2 (en) * 1996-01-11 2002-02-18 株式会社堀場製作所 Optical axis adjustment method in scattering particle size distribution analyzer
JP3258904B2 (en) * 1996-03-26 2002-02-18 株式会社堀場製作所 Scattered light detector
JP2001133386A (en) * 1999-11-08 2001-05-18 Nikkiso Co Ltd Particle-size distribution measuring device

Also Published As

Publication number Publication date
JP2002310884A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP3140664B2 (en) Foreign matter inspection method and apparatus
JP4515927B2 (en) Total reflection measuring device
JP2005530144A (en) Single structure optical measurement
JP2003502634A (en) Optical inspection method and apparatus using variable angle design
TW201706593A (en) Methods and apparatus for speckle suppression in laser dark-field systems
JP4829284B2 (en) Particle detection system and lithographic apparatus
US6091486A (en) Blazed grating measurements of lithographic lens aberrations
JPH07111403B2 (en) Optical inspection device and inspection method
JP3258889B2 (en) Optical axis adjustment method in scattering particle size distribution analyzer
EP1721144B1 (en) A method for measuring properties of particles by means of interference fringe analysis and corresponding apparatus
US6628381B1 (en) Optical inspection method and apparatus utilizing a collection angle design
JP4818527B2 (en) Scattering particle size distribution measuring device
US4352564A (en) Missing order defect detection apparatus
JPH05264479A (en) X-ray analyzer
US6794625B2 (en) Dynamic automatic focusing method and apparatus using interference patterns
JP4536337B2 (en) Surface inspection method and surface inspection apparatus
US7433053B2 (en) Laser inspection using diffractive elements for enhancement and suppression of surface features
US20030210402A1 (en) Apparatus and method for dual spot inspection of repetitive patterns
JP3285309B2 (en) Photo detector
JP3102493B2 (en) Foreign matter inspection method and apparatus
JP2001272355A (en) Foreign matter inspecting apparatus
JP4456301B2 (en) Particle size distribution measuring device
JPS63295945A (en) Glossiness measuring apparatus
WO2002012950A1 (en) Method of analyzing spectrum using multi-slit member and multi-channel spectrograph using the same
JP2010091428A (en) Scanning optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101209

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4818527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term