JP4818089B2 - Pyrolysis treatment equipment for organic treatment materials - Google Patents

Pyrolysis treatment equipment for organic treatment materials Download PDF

Info

Publication number
JP4818089B2
JP4818089B2 JP2006333431A JP2006333431A JP4818089B2 JP 4818089 B2 JP4818089 B2 JP 4818089B2 JP 2006333431 A JP2006333431 A JP 2006333431A JP 2006333431 A JP2006333431 A JP 2006333431A JP 4818089 B2 JP4818089 B2 JP 4818089B2
Authority
JP
Japan
Prior art keywords
organic
thermal decomposition
treatment
organic substance
crushed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006333431A
Other languages
Japanese (ja)
Other versions
JP2008142639A (en
Inventor
英一 杉山
和高 小城
正 今井
毅 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006333431A priority Critical patent/JP4818089B2/en
Publication of JP2008142639A publication Critical patent/JP2008142639A/en
Application granted granted Critical
Publication of JP4818089B2 publication Critical patent/JP4818089B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

本発明は、有機物処理材料を熱分解する熱分解処理装置に関する。   The present invention relates to a thermal decomposition treatment apparatus that thermally decomposes an organic substance treatment material.

近年、多量に排出されるプラスチックを始めとする廃棄物に対し所定の処理を施して資源として利用する各種の手法の提案がなされている。また、その一例として、バイオマス(木材、汚泥、家畜糞尿、生ゴミ等)や廃プラスチック等の有機物処理材料を熱分解処理して、熱分解ガスと熱分解残渣とを生成し、熱分解ガスは凝縮することにより熱分解油として回収し、残渣は所定の処理をすることにより炭化物として利用することが考えられている。この中でも、有機物処理材料として廃プラスチックを用いると、高効率で熱分解油を回収できるので、このような廃プラスチックを熱分解油化処理する装置に関しては多くの提案がなされている(例えば、特許文献1)
この熱分解技術において、熱分解装置が重要な機器で、この装置に処理材料を連続投入でき、熱分解残渣を連続排出できれば、連続式のシンプルで効率的な装置を提供することができる。但し、バイオマスや廃プラスチック等の様々な材料を熱分解装置に連続的に投入する場合、投入材料中に空気が混入する。熱分解装置内に材料とともに空気も同伴すると、熱分解装置内は高温雰囲気であり、内部で投入材料を燃焼させ、火災・爆発を引き起こすような重大なトラブルを招きかねない。特に、廃プラスチックの場合は嵩比重が低く、緩衝材として利用されているエアーキャップ等には、プラスチック中に空気が多く封入されている。従って、このまま熱分解装置に投入されると、大変危険な状態になる。また、廃木材等はサイズがまちまちで、そのまま投入しては、途中で材料がブリッジを形成し投入できなくなる。その結果、隙間から空気が混入しやすく、これも大変危険な状態になる。
In recent years, various methods have been proposed for applying predetermined processing to wastes such as plastics discharged in large quantities and using them as resources. In addition, as an example, pyrolysis treatment of organic matter treatment materials such as biomass (wood, sludge, livestock manure, garbage, etc.) and waste plastic produces pyrolysis gas and pyrolysis residue. It is considered that it is recovered as a pyrolysis oil by condensing, and the residue is used as a carbide by performing a predetermined treatment. Among these, when waste plastic is used as an organic material treatment material, pyrolysis oil can be recovered with high efficiency, and therefore many proposals have been made regarding an apparatus for pyrolyzing oil into such waste plastic (for example, patents). Reference 1)
In this pyrolysis technology, if the pyrolysis apparatus is an important device, and if the processing material can be continuously fed into the apparatus and the pyrolysis residue can be continuously discharged, a continuous simple and efficient apparatus can be provided. However, when various materials such as biomass and waste plastic are continuously input to the thermal decomposition apparatus, air is mixed in the input material. If air is accompanied with the material in the pyrolyzer, the pyrolyzer is in a high temperature atmosphere, which may cause serious troubles such as burning the input material and causing a fire or explosion. In particular, waste plastic has a low bulk specific gravity, and an air cap or the like used as a cushioning material contains a large amount of air in the plastic. Therefore, if it is put into the thermal decomposition apparatus as it is, it will be in a very dangerous state. In addition, waste wood and the like vary in size, and if they are input as they are, the material forms a bridge on the way and cannot be input. As a result, air easily enters from the gap, which is also very dangerous.

このような問題を解決する手段として、投入材料を破砕し、更に造粒化し、嵩密度を上げた状態で投入することも考えられる。しかし、破砕、造粒を行う破砕機、造粒機の動力が大きくなり、消費電力が増え、ランニングコストが掛かるばかりでなく、処理設備の設置面積が大きくなってしまうという大きな問題がある。
特開2000−167833号公報
As a means for solving such a problem, it is conceivable that the input material is crushed, further granulated, and charged in a state where the bulk density is increased. However, the power of the crusher and granulator for crushing and granulating is increased, resulting in a large problem that not only the power consumption increases and the running cost increases, but also the installation area of the processing equipment increases.
JP 2000-167833 A

本発明はこうした事情を考慮してなされたもので、バイオマス(木材、汚泥、家畜糞尿、生ゴミ等)や廃プラスチック等の様々な材料を熱分解装置に連続的に投入する際に、空気を混入させず安定的に投入でき、投入材料の破砕、造粒等を必要とせず、またシンプルな構成で消費電力を抑え、ランニングコストを大幅に低減できる有機物処理材料の熱分解処理装置を提供することを目的とする。   The present invention has been made in consideration of such circumstances. When various materials such as biomass (wood, sludge, livestock manure, garbage, etc.) and waste plastic are continuously put into the thermal decomposition apparatus, air is supplied. Providing a thermal decomposition treatment system for organic matter treatment materials that can be stably introduced without mixing, does not require crushing and granulation of the input materials, has a simple configuration, reduces power consumption, and significantly reduces running costs. For the purpose.

1)本発明の第1の態様による有機物処理材料の熱分解処理装置は、複数種類の有機物処理材料を熱分解する熱分解処理装置において、破砕された複数種類の有機物処理材料を夫々投入する複数の破砕有機物処理材料投入ホッパーと、これらの破砕有機物処理材料投入ホッパーの下部側に夫々配置され,夫々の材料毎に破砕された有機物処理材料を夫々貯留する貯留管と、これらの貯留管の下部に夫々設けられた定量供給装置と、前記各貯留管の下部に夫々接続され,各貯留管に不活性ガスを供給する不活性ガス注入ポートと、前記各貯留管の上部に夫々設置された酸素濃度計と、前記定量供給装置の下部に配置された投入機と、この投入機に接続された,熱分解を行う熱分解装置とを具備し、前記各酸素濃度計の計測値により、夫々の不活性注入ポートより供給する不活性ガス注入量を調整できる機能を備え、夫々の有機物処理材料を夫々の定量供給装置を経由して、或る一定比率で、熱分解処理装置内に連続的に投入できるようにしたことを特徴とする。 1) thermal decomposition treatment system of organic process material according to the first aspect of the present invention, a plurality of the plurality of types of organic process material thermally decomposed pyrolytic processing apparatus, a plurality of types of organic process material that is crushed respectively turned and crushing organic matter treatment material input hopper, they are respectively arranged on the lower side of these crushed organic matter treatment material charging hopper, a reservoir tube respectively storing the organic process material that is crushed for each of the respective material, the bottom of these reserve tube A fixed-quantity supply device provided in each of the above, an inert gas injection port for supplying an inert gas to each of the storage pipes connected to a lower part of each of the storage pipes, and an oxygen installed in the upper part of each of the storage pipes A densitometer, a charging machine disposed at a lower portion of the quantitative supply device, and a thermal decomposition device connected to the charging machine for performing thermal decomposition, and according to a measured value of each oxygen concentration meter, Inactivity With the function of adjusting the amount of inert gas injected from the injection port, each organic material treatment material can be continuously fed into the thermal decomposition treatment apparatus at a certain ratio via each quantitative supply device. It is characterized by doing so.

3) 本発明の第3の態様による有機物処理材料の熱分解処理装置は、上記1)の発明において、熱分解処理して生成した回収油量を計量し、その生成回収油量に応じて、熱分解装置へ供給する夫々の材料毎に破砕された有機物処理材料供給比率を調整できるようにしたことを特徴とする。 3) The organic material treatment material thermal decomposition treatment apparatus according to the third aspect of the present invention is the above-described 1) invention, wherein the amount of recovered oil produced by the thermal decomposition treatment is measured, and according to the amount of generated and recovered oil, It is characterized in that the supply ratio of the crushed organic matter processing material can be adjusted for each material supplied to the thermal decomposition apparatus.

4) 本発明の第4の態様による有機物処理材料の熱分解処理装置は、上記1)の発明において、熱分解装置の内部温度を測定し、その温度に応じて、熱分解装置へ供給する夫々の材料毎に破砕された有機物処理材料の供給比率を調整できるようにしたことを特徴とする。 4) According to the fourth aspect of the present invention, there is provided a thermal decomposition treatment apparatus for organic matter treatment materials according to the first aspect of the invention, wherein the internal temperature of the thermal decomposition apparatus is measured and supplied to the thermal decomposition apparatus according to the temperature. It is possible to adjust the supply ratio of the crushed organic material for each material.

5) 本発明の第5の態様による有機物処理材料の熱分解処理装置は、上記1),3),4)いずれかの発明において、前記有機物処理材料投入ホッパーの下部に夫々配置された,夫々の破砕された有機物処理材料を供給する有機物処理材料定量供給サークルフィーダを更に具備し、夫々の定量供給サークルフィーダの回転数を調整し、夫々の材料毎に破砕した有機物処理材料を或る一定比率で、熱分解装置に連続的に投入できるようにしたことを特徴とする。 5) The thermal decomposition treatment apparatus for organic matter treatment material according to the fifth aspect of the present invention is arranged in the lower part of the organic matter treatment material charging hopper in any one of the above 1), 3) and 4), respectively. The organic substance processing material quantitative supply circle feeder that supplies the crushed organic substance processing material is further provided, the rotation speed of each quantitative supply circle feeder is adjusted, and the organic substance processing material crushed for each material at a certain ratio Thus, it can be continuously fed into the thermal decomposition apparatus.

6) 本発明の第6の態様による有機物処理材料の熱分解処理装置は、上記1),3),4)の発明において、前記各破砕有機物処理材料投入ホッパーと前記各貯留管との間に夫々配置された,夫々の破砕された有機物処理材料を供給する有機物処理材料定量供給サークルフィフィーダと、前記定量供給装置の下部に配置された,スクリュー移送構造を有する材料攪拌定量流下投入装置とを更に具備することを特徴とする6) The organic matter treatment material thermal decomposition treatment apparatus according to the sixth aspect of the present invention is the invention of the above 1), 3), 4) , between each of the crushed organic matter treatment material input hopper and each of the storage pipes. An organic substance processing material quantitative supply circle feeder that supplies each crushed organic substance processing material, and a material agitation quantitative flow-down feeding device having a screw transfer structure, which are arranged below the quantitative supply apparatus, Furthermore, it is characterized by comprising .

7) 本発明の第7の態様による有機物処理材料の熱分解処理装置は、上記1),3)乃至5)いずれかの発明において、前記投入機はスクリュー移送構造を有する投入機であり、有機物処理材料を投入しながら圧縮し、投入する破砕材料の隙間のガスを材料入口側に排除し、熱分解装置内には固体だけを連続的に投入されるようにしたことを特微とする。 7) The thermal decomposition treatment apparatus for organic matter treatment material according to the seventh aspect of the present invention is the above-mentioned invention 1), 3) to 5) , wherein the thrower is a thrower having a screw transfer structure, and the organic matter The processing material is compressed while being charged, the gas in the gap of the crushed material to be charged is excluded to the material inlet side, and only the solid is continuously charged into the thermal decomposition apparatus.

本発明によれば、バイオマス(木材、汚泥、家畜糞尿、生ゴミ等)や廃プラスチック等の様々な材料を熱分解装置に連続的に投入する際に、空気を混入させず安定的に投入できる。また、投入材料の破砕、造粒等を必要とせず、シンプルな構成で消費電力を抑え、ランニングコストを大幅に低減でき、安定的に連続処理することができる。   According to the present invention, when various materials such as biomass (wood, sludge, livestock manure, raw garbage, etc.) and waste plastics are continuously charged into the thermal decomposition apparatus, it is possible to stably charge without introducing air. . Further, the input material is not crushed, granulated, etc., and the power consumption can be reduced with a simple configuration, the running cost can be greatly reduced, and stable continuous processing can be performed.

以下、本発明の有機物処理材料の熱分解処理装置について更に詳しく説明する。
上述したように、本発明は上記1)の構成にすれば、複数の有機物処理材料を予め一定比率で混合しなくても、別々のホッパーから最適比率に調整しながら投入量を調整しつつ熱分解装置に投入して運転でき、安定的な処理を行うことができる。また、投入材料の破砕、造粒等を必要とせず、シンプルな構成で消費電力を抑え、ランニングコストを大幅に低減できる。
Hereinafter, the thermal decomposition treatment apparatus of the organic matter treatment material of the present invention will be described in more detail.
As described above, according to the configuration of the above 1), the present invention does not mix a plurality of organic processing materials at a constant ratio in advance, and adjusts the input amount while adjusting the input amount from separate hoppers while adjusting the input amount. It can be operated by being put into the decomposition apparatus, and stable processing can be performed. In addition, the input material is not crushed, granulated, etc., and the power consumption can be reduced with a simple configuration, and the running cost can be greatly reduced.

また、複数の貯留管と不活性ガス注入ポートと酸素濃度計とを具備した構成にすれば、夫々の酸素濃度計の計測値により、夫々の不活性ガス注入ポートより供給する不活性ガス注入量を調整することができる。 In addition, if the configuration includes a plurality of storage pipes, an inert gas injection port, and an oxygen concentration meter, the inert gas injection amount supplied from each inert gas injection port based on the measured value of each oxygen concentration meter. Can be adjusted.

更に、上記3)のように、熱分解処理して生成した回収油量を計量し、その生成回収油量に応じて、熱分解処理を行う熱分解装置へ供給する夫々の材料毎に破砕された有機物処理材料との供給比率を調整できるような構成にすれば、複数の有機物処理材料を予め一定比率で混合しなくても、別々のホッパーから最適比率に調整しながら投入量を調整して運転することができる。従って、より安全で安定的な処理を行うことができる。なお、上記4)のように、熱分解装置の内部温度を測定し、その温度に応じて熱分解装置へ供給する夫々の材料毎に破砕された有機物処理材料の供給比率を調整できるような構成にしても、同様な効果が得られる。   Further, as in 3) above, the amount of recovered oil generated by the pyrolysis process is measured, and the material is crushed for each material supplied to the thermal decomposition apparatus that performs the thermal decomposition process according to the generated and recovered oil quantity. If the supply ratio to the organic processing material can be adjusted, the input amount can be adjusted while adjusting the optimal ratio from separate hoppers without mixing multiple organic processing materials at a fixed ratio in advance. You can drive. Therefore, safer and more stable processing can be performed. In addition, the structure which can measure the internal temperature of a thermal decomposition apparatus like said 4), and can adjust the supply ratio of the organic substance processing material crushed for every material supplied to a thermal decomposition apparatus according to the temperature Even so, the same effect can be obtained.

更には、上記5)のように、有機物処理材料定量供給サークルフィーダとを更に具備し、夫々のサークルフィーダの回転数を調整し、夫々の有機物処理材料を或る一定比率で、熱分解装置に連続的に投入できるような構成にすれば、ロータリーバルブ等の定量供給装置に比べ、コンパクトな構成で、噛み込み等のない信頼性の高い装置が得られる。また、夫々の有機物処理材料を予め一定比率で混合しなくても、別々のホッパーから最適比率に調整しながら投入量を調整して運転でき、より安全で安定的な処理を行うことができる。   Furthermore, as described in 5) above, the organic substance processing material quantitative supply circle feeder is further provided, the rotation speed of each circle feeder is adjusted, and each organic substance treatment material is supplied to the thermal decomposition apparatus at a certain ratio. If it is configured so that it can be continuously charged, a highly reliable device with a compact configuration and no biting can be obtained compared to a quantitative supply device such as a rotary valve. Moreover, even if each organic substance processing material is not mixed at a fixed ratio in advance, it can be operated by adjusting the input amount while adjusting the optimal ratio from separate hoppers, and safer and more stable processing can be performed.

また、上記6)のような構成にすれば、スクリュー移送構造を有する材料攪拌定量流下投入装置により、熱分解装置内に投入する夫々の有機物処理材料を攪拌しつつ定量で材料投入機に流下させて、熱分解装置内に材料に同伴して酸素が混入するのを完全に防止しつつ、常時所定の混合比率で確実に投入することができる。また、これにより、夫々の有機物処理材料を予め一定比率で混合しなくても、別々のホッパーから最適比率に調整しながら投入量を調整し運転することができ、より安全で安定的な処理を行うことが可能となる。   Further, with the configuration as described in 6) above, each organic substance treatment material to be put into the thermal decomposition apparatus is made to flow down to the material feeding machine quantitatively while being stirred by the material stirring quantitative flow-down feeding apparatus having a screw transfer structure. Thus, it is possible to always reliably supply the pyrolysis apparatus at a predetermined mixing ratio while completely preventing oxygen from being mixed with the material. In addition, this makes it possible to adjust the amount of feed while adjusting the optimum ratio from separate hoppers without having to mix each organic matter treatment material at a fixed ratio in advance, thus enabling safer and more stable processing. Can be done.

更に、上記7)のようにスクリュー移送構造の投入機を備えた構成にすれば、夫々の有機物処理材料を投入しながら圧縮し、投入する破砕材料の隙間のガスを材料入口側に排除し、熱分解処理を行う熱分解装置内には固体だけを連続的に投入することができる。これにより、より一層安全で安定的な処理を行うことができる。   Furthermore, if it is configured to have a screw transfer structure charging machine as in 7) above, each organic matter processing material is compressed while being charged, and the gas in the gap between the crushed materials to be charged is excluded to the material inlet side, Only the solid can be continuously charged into the thermal decomposition apparatus for performing the thermal decomposition treatment. As a result, safer and more stable processing can be performed.

次に、本発明に係わる有機物処理材料の熱分解処理装置への投入装置の実施形態を図1 に基づいて説明する。なお、本実施形態は下記に述べることに限定されない。   Next, an embodiment of an input device for an organic material treatment material thermal decomposition apparatus according to the present invention will be described with reference to FIG. Note that the present embodiment is not limited to the following description.

(第1の実施形態):請求項1に対応
図1は、本発明の第1の実施形態における有機物処理材料の熱分解処理装置である。
図中の符番1は、所定の有機物処理材料(以下、有機物Aと呼ぶ)を投入する第1の有機物投入ホッパーを示す。また、符番2は、別の有機物処理材料(以下、有機物Bと呼ぶ)を投入する第2の有機物投入ホッパーを示す。これらの有機物投入ホッパー1,2の夫々の下部には、有機物Aを定量する第1の定量供給装置3,有機物Bを定量する第2の定量供給装置4が配置されている。第1の定量供給装置3,第2の定量供給装置4の下部には、投入機5が配置されている。この投入機5には、投入された2種類の有機物A,Bを熱分解処理する熱分解装置6が接続されている。
(First Embodiment): Corresponding to Claim 1
FIG. 1 shows a thermal decomposition processing apparatus for organic processing materials according to a first embodiment of the present invention.
Reference numeral 1 in the figure indicates a first organic material charging hopper for charging a predetermined organic material processing material (hereinafter referred to as organic material A). Reference numeral 2 denotes a second organic material charging hopper for charging another organic material (hereinafter referred to as organic material B). A first quantitative supply device 3 for quantifying the organic substance A 3 and a second quantitative supply device 4 for quantifying the organic substance B are arranged at the lower part of each of the organic substance input hoppers 1 and 2. At the lower part of the first fixed supply device 3 and the second fixed supply device 4, a charging machine 5 is arranged. The charging machine 5 is connected to a thermal decomposition apparatus 6 that thermally decomposes the two types of organic substances A and B that have been input.

前記第1の有機物投入ホッパー1、第2の有機物投入ホッパー2からは、有機物A,有機物Bが夫々一定比率で別々に投入されて、両者の投入比率が最適になるように制御しつつ運転することができるようになっている。前記第1の定量供給装置3,第2の定量供給装置4としては、例えばロータリーバルブが挙げられる。   The organic substance A and the organic substance B are separately charged at a fixed ratio from the first organic substance charging hopper 1 and the second organic substance charging hopper 2, respectively, and controlled while controlling the charging ratio of both. Be able to. Examples of the first fixed supply device 3 and the second fixed supply device 4 include a rotary valve.

第1の実施形態によれば、有機物A,Bを予め一定比率で混合しなくても、別々のホッパー1,2から最適比率に調整しながら投入量を調整しつつ、熱分解装置6に投入し運転することができる。従って、有機物Aと有機物Bを安定的に処理することができる。   According to the first embodiment, even if the organic substances A and B are not mixed in a fixed ratio in advance, they are input to the thermal decomposition apparatus 6 while adjusting the input amount while adjusting the optimal ratio from the separate hoppers 1 and 2. Can drive. Therefore, the organic substance A and the organic substance B can be treated stably.

(第2の実施形態):請求項2に対応
図2は、本発明の第2の実施形態における有機物処理材料の熱分解処理装置である。但し、図1と同部材は同符番を付して説明を省略する。
図中の符番7,8は、第1の有機物投入ホッパー1,第2の有機物投入ホッパー2の下部に夫々設けられた第1の有機物供給バルブ、第2の有機物供給バルブを示す。第1の有機物供給バルブ7と第1の定量供給装置3間には、上部に酸素濃度計9を備えた貯留管10aが設けられている。第2の有機物供給バルブ8と第2の定量供給装置4間には、上部に酸素濃度計9を備えた貯留管10bが設けられている。前記貯留管10aの下部には、不活性ガスとしてのNを注入するための不活性ガス注入ポート11aが接続されている。前記貯留管10bの下部には、Nを注入するための不活性ガス注入ポート11bが接続されている。両不活性ガス注入ポート11a,11bは、パージする為に貯留管10a,10bの夫々の下部に接続されていることが好ましい。各不活性ガス注入ポート11a,11bには調整バルブ12a,12bが設けられている。調整バルブ12a,12bと酸度濃度計9は電気的に接続され、酸素濃度計9の計測値により夫々の不活性ガス注入ポート11a,11bより供給する不活性ガス注入量を調整できるようになっている。
(Second Embodiment): Corresponding to Claim 2
FIG. 2 shows an apparatus for thermally decomposing an organic material treatment material according to the second embodiment of the present invention. However, the same members as those in FIG.
Reference numerals 7 and 8 in the figure indicate a first organic substance supply valve and a second organic substance supply valve provided respectively below the first organic substance input hopper 1 and the second organic substance input hopper 2. Between the 1st organic substance supply valve 7 and the 1st fixed quantity supply apparatus 3, the storage pipe 10a provided with the oxygen concentration meter 9 in the upper part is provided. Between the 2nd organic substance supply valve 8 and the 2nd fixed quantity supply apparatus 4, the storage pipe 10b provided with the oxygen concentration meter 9 in the upper part is provided. An inert gas injection port 11a for injecting N 2 as an inert gas is connected to the lower part of the storage pipe 10a. An inert gas injection port 11b for injecting N 2 is connected to the lower part of the storage pipe 10b. Both the inert gas injection ports 11a and 11b are preferably connected to the lower portions of the storage pipes 10a and 10b for purging. Adjustment valves 12a and 12b are provided in the inert gas injection ports 11a and 11b, respectively. The adjusting valves 12a and 12b and the acidity concentration meter 9 are electrically connected, and the inert gas injection amount supplied from the respective inert gas injection ports 11a and 11b can be adjusted by the measured value of the oxygen concentration meter 9. Yes.

第2の実施形態によれば、第1の有機物投入ホッパー1,第2の有機物投入ホッパー2の夫々の下部に第1の有機物供給バルブ7,第2の有機物供給バルブ8を設け、これらのバルブ7,8の夫々の下部に酸素濃度計9を備えた貯留管10a,10bを設け、これらの貯留管10a,10bの夫々の下部に調整バルブ12a,12bを夫々備えた不活性ガス注入ポート11a,11bを接続した構成になっている。   According to the second embodiment, a first organic substance supply valve 7 and a second organic substance supply valve 8 are provided below the first organic substance input hopper 1 and the second organic substance input hopper 2, respectively. 7 and 8 are provided with storage pipes 10a and 10b provided with an oxygen concentration meter 9, and these storage pipes 10a and 10b are respectively provided with adjusting valves 12a and 12b under inert gas injection ports 11a. , 11b are connected.

従って、貯留管10a,10bに夫々の材料である有機物A,有機物Bが一定のレベル範囲内になるように上部の第1の有機物供給バルブ7,第2の有機物供給バルブ8の開閉を制御することにより、貯留管以降の間に空気が混入しないようにすることができる。また、夫々の貯留管10a,10b下部に不活性ガス注入ポート11a,11bを接続するとともに、夫々の貯留管10a,10bの上部の酸素濃度計9を設置し、その計測値により、夫々の不活性ガス注入ポート11a,11bより供給する不活性ガス注入量を調整することができる。従って、熱分解装置6内に有機物A,Bに同伴して酸素が混入するのを防止することができる。更には、有機物A,Bを予め一定比率で混合しなくても、別々のホッパー1,2から最適比率に調整しながら投入量を調整し運転することができ、より安全で安定的な処理を行うことが可能となる。   Therefore, the opening and closing of the upper first organic substance supply valve 7 and the second organic substance supply valve 8 are controlled so that the organic substances A and B, which are the respective materials, in the storage pipes 10a and 10b are within a certain level range. Thus, it is possible to prevent air from being mixed between the storage pipe and the subsequent parts. In addition, the inert gas injection ports 11a and 11b are connected to the lower portions of the respective storage tubes 10a and 10b, and the oxygen concentration meters 9 are installed on the upper portions of the respective storage tubes 10a and 10b. The inert gas injection amount supplied from the active gas injection ports 11a and 11b can be adjusted. Therefore, it is possible to prevent oxygen from being mixed with the organic substances A and B in the thermal decomposition apparatus 6. Furthermore, even if the organic substances A and B are not mixed in a fixed ratio in advance, it is possible to operate by adjusting the input amount while adjusting the optimal ratio from the separate hoppers 1 and 2 for safer and more stable processing. Can be done.

(第3の実施形態):請求項3に対応
図3は、本発明の第3の実施形態における有機物処理材料の熱分解油化処理装置である。但し、図1,2と同部材は同符番を付して説明を省略する。
図3は、熱分解処理して生成する回収油量を計量し、その生成回収油量に応じて、熱分解処理を行う熱分解装置へ供給する夫々の有機物A,Bの供給比率を調整できるようにしたものである。
(Third embodiment): Corresponding to claim 3
FIG. 3 shows an apparatus for pyrolyzing and oiling an organic material in a third embodiment of the present invention. However, the same members as those in FIGS.
FIG. 3 measures the amount of recovered oil produced by the thermal decomposition treatment, and can adjust the supply ratio of each of the organic substances A and B supplied to the thermal decomposition apparatus that performs the thermal decomposition treatment according to the amount of the produced and recovered oil. It is what I did.

図中の符番13は、熱分解装置6の上部に接続された配管を示す。この配管13の途中には、配管13内を通過する熱分解ガスを冷却し凝縮するための冷却器14が介装されている。配管13は、途中で回収油を収容する収納容器15に接続された分岐管16aと、液化されないガス(オフガス)を送るための分岐管16bに分岐される。収納容器15の下部には、収容容器15内の回収油の重さを測定するために天秤式重量計17が設けられている。天秤式重量計17は、前記第1の定量供給装置3及び第2の定量供給装置4と電気的に接続された状態にある。   Reference numeral 13 in the figure indicates a pipe connected to the upper part of the thermal decomposition apparatus 6. In the middle of the pipe 13, a cooler 14 for cooling and condensing the pyrolysis gas passing through the pipe 13 is interposed. The pipe 13 is branched into a branch pipe 16a connected to a storage container 15 that stores recovered oil and a branch pipe 16b for sending a gas that is not liquefied (off-gas). A balance-type weigh scale 17 is provided below the storage container 15 in order to measure the weight of the recovered oil in the storage container 15. The balance type weigh scale 17 is in a state of being electrically connected to the first quantitative supply device 3 and the second quantitative supply device 4.

第3の実施形態によれば、貯留管10a,10bに夫々の材料である有機物A,Bが一定のレベル範囲内になるように上部の第1の有機物供給バルブ7,第2の有機物供給バルブ8の開閉を制御することにより、貯留管以降の間に空気が混入しないようにすることができる。また、夫々の貯留管10a,10b下部に不活性ガス注入ポート11a,11bを接続するとともに、夫々の貯留管10a,10bの上部の酸素濃度計9を配置して、その計測値により、夫々の不活性ガス注入ポート11a,11bより供給する不活性ガス注入量を調整することができる。従って、熱分解装置6内に有機物A,Bに同伴して酸素が混入するのを防止することができる。   According to the third embodiment, the upper first organic substance supply valve 7 and the second organic substance supply valve are provided so that the organic substances A and B which are the respective materials in the storage pipes 10a and 10b are within a certain level range. By controlling the opening and closing of 8, it is possible to prevent air from being mixed between the storage pipes and after. In addition, the inert gas injection ports 11a and 11b are connected to the lower portions of the respective storage pipes 10a and 10b, and the oxygen concentration meters 9 are arranged on the upper portions of the respective storage pipes 10a and 10b. The inert gas injection amount supplied from the inert gas injection ports 11a and 11b can be adjusted. Therefore, it is possible to prevent oxygen from being mixed with the organic substances A and B in the thermal decomposition apparatus 6.

また、熱分解装置6に接続された配管13の途中に冷却器14を介装するとともに、天秤式重量計17により回収油の量を計測し、この量に応じて熱分解装置6へ供給する有機物Aと有機物Bの供給比率を調整できるようにしたので、より安全で安定的な処理を行うことが可能となる。
なお、図3では、配管13の一部に冷却器14が設置され、ここで熱分解ガスを間接凝縮される場合について述べたが、配管13の途中に回収油をスプレーにより熱分解ガス中に吹きかけ直接冷却し凝縮するようにしてもよい。また、回収油の重さを測定する天秤式重量計も上述したものに限らない。
In addition, a cooler 14 is interposed in the middle of the pipe 13 connected to the thermal decomposition apparatus 6, and the amount of recovered oil is measured by a balance-type weigh scale 17 and supplied to the thermal decomposition apparatus 6 according to this amount. Since the supply ratio of the organic substance A and the organic substance B can be adjusted, safer and more stable processing can be performed.
In FIG. 3, the cooler 14 is installed in a part of the pipe 13 and the pyrolysis gas is indirectly condensed here. However, the recovered oil is sprayed into the pyrolysis gas in the middle of the pipe 13. It may be cooled and condensed directly by spraying. Further, the balance type weigher for measuring the weight of the recovered oil is not limited to the above.

(第4の実施形態):請求項4に対応
図4は、本発明の第4の実施形態における有機物処理材料の熱分解油化処理装置である。但し、図1,2と同部材は同符番を付して説明を省略する。
図4は、熱分解処理している熱分解装置6の内部温度を測定し、その温度に応じて、熱分解処理を行う熱分解装置6へ供給する有機物Aと有機物Bの供給比率を調整できるようにしたものである。図中の符番18は熱分解装置6の内部温度を測定する為の温度計を示す。この温度計18は、第1の定量供給装置3及び第2の定量供給装置4と電気的に接続された状態にある。
(Fourth Embodiment): Corresponding to Claim 4
FIG. 4 shows a thermal decomposition oil conversion apparatus for organic substance processing materials according to the fourth embodiment of the present invention. However, the same members as those in FIGS.
FIG. 4 measures the internal temperature of the thermal decomposition apparatus 6 that is performing the thermal decomposition treatment, and can adjust the supply ratio of the organic substance A and the organic substance B supplied to the thermal decomposition apparatus 6 that performs the thermal decomposition process according to the temperature. It is what I did. Reference numeral 18 in the figure indicates a thermometer for measuring the internal temperature of the thermal decomposition apparatus 6. This thermometer 18 is in a state of being electrically connected to the first quantitative supply device 3 and the second quantitative supply device 4.

第4の実施形態によれば、貯留管10a,10bに夫々の材料である有機物A,Bが一定のレベル範囲内になるように上部の第1の有機物供給バルブ7,第2の有機物供給バルブ8の開閉を制御することにより、貯留管以降の間に空気が混入しないようにすることができる。また、夫々の貯留管10a,10b下部に不活性ガス注入ポート11a,11bを接続するとともに、夫々の貯留管10a,10bの上部の酸素濃度計9を配置して、その計測値により、夫々の不活性ガス注入ポート11a,11bより供給する不活性ガス注入量を調整することができる。従って、熱分解装置6内に有機物A,Bに同伴して酸素が混入するのを防止することができる。   According to the fourth embodiment, the upper first organic substance supply valve 7 and the second organic substance supply valve are provided so that the organic substances A and B which are the respective materials in the storage pipes 10a and 10b are within a certain level range. By controlling the opening and closing of 8, it is possible to prevent air from being mixed between the storage pipes and after. In addition, the inert gas injection ports 11a and 11b are connected to the lower portions of the respective storage pipes 10a and 10b, and the oxygen concentration meters 9 are arranged on the upper portions of the respective storage pipes 10a and 10b. The inert gas injection amount supplied from the inert gas injection ports 11a and 11b can be adjusted. Therefore, it is possible to prevent oxygen from being mixed with the organic substances A and B in the thermal decomposition apparatus 6.

また、熱分解装置6に設けた温度計18により熱分解装置6の内部温度を測定し、その温度に応じて熱分解装置6へ供給する有機物Aと有機物Bとの供給比率を調整できる。従って、別々のホッパーから最適比率に調整しながら投入量を調整し運転することができ、より安全で安定的な処理を行うことが可能となる。   Moreover, the internal temperature of the thermal decomposition apparatus 6 is measured with the thermometer 18 provided in the thermal decomposition apparatus 6, and the supply ratio of the organic substance A and the organic substance B supplied to the thermal decomposition apparatus 6 can be adjusted according to the temperature. Therefore, it is possible to adjust the input amount while adjusting to the optimum ratio from separate hoppers, and to operate more safely and stably.

(第5の実施形態):請求項5に対応
図5は、本発明の第5の実施形態における有機物処理材料の熱分解油化処理装置である。但し、図1〜4と同部材は同符番を付して説明を省略する。
図5は、第1の有機物貯留ホッパーの下部に有機物処理材料定量供給サークルフィーダを、第2の有機物貯留ホッパーの下部に有機物処理材料定量供給サークルフィーダを設置し、夫々の第1・第2のサークルフィーダの回転数を調整し、有機物Aと有機物Bとを或る一定比率で、熱分解装置に連続的に投入できるようにしたものである。
(Fifth Embodiment): Corresponding to Claim 5
FIG. 5 shows an apparatus for thermally decomposing and treating an organic material in a fifth embodiment of the present invention. However, the same members as those in FIGS.
FIG. 5 shows that the organic substance processing material quantitative supply circle feeder is installed in the lower part of the first organic substance storage hopper, and the organic substance treatment material quantitative supply circle feeder is installed in the lower part of the second organic substance storage hopper. The rotational speed of the circle feeder is adjusted so that the organic substance A and the organic substance B can be continuously fed into the thermal decomposition apparatus at a certain ratio.

図中の符番19は、第1の有機物投入ホッパー1と貯留管10a間に配置された,密閉性を保持するとともに材料定量供給機能を備えた有機物処理材料定量供給サークルフィーダ(以下、第1の定量供給サークルフィーダと呼ぶ)を示す。図中の符番20は、第2の有機物投入ホッパー2と貯留管10b間に配置された,密閉性を保持するとともに材料定量供給機能を備えた有機物材料定量供給サークルフィーダ(以下、第2の定量供給サークルフィーダを呼ぶ)を示す。   Reference numeral 19 in the figure denotes an organic substance processing material quantitative supply circle feeder (hereinafter referred to as the first organic substance processing material supply hopper 1) which is disposed between the first organic substance input hopper 1 and the storage pipe 10 a and has a hermeticity and has a material quantitative supply function. (Referred to as a constant supply circle feeder). Reference numeral 20 in the figure denotes an organic material fixed quantity supply circle feeder (hereinafter referred to as a second organic substance supply feeder) that is disposed between the second organic substance input hopper 2 and the storage pipe 10b and has a hermeticity and a material fixed quantity supply function. A constant supply circle feeder).

第5の実施形態によれば、有機物Aと有機物Bとを夫々第1の有機物投入ホッパー1と第2の有機物投入ホッパー2に個別に投入し、その下部に夫々第1・第2のサークルフィーダ19,20を設置し、更にその下部に夫々貯留管10a,10bを設置し、これらの貯留管10a,10bに夫々の材料が一定のレベル範囲になるように第1・第2の定量供給サークルフィーダ19,20により材料供給量を調整することにより、貯留管10a,10b以降の間に空気が混入しないようにすることができる。   According to the fifth embodiment, the organic substance A and the organic substance B are individually charged into the first organic substance charging hopper 1 and the second organic substance charging hopper 2, respectively, and the first and second circle feeders are respectively provided below the organic substance A and the organic substance B. 19 and 20 are further installed, and storage pipes 10a and 10b are further installed therebelow, and first and second quantitative supply circles are provided so that the respective materials are in a certain level range in these storage pipes 10a and 10b. By adjusting the material supply amount by the feeders 19 and 20, it is possible to prevent air from being mixed between the storage pipes 10a and 10b.

また、貯留管10a,10bの夫々の下部に不活性ガス注入ポート11a,11bを接続するとともに、夫々の貯留管10a,10bの上部の酸素濃度計9を配置して、その計測値により、夫々の不活性ガス注入ポート11a,11bより供給する不活性ガス注入量を調整することができる。従って、熱分解装置6内に材料に同伴して酸素が混入するのを完全に防止することができる。   In addition, the inert gas injection ports 11a and 11b are connected to the lower portions of the storage tubes 10a and 10b, respectively, and the oxygen concentration meters 9 are arranged on the upper portions of the storage tubes 10a and 10b, respectively. The inert gas injection amount supplied from the inert gas injection ports 11a and 11b can be adjusted. Therefore, it is possible to completely prevent oxygen from being mixed with the material in the thermal decomposition apparatus 6.

更に、熱分解装置6に設けた温度計18により熱分解装置6の内部温度を測定し、その温度に応じて熱分解装置6へ供給する有機物Aと有機物Bとの供給比率を調整できるようにしたものである。従って、別々のホッパーから最適比率に調整しながら投入量を調整し運転することができ、より安全で安定的な処理を行うことが可能となる。更にまた、定量供給性能の高いサークルフィーダ19,20を用いるので、ロータリーバルブ等の定量供給装置に比べ、コンパクトな構成で、噛み込み等のない信頼性を高めた安全な供給装置とすることができる。   Further, the internal temperature of the thermal decomposition apparatus 6 is measured by a thermometer 18 provided in the thermal decomposition apparatus 6 so that the supply ratio of the organic substance A and the organic substance B supplied to the thermal decomposition apparatus 6 can be adjusted according to the temperature. It is a thing. Therefore, it is possible to adjust the input amount while adjusting to the optimum ratio from separate hoppers, and to operate more safely and stably. Furthermore, since the circle feeders 19 and 20 having high quantitative supply performance are used, a safe supply device having a compact configuration and improved reliability without biting or the like compared to a quantitative supply device such as a rotary valve. it can.

(第6の実施形態):請求項6に対応
図6は、本発明の第6の実施形態における有機物処理材料の熱分解油化処理装置である。但し、図1〜5と同部材は同符番を付して説明を省略する。
図中の符番21は、第1の定量供給装置3及び第2の定量供給装置4の下部に配置されたスクリュー移送構造の材料攪拌定量流下投入装置(以下、単に投入装置と呼ぶ)を示す。こうした構成においては、一方の貯留管10aから第1の定量供給装置3を通過してきた有機物Aと、他方の貯留管10bから第2の定量供給装置4を通過してきた有機物Bが投入装置21を用いて攪拌して常時定量で下部の投入機5に流下させることができる。従って、有機物Aと有機物Bを常時所定の混合比率で確実に投入することができる。また、これにより、有機物Aと有機物Bとが投入機5に入る際にどちらかの材料に偏ることなく予め一定比率で混合しなくても、別々のホッパーから最適比率に調整しながら投入量を調整し運転することができ、より安全で安定的な処理を行うことが可能となる。
(Sixth Embodiment): Corresponding to Claim 6
FIG. 6 shows an apparatus for thermally decomposing and treating an organic material in a sixth embodiment of the present invention. However, the same members as those in FIGS.
A reference numeral 21 in the figure indicates a material stirring fixed amount flow-down feeding device (hereinafter, simply referred to as a charging device) having a screw transfer structure disposed below the first quantitative supply device 3 and the second quantitative supply device 4. . In such a configuration, the organic substance A that has passed through the first quantitative supply device 3 from one storage pipe 10a and the organic substance B that has passed through the second quantitative supply apparatus 4 from the other storage pipe 10b are used as the input device 21. It can be used and stirred to flow down to the lower charging device 5 at a constant amount. Accordingly, the organic substance A and the organic substance B can always be reliably charged at a predetermined mixing ratio. In addition, as a result, when the organic substance A and the organic substance B enter the charging machine 5, the input amount can be adjusted while adjusting to the optimal ratio from separate hoppers without mixing with a certain ratio in advance without biasing to either material. Adjustment and operation are possible, and safer and more stable processing can be performed.

第6の実施形態によれば、有機物Aと有機物Bの夫々の貯留管10a,10bの下部にスクリュー移送構造の投入装置21を設置し、熱分解装置6内に投入する両材料を攪拌しつつ定量で投入機5に流下させることにより、熱分解装置6内に材料に同伴して酸素が混入するのを完全に防止しつつ、常時所定の混合比率で確実に投入することができる。また、これにより、有機物Aと有機物Bとを予め一定比率で混合しなくても、別々のホッパーから最適比率に調整しながら投入量を調整し運転することができ、より安全で安定的な処理を行うことが可能となる。   According to the sixth embodiment, the charging device 21 having a screw transfer structure is installed below the storage pipes 10a and 10b of the organic matter A and the organic matter B, and both materials to be put into the pyrolysis device 6 are stirred. By letting it flow down to the dosing device 5 in a fixed amount, it is possible to reliably put in the heat decomposition apparatus 6 at a predetermined mixing ratio at all times while completely preventing oxygen from being mixed with the material. In addition, this makes it possible to adjust the input amount and operate while adjusting the optimum ratio from separate hoppers without mixing the organic substance A and the organic substance B at a fixed ratio in advance. Can be performed.

(第7の実施形態)
図7は、本発明の第7の実施形態における有機物処理材料の熱分解処理装置である。なお、図7(A)は同装置の概略的な全体図、図7(B)は図7(A)の投入機を拡大して示す説明図である。但し、図1〜5と同部材は同符番を付して省略する。
図中の符番23は、第1の定量供給装置3及び第2の定量供給装置4の下部に配置されたスクリュー移送構造の投入機を示す。この投入機23はモータ22によって回転し、破砕PET含有樹脂が投入される部分において隙間が多く、熱分解装置6側に向かうにつれて隙間が徐々に小さくなるように設計されている。即ち、この投入機23は、材料を投入しながら圧縮し、投入する破砕材料の隙間のガスを材料入口側に排除し、熱分解処理を行う熱分解装置6内にはガスが混入せず固体だけが連続的に投入されるようにしている。
(Seventh embodiment)
FIG. 7 shows an apparatus for pyrolyzing an organic material in a seventh embodiment of the present invention. FIG. 7A is a schematic overall view of the apparatus, and FIG. 7B is an explanatory view showing the charging machine of FIG. 7A in an enlarged manner. However, the same members as those in FIGS.
A reference numeral 23 in the figure indicates a screw transfer structure charging machine disposed at the lower part of the first and second quantitative supply devices 3 and 4. The charging machine 23 is rotated by a motor 22 so that there are many gaps in the portion where the crushed PET-containing resin is charged, and the gaps are gradually reduced toward the pyrolysis device 6 side. That is, the charging machine 23 compresses the material while charging it, removes the gas in the gap between the crushed materials to be charged to the material inlet side, and does not mix the gas in the thermal decomposition apparatus 6 that performs the thermal decomposition process. Only the continuous input is made.

第7の実施形態によれば、第1の定量供給装置3及び第2の定量供給装置4の下部にスクリュー移送構造の投入機21を配置し、材料を投入しながら圧縮し、投入する破砕材料の隙間のガスを材料入口側に排除し、熱分解処理を行う熱分解装置6内にはガスが混入せず固体だけが連続的に投入されるようにすることにより、熱分解装置6内に材料に同伴して酸素が混入するのを完全に防止しつつ、常時所定の混合比率で確実に投入することができる。また、これにより、有機物Aと有機物Bとを予め一定比率で混合しなくても、別々のホッパーから最適比率に調整しながら投入量を調整し運転することができ、より安全でシンプルで安定的な処理を行うことが可能となる。   According to the seventh embodiment, the feeder 21 having the screw transfer structure is arranged at the lower part of the first quantitative feeder 3 and the second quantitative feeder 4, and the crushed material to be compressed while being charged. The gas in the gap is removed to the material inlet side, and no solid gas is continuously introduced into the thermal decomposition apparatus 6 that performs the thermal decomposition process, so that only the solid is continuously introduced into the thermal decomposition apparatus 6. While completely preventing oxygen from being mixed with the material, it can always be reliably fed at a predetermined mixing ratio. In addition, this makes it possible to adjust the input amount and operate while adjusting the optimum ratio from separate hoppers without mixing the organic substance A and the organic substance B at a fixed ratio in advance, making it safer, simpler and more stable. Can be performed.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。例えば、上記実施形態では有機物Aと有機物Bの2種類の有機物処理材料を投入するようにしているが、3種類以上の有機物処理材料を同様に投入してもよい。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. For example, in the above-described embodiment, two types of organic material treatment materials, organic matter A and organic matter B, are charged, but three or more types of organic matter treatment materials may be similarly charged. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

図1は、本発明の第1の実施形態に係る有機物処理材料の熱分解処理装置への投入装置の説明図を示す。FIG. 1 is an explanatory diagram of an apparatus for charging an organic material treatment material into a thermal decomposition apparatus according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る有機物処理材料の熱分解処理装置への投入装置の説明図を示す。FIG. 2 is an explanatory diagram of an input device for an organic processing material pyrolysis apparatus according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る有機物処理材料の熱分解処理装置への投入装置の説明図を示す。FIG. 3 is an explanatory view of an input device for an organic material processing material thermal decomposition apparatus according to the third embodiment of the present invention. 図4は、本発明の第4の実施形態に係る有機物処理材料の熱分解処理装置への投入装置の説明図を示す。FIG. 4 is an explanatory diagram of an input device for an organic processing material pyrolysis apparatus according to the fourth embodiment of the present invention. 図5は、本発明の第5の実施形態に係る有機物処理材料の熱分解処理装置への投入装置の説明図を示す。FIG. 5 is an explanatory view of an input device for an organic processing material pyrolysis apparatus according to the fifth embodiment of the present invention. 図6は、本発明の第6の実施形態に係る有機物処理材料の熱分解処理装置への投入装置の説明図を示す。FIG. 6 is an explanatory view of an input device for an organic processing material pyrolysis apparatus according to the sixth embodiment of the present invention. 図7は、本発明の第7の実施形態に係る有機物処理材料の熱分解処理装置への投入装置の説明図を示す。FIG. 7 is an explanatory view of an input device for an organic processing material pyrolysis apparatus according to the seventh embodiment of the present invention.

符号の説明Explanation of symbols

1,2…有機物投入ホッパー、3…第1の定量供給装置、4…第2の定量供給装置、5,23…投入機、6…熱分解装置、7,8…有機物供給バルブ、9…酸素濃度計、10a,10b…貯留管、11a,11b…不活性ガス注入ポート、12a,12b…調整バルブ、17…天秤式重量計、18…温度計、19,20…有機物処理材料定量供給サークルフィーダ、21…材料攪拌定量流下投入装置。   DESCRIPTION OF SYMBOLS 1,2 ... Organic substance input hopper, 3 ... 1st fixed_quantity | feed_rate supply apparatus, 4 ... 2nd fixed_quantity | feed_rate supply apparatus, 5,23 ... Loading machine, 6 ... Pyrolysis apparatus, 7,8 ... Organic substance supply valve, 9 ... Oxygen Concentration meter, 10a, 10b ... Reservoir pipe, 11a, 11b ... Inert gas injection port, 12a, 12b ... Adjustment valve, 17 ... Balance type weigh scale, 18 ... Thermometer, 19, 20 ... Organic substance processing material quantitative supply circle feeder , 21 ... Material stirring quantitative flow-down feeding device.

Claims (6)

複数種類の有機物処理材料を熱分解する熱分解処理装置において、
破砕された複数種類の有機物処理材料を夫々投入する複数の破砕有機物処理材料投入ホッパーと、
これらの破砕有機物処理材料投入ホッパーの下部側に夫々配置され,夫々の材料毎に破砕された有機物処理材料を夫々貯留する貯留管と、
これらの貯留管の下部に夫々設けられた定量供給装置と、
前記各貯留管の下部に夫々接続され,各貯留管に不活性ガスを供給する不活性ガス注入ポートと、
前記各貯留管の上部に夫々設置された酸素濃度計と、
前記定量供給装置の下部に配置された投入機と、
この投入機に接続された,熱分解を行う熱分解装置とを具備し、
前記各酸素濃度計の計測値により、夫々の不活性注入ポートより供給する不活性ガス注入量を調整できる機能を備え、
夫々の有機物処理材料を夫々の定量供給装置を経由して、或る一定比率で、熱分解処理装置内に連続的に投入できるようにしたことを特徴とする有機物処理材料の熱分解処理装置。
In pyrolysis processing equipment that pyrolyzes multiple types of organic materials,
A plurality of crushing organic matter treatment material input hopper to a plurality of types of organic process material that is crushed respectively turned,
Storage pipes respectively disposed on the lower side of these crushed organic matter treatment material input hoppers and storing crushed organic matter treatment materials for each material,
A quantitative supply device provided at the bottom of each of these storage pipes;
An inert gas injection port connected to a lower portion of each storage pipe, and supplying an inert gas to each storage pipe;
An oximeter installed at the top of each storage tube,
A dosing device disposed at a lower portion of the quantitative supply device;
A thermal decomposition apparatus for performing thermal decomposition, connected to the charging machine,
With the function of adjusting the inert gas injection amount supplied from each inert injection port, according to the measured value of each oximeter,
An organic matter treatment material thermal decomposition treatment apparatus characterized in that each organic matter treatment material can be continuously fed into a thermal decomposition treatment apparatus at a certain ratio via each quantitative supply device.
熱分解処理して生成した回収油量を計量し、その生成回収油量に応じて、熱分解装置へ供給する夫々の材料毎に破砕された有機物処理材料の供給比率を調整できるようにしたことを特徴とする請求項1記載の有機物処理材料の熱分解処理装置。 The amount of recovered oil generated by pyrolysis treatment was measured, and the supply ratio of crushed organic matter treatment materials for each material supplied to the pyrolysis device could be adjusted according to the amount of generated and recovered oil The thermal decomposition processing apparatus of the organic substance processing material of Claim 1 characterized by these. 熱分解装置の内部温度を測定し、その温度に応じて、熱分解装置へ供給する夫々の材料毎に破砕された有機物処理材料の供給比率を調整できるようにしたことを特徴とする請求項1記載の有機物処理材料の熱分解処理装置。 2. The internal temperature of the thermal decomposition apparatus is measured, and the supply ratio of the crushed organic matter treatment material can be adjusted for each material supplied to the thermal decomposition apparatus according to the temperature. The thermal decomposition processing apparatus of the organic substance processing material of description. 前記有機物処理材料投入ホッパーの下部に夫々配置された,夫々の破砕された有機物処理材料を供給する有機物処理材料定量供給サークルフィーダを更に具備し、夫々の定量供給サークルフィーダの回転数を調整し、夫々の材料毎に破砕した有機物処理材料を或る一定比率で、熱分解装置に連続的に投入できるようにしたことを特徴とする請求項1乃至3いずれか記載の有機物処理材料の熱分解処理装置。 An organic material processing material quantitative supply circle feeder that supplies each crushed organic material processing material, which is respectively disposed at the lower part of the organic material processing material charging hopper, is further provided, and the number of rotations of each quantitative supply circle feeder is adjusted, 4. The pyrolysis treatment of an organic matter treatment material according to any one of claims 1 to 3, wherein the organic matter treatment material crushed for each material can be continuously fed into the pyrolysis apparatus at a certain ratio. apparatus. 前記各破砕有機物処理材料投入ホッパーと前記各貯留管との間に夫々配置された,夫々の破砕された有機物処理材料を供給する有機物処理材料定量供給サークルフィフィーダと、前記定量供給装置の下部に配置された,スクリュー移送構造を有する材料攪拌定量流下投入装置とを更に具備することを特徴とする請求項1乃至3いずれか記載の有機物処理材料の熱分解処理装置。 Organic substance processing material quantitative supply circle feeders for supplying each crushed organic substance treatment material, which are respectively arranged between the respective crushed organic substance treatment material charging hoppers and the respective storage pipes, and below the quantitative supply apparatus The apparatus for thermal decomposition treatment of organic matter treatment material according to any one of claims 1 to 3, further comprising a material stirring fixed flow-down feeding device having a screw transfer structure. 前記投入機はスクリュー移送構造を有する投入機であり、有機物処理材料を投入しながら圧縮し、投入する破砕材料の隙間のガスを材料入口側に排除し、熱分解装置内には固体だけを連続的に投入されるようにしたことを特微とする請求項1乃至5いずれか記載の有機物処理材料の熱分解処理装置。 The feeding machine is a feeding machine having a screw transfer structure, compressing while putting the organic treatment material, eliminates the gas in the gap of the crushing material to be introduced to the material inlet side, and continues only the solid in the pyrolysis device 6. The apparatus for pyrolyzing an organic material treatment material according to claim 1, wherein the organic material treatment material is thermally charged.
JP2006333431A 2006-12-11 2006-12-11 Pyrolysis treatment equipment for organic treatment materials Expired - Fee Related JP4818089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333431A JP4818089B2 (en) 2006-12-11 2006-12-11 Pyrolysis treatment equipment for organic treatment materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333431A JP4818089B2 (en) 2006-12-11 2006-12-11 Pyrolysis treatment equipment for organic treatment materials

Publications (2)

Publication Number Publication Date
JP2008142639A JP2008142639A (en) 2008-06-26
JP4818089B2 true JP4818089B2 (en) 2011-11-16

Family

ID=39603409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333431A Expired - Fee Related JP4818089B2 (en) 2006-12-11 2006-12-11 Pyrolysis treatment equipment for organic treatment materials

Country Status (1)

Country Link
JP (1) JP4818089B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6626683B2 (en) * 2015-10-27 2019-12-25 株式会社Kri Treatment of biomass and waste plastics mixture

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104874A (en) * 1995-10-12 1997-04-22 Hitachi Ltd Pyrolysis of plastic and apparatus therefor
JPH09235561A (en) * 1996-02-29 1997-09-09 Chugai Ro Co Ltd Prevention of deposit of molten waste plastic onto feeder
JP3472958B2 (en) * 1997-10-15 2003-12-02 吉蔵 立崎 Carbonization equipment
JPH11349728A (en) * 1998-06-03 1999-12-21 Toshiba Corp Device for treating waste plastic
JP4528434B2 (en) * 2000-12-05 2010-08-18 株式会社東芝 Waste plastic processing equipment
JP2006241354A (en) * 2005-03-04 2006-09-14 Mitsui Eng & Shipbuild Co Ltd Waste gasification unit

Also Published As

Publication number Publication date
JP2008142639A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
US7926750B2 (en) Compactor feeder
KR101251103B1 (en) System and method for carbonization and gasification of biomass
KR101807632B1 (en) High Efficiency Discharge Gas Cyclic Type Composting System Using Livestock Excretions and Composting Method Thereby
EP2547465A2 (en) Waste treatment
KR101762898B1 (en) The manufacturing apparatus of half carbide using biomass mixture
KR101371884B1 (en) Method for producing solid fuel using biomass material and the solid fuel therefrom
BR112013026553B1 (en) processes to produce carbon-rich biogenic reagents
US20110308287A1 (en) Method for processing materials in a drum apparatus and an apparatus for implementing the method
US5257586A (en) Method and apparatus for feeding to a rotary device
KR20090025212A (en) Method of decomposing waste plastic/organic substance, decomposition apparatus, and decomposition system
CN102015977A (en) Biocoke producing apparatus and process
JP2022504106A (en) Equipment for recycling used batteries
EP2566809A1 (en) Waste treatment
Zinchik et al. Evaluation of fast pyrolysis feedstock conversion with a mixing paddle reactor
JP4818089B2 (en) Pyrolysis treatment equipment for organic treatment materials
JP2013199515A (en) Biomass circulating processing system of livestock excrement
JP5015982B2 (en) Vertical stirring and heating reactor
JP3393057B2 (en) Continuous oiling equipment
US9969936B2 (en) Rotarty thermolysis reactor and method for operating same
KR101396234B1 (en) Solid feul manufacturing apparatus using animals excreta and method thereof
Sharifah et al. Combustion characteristics of Malaysian municipal solid waste and predictions of air flow in a rotary kiln incinerator
JP2010013583A (en) Gasification equipment and gasification power generating installation using biomass fuel
SK8601Y1 (en) Method of thermal depolymerization of plastics material and apparatus for its implementation
CN202155359U (en) Full-stabilization and security incineration fly ash processing device
KR100768485B1 (en) Method and apparatus for drying and carbonizing untreated waste materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees